1
|
Jiang X. An overview of the Plasmodium falciparum hexose transporter and its therapeutic interventions. Proteins 2022; 90:1766-1778. [PMID: 35445447 PMCID: PMC9790349 DOI: 10.1002/prot.26351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 12/30/2022]
Abstract
Despite intense elimination efforts, human malaria, caused by the infection of five Plasmodium species, remains the deadliest parasitic disease in the world. Even worse, with the emergence and spreading of the first-line drug-resistant Plasmodium parasites, therapeutic interventions based on novel plasmodial drug targets are more necessary than ever. Given that the blood-stage parasites primarily rely on glycolysis for their energy supply, blocking glucose uptake, the rate-limiting step of ATP generation, was considered a promising approach to kill these parasites. To achieve this goal, characterization of the plasmodial hexose transporter and development of selective inhibitors have been pursued for decades. Here, we review the identification and characterization of the Plasmodium falciparum hexose transporter (PfHT1) and summarize current advances in its inhibitor development.
Collapse
Affiliation(s)
- Xin Jiang
- School of Biotechnology and Biomolecular Sciencesthe University of New South WalesSydneyNew South Wales
| |
Collapse
|
2
|
Abstract
Glucose and related hexoses play central roles in the biochemistry and metabolism of single-cell parasites such as Leishmania, Trypanosoma, and Plasmodium that are the causative agents of leishmaniasis, African sleeping sickness, and malaria. Glucose transporters and the genes that encode them have been identified in each of these parasites and their functional properties have been scrutinized. These transporters are related in sequence and structure to mammalian facilitative glucose transporters of the SLC2 family, but they are nonetheless quite divergent in sequence. Hexose transporters have been shown to be essential for the viability of the infectious stage of each of these parasites and thus may represent targets for development of novel anti-parasitic drugs. The study of these transporters also illuminates many aspects of the basic biology of Leishmania, trypanosomes, and malaria parasites.
Collapse
|
3
|
Khan AA, Hanada T, Mohseni M, Jeong JJ, Zeng L, Gaetani M, Li D, Reed BC, Speicher DW, Chishti AH. Dematin and adducin provide a novel link between the spectrin cytoskeleton and human erythrocyte membrane by directly interacting with glucose transporter-1. J Biol Chem 2008; 283:14600-9. [PMID: 18347014 DOI: 10.1074/jbc.m707818200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dematin and adducin are actin-binding proteins located at the spectrin-actin junctions, also called the junctional complex, in the erythrocyte membrane. Here we propose a new model whereby dematin and adducin link the junctional complex to human erythrocyte plasma membrane. Using a combination of surface labeling, immunoprecipitation, and vesicle proteomics approaches, we have identified glucose transporter-1 as the receptor for dematin and adducin in the human erythrocyte membrane. This finding is the first description of a transmembrane protein that binds to dematin and adducin, thus providing a rationale for the attachment of the junctional complex to the lipid bilayer. Because homologues of dematin, adducin, and glucose transporter-1 exist in many non-erythroid cells, we propose that a conserved mechanism may exist that couples sugar and other related transporters to the actin cytoskeleton.
Collapse
Affiliation(s)
- Anwar A Khan
- Department of Pharmacology, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wang P, Wang Q, Sims PF, Hyde JE. Characterisation of exogenous folate transport in Plasmodium falciparum. Mol Biochem Parasitol 2007; 154:40-51. [PMID: 17509698 PMCID: PMC1906846 DOI: 10.1016/j.molbiopara.2007.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 04/03/2007] [Accepted: 04/03/2007] [Indexed: 12/02/2022]
Abstract
Folate salvage by Plasmodium falciparum is an important source of key cofactors, but little is known about the underlying mechanism. Using synchronised parasite cultures, we observed that uptake of this dianionic species against the negative-inward electrochemical gradient is highly dependent upon cell-cycle stage, temperature and pH, but not on mono- or divalent metal ions. Energy dependence was tested with different sugars; glucose was necessary for folate import, although fructose was also able to function in this role, unlike sugars that cannot be processed through the glycolytic pathway. Import into both infected erythrocytes and free parasites was strongly inhibited by the anion-channel blockers probenecid and furosemide, which are likely to be acting predominantly on specific folate transporters in both cases. Import was not affected by high concentrations of the antifolate drugs pyrimethamine and sulfadoxine, but was inhibited by the close folate analogue methotrexate. The pH optimum for folate uptake into infected erythrocytes was 6.5–7.0. Dinitrophenol and nigericin, which strongly facilitate the equilibration of H+ ions across biological membranes and thus abolish or substantially reduce the proton gradient, inhibited folate uptake profoundly. The ATPase inhibitor concanamycin A also greatly reduced folate uptake, further demonstrating a link to ATP-powered proton transport. These data strongly suggest that the principal folate uptake pathway in P. falciparum is specific, highly regulated, dependent upon the proton gradient across the parasite plasma membrane, and is likely to be mediated by one or more proton symporters.
Collapse
Affiliation(s)
| | | | | | - John E. Hyde
- Corresponding author. Tel.: +44 161 306 4185; fax: +44 161 306 5201.
| |
Collapse
|
5
|
Abstract
Intracellular protozoan parasites of the genus Plasmodium spend much of the cell cycle inside the vertebrate host's erythrocytes. Recent studies on the metabolism of D-glucose in Plasmodium-infected erythrocytes have suggested that the parasite does not depend on the glycolytic activity of the host erythrocyte. Kazuyuki Tanabe describes how the intraerythrocytic parasite acquires extracellular D-glucose from the host and the pathways through which the sugar crosses the membranes of both the parasite and the host eruthrocyte. It appears that the parasite adapts itself to the host's physiological environment and modifies the functions of the host erythrocyte to be able to complete intraerythrocytic development.
Collapse
Affiliation(s)
- K Tanabe
- Laborotory of Biology, Osaka Institute of Technology, Ohmiya, Asahi-ku, Osaka 535, Japan
| |
Collapse
|
6
|
Ohmori T, Adachi K, Fukuda Y, Tamahara S, Matsuki N, Ono K. Glucose uptake activity in murine red blood cells infected with Babesia microti and Babesia rodhaini. J Vet Med Sci 2004; 66:945-9. [PMID: 15353845 DOI: 10.1292/jvms.66.945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The glucose uptake activity in Babesia rodhaini and B. microti - infected red blood cell (IRBC) was investigated in mice using 2-deoxy-D-glucose (2DOG) and L-glucose (L-Glc), a non-metabolizable analogue of D-glucose and non-incorporative glucose to non-infected RBC (NRBC), respectively. The uptake activities of both DOG and L-Glc were higher in IRBCs than those in NRBC. The concentration dependent uptake of 2DOG and L-Glc in both IRBC revealed a linear curve, indicating non-transporter mediated uptake. In addition, B. microti IRBC showed higher 2DOG uptake than B. rodhaini IRBC, whereas no difference was observed in L-Glc uptake. These results indicated that some new glucose uptake system, at least two systems, developed in both IRBC. The new systems were sodium independent, non-competitive to L-Glc, and sensitive to temperature. One of two systems had no kinetical difference between B. rodhaini and B. microti IRBC, however another one might have higher uptake activity in B. microti IRBC compared to that in B. rodhaini IRBC.
Collapse
Affiliation(s)
- Takashi Ohmori
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Joët T, Holterman L, Stedman TT, Kocken CHM, Van Der Wel A, Thomas AW, Krishna S. Comparative characterization of hexose transporters of Plasmodium knowlesi, Plasmodium yoelii and Toxoplasma gondii highlights functional differences within the apicomplexan family. Biochem J 2002; 368:923-9. [PMID: 12238947 PMCID: PMC1223042 DOI: 10.1042/bj20021189] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2002] [Revised: 09/17/2002] [Accepted: 09/19/2002] [Indexed: 11/17/2022]
Abstract
Chemotherapy of apicomplexan parasites is limited by emerging drug resistance or lack of novel targets. PfHT1, the Plasmodium falciparum hexose transporter 1, is a promising new drug target because asexual-stage malarial parasites depend wholly on glucose for energy. We have performed a comparative functional characterization of PfHT1 and hexose transporters of the simian malarial parasite P. knowlesi (PkHT1), the rodent parasite P. yoelii (PyHT1) and the human apicomplexan parasite Toxoplasma gondii ( T. gondii glucose transporter 1, TgGT1). PkHT1 and PyHT1 share >70% amino acid identity with PfHT1, while TgGT1 is more divergent (37.2% identity). All transporters mediate uptake of D-glucose and D-fructose. PyHT1 has an affinity for glucose ( K (m) approximately 0.12 mM) that is higher than that for PkHT1 ( K (m) approximately 0.67 mM) or PfHT1 ( K (m) approximately 1 mM). TgGT1 is highly temperature dependent (the Q (10) value, the fold change in activity for a 10 degrees C change in temperature, was >7) compared with Plasmodium transporters ( Q (10), 1.5-2.5), and overall has the highest affinity for glucose ( K (m) approximately 30 microM). Using active analogues in competition for glucose uptake, experiments show that hydroxyl groups at the C-3, C-4 and C-6 positions are important in interacting with PkHT1, PyHT1 and TgGT1. This study defines models useful to study the biology of apicomplexan hexose permeation pathways, as well as contributing to drug development.
Collapse
Affiliation(s)
- Thierry Joët
- Department of Infectious Diseases, St. George's Hospital Medical School, Cranmer Terrace, London SW17 ORE, UK
| | | | | | | | | | | | | |
Collapse
|
8
|
Bayele HK. Critical parameters for functional reconstitution of glucose transport in Trypanosoma brucei membrane vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1513:223-31. [PMID: 11470094 DOI: 10.1016/s0005-2736(01)00363-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The glucose transporter of Trypanosoma brucei was reconstituted by incorporating Escherichia coli phospholipid liposomes into detergent-solubilised trypanosome membranes. Proteoliposome vesicles were formed by detergent dilution and used in glucose-uptake assays. The minima for functional reconstitution of the glucose transporter were established and used to probe the mechanism of glucose transport. The uptake pattern of radiolabelled glucose showed a counterflow transient at about 3 s, after which the sugar equilibrated across the proteoliposomal membrane. This observation is consistent with a facilitated transporter. There was a six-fold increase in the initial rate of glucose uptake compared to non-reconstituted or native membranes. In addition, the transporter exhibited stereospecificity to D-glucose but poorly transported L-glucose. Directionality, stereoselectivity or substrate specificity and cis-inhibition by phloridzin were therefore the main criteria for validation of glucose transport. The observed counterflow transient also provided further evidence for a facilitated glucose transporter within the trypanosome plasma membrane, and was the single most important criterion for this assertion. A stoichiometry of 0.78 mol of glucose per mol of transporter was estimated.
Collapse
Affiliation(s)
- H K Bayele
- Department of Biochemistry, University of Bath, Bath, UK.
| |
Collapse
|
9
|
Abstract
The malaria parasite is a unicellular eukaryotic organism which, during the course of its complex life cycle, invades the red blood cells of its vertebrate host. As it grows and multiplies within its host blood cell, the parasite modifies the membrane permeability and cytosolic composition of the host cell. The intracellular parasite is enclosed within a so-called parasitophorous vacuolar membrane, tubular extensions of which radiate out into the host cell compartment. Like all eukaryote cells, the parasite has at its surface a plasma membrane, as well as having a variety of internal membrane-bound organelles that perform a range of functions. This review focuses on the transport properties of the different membranes of the malaria-infected erythrocyte, as well as on the role played by the various membrane transport systems in the uptake of solutes from the extracellular medium, the disposal of metabolic wastes, and the origin and maintenance of electrochemical ion gradients. Such systems are of considerable interest from the point of view of antimalarial chemotherapy, both as drug targets in their own right and as routes for targeting cytotoxic agents into the intracellular parasite.
Collapse
Affiliation(s)
- K Kirk
- Division of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
10
|
Ginsburg H. The permeability properties of the parasite cell membrane. NOVARTIS FOUNDATION SYMPOSIUM 2000; 226:99-108; discussion 108-13. [PMID: 10645541 DOI: 10.1002/9780470515730.ch8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The asexual development of the malaria parasite takes place inside the host's erythrocyte, an environment that is different from that of most other eukaryotic organisms. The intense and rapid development of the parasite, as well as the homeostatic regulation of its cellular composition, require an extensive exchange of material between the parasite and its immediate surroundings. Studies on free murine parasite species suggest that a plasma membrane H+ pump is responsible for the maintenance of membrane potential and pH gradient, which are used as driving forces for the uptake of glucose and extrusion of Ca2+ by means of a symporter and an antiporter, respectively. In Plasmodium falciparum, a similar transport of Ca2+ may prevail. Several other transporters have been assigned to the plasma membrane of this parasite, either by direct measurements or by inference: D-glucose, nucleosides, L-amino acids, L-lactate and pantothenic acid. A Na+/H+ antiporter has been demonstrated, and implicated in the regulation of pH, and an ATP/ADP antiporter, whose function remains controversial, has been characterized. The presence of Mg2+ and Na+/K+ pumps and an active extrusion of oxidized glutathione can be inferred from the composition of the parasite cytosol vs. that of the host cell. Several genes coding for cation pumps have been cloned and their functions await characterization.
Collapse
Affiliation(s)
- H Ginsburg
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| |
Collapse
|
11
|
Vial HJ, Eldin P, Martin D, Gannoun L, Calas M, Ancelin ML. Transport of phospholipid synthesis precursors and lipid trafficking into malaria-infected erythrocytes. NOVARTIS FOUNDATION SYMPOSIUM 2000; 226:74-83; discussion 82-8. [PMID: 10645539 DOI: 10.1002/9780470515730.ch6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Phospholipid biosynthesis in Plasmodium is of crucial importance considering the high degree of membrane biogenesis. In the de novo phosphatidylcholine pathway, the major plasmodial phospholipid, choline, first enters infected erythrocytes by a transport-mediated process, whose main kinetic characteristics are the same as in normal cells except for a considerable increase in Vm. The kinetic and functional characterizations of the choline carrier (affinity, specificity, stereoselectivity, asymmetric cyclic model, ionic dependence, limiting step in carrier translocation) have now been done, although there is no information concerning its nature and structure, despite the fact that it is likely an outstanding pharmacological target. Other unanswered questions concern the mechanisms for choline entry into the parasite. The intense lipid trafficking between the intracellular parasite and the host cell membrane also indicates that Plasmodium controls its own lipid composition as well as that of its host cell. Organelles that house the machinery for lipid synthesis, and mechanisms for trafficking and sorting, have not yet been described because of the lack of appropriate tools, but they could address fundamental questions in the contemporary cell biology of this parasite.
Collapse
Affiliation(s)
- H J Vial
- Dynamique Moléculaire des Interactions Membranaires, UMR 5539 CNRS, Université Montpellier II, France
| | | | | | | | | | | |
Collapse
|
12
|
Goodyer ID, Hayes DJ, Eisenthal R. Efflux of 6-deoxy-D-glucose from Plasmodium falciparum-infected erythrocytes via two saturable carriers. Mol Biochem Parasitol 1997; 84:229-39. [PMID: 9084042 DOI: 10.1016/s0166-6851(96)02802-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glucose transport in human erythrocytes infected with the malaria parasite, Plasmodium falciparum, has been studied using 6-deoxy-D-glucose (6DOG) as a non-metabolised glucose analogue. Inhibition studies using cytochalasin B, a powerful inhibitor of the erythrocyte glucose transporter, GLUT1, indicate that in the infected red blood cell (IRBC), glucose is transported via a saturable carrier. However, inhibition is not as complete as in the uninfected erythrocyte. The synergistic inhibition effect of 6DOG entry by niflumic acid, an inhibitor of the non-specific malaria-induced pore, in the presence of cytochalasin B suggests that some glucose may also enter the infected erythrocytes through the pore, if entry via the carrier is blocked. The time course of 6DOG efflux from infected erythrocytes in the presence of cytochalasin B did not follow simple first-order kinetics. To elucidate the kinetic mechanism of 6DOG efflux from the infected erythrocytes, the concentration dependence of efflux was determined. Eight two-compartment kinetic models were simulated, involving first-order pore diffusion and carrier-mediated saturable diffusion in two systems, one ductless and one assuming the existence of a parasitophorous duct. The only two models showing reasonable fits to the efflux data each involve two saturable carriers. It is likely that one of the saturable carriers is associated with the parasite itself. Evidence that the parasite carrier has different inhibitor sensitivities from that of GLUT1 is presented.
Collapse
Affiliation(s)
- I D Goodyer
- School of Biology and Biochemistry, University of Bath, UK
| | | | | |
Collapse
|
13
|
Ginsburg H. Transport pathways in the malaria-infected erythrocyte. Their characterization and their use as potential targets for chemotherapy. Biochem Pharmacol 1994; 48:1847-56. [PMID: 7986195 DOI: 10.1016/0006-2952(94)90582-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The intraerythrocytic malarial parasite is involved in an extremely intensive anabolic activity while it resides in its metabolically quiescent host cell. The necessary fast uptake of nutrients and the discharge of waste products are guaranteed by parasite-induced alterations of the constitutive transporters of the host cell and the production of new parallel pathways. The membrane of the host cell thus becomes permeable to phospholipids, purine bases and nucleosides, small non-electrolytes, anions and cations. While the new pathways are quantitatively unimportant for the translocation of a particular solute, classical inhibitors of native transporters can be used to inhibit parasite growth. Several compounds were found to inhibit effectively the new pathways and, consequently, parasite growth. The pathways have also been used to introduce cytotoxic agents. The parasitophorous membrane consists of channels that are highly permeable to small solutes and display no ion selectivity. Transport of some cations and anions across the parasite membrane is rapid and insensitive to classical inhibitors, and in some cases it is mediated by specific antiporters that respond to their respective inhibitors. Macromolecules have been shown to reach the parasitophorous space through a duct contiguous with the host cell membrane, and subsequently to be endocytosed at the parasite membrane. The simultaneous presence of the parasitophorous membrane channels and the duct, however, is incompatible with experimental evidence. No specific inhibitors have been found as yet that would efficiently inhibit transport through the channels or the duct.
Collapse
Affiliation(s)
- H Ginsburg
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| |
Collapse
|
14
|
|
15
|
Gero AM, Kirk K. Nutrient transport pathways in Plasmodium-infected erythrocytes: What and where Are They? ACTA ACUST UNITED AC 1994; 10:395-9. [PMID: 15275546 DOI: 10.1016/0169-4758(94)90231-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A M Gero
- School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
16
|
Abstract
The glucose analogue, 2-deoxy-D-glucose, was used to characterise the glucose transport system in Crithidia luciliae choanomastigotes. Uptake was temperature dependent with a Q10 of 2, and saturable with a Km of 0.22 mM and Vmax of 5.5 nmol min-1 (mg protein)-1 at 23 degrees C. Preloaded cells showed rapid exchange of intracellular 2-deoxy-D-glucose when incubated with extracellular D-glucose or 2-deoxy-D-glucose but little exchange with L-glucose. The substrate specificity of the uptake was studied using a number of D-glucose analogues. 6-Deoxy-D-glucose, 3-fluoro-3-deoxy-D-glucose and 4-fluoro-4-deoxy-D-glucose all competed for the transporter and had significant inhibitory effects on 2-deoxy-D-glucose transport. In contrast, 1-thio-beta-D-glucose, trehalose, 3-O-methyl-D-glucose, arginine, thymidine, L-sorbose and L-glucose were not inhibitory. The results imply the existence of a glucose transporter. The transport was blocked by a number of inhibitors and ionophores, including fluoride, azide, cyanide, dinitrophenol, valinomycin and nigericin. Overall, the uptake, exchange and efflux of 2-deoxy-D-glucose is consistent with transport via facilitated diffusion.
Collapse
Affiliation(s)
- L A Knodler
- School of Biochemistry, University of New South Wales, Kensington, Australia
| | | | | |
Collapse
|
17
|
Elmendorf HG, Bangs JD, Haldar K. Synthesis and secretion of proteins by released malarial parasites. Mol Biochem Parasitol 1992; 52:215-30. [PMID: 1620161 DOI: 10.1016/0166-6851(92)90054-n] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Controlled mechanical homogenization of Plasmodium falciparum-infected erythrocytes releases parasites of a quality sufficient for studying the export of newly synthesized plasmodial proteins. Protein synthesis occurs within intact released parasites as defined by resistance of acid-insoluble incorporation of radiolabel to high levels of exogenously added EDTA, hexokinase, and RNaseA. While exogenously added ATP and erythrocyte cytosol were not essential for biosynthetic activity at levels comparable to that seen in infected erythrocytes, the addition of an extracellular ATP regenerating system (ARS) stimulated the synthesis of parasite proteins. Conversely, parasite viability and biosynthetic activity are decreased by the addition of a non-hydrolyzable ATP analogue (ATP gamma S), ADP, or ATP in the absence of a regenerating system. These data suggest a metabolic interdependence between extracellular energy metabolism and biosynthetic functions within the parasite. The export of a predominant subset of proteins was retarded in the presence of Brefeldin A, indicating the existence of a classical secretory pathway characteristic of that seen in higher eukaryotic cells. Interestingly, a Brefeldin A-insensitive component of export was also consistently observed; this may suggest the existence of an additional alternative secretory mechanism in malaria.
Collapse
Affiliation(s)
- H G Elmendorf
- Department of Microbiology and Immunology, Stanford University School of Medicine, CA
| | | | | |
Collapse
|
18
|
Scheibel LW. Role of calcium/calmodulin-mediated processes in protozoa. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 134:165-242. [PMID: 1582773 DOI: 10.1016/s0074-7696(08)62029-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- L W Scheibel
- Department of Preventive Medicine, Uniformed Services University of the Health Sciences School of Medicine, Bethesda, Maryland 20814
| |
Collapse
|
19
|
Parsons M, Nielsen B. Active transport of 2-deoxy-D-glucose in Trypanosoma brucei procyclic forms. Mol Biochem Parasitol 1990; 42:197-203. [PMID: 2270102 DOI: 10.1016/0166-6851(90)90162-f] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The characteristics of glucose transport by procyclic forms of Trypanosoma brucei were examined in a rapid transport assay using the glucose analogue 2-deoxyglucose. In contrast to bloodforms where the Km for 2-deoxyglucose transport is about 1 mM, procyclic forms have a Km of about 38 microM. Procyclic forms show temperature-dependent, saturable import, and import of 2-deoxyglucose is competitive with glucose and mannose. Unlike the bloodforms which employ facilitated diffusion, the procyclic forms actively transport glucose. Use of inhibitors and ionophores suggests that a protonmotive force is required for glucose transport in procyclic forms. Unlike the human erythrocyte glucose transporter, the glucose transporter of the T. brucei procyclic form is relatively insensitive to inhibition by cytocholasin B.
Collapse
Affiliation(s)
- M Parsons
- Seattle Biomedical Research Institute, WA 98109
| | | |
Collapse
|
20
|
Kato M, Tanabe K, Miki A, Ichimori K, Waki S. Membrane potential ofPlasmodium falciparumgametocytes monitored with rhodamine 123. FEMS Microbiol Lett 1990. [DOI: 10.1111/j.1574-6968.1990.tb04245.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Fry M, Webb E, Pudney M. Effect of mitochondrial inhibitors on adenosinetriphosphate levels in Plasmodium falciparum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1990; 96:775-82. [PMID: 2171868 DOI: 10.1016/0305-0491(90)90230-q] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. The effects of mitochondrial inhibitors on the ATP levels of intraerythrocytic Plasmodium falciparum have been studied. 2. Changes in parasite ATP or ADP levels with time in response to various mitochondrial inhibitors appear quite complex; ATP levels may be initially depressed and then elevated above normal, but the nature of the response depends upon the stage in the intraerythrocytic cycle and in some cases upon the concentration of the inhibitor used. 3. After ca 2 hr incubation of cultures with inhibitors ATP levels appear to be stabilized and are similar to those of untreated parasites. However, ADP levels of trophozoites show significant increases after a 2 hr incubation with inhibitors, particularly with oligomycin and to a lesser extent with antimycin A; increases in ADP levels however were not observed in ring-stages of the parasite. 4. Inhibition of red cell and parasite glycolysis leads to rapid decreases in parasite ATP levels which are not significantly affected by oligomycin. Incubation of in vitro cultures with oligomycin can result in a decreased, rather than increased rate of lactate production with a concomitant appearance of pyruvate in the growth medium. 5. This investigation would indicate that if there is a mitochondrial contribution to the parasite ATP pool it is relatively small, and that a short-fall in this contribution is quickly compensated for by ATP from other source(s), although this is not necessarily met by increased glycolysis.
Collapse
Affiliation(s)
- M Fry
- Wellcome Research Laboratories, Beckenham, Kent, UK
| | | | | |
Collapse
|