1
|
Kaethner M, Epping K, Bernthaler P, Rudolf K, Thomann I, Leitschuh N, Bergmann M, Spiliotis M, Koziol U, Brehm K. Transforming growth factor-β signalling regulates protoscolex formation in the Echinococcus multilocularis metacestode. Front Cell Infect Microbiol 2023; 13:1153117. [PMID: 37033489 PMCID: PMC10073696 DOI: 10.3389/fcimb.2023.1153117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/23/2023] [Indexed: 04/11/2023] Open
Abstract
The lethal zoonosis alveolar echinococcosis (AE) is caused by tumor-like, infiltrative growth of the metacestode larval stage of the tapeworm Echinococcus multilocularis. We previously showed that the metacestode is composed of posteriorized tissue and that the production of the subsequent larval stage, the protoscolex, depends on re-establishment of anterior identities within the metacestode germinative layer. It is, however, unclear so far how protoscolex differentiation in Echinococcus is regulated. We herein characterized the full complement of E. multilocularis TGFβ/BMP receptors, which is composed of one type II and three type I receptor serine/threonine kinases. Functional analyzes showed that all Echinococcus TGFβ/BMP receptors are enzymatically active and respond to host derived TGFβ/BMP ligands for activating downstream Smad transcription factors. In situ hybridization experiments demonstrated that the Echinococcus TGFβ/BMP receptors are mainly expressed by nerve and muscle cells within the germinative layer and in developing brood capsules. Interestingly, the production of brood capsules, which later give rise to protoscoleces, was strongly suppressed in the presence of inhibitors directed against TGFβ/BMP receptors, whereas protoscolex differentiation was accelerated in response to host BMP2 and TGFβ. Apart from being responsive to host TGFβ/BMP ligands, protoscolex production also correlated with the expression of a parasite-derived TGFβ-like ligand, EmACT, which is expressed in early brood capsules and which is strongly expressed in anterior domains during protoscolex development. Taken together, these data indicate an important role of TGFβ/BMP signalling in Echinococcus anterior pole formation and protoscolex development. Since TGFβ is accumulating around metacestode lesions at later stages of the infection, the host immune response could thus serve as a signal by which the parasite senses the time point at which protoscoleces must be produced. Overall, our data shed new light on molecular mechanisms of host-parasite interaction during AE and are relevant for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Marc Kaethner
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Kerstin Epping
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Peter Bernthaler
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Kilian Rudolf
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Irena Thomann
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Nadine Leitschuh
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Laboratory of Microbiology and Biotechnology, Department of Food Technology, Fulda University of Applied Sciences, Fulda, Germany
| | - Monika Bergmann
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Markus Spiliotis
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Uriel Koziol
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Klaus Brehm
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Qin SL, Guo Y, Li SX, Zhou L, Maimaiti A, Akemu Y, He J, Yao HX. The role of the TGF-β/LIF signaling pathway mediated by SMADs during the cyst formation of Echinococcus in young children. BMC Mol Cell Biol 2022; 23:50. [PMID: 36443650 PMCID: PMC9706881 DOI: 10.1186/s12860-022-00452-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/09/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE The present study aims to explore the correlation of the transforming growth factor β (TGF-β), drosophila mothers against decapentaplegic protein gene (SMAD) 2/3/4, and leukemia inhibitory factors (LIF) with the cyst formation of hepatic Echinococcus granulosus in young children. METHODS A total of 40 patients who met the diagnostic criteria for children's hydatid disease in people's Hospital of Xinjiang Uygur Autonomous Region between January 2020 and June 2021 were enrolled a s the study subjects. The cystic fluid of these children was collected as the case group and the corresponding infected viscera or pericystic tissue as the control group, with 40 cases in each group. In vitro cultured protoscolice of hydatid cyst, four groups including control group, LIF siRNA group, LIF factor group and SMAD4 siRNA group were divided by inhibiting TGF-β/SMADs signal pathway. Each assay was performed in triplicate. The expression of TGF-β, SMAD2/3/4 and LIF were detected. RESULTS The results of the clinical trial showed that the contents of SMAD2 and SMAD3 were increased in the case group compared with the control group; the differences were statistically significant (P < 0.05). The expression levels of TGF-β, Smad4, and LIF increased in the case group compared with the control group; however, the differences were not statistically significant. The results of further in vitro experiments, the expression levels of TGF-β, SMAD 2/3/4, and LIF after adding siRNA to interfere with Smad4 decreased in the case group compared with the control group; the differences were statistically significant (P < 0.05). Compared with the control group, the expression levels of TGF-β, SMAD2/3/4, and LIF increased after treatment with added LIF in the case group, and the expression levels of TGF-β, SMAD2/3/4, and LIF decreased after adding siRNA to interfere with LIF in the case group; the differences were all statistically significant (P < 0.05). CONCLUSION SMAD2 and SMAD3 have a certain clinical relevance with hydatidosis in young children. The LIF expression level may be related to the cystic transformation of protoscoleces. It has been suggested that the TGF-β/Smads/LIF signaling pathway may be present in the process of protoscoleces cyst formation; this provides a research basis for the prevention and treatment of post-infection parasitism of E. multilocularis eggs in young children.
Collapse
Affiliation(s)
- Shuang-li Qin
- grid.513202.7Department of pediatric surgery, people’s Hospital, No. 91, Tianchi Road, Tianshan District, Urumqi, Xinjiang, 830000 Xinjiang Uygur Autonomous Region China ,Department of general surgery, Children’s Hospital, Xinjiang, 830000 Uygur Autonomous Region China
| | - Yun Guo
- Department of general surgery, Children’s Hospital, Xinjiang, 830000 Uygur Autonomous Region China
| | - Shui-Xue Li
- grid.513202.7Department of pediatric surgery, people’s Hospital, No. 91, Tianchi Road, Tianshan District, Urumqi, Xinjiang, 830000 Xinjiang Uygur Autonomous Region China ,Department of general surgery, Children’s Hospital, Xinjiang, 830000 Uygur Autonomous Region China
| | - Ling Zhou
- grid.513202.7Department of pediatric surgery, people’s Hospital, No. 91, Tianchi Road, Tianshan District, Urumqi, Xinjiang, 830000 Xinjiang Uygur Autonomous Region China ,Department of general surgery, Children’s Hospital, Xinjiang, 830000 Uygur Autonomous Region China
| | - Azguli Maimaiti
- grid.513202.7Department of pediatric surgery, people’s Hospital, No. 91, Tianchi Road, Tianshan District, Urumqi, Xinjiang, 830000 Xinjiang Uygur Autonomous Region China ,Department of general surgery, Children’s Hospital, Xinjiang, 830000 Uygur Autonomous Region China
| | - Yusufu Akemu
- grid.513202.7Department of pediatric surgery, people’s Hospital, No. 91, Tianchi Road, Tianshan District, Urumqi, Xinjiang, 830000 Xinjiang Uygur Autonomous Region China ,Department of general surgery, Children’s Hospital, Xinjiang, 830000 Uygur Autonomous Region China
| | - Jun He
- grid.513202.7Department of pediatric surgery, people’s Hospital, No. 91, Tianchi Road, Tianshan District, Urumqi, Xinjiang, 830000 Xinjiang Uygur Autonomous Region China ,Department of general surgery, Children’s Hospital, Xinjiang, 830000 Uygur Autonomous Region China
| | - Hai-Xia Yao
- grid.513202.7Department of pediatric surgery, people’s Hospital, No. 91, Tianchi Road, Tianshan District, Urumqi, Xinjiang, 830000 Xinjiang Uygur Autonomous Region China ,Department of general surgery, Children’s Hospital, Xinjiang, 830000 Uygur Autonomous Region China
| |
Collapse
|
3
|
Nian X, Li L, Ma X, Li X, Li W, Zhang N, Ohiolei JA, Li L, Dai G, Liu Y, Yan H, Fu B, Xiao S, Jia W. Understanding pathogen–host interplay by expression profiles of lncRNA and mRNA in the liver of Echinococcus multilocularis-infected mice. PLoS Negl Trop Dis 2022; 16:e0010435. [PMID: 35639780 PMCID: PMC9187083 DOI: 10.1371/journal.pntd.0010435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 06/10/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Almost all Echinococcus multilocularis (Em) infections occur in the liver of the intermediate host, causing a lethal zoonotic helminthic disease, alveolar echinococcosis (AE). However, the long non-coding RNAs (lncRNAs) expression profiles of the host and the potential regulatory function of lncRNA during Em infection are poorly understood. In this study, the profiles of lncRNAs and mRNAs in the liver of mice at different time points after Em infection were explored by microarray. Thirty-one differentially expressed mRNAs (DEMs) and 68 differentially expressed lncRNAs (DELs) were found continuously dysregulated. These DEMs were notably enriched in “antigen processing and presentation”, “Th1 and Th2 cell differentiation” and “Th17 cell differentiation” pathways. The potential predicted function of DELs revealed that most DELs might influence Th17 cell differentiation and TGF-β/Smad pathway of host by trans-regulating SMAD3, STAT1, and early growth response (EGR) genes. At 30 days post-infection (dpi), up-regulated DEMs were enriched in Toll-like and RIG-I-like receptor signaling pathways, which were validated by qRT-PCR, Western blotting and downstream cytokines detection. Furthermore, flow cytometric analysis and serum levels of the corresponding cytokines confirmed the changes in cell-mediated immunity in host during Em infection that showed Th1 and Th17-type CD4+ T-cells were predominant at the early infection stage whereas Th2-type CD4+ T-cells were significantly higher at the middle/late stage. Collectively, our study revealed the potential regulatory functions of lncRNAs in modulating host Th cell subsets and provide novel clues in understanding the influence of Em infection on host innate and adaptive immune response.
Collapse
Affiliation(s)
- Xiaofeng Nian
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Li Li
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
| | - Xusheng Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Xiurong Li
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
| | - Wenhui Li
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
| | - Nianzhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
| | - John Asekhaen Ohiolei
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
| | - Le Li
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
| | - Guodong Dai
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
| | - Yanhong Liu
- The Instrument Centre of State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Hongbin Yan
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
- * E-mail: (HY); (SX); (WJ)
| | - Baoquan Fu
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, Jiangsu, P. R. China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
- * E-mail: (HY); (SX); (WJ)
| | - Wanzhong Jia
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, Jiangsu, P. R. China
- * E-mail: (HY); (SX); (WJ)
| |
Collapse
|
4
|
Liu C, Fan H, Guan L, Ma L, Ge RL. Evaluation of Allicin Against Alveolar Echinococcosis In Vitro and in a Mouse Model. Acta Parasitol 2022; 67:79-93. [PMID: 34143400 PMCID: PMC8938363 DOI: 10.1007/s11686-021-00434-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023]
Abstract
Purpose At present, the chemotherapy for alveolar echinococcosis (AE) is mainly based on albendazole (ABZ). However, more than 20% of patients fail chemotherapy. Therefore, new and more effective treatments are urgently needed. Allicin has been reported to have antibacterial and antiparasitic effects. The objectives of the present study were to investigate the in vivo and in vitro efficacy of allicin against Echinococcus multilocularis (E. multilocularis). Methods The effects of allicin on protoscolex survival and structural changes were evaluated in vitro. The 4-week-old BALB/c male mice used for in vivo modelling underwent inoculation of E. multilocularis protoscoleces by intraperitoneal injection, followed by intragastric administration of allicin for 6 weeks. Then, the effects of allicin on lymphocyte subsets, metacestode growth and host tissue matrix metalloproteinase 2 (MMP2)/MMP9 expression around metacestodes in mice were evaluated. The toxicity of allicin was further evaluated in vivo and in vitro. Results Att 40 μg/mL, allicin showed a killing effect on protoscoleces in vitro and treatment resulted in the destruction of protoscolex structure. Molecular docking showed that allicin could form hydrogen bonds with E. multilocularis cysteine enzymes. After 6 weeks of in vivo allicin treatment, the spleen index of mice was increased and the weight of metacestodes was reduced. Allicin increased the proportion of CD4+ T cells and decreased the proportion of CD8+ T cells in the peripheral blood and spleen. Pathological analysis of the metacestodes showed structural disruption of the germinal and laminated layers after allicin treatment. In addition, allicin inhibited the expression of MMP2 and MMP9 in metacestode-surrounding host tissues. At 160 μg/mL, allicin had no significant toxicity to normal hepatocytes but could inhibit hepatoma cell proliferation. At 30 mg/kg, allicin had no significant hepatorenal toxicity in vivo. Conclusion These results suggest that allicin exerts anti-E. multilocularis effects in vitro and in vivo and can enhance immune function in mice, with the potential to be developed as a lead compound against echinococcosis.
Collapse
Affiliation(s)
- Chuanchuan Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China
- Key Laboratory for Echinococcosis, Qinghai University Affiliated Hospital, Xining, 810001, China
- Hepatobiliary and Pancreatic Surgery Department, Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Haining Fan
- Key Laboratory for Echinococcosis, Qinghai University Affiliated Hospital, Xining, 810001, China
- Hepatobiliary and Pancreatic Surgery Department, Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Lu Guan
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China
- Hepatobiliary and Pancreatic Surgery Department, Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Lan Ma
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China.
- Key Laboratory for Echinococcosis, Qinghai University Affiliated Hospital, Xining, 810001, China.
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China.
- Key Laboratory for Echinococcosis, Qinghai University Affiliated Hospital, Xining, 810001, China.
| |
Collapse
|
5
|
In vitro immunoregulatory activity and anti-inflammatory effect of Echinococcus granulosus laminated layer. Acta Trop 2021; 218:105886. [PMID: 33713625 DOI: 10.1016/j.actatropica.2021.105886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 02/20/2021] [Accepted: 03/04/2021] [Indexed: 01/21/2023]
Abstract
The Laminated layer of Echinococcus granulosus (LL) is the outer layer of the hydatic cyst. It plays a pivotal role in protecting the metacestode from host immunity. In our current study, we investigated the immunomodulatory effect of the LL on mouse spleen cells in presence of Lipopolysaccharide (LPS). Mouse spleen cells were cultured with or without LL in presence of LPS. After 24 h, the nitrites level representative of Nitric oxide (NO) production was measured in the culture supernatant by Griess-modified method. In addition, the mRNA expression levels of cytokines (IFN-γ, IL-1β, TGF-β, IL-10), Foxp3, and CTLA-4 were measured by quantitative Real-Time Polymerase chain reaction (qRT-PCR). Interestingly, our results showed a significant decrease (p< 0.01) in NO production and IFN-γ mRNA level (p< 0.001) from LPS- induced spleen cells in response to LL after 24h of culture. Moreover, LPS induced high level of IL-1β that was significantly (p<0.05) down regulated by LL. Importantly, mRNA levels of TGF-β (p< 0.01), Foxp3 and IL-10 (p< 0.05) were significantly upregulated by LL. In conclusion, our data indicated the in vitro immuno-regulatory and anti-inflammatory effects of the hydatic Laminated Layer on mouse spleen cells. These effects are related to an innate response implicating up-regulation of Foxp3, IL-10 and TGF-β expression and down-regulation of IFN-γ and IL-1β expression. LL could constitute a potential candidate for controlling inflammation during inflammatory disease.
Collapse
|
6
|
Ma X, Zhang X, Liu J, Liu Y, Zhao C, Cai H, Lei W, Ma J, Fan H, Zhou J, Liu N, Zhang J, Wang Y, Wang W, Zhan P, Zhang X, Zhang Q, Shi K, Liu P. The correlations between Th1 and Th2 cytokines in human alveolar echinococcosis. BMC Infect Dis 2020; 20:414. [PMID: 32539714 PMCID: PMC7294603 DOI: 10.1186/s12879-020-05135-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background Alveolar echinococcosis (AE) is a zoonotic parasitic disease caused by Echinococcus multilocularis larval tapeworm infections in humans that severely impairs the health of affected patients in the northern hemisphere. Methods The expression levels of 20 cytokines associated with AE infection were measured by enzyme-linked immunosorbent assay, and the correlations between these cytokines were analysed in the R programming language. Results Serum cytokine levels differed among individuals in both the AE patient and healthy control groups. The results of the correlations among the cytokines showed obvious differences between the two groups. In the AE patients group, Th1 and Th2 cytokines formed a more complicated network than that in the healthy control group. Conclusions The altered correlations between Th1 and Th2 cytokines may be closely associated with AE infection, which may provide a new explanation for the essential differences between AE patients and healthy individuals.
Collapse
Affiliation(s)
- Xiao Ma
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai Province, China
| | - Xuefei Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai Province, China
| | - Jia Liu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai Province, China
| | - Yufang Liu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai Province, China
| | - Cunzhe Zhao
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai Province, China
| | - Huixia Cai
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai Province, China.
| | - Wen Lei
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai Province, China
| | - Junying Ma
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai Province, China
| | - Haining Fan
- Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China.
| | - Jianye Zhou
- Biomedical Research Center, Northwest Minzu University, Lanzhou, 730000, Gansu Province, China
| | - Na Liu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai Province, China
| | - Jingxiao Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai Province, China
| | - Yongshun Wang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai Province, China
| | - Wei Wang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai Province, China
| | - Peizhen Zhan
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai Province, China
| | - Xiongying Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai Province, China
| | - Qing Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai Province, China
| | - Kemei Shi
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai Province, China
| | - Peiyun Liu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai Province, China
| |
Collapse
|
7
|
Boubaker G, Strempel S, Hemphill A, Müller N, Wang J, Gottstein B, Spiliotis M. Regulation of hepatic microRNAs in response to early stage Echinococcus multilocularis egg infection in C57BL/6 mice. PLoS Negl Trop Dis 2020; 14:e0007640. [PMID: 32442168 PMCID: PMC7244097 DOI: 10.1371/journal.pntd.0007640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
We present a comprehensive analysis of the hepatic miRNA transcriptome at one month post-infection of experimental primary alveolar echinococcosis (AE), a parasitic infection caused upon ingestion of E. multilocularis eggs. Liver tissues were collected from infected and non-infected C57BL/6 mice, then small RNA libraries were prepared for next-generation sequencing (NGS). We conducted a Stem-loop RT-qPCR for validation of most dysregulated miRNAs. In infected mice, the expression levels of 28 miRNAs were significantly altered. Of these, 9 were up-regulated (fold change (FC) ≥ 1.5) and 19 were down-regulated (FC ≤ 0.66) as compared to the non-infected controls. In infected livers, mmu-miR-148a-3p and mmu-miR-101b-3p were 8- and 6-fold down-regulated, respectively, and the expression of mmu-miR-22-3p was reduced by 50%, compared to non-infected liver tissue. Conversely, significantly higher hepatic levels were noted for Mus musculus (mmu)-miR-21a-5p (FC = 2.3) and mmu-miR-122-5p (FC = 1.8). In addition, the relative mRNA expression levels of five genes (vegfa, mtor, hif1-α, fasn and acsl1) that were identified as targets of down-regulated miRNAs were significantly enhanced. All the five genes exhibited a higher expression level in livers of E. multilocularis infected mice compared to non-infected mice. Finally, we studied the issue related to functionally mature arm selection preference (5p and/or 3p) from the miRNA precursor and showed that 9 pre-miRNAs exhibited different arm selection preferences in normal versus infected liver tissues. In conclusion, this study provides first evidence that miRNAs are regulated early in primary murine AE. Our findings raise intriguing questions such as (i) how E. multilocularis affects hepatic miRNA expression;(ii) what are the alterations in miRNA expression patterns in more advanced AE-stages; and (iii) which hepatic cellular, metabolic and/or immunologic processes are modulated through altered miRNAs in AE. Thus, further research on the regulation of miRNAs during AE is needed, since miRNAs constitute an attractive potential option for development of novel therapeutic approaches against AE. Various infectious diseases in humans have been associated with altered expression patterns of microRNAs (miRNAs), a class of small non-coding RNAs involved in negative regulation of gene expression. Herein, we revealed that significant alteration of miRNAs expression occurred in murine liver subsequently to experimental infection with E. multilocularis eggs when compared to non-infected controls. At the early stage of murine AE, hepatic miRNAs were mainly down-regulated. Respective target genes of the most extensively down-regulated miRNAs were involved in angiogenesis and fatty acid synthesis. Furthermore, we found higher mRNA levels of three angiogenic and two lipogenic genes in E. multilocularis infected livers compared to non-infected controls. Angiogenesis and fatty acid biosynthesis may be beneficial for development of the E. multilocularis metacestodes. In fact the formation of new blood vessels in the periparasitic area may ensure that parasites are supplied with oxygen and nutrients and get rid of waste products. Additionally, E. multilocularis is not able to undertake de novo fatty acid synthesis, thus lipids must be scavenged from its host. More research on the regulation of the hepatic miRNA transcriptome at more advanced stages of AE is needed.
Collapse
Affiliation(s)
- Ghalia Boubaker
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
- Department of Clinical Biology B, Laboratory of Parasitology and Mycology, University of Monastir, Monastir, Tunisia
- * E-mail: (GB); (BG)
| | | | - Andrew Hemphill
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Norbert Müller
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Junhua Wang
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Bruno Gottstein
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
- Institute of Infectious Diseases, Faculty of Medicine, University of Berne, Berne, Switzerland
- * E-mail: (GB); (BG)
| | - Markus Spiliotis
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Subcutaneous Inoculation of Echinococcus multilocularis Induces Delayed Regeneration after Partial Hepatectomy. Sci Rep 2019; 9:462. [PMID: 30679666 PMCID: PMC6345980 DOI: 10.1038/s41598-018-37293-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
Alveolar echinococcosis (AE) is caused by the larval stage of echinococcus multilocularis (E. multilocularis), and hepatectomy is the main modality in hepatic AE patients. Liver regeneration after partial hepatectomy (PHx) in such patients is challenging, and further investigation is needed. Thus far, knowledge regarding the possible impact of E. multilocularis on liver regeneration after PHx is limited. Herein, a subcutaneous infection model of E. multilocularis was developed in C57 BL/6 mice, and after 3 months, PHx was performed. Plasma and liver samples were harvested under inhalational isofluorane (2%) anaesthesia at designated post-PHx time points (0, 24, 48, 96 and 168 h). The parameters included the future remnant liver/body weight ratio (FLR/BW), liver function tests (AST and ALT) and related cytokines (TNF-α, IL-6, Factor V, HMGB1, TGF-β, TSP-1, and TLR4) and proteins (MyD88 and STAT3). To assess the proliferation intensity of hepatocytes, BrdU, Ki67 and PAS staining were carried out in regenerated liver tissue. The FLR/BW in the infected group from 48 h after surgery was lower than that in the control group. The BrdU positive hepatocyte proportions reached their peak at 48 h in the control group and 96 h in the infected group and then gradually decreased. During the first 48 h after surgery, both the AST and ALT levels in the infected group were lower; however, these levels were altered from 96 h after surgery. In the infected group, the concentrations and mRNA expression levels of the pre-inflammatory cytokines TNF-α and IL-6 demonstrated a delayed peak. Moreover, post-operatively, the TGF-β and TSP-1 levels showed high levels in the infected group at each different time-point compared to those in the control group; however, high levels of TGF-β were observed at 96 h in the control group. The MyD88 and STAT3 protein expression levels in the infected group were markedly higher than those in the control group 96 h after surgery. Delayed liver regeneration after PHx was observed in the C57 BL/6 mice with the subcutaneous infection of E. multilocularis in the current study. This phenomenon could be partially explained by the alteration in the pro-inflammatory cytokines in the immunotolerant milieu induced by chronic E. multilocularis infection.
Collapse
|
9
|
Kern P, Menezes da Silva A, Akhan O, Müllhaupt B, Vizcaychipi KA, Budke C, Vuitton DA. The Echinococcoses: Diagnosis, Clinical Management and Burden of Disease. ADVANCES IN PARASITOLOGY 2017; 96:259-369. [PMID: 28212790 DOI: 10.1016/bs.apar.2016.09.006] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The echinococcoses are chronic, parasitic diseases that are acquired after ingestion of infective taeniid tapeworm eggs from certain species of the genus Echinococcus. Cystic echinococcosis (CE) occurs worldwide, whereas, alveolar echinococcosis (AE) is restricted to the northern hemisphere, and neotropical echinococcosis (NE) has only been identified in Central and South America. Clinical manifestations and disease courses vary profoundly for the different species of Echinococcus. CE presents as small to large cysts, and has commonly been referred to as 'hydatid disease', or 'hydatidosis'. A structured stage-specific approach to CE management, based on the World Health Organization (WHO) ultrasound classification of liver cysts, is now recommended. Management options include percutaneous sterilization techniques, surgery, drug treatment, a 'watch-and-wait' approach or combinations thereof. In contrast, clinical manifestations associated with AE resemble those of a 'malignant', silently-progressing liver disease, with local tissue infiltration and metastases. Structured care is important for AE management and includes WHO staging, drug therapy and long-term follow-up for at least a decade. NE presents as polycystic or unicystic disease. Clinical characteristics resemble those of AE, and management needs to be structured accordingly. However, to date, only a few hundreds of cases have been reported in the literature. The echinococcoses are often expensive and complicated to treat, and prospective clinical studies are needed to better inform case management decisions.
Collapse
Affiliation(s)
- P Kern
- University Hospital of Ulm, Ulm, Germany
| | | | - O Akhan
- Hacettepe University, Ankara, Turkey
| | - B Müllhaupt
- University Hospital of Zurich, Zürich, Switzerland
| | - K A Vizcaychipi
- National Institute of Infectious Diseases, Buenos Aires, Argentina
| | - C Budke
- Texas A&M University, College Station, TX, United States
| | - D A Vuitton
- Université de Franche-Comté, Besançon, France
| |
Collapse
|
10
|
Wang J, Gottstein B. Immunoregulation in larval Echinococcus multilocularis infection. Parasite Immunol 2016; 38:182-92. [PMID: 26536823 DOI: 10.1111/pim.12292] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/26/2015] [Indexed: 12/24/2022]
Abstract
Alveolar echinococcosis (AE) is a clinically very severe zoonotic helminthic disease, characterized by a chronic progressive hepatic damage caused by the continuous proliferation of the larval stage (metacestode) of Echinococcus multilocularis. The proliferative potential of the parasite metacestode tissue is dependent on the nature/function of the periparasitic immune-mediated processes of the host. Immune tolerance and/or down-regulation of immunity are a marked characteristic increasingly observed when disease develops towards its chronic (late) stage of infection. In this context, explorative studies have clearly shown that T regulatory (Treg) cells play an important role in modulating and orchestrating inflammatory/immune reactions in AE, yielding a largely Th2-biased response, and finally allowing thus long-term parasite survival, proliferation and maturation. AE is fatal if not treated appropriately, but the current benzimidazole chemotherapy is far from optimal, and novel options for control are needed. Future research should focus on the elucidation of the crucial immunological events that lead to anergy in AE, and focus on providing a scientific basis for the development of novel and more effective immunotherapeutical options to support cure AE by abrogating anergy, anticipating also that a combination of immuno- and chemotherapy could provide a synergistic therapeutical effect.
Collapse
Affiliation(s)
- J Wang
- Institute of Parasitology, University of Bern, Bern, Switzerland
| | - B Gottstein
- Institute of Parasitology, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Abstract
Echinococcosis is a zoonosis whose history dates back to antiquity. This article provides an overview on the general history of echinococcosis, including the elucidation of Echinococcus life cycles and the long controversy on the aetiology of the cystic and alveolar forms of echinococcosis (CE and AE), lasting about 100years since the middle of the 19th century. Furthermore, selected historical aspects of some fields of echinococcosis research are discussed and compared with our current knowledge, such as geographic distribution and epidemiology of CE (Echinococcus granulosus) and AE (Echinococcus multilocularis), clinical aspects and pathology, diagnosis in humans and animals, treatment (with focus on chemotherapy), control and basic research. A short paragraph is devoted to the neotropical forms of echinococcosis, caused by Echinococcus vogeli and Echinococcus oligarthrus. In this context the achievements of some ancestral pioneers of echinococcosis research are particularly highlighted and appreciated. Finally, the role of associations, international organizations (World Health Organization and others) and international working groups in echinococcosis research and control is briefly outlined. The retrospective reveals both the admirable achievements of our ancestors and the scientific progress of more recent times. But, it also shows the gaps in our knowledge, skills and resources that we need to control or even eradicate echinococcosis.
Collapse
Affiliation(s)
- J Eckert
- University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
12
|
Rolle AM, Soboslay PT, Reischl G, Hoffmann WH, Pichler BJ, Wiehr S. Evaluation of the Metabolic Activity of Echinococcus multilocularis in Rodents Using Positron Emission Tomography Tracers. Mol Imaging Biol 2016; 17:512-20. [PMID: 25561014 DOI: 10.1007/s11307-014-0815-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE 2-Deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) has been used as a standard clinical positron emission tomography (PET) tracer for the follow-up of the rare but life-threatening parasitic disease alveolar echinococcosis (AE). Given that the disease is endemic in many countries in the northern hemisphere and the diagnosis is still challenging, the aim of our study was to evaluate further clinically relevant PET tracers as possible diagnostic tools for AE in vitro and in vivo. PROCEDURES Various clinically used PET tracers were evaluated in vitro and assessed in an in vivo AE animal model based on PET/magnetic resonance (MR) measurements. RESULTS In vitro binding assays displayed high uptake of [(18)F]FDG in a cell suspension of E. multilocularis tissue, whereas 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT) and [(11)C]choline were found to be taken up strongly by E. multilocularis vesicles. [(18)F]FDG and [(18)F]FLT displayed an elevated uptake in vivo, which appeared as several foci throughout the parasite tissue as opposed to [(18)F]fluoro-azomycinarabinofuranoside ([(18)F]FAZA) and [(11)C]choline. CONCLUSIONS Our data clearly demonstrate that the clinically applied PET tracer [(18)F]FDG is useful for the diagnosis and disease staging of AE but also has drawbacks in the assessment of currently inactive or metabolically weak parasitic lesions. The different tested PET tracers do not show the potential for the replacement or supplementation of current diagnostic strategies. Hence, there is still the need for novel diagnostic tools.
Collapse
Affiliation(s)
- Anna-Maria Rolle
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Röntgenweg 13, 72076, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Vendelova E, Lutz MB, Hrčková G. Immunity and immune modulation elicited by the larval cestode Mesocestoides vogae and its products. Parasite Immunol 2015. [PMID: 26218296 DOI: 10.1111/pim.12216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Larval cestodes (metacestodes) induce long-lasting infections leading to considerable pathology in humans and livestock. Their survival is typically associated with Th2-biased immune responses and immunosuppressive effects and depends on the parasite's ability to excrete/secrete antigens with immunoregulatory properties. Here, Mesocestoides vogae, a natural parasite of mice, is proposed as a new model species for the identification and characterization of cestode-derived immunomodulatory factors. We followed the kinetics of immune parameters after infection with M. vogae or exposure to their excretory/secretory (ES) products in a permissive strain of mice. Besides, a dominant IL-10 production and accumulation of macrophages and eosinophils expressing mRNA for Fizz-1, YM1 and Arg-1, mice showed minimal IFN-γ and transient IL-4 production at early time points with a complete loss at later stages of infection. We found that serum-free ES products without host contamination directly induced M2 macrophages and suppressed IFN-γ production in vivo and in vitro. This study highlights the use of the M. vogae as a cestode infection model and its ES products as a valuable tool for the identification of new therapeutic targets for the control of larval cestodiasis.
Collapse
Affiliation(s)
- E Vendelova
- Institute of Parasitology of the Slovak Academy of Sciences, Košice, Slovak Republic
| | - M B Lutz
- Institute of Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - G Hrčková
- Institute of Parasitology of the Slovak Academy of Sciences, Košice, Slovak Republic
| |
Collapse
|
14
|
Gottstein B, Wang J, Boubaker G, Marinova I, Spiliotis M, Müller N, Hemphill A. Susceptibility versus resistance in alveolar echinococcosis (larval infection with Echinococcus multilocularis). Vet Parasitol 2015; 213:103-9. [PMID: 26260407 DOI: 10.1016/j.vetpar.2015.07.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Epidemiological studies have demonstrated that the majority of human individuals exposed to infection with Echinococcus spp. eggs exhibit resistance to disease as shown by either seroconversion to parasite--specific antigens, and/or the presence of 'dying out' or 'aborted' metacestodes, not including hereby those individuals who putatively got infected but did not seroconvert and who subsequently allowed no development of the pathogen. For those individuals where infection leads to disease, the developing parasite is partially controlled by host immunity. In infected humans, the type of immune response developed by the host accounts for the subsequent trichotomy concerning the parasite development: (i) seroconversion proving infection, but lack of any hepatic lesion indicating the failure of the parasite to establish and further develop within the liver; or resistance as shown by the presence of fully calcified lesions; (ii) controlled susceptibility as found in the "conventional" alveolar echinococcosis (AE) patients who experience clinical signs and symptoms approximately 5-15 years after infection, and (iii) uncontrolled hyperproliferation of the metacestode due to an impaired immune response (AIDS or other immunodeficiencies). Immunomodulation of host immunity toward anergy seems to be triggered by parasite metabolites. Beside immunomodulating IL-10, TGFβ-driven regulatory T cells have been shown to play a crucial role in the parasite-modulated progressive course of AE. A novel CD4+CD25+ Treg effector molecule FGL2 recently yielded new insight into the tolerance process in Echinococcus multilocularis infection.
Collapse
Affiliation(s)
- Bruno Gottstein
- Institute of Parasitology, Vetsuisse Faculty and Faculty of Medicine, University of Bern, Switzerland.
| | - Junhua Wang
- Institute of Parasitology, Vetsuisse Faculty and Faculty of Medicine, University of Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty and Faculty of Medicine, University of Bern, Switzerland
| | - Irina Marinova
- Institute of Parasitology, Vetsuisse Faculty and Faculty of Medicine, University of Bern, Switzerland
| | - Markus Spiliotis
- Institute of Parasitology, Vetsuisse Faculty and Faculty of Medicine, University of Bern, Switzerland
| | - Norbert Müller
- Institute of Parasitology, Vetsuisse Faculty and Faculty of Medicine, University of Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty and Faculty of Medicine, University of Bern, Switzerland
| |
Collapse
|
15
|
In vitro induction of lymph node cell proliferation by mouse bone marrow dendritic cells following stimulation with different Echinococcus multilocularis antigens. J Helminthol 2014; 85:128-37. [PMID: 21226990 DOI: 10.1017/s0022149x10000878] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The immune response of mice experimentally infected with Echinococcus multilocularis metacestodes becomes impaired so as to allow parasite survival and proliferation. Our study tackled the question on how different classes of E. multilocularis antigens (crude vesicular fluid (VF); purified proteinic rec-14-3-3; purified carbohydrate Em2(G11)) are involved in the maturation process of bone-marrow-derived dendritic cells (BMDCs) and subsequent exposure to lymph node (LN) cells. In our experiments, we used BMDCs cultivated from either naïve (control) or alveolar echinococcosis (AE)-infected C57BL/6 mice. We then tested surface markers (CD80, CD86, MHC class II) and cytokine expression levels (interleukin (IL)-10, IL-12p40 and tumour necrosis factor (TNF)-α) of non-stimulated BMDCs versus BMDCs stimulated with different Em-antigens or lipopolysaccharide (LPS). While LPS and rec-14-3-3-antigen were able to induce CD80, CD86 and (to a lower extent) MHC class II surface expression, Em2(G11) and, strikingly, also VF-antigen failed to do so. Similarly, LPS and rec-14-3-3 yielded elevated IL-12, TNF-α and IL-10 expression levels, while Em2(G11) and VF-antigen didn't. When naïve BMDCs were loaded with VF-antigen, they induced a strong non-specific proliferation of uncommitted LN cells. For both, BMDCs or LN cells, isolated from AE-infected mice, proliferation was abrogated. The most striking difference, revealed by comparing naïve with AE-BMDCs, was the complete inability of LPS-stimulated AE-BMDCs to activate lymphocytes from any LN cell group. Overall, the presenting activity of BMDCs from AE-infected mice seemed to trigger unresponsiveness in T cells, especially in the case of VF-antigen stimulation, thus contributing to the suppression of clonal expansion during the chronic phase of AE infection.
Collapse
|
16
|
Wang J, Lin R, Zhang W, Li L, Gottstein B, Blagosklonov O, Lü G, Zhang C, Lu X, Vuitton DA, Wen H. Transcriptional profiles of cytokine/chemokine factors of immune cell-homing to the parasitic lesions: a comprehensive one-year course study in the liver of E. multilocularis-infected mice. PLoS One 2014; 9:e91638. [PMID: 24637903 PMCID: PMC3956718 DOI: 10.1371/journal.pone.0091638] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/12/2014] [Indexed: 11/19/2022] Open
Abstract
Pathogenesis of chronically developing alveolar echinococcosis (AE) is characterized by a continuous, granulomatous, periparasitic infiltration of immune cells surrounding the metacestode of Echinococcus multilocularis (E.multilocularis) in the affected liver. A detailed cytokine and chemokine profile analysis of the periparasitic infiltrate in the liver has, however, not yet been carried out in a comprehensive way all along the whole course of infection in E. multilocularis intermediate hosts. We thus assessed the hepatic gene expression profiles of 18 selected cytokine and chemokine genes using qRT-PCR in the periparasitic immune reaction and the subsequent adjacent, not directly affected, liver tissue of mice from day 2 to day 360 post intra-hepatic injection of metacestode. DNA microarray analysis was also used to get a more complete picture of the transcriptional changes occurring in the liver surrounding the parasitic lesions. Profiles of mRNA expression levels in the hepatic parasitic lesions showed that a mixed Th1/Th2 immune response, characterized by the concomitant presence of IL-12α, IFN-γ and IL-4, was established very early in the development of E. multilocularis. Subsequently, the profile extended to a combined tolerogenic profile associating IL-5, IL-10 and TGF-β. IL-17 was permanently expressed in the liver, mostly in the periparasitic infiltrate; this was confirmed by the increased mRNA expression of both IL-17A and IL-17F from a very early stage, with a subsequent decrease of IL-17A after this first initial rise. All measured chemokines were significantly expressed at a given stage of infection; their expression paralleled that of the corresponding Th1, Th2 or Th17 cytokines. In addition to giving a comprehensive insight in the time course of cytokines and chemokines in E. multilocularis lesion, this study contributes to identify new targets for possible immune therapy to minimize E. multilocularis-related pathology and to complement the only parasitostatic effect of benzimidazoles in AE.
Collapse
Affiliation(s)
- Junhua Wang
- State Key Lab Incubation Base for Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Nuclear Medicine, University of Franche-Comté and Jean Minjoz University Hospital, Besançon, Franche-Comté, France
- Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Renyong Lin
- State Key Lab Incubation Base for Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wenbao Zhang
- State Key Lab Incubation Base for Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Liang Li
- State Key Lab Incubation Base for Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bruno Gottstein
- Institute of Parasitology, University of Bern, Bern, Switzerland
| | | | - Guodong Lü
- State Key Lab Incubation Base for Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chuangshan Zhang
- State Key Lab Incubation Base for Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaomei Lu
- State Key Lab Incubation Base for Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Dominique A. Vuitton
- WHO-Collaborating Centre for the Prevention and Treatment of Human Echinococcosis, University of Franche-Comté and University Hospital, Besançon, Franche-Comté, France
- * E-mail: (HW); (DV)
| | - Hao Wen
- State Key Lab Incubation Base for Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- * E-mail: (HW); (DV)
| |
Collapse
|
17
|
Nono JK, Lutz MB, Brehm K. EmTIP, a T-Cell immunomodulatory protein secreted by the tapeworm Echinococcus multilocularis is important for early metacestode development. PLoS Negl Trop Dis 2014; 8:e2632. [PMID: 24392176 PMCID: PMC3879249 DOI: 10.1371/journal.pntd.0002632] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 11/26/2013] [Indexed: 01/05/2023] Open
Abstract
Background Alveolar echinococcosis (AE), caused by the metacestode of the tapeworm Echinococcus multilocularis, is a lethal zoonosis associated with host immunomodulation. T helper cells are instrumental to control the disease in the host. Whereas Th1 cells can restrict parasite proliferation, Th2 immune responses are associated with parasite proliferation. Although the early phase of host colonization by E. multilocularis is dominated by a potentially parasitocidal Th1 immune response, the molecular basis of this response is unknown. Principal Findings We describe EmTIP, an E. multilocularis homologue of the human T-cell immunomodulatory protein, TIP. By immunohistochemistry we show EmTIP localization to the intercellular space within parasite larvae. Immunoprecipitation and Western blot experiments revealed the presence of EmTIP in the excretory/secretory (E/S) products of parasite primary cell cultures, representing the early developing metacestode, but not in those of mature metacestode vesicles. Using an in vitro T-cell stimulation assay, we found that primary cell E/S products promoted interferon (IFN)-γ release by murine CD4+ T-cells, whereas metacestode E/S products did not. IFN-γ release by T-cells exposed to parasite products was abrogated by an anti-EmTIP antibody. When recombinantly expressed, EmTIP promoted IFN-γ release by CD4+ T-cells in vitro. After incubation with anti-EmTIP antibody, primary cells showed an impaired ability to proliferate and to form metacestode vesicles in vitro. Conclusions We provide for the first time a possible explanation for the early Th1 response observed during E. multilocularis infections. Our data indicate that parasite primary cells release a T-cell immunomodulatory protein, EmTIP, capable of promoting IFN-γ release by CD4+ T-cells, which is probably driving or supporting the onset of the early Th1 response during AE. The impairment of primary cell proliferation and the inhibition of metacestode vesicle formation by anti-EmTIP antibodies suggest that this factor fulfills an important role in early E. multilocularis development within the intermediate host. E. multilocularis is a parasitic helminth causing the chronic human disease alveolar echinococcosis. Current disease control measures are very limited resulting in a high case-fatality rate. A transiently dominating Th1 immune response is mounted at the early phase of the infection, potentially limiting parasite proliferation and disease progression. Understanding the molecular basis of this early anti-Echinococcocus Th1 response would provide valuable information to improve disease control. The authors found that EmTIP, a T-cell immunomodulatory protein homologue, is secreted by the parasite early larva and promotes a Th1 response in host cells. Interestingly, EmTIP binding by antibodies impairs the development of the early parasite larva towards the chronic stage. Altogether the authors propose that E. multilocularis utilizes EmTIP for early larval development, but in the process, the factor is released by the parasite larva and influences host T-cells by directing a parasitocidal Th1 immune response. Therefore, the authors recommend EmTIP as a promising lead for future studies on the development of anti-Echinococcus intervention strategies.
Collapse
Affiliation(s)
- Justin Komguep Nono
- University of Würzburg, Institute for Hygiene and Microbiology, Würzburg, Germany
| | - Manfred B. Lutz
- University of Würzburg, Institute of Virology and Immunobiology, Würzburg, Germany
| | - Klaus Brehm
- University of Würzburg, Institute for Hygiene and Microbiology, Würzburg, Germany
- * E-mail:
| |
Collapse
|
18
|
Zheng Y. Strategies of Echinococcus species responses to immune attacks: implications for therapeutic tool development. Int Immunopharmacol 2013; 17:495-501. [PMID: 23973651 DOI: 10.1016/j.intimp.2013.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 01/27/2023]
Abstract
Echinococcus species have been studied as a model to investigate parasite-host interactions. Echinococcus spp. can actively communicate dynamically with a host to facilitate infection, growth and proliferation partially via secretion of molecules, especially in terms of harmonization of host immune attacks. This review systematically outlines our current knowledge of how the Echinococcus species have evolved to adapt to their host's microenvironment. This understanding of parasite-host interplay has implications in profound appreciation of parasite plasticity and is informative in designing novel and effective tools including vaccines and drugs for the treatment of echinococcosis and other diseases.
Collapse
Affiliation(s)
- Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, China; Key Lab of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry, Pharmaceutical Sciences, CAAS, Lanzhou, Gansu, China; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry, Pharmaceutical Sciences, CAAS, Lanzhou, Gansu, China.
| |
Collapse
|
19
|
Cui SJ, Xu LL, Zhang T, Xu M, Yao J, Fang CY, Feng Z, Yang PY, Hu W, Liu F. Proteomic characterization of larval and adult developmental stages in Echinococcus granulosus reveals novel insight into host-parasite interactions. J Proteomics 2013; 84:158-75. [PMID: 23603110 DOI: 10.1016/j.jprot.2013.04.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED Cystic hydatid disease is an important zoonosis caused by Echinococcus granulosus infection. The expression profiles of its parasitic life stages and host-Echinococcus interactions remain to be elucidated. Here, we identified 157 adult and 1588 protoscolex proteins (1610 in all), including 1290 novel identifications. Paramyosins and an antigen B (AgB) were the dominant adult proteins. Dog proteins (30) identified in adults indicated diminished local inflammation caused by adult infection. The protoscolex expresses proteins that have been reported to be antigens in other parasites, such as 6-phosphofructokinase and calcineurin B. Pathway analyses suggested that E. granulosus uses both aerobic and anaerobic carbohydrate metabolisms to generate ATP. E. granulosus expresses proteins involved in synthesis and metabolism of lipids or steroids. At least 339 of 390 sheep proteins identified in protoscolex were novel identifications not seen in previous analyses. IgGs and lambda light chains were the most abundant antibody species. Sheep proteins were enriched for detoxification pathways, implying that host detoxification effects play a central role during host-parasite interactions. Our study provides valuable data on E. granulosus expression characteristics, allowing novel insights into the molecular mechanisms involved in host-parasite interactions. BIOLOGICAL SIGNIFICANCE In this study, the Echinococcus granulosus adult worm proteome was analyzed for the first time. The protein identification of E. granulosus protoscoleces was extended dramatically. We also identified the most abundant host proteins co-purified with Echinococcus. The results provide useful information pertaining to the molecular mechanisms behind host-Echinococcus interaction and Echinococcus biology. This data also increases the potential for identifying vaccine candidates and new therapeutic targets, and may aid in the development of protein probes for selective and sensitive diagnosis of echinococcosis infection. In addition, the data collected here represents a valuable proteomic resource for subsequent genome annotation.
Collapse
Affiliation(s)
- Shu-Jian Cui
- Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Koizumi A, Yamano K, Schweizer F, Takeda T, Kiuchi F, Hada N. Synthesis of the carbohydrate moiety from the parasite Echinococcus multilocularis and their antigenicity against human sera. Eur J Med Chem 2011; 46:1768-78. [DOI: 10.1016/j.ejmech.2011.02.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/10/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
|
21
|
Burlet P, Deplazes P, Hegglin D. Age, season and spatio-temporal factors affecting the prevalence of Echinococcus multilocularis and Taenia taeniaeformis in Arvicola terrestris. Parasit Vectors 2011; 4:6. [PMID: 21247427 PMCID: PMC3033848 DOI: 10.1186/1756-3305-4-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 01/19/2011] [Indexed: 11/23/2022] Open
Abstract
Background Taenia taeniaeformis and the related zoonotic cestode Echinococcus multilocularis both infect the water vole Arvicola terrestris. We investigated the effect of age, spatio-temporal and season-related factors on the prevalence of these parasites in their shared intermediate host. The absolute age of the voles was calculated based on their eye lens weights, and we included the mean day temperature and mean precipitation experienced by each individual as independent factors. Results Overall prevalences of E. multilocularis and T. taeniaeformis were 15.1% and 23.4%, respectively, in 856 A. terrestris trapped in the canton Zürich, Switzerland. Prevalences were lower in young (≤ 3 months: E. multilocularis 7.6%, T. taeniaeformis 17.9%) than in older animals (>7 months: 32.6% and 34.8%). Only 12 of 129 E. multilocularis-infected voles harboured protoscoleces. Similar proportions of animals with several strobilocerci were found in T. taeniaeformis infected voles of <5 months and ≥5 months of age (12.8% and 11.9%). Multivariate analyses revealed strong spatio-temporal variations in prevalences of E. multilocularis. In one trapping area, prevalences varied on an exceptional high level of 40.6-78.5% during the whole study period. Low temperatures significantly correlated with the infection rate whereas precipitation was of lower importance. Significant spatial variations in prevalences were also identified for Taenia taeniaeformis. Although the trapping period and the meteorological factors temperature and precipitation were included in the best models for explaining the infection risk, their effects were not significant for this parasite. Conclusions Our results demonstrate that, besides temporal and spatial factors, low temperatures contribute to the risk of infection with E. multilocularis. This suggests that the enhanced survival of E. multilocularis eggs under cold weather conditions determines the level of infection pressure on the intermediate hosts and possibly also the infection risk for human alveolar echincoccosis (AE). Therefore, interventions against the zoonotic cestode E. multilocularis by deworming foxes may be most efficient if conducted just before and during winter.
Collapse
Affiliation(s)
- Pierre Burlet
- Institute of Parasitology, University of Zurich, Winterthurerstr, 266a, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|
22
|
Weiss ATA, Bauer C, Köhler K. Canine Alveolar Echinococcosis: Morphology and Inflammatory Response. J Comp Pathol 2010; 143:233-8. [DOI: 10.1016/j.jcpa.2010.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 02/18/2010] [Accepted: 03/16/2010] [Indexed: 11/27/2022]
|
23
|
Mejri N, Müller N, Hemphill A, Gottstein B. Intraperitoneal Echinococcus multilocularis infection in mice modulates peritoneal CD4+ and CD8+ regulatory T cell development. Parasitol Int 2010; 60:45-53. [PMID: 20965274 DOI: 10.1016/j.parint.2010.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 09/30/2010] [Accepted: 10/04/2010] [Indexed: 12/16/2022]
Abstract
Intraperitoneal proliferation of the metacestode stage of Echinococcus multilocularis in experimentally infected mice is followed by an impaired host immune response favoring parasite survival. We here demonstrate that infection in chronically infected mice was associated with a 3-fold increase of the percentages of CD4+ and CD8+ peritoneal T (pT) cells compared to uninfected controls. pT cells of infected mice expressed high levels of IL-4 mRNA, while only low amounts of IFN-γ mRNA were detected, suggesting that a Th2-biased immune response predominated the late stage of disease. Peritoneal dendritic cells from infected mice (AE-pDCs) expressed high levels of TGF-β mRNA and very low levels of IL-10 and IL-12 (p40) mRNA, and the expression of surface markers for DC-maturation such as MHC class II (Ia) molecules, CD80, CD86 and CD40 was down-regulated. In contrast to pDCs from non-infected mice, AE-pDCs did not enhance Concanavalin A (ConA)-induced proliferation when added to CD4+ pT and CD8+ pT cells of infected and non-infected mice, respectively. In addition, in the presence of a constant number of pDCs from non-infected mice, the proliferation of CD4+ pT cells obtained from infected animals to stimulation with ConA was lower when compared to the responses of CD4+ pT cells obtained from non-infected mice. This indicated that regulatory T cells (Treg) may interfere in the complex immunological host response to infection. Indeed, a subpopulation of regulatory CD4+ CD25+ pT cells isolated from E. multilocularis-infected mice reduced ConA-driven proliferation of CD4+ pT cells. The high expression levels of Foxp3 mRNA by CD4+ and CD8+ pT cells suggested that subpopulations of regulatory CD4+ Foxp3+ and CD8+ Foxp3+ T cells were involved in modulating the immune responses within the peritoneal cavity of E. multilocularis-infected mice.
Collapse
Affiliation(s)
- Naceur Mejri
- Institute of Parasitology, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
24
|
Casaravilla C, Díaz A. Studies on the structural mucins of the Echinococcus granulosus laminated layer. Mol Biochem Parasitol 2010; 174:132-6. [PMID: 20692297 DOI: 10.1016/j.molbiopara.2010.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 07/23/2010] [Accepted: 07/28/2010] [Indexed: 11/18/2022]
Abstract
The larvae of the cestodes belonging to the genus Echinococcus are outwardly protected by the laminated layer (LL), a crucial but poorly understood carbohydrate-rich acellular structure. Carbohydrate structural data strongly suggest that the main components of the LL are mucins. The most massive LL in the genus is featured by E. granulosus, agent of cystic hydatid disease. No appropriate methods existed to date for the solubilisation of the E. granulosus LL and the electrophoretic visualisation of its proposed structural mucins. We report that reduction of disulphides greatly aids LL disassembly, resulting in almost full solubilisation in combination with moderate sonication. The structural mucins can then be visualised by agarose electrophoresis and blotting with galactose-binding lectins, which also react strongly with the LL in tissue sections. A substantial portion of the material migrates as if positively charged; since the LL glycans are neutral, this may correspond to mucins with cationic peptide backbones.
Collapse
Affiliation(s)
- Cecilia Casaravilla
- Departamento de Biociencias, Facultad de Química and IQB, Universidad de la República, Instituto de Higiene, Montevideo CP, Uruguay
| | | |
Collapse
|
25
|
Echinococcus multilocularis: the impact of ionizing radiation on metacestodes. Exp Parasitol 2010; 127:127-34. [PMID: 20638383 DOI: 10.1016/j.exppara.2010.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/29/2010] [Accepted: 07/12/2010] [Indexed: 11/22/2022]
Abstract
Alveolar echinococcosis is caused by the metacestode stage of the fox tapeworm Echinococcus multilocularis. Current chemotherapeutical options for the treatment of echinococcosis are not satisfactory, and novel drugs and/or other potential means of therapy are needed. E. multilocularis metacestodes are characterized by almost potentially unlimited growth, and also display other features of cancerous tumours. In this study, we exposed metacestodes that were generated in vitro to 50-100 Gy ionizing irradiation, and subsequently investigated the short-term (10-12 days post-treatment) and long-term (14 weeks post-treatment) effects. We found, that in the short-term, no release of alkaline phosphatase (EmAP) activity as a measure for potentially induced damage and loss of viability could be detected, and that the protein expression pattern and protease activities in vesicle fluids and medium supernatants did not alter dramatically following irradiation. However, irradiation was associated with distinct morphological and ultrastructural alterations in the tissue of metacestodes, affecting most notably cell-cell contacts, mitochondrial shape, glycogen-storage cells and lipid droplet formation. These could be detected already at 10 days following treatment and remained as such also in the long-term. In addition, as determined after 14 weeks of culture, irradiation affected the proliferation and the growth of E. multilocularis metacestodes. Thus, we demonstrate that radiotherapy does not have a clear-cut parasitocidal effect, but can lead to metabolic impairment of E. multilocularis metacestodes, as reflected by the distinct morphological and structural alterations induced by irradiation treatment.
Collapse
|
26
|
Margos M, Gottstein B. Gerbu adjuvant modulates the immune response and thus the course of infection in C56BL/6 mice immunised with Echinococcus multilocularis rec14-3-3 protein. Parasitol Res 2010; 107:623-9. [PMID: 20490547 DOI: 10.1007/s00436-010-1907-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 04/29/2010] [Indexed: 11/28/2022]
Abstract
Vaccination with Echinococcus multilocularis 14-3-3 protein can protect mice against primary E. multilocularis infection. The present study investigated the efficacy and efficiency of the adjuvant muramyl dipeptide Gerbu, alone or together with recombinant 14-3-3 protein, to modulate the course of secondary E. multilocularis infection in C56BL/6 mice. The application of Gerbu alone already resulted in a parasite weight reduction when compared with infected control mice, while rec14-3-3 did not add to this effect. Immunological parameters were concurrently assessed with a mixed cell reaction including bone marrow-derived dendritic cells (BMDCs) together with lymph node cells from mice with or without immunisation and/or infection. While mice having received Gerbu adjuvant were found to highly proliferate in response to co-cultivation with 14-3-3-stimulated bone marrow dendritic cells, a sensitisation of BMDCs with vesicle fluid (VF) antigen lead to a striking decrease of the lymphoproliferative response in comparison to that of control mice, raising the hypothesis that immunosuppressive components may be part of this VF-antigen. Anti-14-3-3 antibody production was only found in those mice that had been previously 14-3-3-immunised, whereas all other only-infected mice failed to produce such antibodies. Conclusively, Gerbu adjuvant appears to directly generate a non-specific immune response that contributes to the control of the metacestode growth, putatively in association with a BMDC activity suppressed by components of the VF-antigen.
Collapse
Affiliation(s)
- Maxi Margos
- Institute of Parasitology, University of Berne, Länggass-Strasse 122, Bern, Switzerland
| | | |
Collapse
|