1
|
Vanin S, Tuccia F, Pradelli J, Carta G, Giordani G. Identification of Diptera Puparia in Forensic and Archeo-Funerary Contexts. INSECTS 2024; 15:599. [PMID: 39194804 DOI: 10.3390/insects15080599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024]
Abstract
Diptera identification is fundamental in forensic entomology as well as in funerary archeoentomology, where the challenge is exacerbated by the presence of immature stages such as larvae and puparia. In these two developmental stages, specimens possess a very limited number of diagnostic features, and for puparia, there is also a lack of identification tools such as descriptions and identification keys. Morphological analysis, DNA-based techniques, and cuticular chemical analyses all show good potential for species identification; however, they also have some limitations. DNA-based identification is primarily hindered by the incompleteness of genetic databases and the presence of PCR inhibitors often co-extracted from the puparial cuticle. Chemical analysis of the cuticle is showing promising results, but this approach is also limited by the insufficient profile database and requires specific, expensive equipment, as well as trained personnel. Additionally, to ensure the repeatability of the analysis-a critical aspect in forensic investigations-and to preserve precious and unique specimens from museum collections, non-invasive protocols and techniques must be prioritized for species identification.
Collapse
Affiliation(s)
- Stefano Vanin
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), 16149 Genova, Italy
| | - Fabiola Tuccia
- School of applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Jennifer Pradelli
- School of applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Giuseppina Carta
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy
| | | |
Collapse
|
2
|
León-Morán LO, Pastor-Belda M, Viñas P, Arroyo-Manzanares N, García MD, Arnaldos MI, Campillo N. Discrimination of Diptera order insects based on their saturated cuticular hydrocarbon content using a new microextraction procedure and chromatographic analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2938-2947. [PMID: 38668806 DOI: 10.1039/d4ay00214h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The nature and proportions of hydrocarbons in the cuticle of insects are characteristic of the species and age. Chemical analysis of cuticular hydrocarbons allows species discrimination, which is of great interest in the forensic field, where insects play a crucial role in estimating the minimum post-mortem interval. The objective of this work was the differentiation of Diptera order insects through their saturated cuticular hydrocarbon compositions (SCHCs). For this, specimens fixed in 70 : 30 ethanol : water, as recommended by the European Association for Forensic Entomology, were submitted to solid-liquid extraction followed by dispersive liquid-liquid microextraction, providing preconcentration factors up to 76 for the SCHCs. The final organic extract was analysed by gas chromatography coupled with flame ionization detection (GC-FID), and GC coupled with mass spectrometry was applied to confirm the identity of the SCHCs. The analysed samples contained linear alkanes with the number of carbon atoms in the C9-C15 and C18-C36 ranges with concentrations between 0.1 and 125 ng g-1. Chrysomya albiceps (in its larval stage) showed the highest number of analytes detected, with 21 compounds, while Lucilia sericata and Calliphora vicina the lowest, with only 3 alkanes. Non-supervised principal component analysis and supervised orthogonal partial least squares discriminant analysis were performed and an optimal model to differentiate specimens according to their species was obtained. In addition, statistically significant differences were observed in the concentrations of certain SCHCs within the same species depending on the stage of development or the growth pattern of the insect.
Collapse
Affiliation(s)
- L O León-Morán
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| | - M Pastor-Belda
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
- External Service of Forensic Sciences and Techniques (SECyTeF), Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - P Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
- External Service of Forensic Sciences and Techniques (SECyTeF), Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - N Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
- External Service of Forensic Sciences and Techniques (SECyTeF), Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - M D García
- Department of Zoology and Physical Anthropology, Faculty de Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
- External Service of Forensic Sciences and Techniques (SECyTeF), Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - M I Arnaldos
- Department of Zoology and Physical Anthropology, Faculty de Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
- External Service of Forensic Sciences and Techniques (SECyTeF), Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - N Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
- External Service of Forensic Sciences and Techniques (SECyTeF), Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| |
Collapse
|
3
|
Kapoor S, Young ND, Yang YT, Batterham P, Gasser RB, Bowles VM, Anstead CA, Perry T. Mitochondrial genomic investigation reveals a clear association between species and genotypes of Lucilia and geographic origin in Australia. Parasit Vectors 2023; 16:279. [PMID: 37573420 PMCID: PMC10423422 DOI: 10.1186/s13071-023-05902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Lucilia cuprina and L. sericata (family Calliphoridae) are globally significant ectoparasites of sheep. Current literature suggests that only one of these blowfly subspecies, L. cuprina dorsalis, is a primary parasite causing myiasis (flystrike) in sheep in Australia. These species and subspecies are difficult to distinguish using morphological features. Hence, being able to accurately identify blowflies is critical for diagnosis and for understanding their relationships with their hosts and environment. METHODS In this study, adult blowflies (5 pools of 17 flies; n = 85) were collected from five locations in different states [New South Wales (NSW), Queensland (QLD), Tasmania (TAS), Victoria (VIC) and Western Australia (WA)] of Australia and their mitochondrial (mt) genomes were assembled. RESULTS Each mt genome assembled was ~ 15 kb in size and encoded 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs and a control region. The Lucilia species mt genomes were conserved in structure, and the genes retained the same order and direction. The overall nucleotide composition was heavily biased towards As and Ts-77.7% of the whole genomes. Pairwise nucleotide diversity suggested divergence between Lucilia cuprina cuprina, L. c. dorsalis and L. sericata. Comparative analyses of these mt genomes with published data demonstrated that the blowflies collected from sheep farm in TAS clustered within a clade with L. sericata. The flies collected from an urban location in QLD were more closely related to L. sericata and represented the subspecies L. c. cuprina, whereas the flies collected from sheep farms in NSW, VIC and WA represented the subspecies L. c. dorsalis. CONCLUSIONS Phylogenetic analyses of the mt genomes representing Lucilia from the five geographic locations in Australia supported the previously demonstrated paraphyly of L. cuprina with respect to L. sericata and revealed that L. c. cuprina is distinct from L. c. dorsalis and that L. c. cuprina is more closely related to L. sericata than L. c. dorsalis. The mt genomes reported here provide an important molecular resource to develop tools for species- and subspecies-level identification of Lucilia from different geographical regions across Australia.
Collapse
Affiliation(s)
- Shilpa Kapoor
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010 Australia
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Building 400, Parkville, VIC 3010 Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Building 400, Parkville, VIC 3010 Australia
| | - Ying Ting Yang
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Philip Batterham
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Building 400, Parkville, VIC 3010 Australia
| | - Vernon M. Bowles
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Building 400, Parkville, VIC 3010 Australia
| | - Clare A. Anstead
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Building 400, Parkville, VIC 3010 Australia
| | - Trent Perry
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|
4
|
Mitogenome-wise codon usage pattern from comparative analysis of the first mitogenome of Blepharipa sp. (Muga uzifly) with other Oestroid flies. Sci Rep 2022; 12:7028. [PMID: 35487927 PMCID: PMC9054809 DOI: 10.1038/s41598-022-10547-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2022] [Indexed: 11/08/2022] Open
Abstract
Uziflies (Family: Tachinidae) are dipteran endoparasites of sericigenous insects which cause major economic loss in the silk industry globally. Here, we are presenting the first full mitogenome of Blepharipa sp. (Acc: KY644698, 15,080 bp, A + T = 78.41%), a dipteran parasitoid of Muga silkworm (Antheraea assamensis) found in the Indian states of Assam and Meghalaya. This study has confirmed that Blepharipa sp. mitogenome gene content and arrangement is similar to other Tachinidae and Sarcophagidae flies of Oestroidea superfamily, typical of ancestral Diptera. Although, Calliphoridae and Oestridae flies have undergone tRNA translocation and insertion, forming unique intergenic spacers (IGS) and overlapping regions (OL) and a few of them (IGS, OL) have been conserved across Oestroidea flies. The Tachinidae mitogenomes exhibit more AT content and AT biased codons in their protein-coding genes (PCGs) than the Oestroidea counterpart. About 92.07% of all (3722) codons in PCGs of this new species have A/T in their 3rd codon position. The high proportion of AT and repeats in the control region (CR) affects sequence coverage, resulting in a short CR (Blepharipa sp.: 168 bp) and a smaller tachinid mitogenome. Our research unveils those genes with a high AT content had a reduced effective number of codons, leading to high codon usage bias. The neutrality test shows that natural selection has a stronger influence on codon usage bias than directed mutational pressure. This study also reveals that longer PCGs (e.g., nad5, cox1) have a higher codon usage bias than shorter PCGs (e.g., atp8, nad4l). The divergence rates increase nonlinearly as AT content at the 3rd codon position increases and higher rate of synonymous divergence than nonsynonymous divergence causes strong purifying selection. The phylogenetic analysis explains that Blepharipa sp. is well suited in the family of insectivorous tachinid maggots. It's possible that biased codon usage in the Tachinidae family reduces the effective number of codons, and purifying selection retains the core functions in their mitogenome, which could help with efficient metabolism in their endo-parasitic life style and survival strategy.
Collapse
|
5
|
Shang Y, Ren L, Zhang X, Li Y, Zhang C, Guo Y. Characterization and Comparative Analysis of Mitochondrial Genomes Among the Calliphoridae (Insecta: Diptera: Oestroidea) and Phylogenetic Implications. Front Genet 2022; 13:799203. [PMID: 35251125 PMCID: PMC8891575 DOI: 10.3389/fgene.2022.799203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
The Calliphoridae (blowflies) are significant for forensic science, veterinary management, medical science, and economic issues. However, the phylogenetic relationships within this family are poorly understood and controversial, and the status of the Calliphoridae has been a crucial problem for understanding the evolutionary relationships of the Oestroidea these years. In the present study, seven mitochondrial genomes (mitogenomes), including six calliphorid species and one Polleniidae species, were sequenced and annotated. Then a comparative mitochondrial genomic analysis among the Calliphoridae is presented. Additionally, the phylogenetic relationship of the Calliphoridae within the larger context of the other Oestroidea was reconstructed based on the mitogenomic datasets using maximum likelihood (ML) and Bayesian methods (BI). The results suggest that the gene arrangement, codon usage, and base composition are conserved within the calliphorid species. The phylogenetic analysis based on the mitogenomic dataset recovered the Calliphoridae as monophyletic and inferred the following topology within Oestroidea: (Oestridae (Sarcophagidae (Calliphoridae + (Polleniidae + (Mesembrinellidae + Tachinidae))))). Although the number of exemplar species is limited, further studies are required. Within the Calliphoridae, the Chrysomyinae were recovered as sister taxon to Luciliinae + Calliphorinae. Our analyses indicated that mitogenomic data have the potential for illuminating the phylogenetic relationships in the Oestroidea as well as for the classification of the Calliphoridae.
Collapse
Affiliation(s)
| | | | | | | | | | - Yadong Guo
- *Correspondence: Changquan Zhang, ; Yadong Guo,
| |
Collapse
|
6
|
Zhai X, Yang M, Zhang W, Tuerxun A, Mo Y. Mitochondrial and nuclear DNA-based identification of some forensically important calliphoridae (diptera) in Luoyang of China. JOURNAL OF FORENSIC SCIENCE AND MEDICINE 2022. [DOI: 10.4103/jfsm.jfsm_3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Disruption of the odorant coreceptor Orco impairs foraging and host finding behaviors in the New World screwworm fly. Sci Rep 2021; 11:11379. [PMID: 34059738 PMCID: PMC8167109 DOI: 10.1038/s41598-021-90649-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/12/2021] [Indexed: 12/03/2022] Open
Abstract
The evolution of obligate ectoparasitism in blowflies (Diptera: Calliphoridae) has intrigued scientists for over a century, and surprisingly, the genetics underlying this lifestyle remain largely unknown. Blowflies use odors to locate food and oviposition sites; therefore, olfaction might have played a central role in niche specialization within the group. In insects, the coreceptor Orco is a required partner for all odorant receptors (ORs), a major gene family involved in olfactory-evoked behaviors. Hence, we characterized the Orco gene in the New World screwworm, Cochliomyia hominivorax, a blowfly that is an obligate ectoparasite of warm-blooded animals. In contrast, most of the closely related blowflies are scavengers that lay their eggs on dead animals. We show that the screwworm Orco orthologue (ChomOrco) is highly conserved within Diptera, showing signals of strong purifying selection. Expression of ChomOrco is broadly detectable in chemosensory appendages, and is related to morphological, developmental, and behavioral aspects of the screwworm biology. We used CRISPR/Cas9 to disrupt ChomOrco and evaluate the consequences of losing the OR function on screwworm behavior. In two-choice assays, Orco mutants displayed an impaired response to floral-like and animal host-associated odors, suggesting that OR-mediated olfaction is involved in foraging and host-seeking behaviors in C. hominivorax. These results broaden our understanding of the chemoreception basis of niche occupancy by blowflies.
Collapse
|
8
|
Nasser MG, Hosni EM, Kenawy MA, Alharbi SA, Almoallim HS, Rady MH, Merdan BA, Pont AC, Al-Ashaal SA. Evolutionary profile of the family Calliphoridae, with notes on the origin of myiasis. Saudi J Biol Sci 2021; 28:2056-2066. [PMID: 33911921 PMCID: PMC8071908 DOI: 10.1016/j.sjbs.2021.01.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 11/27/2022] Open
Abstract
The family Calliphoridae is a group of heterogenous calyptrate flies with a worldwide distribution including species of ecological, veterinary, medical, and forensic importance. Notorious for their parasitic habits, the larvae of many blowflies are characterised - like some other dipteran larvae - by their ability to develop in animal flesh. When parasitism affects a living host, it is termed "myiasis". This has led the Calliphoridae to be considered as a pivotal family in its relationship with a man. Nevertheless, even after more than 50 years of research, the phylogenetic relationships among calliphorid subfamilies together with the evolutionary origin of myiasis remain unclear. In order to elucidate these problems, we constructed three phylogenetic trees by using nucleotide sequence data from cytochrome oxidase subunit one (COI), representing a mitochondrial conservative gene, and nuclear 28S subunit of ribosomal RNA gene (28S rRNA) in order to interpret the evolutionary profile of myiasis in the family Calliphoridae. The sequenced data represented species associated with ectoparasitic life-styles, either saprophagy or facultative and obligate parasitism. A total number of 50 accessions were collected for 28S rRNA, 56 for COI, and 38 for combined sequences phylogeny. Molecular Evolutionary Genetics Analysis (MEGA) software was used to align 2197 nucleotide positions of 28S rRNA and 1500 nucleotide positions of COI with a gap opening penalties and gap extension penalties equalling 20 and 0.1 respectively. The results reveal the non-monophyly of the family Calliphoridae despite the stable monophyletic status of the Chrysomyinae, Luciliinae, and Auchmeromyiinae. Also, our findings recommend ranking the Toxotarsinae as a separate family. Furthermore, comparative analysis of the phylogenetic trees shows that the habit of obligatory myiasis originated independently more than five times. This strengthens our hypothesis that the origin of eating fresh meat is a case of convergent evolution that has taken place after speciation events millions of years ago. Finally, estimating the divergence dates between lineages from molecular sequences provides a better chance of understanding their evolutionary biology.
Collapse
Affiliation(s)
- Mohamed G. Nasser
- Department of Entomology, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Eslam M. Hosni
- Department of Entomology, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Mohamed A. Kenawy
- Department of Entomology, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Sulaiman A. Alharbi
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hesham S. Almoallim
- Department of Oral & Maxillofacial Surgery, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Magda H. Rady
- Department of Entomology, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Bouthaina A. Merdan
- Department of Entomology, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Adrian C. Pont
- Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK
| | - Sara A. Al-Ashaal
- Department of Entomology, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
9
|
Whitworth TL, Bolek MG, Arias-Robledo G. Lucilia bufonivora, Not Lucilia silvarum (Diptera: Calliphoridae), Causes Myiasis in Anurans in North America With Notes About Lucilia elongata and Lucilia thatuna. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:88-92. [PMID: 32692364 DOI: 10.1093/jme/tjaa143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 06/11/2023]
Abstract
In North America, until recently, all cases of anuran myiasis were attributed to Lucilia silvarum (Meigen) or Lucilia elongata Shannon. The latter species is exceedingly rare and its life history is unknown, but L. silvarum is common and was thought to be capable of being either parasitic or saprophytic in North America. Until recently, the anuran parasite Lucilia bufonivora Moniez was thought to be strictly Palearctic, but a study in 2014 has determined this species is established throughout southern Canada. In 2019, a study demonstrated, with molecular and morphological evidence, that two adult flies formerly identified as L. silvarum and reared from amphibian myiasis cases from Canada, are actually L. bufonivora. Although the mentioned study detected relatively high genetic distances with European L. bufonivora, the lack of evident morphological differentiation suggest that they are the same species. The current study examined 12 adult males and eleven adult females morphologically from three additional North American studies. Specimens were examined which had been identified as L. silvarum or L. elongata, and they all proved to be L. bufonivora. We now suspect L. silvarum is strictly saprophagous in North America like they are in the Palearctic Region. We also provide evidence that the pattern of myiasis differs between European and North American specimens.
Collapse
Affiliation(s)
- T L Whitworth
- Department of Entomology, Washington State University, Tacoma, WA
| | - Matthew G Bolek
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK
| | - G Arias-Robledo
- Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
10
|
Jonika MM, Hjelmen CE, Faris AM, McGuane AS, Tarone AM. An Evaluation of Differentially Spliced Genes as Markers of Sex for Forensic Entomology,. J Forensic Sci 2020; 65:1579-1587. [PMID: 32501598 DOI: 10.1111/1556-4029.14461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 11/30/2022]
Abstract
Blow flies (Calliphoridae) are important medically and economically and are commonly used in forensics as temporal markers in death investigations. While phenotypic traits in adult flies can be sexually dimorphic, sex identification in immatures is difficult. Consequently, little is known about how sex may result in developmental disparities among sexes even though there are indications that they may be important in some instances. Since genetic mechanisms for sex are well studied in model flies and species of agricultural and medical importance, we exploit the sex-specifically spliced genes transformer (tra) and doublesex (dsx) in the sex determination pathway to optimize a sex identification assay for immatures. Using known primer sets for tra and with a novel one for dsx, we develop PCR assays for identifying sex in four forensically relevant Calliphoridae species: Lucilia sericata (Meigen), Lucilia cuprina (Wiedemann), Cochliomyia macellaria (Fabricius), and Chrysomya rufifacies (Macquart) and evaluated their performance. Band detection rates were found to range from 71 to 100%, call rates ranged from 90 to 100%, and no error was found when bands could be called. Such information is informative for purposes of testimony and in preparation for development studies. The developed assays will assist in further differentiating sexually dimorphic differences in development of the Calliphoridae and aid in more accurately estimating insect age when age predictive markers (size, development time, molecular expression) are sexually dimorphic.
Collapse
Affiliation(s)
- Michelle M Jonika
- Department of Entomology, Texas A&M AgriLife Extension Service, Texas A&M University, 2475 TAMU, 370 Olsen Blvd., College Station, TX, 77843.,Department of Biology, Texas A&M University, 3258 TAMU, 525 Lubbock St., College Station, TX, 77843.,Genetics Interdisciplinary Program, Texas A&M University, 2128 TAMU, 300 Olsen Blvd., College Station, TX, 77843
| | - Carl E Hjelmen
- Department of Entomology, Texas A&M AgriLife Extension Service, Texas A&M University, 2475 TAMU, 370 Olsen Blvd., College Station, TX, 77843.,Department of Biology, Texas A&M University, 3258 TAMU, 525 Lubbock St., College Station, TX, 77843
| | - Ashleigh M Faris
- Department of Entomology, Texas A&M AgriLife Extension Service, Texas A&M University, 2475 TAMU, 370 Olsen Blvd., College Station, TX, 77843.,Texas A&M AgriLife Research and Extension Center, Texas A&M University, 10345 TX-44, Corpus Christi, TX, 78406
| | - Alexander S McGuane
- Department of Entomology, Texas A&M AgriLife Extension Service, Texas A&M University, 2475 TAMU, 370 Olsen Blvd., College Station, TX, 77843.,Harris County Institute of Forensic Sciences, 1861 Old Spanish Trail, Houston, TX, 77054
| | - Aaron M Tarone
- Department of Entomology, Texas A&M AgriLife Extension Service, Texas A&M University, 2475 TAMU, 370 Olsen Blvd., College Station, TX, 77843
| |
Collapse
|
11
|
Arias-Robledo G, Wall R, Szpila K, Shpeley D, Whitworth T, Stark T, King R, Stevens J. Ecological and geographical speciation in Lucilia bufonivora: The evolution of amphibian obligate parasitism. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 10:218-230. [PMID: 31667085 PMCID: PMC6812060 DOI: 10.1016/j.ijppaw.2019.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 11/16/2022]
Abstract
Lucilia (Diptera: Calliphoridae) is a genus of blowflies comprised largely of saprophagous and facultative parasites of livestock. Lucilia bufonivora, however, exhibits a unique form of obligate parasitism of amphibians, typically affecting wild hosts. The evolutionary route by which amphibian myiasis arose, however, is not well understood due to the low phylogenetic resolution in existing nuclear DNA phylogenies. Furthermore, the timing of when specificity for amphibian hosts arose in L. bufonivora is also unknown. In addition, this species was recently reported for the first time in North America (Canada) and, to date, no molecular studies have analysed the evolutionary relationships between individuals from Eastern and Western hemispheres. To provide broader insights into the evolution of the amphibian parasitic life history trait and to estimate when the trait first arose, a time-scaled phylogeny was inferred from a concatenated data set comprising mtDNA, nDNA and non-coding rDNA (COX1, per and ITS2 respectively). Specimens from Canada, the UK, Poland, Switzerland, the Netherlands and Germany were analysed, as well as individuals from its sister taxa, the saprophage Lucilia silvarum and a Nearctic species also implicated in amphibian myiasis, Lucilia elongata. Obligate amphibian parasitism appears to have arisen ~4 mya, likely as a result of niche displacement of a saprophagous/facultative parasite ancestor. Consistent paraphyly of L. bufonivora with respect to L. elongata across single-gene phylogenies and high mtDNA genetic distances between Nearctic and Palearctic individuals suggest on-going cryptic speciation facilitated by geographical isolation. These findings suggest that recent reports of L. bufonivora in the Nearctic do not constitute a recent introduction, but instead suggest that it remained unrecorded due to taxonomic confusion and low abundance. This is the first study to confirm the involvement of L. bufonivora in amphibian myiasis in Canada using DNA-based identification methods. Within Lucilia, a small genus of blowflies mostly comprised of carrion-breeding species, obligate parasitism for amphibians evolved around 4 mya. Geographic isolation between Nearctic and Palearctic lineages is facilitating on-going cryptic speciation of Lucilia bufonivora. First positive identification of L. bufonivora from two confirmed cases of amphibian myiasis in North America.
Collapse
Affiliation(s)
- G. Arias-Robledo
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
- School of Biological Sciences, University of Bristol, UK
- Corresponding author. College of Life and Environmental Sciences, University of Exeter, Prince of Wales Rd, Exeter, EX4 4PS, UK.
| | - R. Wall
- School of Biological Sciences, University of Bristol, UK
| | - K. Szpila
- Department of Ecology and Biogeography, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - D. Shpeley
- E.H. Strickland Entomological Museum, Department of Biological Sciences, University of Alberta, Canada
| | - T. Whitworth
- Department of Entomology, Washington State University, Pullman, USA
| | - T. Stark
- Reptile, Amphibian and Fish Conservation Netherlands (RAVON), Nijmegen, the Netherlands
| | - R.A. King
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - J.R. Stevens
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| |
Collapse
|
12
|
Gemmellaro MD, Hamilton GC, Ware JL. Review of Molecular Identification Techniques for Forensically Important Diptera. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:887-902. [PMID: 31173634 DOI: 10.1093/jme/tjz040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Indexed: 06/09/2023]
Abstract
The medico-legal section of forensic entomology focuses on the analysis of insects associated with a corpse. Such insects are identified, and their life history characteristics are evaluated to provide information related to the corpse, such as postmortem interval and time of colonization. Forensically important insects are commonly identified using dichotomous keys, which rely on morphological characteristics. Morphological identifications can pose a challenge as local keys are not always available and can be difficult to use, especially when identifying juvenile stages. If a specimen is damaged, certain keys cannot be used for identification. In contrast, molecular identification can be a better instrument to identify forensically important insects, regardless of life stage or specimen completeness. Despite more than 20 yr since the first use of molecular data for the identification of forensic insects, there is little overlap in gene selection or phylogenetic methodology among studies, and this inconsistency reduces efficiency. Several methods such as genetic distance, reciprocal monophyly, or character-based methods have been implemented in forensic identification studies. It can be difficult to compare the results of studies that employ these different methods. Here we present a comprehensive review of the published results for the molecular identification of Diptera of forensic interest, with an emphasis on evaluating variation among studies in gene selection and phylogenetic methodology.
Collapse
Affiliation(s)
| | | | - Jessica L Ware
- Department of Entomology, Rutgers University, New Brunswick, NJ
| |
Collapse
|
13
|
Arias-Robledo G, Stevens JR, Wall R. Spatial and temporal habitat partitioning by calliphorid blowflies. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:228-237. [PMID: 30569542 DOI: 10.1111/mve.12354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/12/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Calliphorid blowflies perform an essential ecosystem service in the consumption, recycling and dispersion of carrion nutrients and are considered amongst the most important functional groups in an ecosystem. Some species are of economic importance as facultative agents of livestock myiasis. The interspecific ecological differences that facilitate coexistence within the blowfly community are not fully understood. The aim of this work was to quantify differences in habitat use by calliphorid species. Thirty traps were distributed among three habitats at two sites in southwest England for collections made during March-August 2016. A total of 17 246 specimens were caught, of which 2427 were Lucilia sericata, 51 Lucilia richardsi, 6580 Lucilia caesar, 307 Lucilia ampullacea, 4881 Calliphora vicina and 2959 Calliphora vomitoria (all: Diptera: Calliphoridae). Lucilia sericata was the dominant species in open habitats, whereas L. caesar was the most abundant species in shaded habitats. Calliphora specimens were more abundant in the cooler months. These findings suggest that Calliphora and Lucilia species show strong temporal segregation mediated by temperature, and that species of the genus Lucilia show differences in the use of habitats that are likely to be driven by differences in humidity tolerance and light intensity. These factors in combination result in effective niche partitioning.
Collapse
Affiliation(s)
- G Arias-Robledo
- School of Biological Sciences, University of Bristol, Bristol, U.K
| | - J R Stevens
- Department of Biosciences, University of Exeter, Exeter, U.K
| | - R Wall
- School of Biological Sciences, University of Bristol, Bristol, U.K
| |
Collapse
|
14
|
Arias-Robledo G, Stark T, Wall RL, Stevens JR. The toad fly Lucilia bufonivora: its evolutionary status and molecular identification. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:131-139. [PMID: 30091469 DOI: 10.1111/mve.12328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/07/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
The blow fly genus Lucilia is composed largely of saprophages and facultative myasis agents, including the economically important species Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae) and Lucilia sericata (Meigen). Only one species is generally recognized as an obligate agent of myiasis, Lucilia bufonivora Moniez, and this is an obligate parasite of toads. Lucilia silvarum (Meigen), a sister species, behaves mainly as a carrion breeder; however, it has also been reported as a facultative parasite of amphibians. Morphologically, these species are almost identical, and historically this has led to misidentification, taxonomic ambiguity and a paucity of studies of L. bufonivora. In this study, dipterous larvae were analysed from toad myiasis cases from the U.K., The Netherlands and Switzerland, together with adult specimens of fly species implicated in amphibian parasitism: L. bufonivora, L. silvarum and Lucilia elongata Shannon (from North America). Partial sequences of two genes, cox1 and ef1α, were amplified. Seven additional blow fly species were analysed as outgroups. Bayesian inference trees of cox1, ef1α and a combined-gene dataset were constructed. All larvae isolated from toads were identified as L. bufonivora and no specimens of L. silvarum were implicated in amphibian myiasis. This study confirms L. silvarum and L. bufonivora as distinct sister species and provides unambiguous molecular identification of L. bufonivora.
Collapse
Affiliation(s)
- G Arias-Robledo
- School of Biological Sciences, University of Bristol, Bristol, U.K
- Department of Biosciences, University of Exeter, Exeter, U.K
| | - T Stark
- Reptile, Amphibian and Fish Conservation the Netherlands (RAVON), Nijmegen, The Netherlands
| | - R L Wall
- School of Biological Sciences, University of Bristol, Bristol, U.K
| | - J R Stevens
- Department of Biosciences, University of Exeter, Exeter, U.K
| |
Collapse
|
15
|
Wing measurement can be used to identify European blow flies (Diptera: Calliphoridae) of forensic importance. Forensic Sci Int 2019; 296:1-8. [DOI: 10.1016/j.forsciint.2019.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 01/04/2023]
|
16
|
Bortolini S, Giordani G, Tuccia F, Maistrello L, Vanin S. Do longer sequences improve the accuracy of identification of forensically important Calliphoridae species? PeerJ 2018; 6:e5962. [PMID: 30588393 PMCID: PMC6301277 DOI: 10.7717/peerj.5962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/17/2018] [Indexed: 11/23/2022] Open
Abstract
Species identification is a crucial step in forensic entomology. In several cases the calculation of the larval age allows the estimation of the minimum Post-Mortem Interval (mPMI). A correct identification of the species is the first step for a correct mPMI estimation. To overcome the difficulties due to the morphological identification especially of the immature stages, a molecular approach can be applied. However, difficulties in separation of closely related species are still an unsolved problem. Sequences of 4 different genes (COI, ND5, EF-1α, PER) of 13 different fly species collected during forensic experiments (Calliphora vicina, Calliphora vomitoria, Lucilia sericata, Lucilia illustris, Lucilia caesar, Chrysomya albiceps, Phormia regina, Cynomya mortuorum, Sarcophaga sp., Hydrotaea sp., Fannia scalaris, Piophila sp., Megaselia scalaris) were evaluated for their capability to identify correctly the species. Three concatenated sequences were obtained combining the four genes in order to verify if longer sequences increase the probability of a correct identification. The obtained results showed that this rule does not work for the species L. caesar and L. illustris. Future works on other DNA regions are suggested to solve this taxonomic issue.
Collapse
Affiliation(s)
- Sara Bortolini
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Giorgia Giordani
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Fabiola Tuccia
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Lara Maistrello
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Vanin
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| |
Collapse
|
17
|
Molecular Analysis of Forensically Important Blow Flies in Thailand. INSECTS 2018; 9:insects9040159. [PMID: 30413082 PMCID: PMC6315464 DOI: 10.3390/insects9040159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 11/17/2022]
Abstract
Blow flies are the first insect group to colonize on a dead body and thus correct species identification is a crucial step in forensic investigations for estimating the minimum postmortem interval, as developmental times are species-specific. Due to the difficulty of traditional morphology-based identification such as the morphological similarity of closely related species and uncovered taxonomic keys for all developmental stages, DNA-based identification has been increasing in interest, especially in high biodiversity areas such as Thailand. In this study, the effectiveness of long mitochondrial cytochrome c oxidase subunit I and II (COI and COII) sequences (1247 and 635 bp, respectively) in identifying 16 species of forensically relevant blow flies in Thailand (Chrysomya bezziana, Chrysomya chani, Chrysomya megacephala, Chrysomya nigripes, Chrysomya pinguis, Chrysomya rufifacies, Chrysomya thanomthini, Chrysomya villeneuvi, Lucilia cuprina, Lucilia papuensis, Lucilia porphyrina, Lucilia sinensis, Hemipyrellia ligurriens, Hemipyrellia pulchra, Hypopygiopsis infumata, and Hypopygiopsis tumrasvini) was assessed using distance-based (Kimura two-parameter distances based on Best Match, Best Close Match, and All Species Barcodes criteria) and tree-based (grouping taxa by sequence similarity in the neighbor-joining tree) methods. Analyses of the obtained sequence data demonstrated that COI and COII genes were effective markers for accurate species identification of the Thai blow flies. This study has not only demonstrated the genetic diversity of Thai blow flies, but also provided a reliable DNA reference database for further use in forensic entomology within the country and other regions where these species exist.
Collapse
|
18
|
Ultrastructure of male genitalia of blow flies (Diptera: Calliphoridae) of forensic importance. Acta Trop 2018; 179:61-80. [PMID: 29248415 DOI: 10.1016/j.actatropica.2017.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 11/23/2022]
Abstract
Male genitalia of blow flies (Diptera: Calliphoridae) are distinctive in their morphological features and are often used for species identification. The aim of this work was to investigate the male genitalia of blow flies of medical and forensic importance from Thailand at the ultrastructural level, using scanning electron microscopy (SEM). Flies in two subfamilies were examined: Chrysomyinae [Chrysomya bezziana Villeneuve, Chrysomya chani Kurahashi, Chrysomya nigripes Aubertin, Chrysomya pinguis (Walker), Chrysomya rufifacies (Macquart), Chrysomya thanomthini Kurahashi & Tumrasvin, and Chrysomya villeneuvi Patton] and Luciliinae [Hemipyrellia ligurriens (Wiedemann), Hypopygiopsis infumata (Bigot), Hypopygiopsis tumrasvini Kurahashi, Lucilia cuprina (Wiedemann), Lucilia papuensis Macquart, Lucilia porphyrina (Walker), and Lucilia sinensis Aubertin]. Particular attention was paid to the main distinguishing features such as the shapes of the cercus and the surstylus, and the complex structure of the distiphallus. The differentiation of the male genitalia of these species at the SEM level is discussed and compared to the conditions in closely related species such as Chrysomya megacephala (Fabricius). A key for the identification of 14 blow fly species based on male genitalia is provided.
Collapse
|
19
|
Borghesan TC, Campaner M, Matsumoto TE, Espinosa OA, Razafindranaivo V, Paiva F, Carranza JC, Añez N, Neves L, Teixeira MMG, Camargo EP. Genetic Diversity and Phylogenetic Relationships of Coevolving Symbiont-Harboring Insect Trypanosomatids, and Their Neotropical Dispersal by Invader African Blowflies (Calliphoridae). Front Microbiol 2018; 9:131. [PMID: 29467742 PMCID: PMC5808337 DOI: 10.3389/fmicb.2018.00131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/19/2018] [Indexed: 11/18/2022] Open
Abstract
This study is about the inter- and intra-specific genetic diversity of trypanosomatids of the genus Angomonas, and their association with Calliphoridae (blowflies) in Neotropical and Afrotropical regions. Microscopic examination of 3,900 flies of various families, mostly Calliphoridae, revealed that 31% of them harbored trypanosomatids. Small subunit rRNA (SSU rRNA) barcoding showed that Angomonas predominated (46%) over the other common trypanosomatids of blowflies of genera Herpetomonas and Wallacemonas. Among Angomonas spp., A. deanei was much more common than the two-other species, A. desouzai and A. ambiguus. Phylogenetic analyses based on SSU rRNA, glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) and internal transcribed spacer rDNA (ITS rDNA) sequences revealed a marked genetic diversity within A. deanei, which comprised four infraspecific genotypes (Dea1–Dea4), and four corresponding symbiont genotypes (Kcr1–Kcr4). Host and symbiont phylogenies were highly congruent corroborating their co-divergence, consistent with host-symbiont interdependent metabolism and symbiont reduced genomes shaped by a long coevolutionary history. We compared the diversity of Angomonas/symbionts from three genera of blowflies, Lucilia, Chrysomya and Cochliomyia. A. deanei, A. desouzai, and A. ambiguus were found in the three genera of blowflies in South America. In Africa, A. deanei and A. ambiguus were identified in Chrysomya. The absence of A. desouzai in Africa and its presence in Neotropical Cochliomyia and Lucilia suggests parasite spillback of A. desouzai into Chrysomya, which was most likely introduced four decades ago from Africa into the Neotropic. The absence of correlation between parasite diversity and geographic and genetic distances, with identical genotypes of A. deanei found in the Neotropic and Afrotropic, is consistent with disjunct distribution due to the recent human-mediated transoceanic dispersal of Angomonas by Chrysomya. This study provides the most comprehensive data gathered so far on the genetic repertoires of a genus of trypanosomatids found in flies from a wide geographical range.
Collapse
Affiliation(s)
- Tarcilla C Borghesan
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marta Campaner
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tania E Matsumoto
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Omar A Espinosa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Fernando Paiva
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil
| | - Julio C Carranza
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), University of Tolima, Ibagué, Colombia
| | - Nestor Añez
- Department of Parasitology, University of Los Andes, Mérida, Venezuela
| | - Luis Neves
- Centro de Biotecnologia, Eduardo Mondlane University, Maputo, Mozambique.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Marta M G Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Erney P Camargo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Anstead CA, Perry T, Richards S, Korhonen PK, Young ND, Bowles VM, Batterham P, Gasser RB. The Battle Against Flystrike - Past Research and New Prospects Through Genomics. ADVANCES IN PARASITOLOGY 2017; 98:227-281. [PMID: 28942770 DOI: 10.1016/bs.apar.2017.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Flystrike, or cutaneous myiasis, is caused by blow fly larvae of the genus Lucilia. This disease is a major problem in countries with large sheep populations. In Australia, Lucilia cuprina (Wiedemann, 1830) is the principal fly involved in flystrike. While much research has been conducted on L. cuprina, including physical, chemical, immunological, genetic and biological investigations, the molecular biology of this fly is still poorly understood. The recent sequencing, assembly and annotation of the draft genome and analyses of selected transcriptomes of L. cuprina have given a first global glimpse of its molecular biology and insights into host-fly interactions, insecticide resistance genes and intervention targets. The present article introduces L. cuprina, flystrike and associated issues, details past control efforts and research foci, reviews salient aspects of the L. cuprina genome project and discusses how the new genomic and transcriptomic resources for this fly might accelerate fundamental molecular research of L. cuprina towards developing new methods for the treatment and control of flystrike.
Collapse
Affiliation(s)
| | - Trent Perry
- The University of Melbourne, Parkville, VIC, Australia
| | | | | | - Neil D Young
- The University of Melbourne, Parkville, VIC, Australia
| | | | | | | |
Collapse
|
21
|
Monum T, Sukontason KL, Sribanditmongkol P, Sukontason K, Samerjai C, Limsopatham K, Suwannayod S, Klong-Klaew T, Wannasan A. Forensically Important Blow Flies Chrysomya pinguis, C. villeneuvi, and Lucilia porphyrina (Diptera: Calliphoridae) in a Case of Human Remains in Thailand. THE KOREAN JOURNAL OF PARASITOLOGY 2017; 55:71-76. [PMID: 28285509 PMCID: PMC5365255 DOI: 10.3347/kjp.2017.55.1.71] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/09/2016] [Accepted: 12/05/2016] [Indexed: 11/23/2022]
Abstract
This is the first study to report Chrysomya pinguis (Walker) and Lucilia porphyrina (Walker) (Diptera: Calliphoridae) as forensically important blow fly species from human cadavers in Thailand, in addition to Chrysomya villeneuvi (Patton) already known in Thailand. In 2016, a fully decomposed body of an unknown adult male was discovered in a high mountainous forest during winter in Chiang Mai province. The remains were infested heavily with thousands of blow fly larvae feeding simultaneously on them. Morphological identification of adults reared from the larvae, and molecular analysis based on sequencing of 1,247 bp partial mitochondrial cytochrome c oxidase subunit 1 gene (CO1) of the larvae and puparia, confirmed the above mentioned 3 species. The approving forensic fly evidence by molecular approach was described for the first time in Thailand. Moreover, neighbor-joining phylogenetic analysis of the CO1 was performed to compare the relatedness of the species, thereby affirming the accuracy of identification. As species of entomofauna varies among cases in different geographic and climatic circumstances, C. pinguis and L. porphyrina were added to the list of Thai forensic entomology caseworks, including colonizers of human remains in open, high mountainous areas during winter. Further research should focus on these 3 species, for which no developmental data are currently available.
Collapse
Affiliation(s)
- Tawatchai Monum
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kabkaew L Sukontason
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pongruk Sribanditmongkol
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kom Sukontason
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chutharat Samerjai
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kwankamol Limsopatham
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suttida Suwannayod
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tunwadee Klong-Klaew
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Anchalee Wannasan
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
22
|
Yusseff-Vanegas S, Agnarsson I. Molecular phylogeny of the forensically important genus Cochliomyia (Diptera: Calliphoridae). Zookeys 2016:107-20. [PMID: 27563274 PMCID: PMC4984421 DOI: 10.3897/zookeys.609.8638] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/25/2016] [Indexed: 11/12/2022] Open
Abstract
Cochliomyia Townsend includes several abundant and one of the most broadly distributed, blow flies in the Americas, and is of significant economic and forensic importance. For decades, Cochliomyia hominivorax (Coquerel) and Cochliomyia macellaria (Fabricius) have received attention as livestock parasites and primary indicator species in forensic entomology. However, Cochliomyia minima Shannon and Cochliomyia aldrichi Del Ponte have only been subject to basic taxonomy and faunistic studies. Here we present the first complete phylogeny of Cochliomyia including numerous specimens per species, collected from 13 localities in the Caribbean. Four genes, the mitochondrial COI and the nuclear EF-1α, 28S rRNA, and ITS2, were analyzed. While we found some differences among gene trees, a concatenated gene matrix recovered a robustly supported monophyletic Cochliomyia with Compsomyiops Townsend as its sister group and recovered the monophyly of Cochliomyia hominivorax, Cochliomyia macellaria and Cochliomyia minima. Our results support a close relationship between Cochliomyia minima and Cochliomyia aldrichi. However, we found Cochliomyia aldrichi containing Cochliomyia minima, indicating recent speciation, or issues with the taxonomy of the group. We provide basic information on habitat preference, distribution and feeding habits of Cochliomyia minima and Cochliomyia aldrichi that will be useful for future forensic studies in the Caribbean.
Collapse
Affiliation(s)
- Sohath Yusseff-Vanegas
- Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405, USA
| | - Ingi Agnarsson
- Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405, USA
| |
Collapse
|
23
|
Williams KA, Lamb J, Villet MH. Phylogenetic radiation of the greenbottle flies (Diptera, Calliphoridae, Luciliinae). Zookeys 2016; 568:59-86. [PMID: 27103874 PMCID: PMC4829670 DOI: 10.3897/zookeys.568.6696] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/18/2016] [Indexed: 11/12/2022] Open
Abstract
The subfamily Luciliinae is diverse and geographically widespread. Its four currently recognised genera (Dyscritomyia Grimshaw, 1901, Hemipyrellia Townsend, 1918, Hypopygiopsis Townsend 1916 and Lucilia Robineau-Desvoidy, 1830) contain species that range from saprophages to obligate parasites, but their pattern of phylogenetic diversification is unclear. The 28S rRNA, COI and Period genes of 14 species of Lucilia and Hemipyrellia were partially sequenced and analysed together with sequences of 11 further species from public databases. The molecular data confirmed molecular paraphyly in three species-pairs in Lucilia that hamper barcode identifications of those six species. Lucilia sericata and Lucilia cuprina were confirmed as mutual sister species. The placements of Dyscritomyia and Hypopygiopsis were ambiguous, since both made Lucilia paraphyletic in some analyses. Recognising Hemipyrellia as a genus consistently left Lucilia s.l. paraphyletic, and the occasionally-recognised (sub)genus Phaenicia was consistently paraphyletic, so these taxa should be synonymised with Lucilia to maintain monophyly. Analysis of a matrix of 14 morphological characters scored for adults of all genera and for most of the species included in the molecular analysis confirmed several of these findings. The different degrees of parasitism were phylogenetically clustered within this genus but did not form a graded series of evolutionary stages, and there was no particular relationship between feeding habits and biogeography. Because of the ubiquity of hybridization, introgression and incomplete lineage sorting in blow flies, we recommend that using a combination of mitochondrial and nuclear markers should be a procedural standard for medico-criminal forensic identifications of insects.
Collapse
Affiliation(s)
- Kirstin A. Williams
- Entomology Department, Durban Natural Science Museum, Durban, South Africa
- Southern African Forensic Entomology Research Laboratory, Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - Jennifer Lamb
- School of Life Sciences, University of KwaZulu-Natal, South Africa
| | - Martin H. Villet
- Southern African Forensic Entomology Research Laboratory, Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
24
|
Zajac BK, Martin-Vega D, Feddern N, Fremdt H, e Castro CP, Szpila K, Reckel F, Schütt S, Verhoff MA, Amendt J, Zehner R. Molecular identification and phylogenetic analysis of the forensically important family Piophilidae (Diptera) from different European locations. Forensic Sci Int 2016; 259:77-84. [DOI: 10.1016/j.forsciint.2015.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/13/2015] [Accepted: 12/15/2015] [Indexed: 11/29/2022]
|
25
|
Hall MJR, Wall RL, Stevens JR. Traumatic Myiasis: A Neglected Disease in a Changing World. ANNUAL REVIEW OF ENTOMOLOGY 2015; 61:159-76. [PMID: 26667275 DOI: 10.1146/annurev-ento-010715-023655] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Traumatic myiasis, the parasitic infestation by fly larvae in traumatic lesions of the tissues of living vertebrates, is a serious medical condition in humans and a welfare and economic issue in domestic animals. New molecular studies are providing insights into its evolution and epidemiology. Nevertheless, its incidence in humans is generally underreported, particularly in tropical and subtropical regions. Myiasis in domestic animals has been studied more extensively, but continuous management is difficult and expensive. A key concern is the inadvertent introduction and global spread of agents of myiasis into nonendemic areas, facilitated by climate change and global transport. The incursion of the New World screwworm fly (Cochliomyia hominivorax) into Libya is the most notable of many such range shifts and demonstrates the potential risks of these parasites and the costs of removing them once established in a geographic area. Nevertheless, the insect agents of myiasis can be of societal benefit to forensic science and in medicine as an aid to wound treatment (larval therapy).
Collapse
Affiliation(s)
- Martin J R Hall
- Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom;
| | - Richard L Wall
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom;
| | - Jamie R Stevens
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom;
| |
Collapse
|
26
|
A 454 sequencing approach to dipteran mitochondrial genome research. Genomics 2015; 105:53-60. [DOI: 10.1016/j.ygeno.2014.10.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 01/14/2023]
|
27
|
Grella MD, Savino AG, Paulo DF, Mendes FM, Azeredo-Espin AML, Queiroz MMC, Thyssen PJ, Linhares AX. Phenotypic polymorphism of Chrysomya albiceps (Wiedemann) (Diptera: Calliphoridae) may lead to species misidentification. Acta Trop 2015; 141:60-72. [PMID: 25265317 DOI: 10.1016/j.actatropica.2014.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 11/17/2022]
Abstract
Species identification is an essential step in the progress and completion of work in several areas of biological knowledge, but it is not a simple process. Due to the close phylogenetic relationship of certain species, morphological characters are not always sufficiently distinguishable. As a result, it is necessary to combine several methods of analysis that contribute to a distinct categorization of taxa. This study aimed to raise diagnostic characters, both morphological and molecular, for the correct identification of species of the genus Chrysomya (Diptera: Calliphoridae) recorded in the New World, which has continuously generated discussion about its taxonomic position over the last century. A clear example of this situation was the first record of Chrysomya rufifacies in Brazilian territory in 2012. However, the morphological polymorphism and genetic variability of Chrysomya albiceps studied here show that both species (C. rufifacies and C. albiceps) share very similar character states, leading to misidentification and subsequent registration error of species present in our territory. This conclusion is demonstrated by the authors, based on a review of the material deposited in major scientific collections in Brazil and subsequent molecular and phylogenetic analysis of these samples. Additionally, we have proposed a new taxonomic key to separate the species of Chrysomya found on the American continent, taking into account a larger number of characters beyond those available in current literature.
Collapse
Affiliation(s)
- Maicon D Grella
- Department of Animal Biology, Institute of Biology, State University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, PO Box 6109, CEP 13083-862 Campinas, SP, Brazil.
| | - André G Savino
- Department of Animal Biology, Institute of Biology, State University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, PO Box 6109, CEP 13083-862 Campinas, SP, Brazil
| | - Daniel F Paulo
- Department of Genetics and Evolution, Institute of Biology/Center of Molecular Biology and Genetic Engineering, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Felipe M Mendes
- Department of Genetics and Evolution, Institute of Biology/Center of Molecular Biology and Genetic Engineering, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ana M L Azeredo-Espin
- Department of Genetics and Evolution, Institute of Biology/Center of Molecular Biology and Genetic Engineering, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Patricia J Thyssen
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Arício X Linhares
- Department of Animal Biology, Institute of Biology, State University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, PO Box 6109, CEP 13083-862 Campinas, SP, Brazil
| |
Collapse
|
28
|
Niederegger S, Szpila K, Mall G. Muscle attachment site (MAS) patterns for species determination in European species of Lucilia (Diptera: Calliphoridae). Parasitol Res 2014; 114:851-9. [PMID: 25500717 DOI: 10.1007/s00436-014-4248-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
Species identification is generally assessed to be more difficult in larval stages than in adult forms. Especially closely related species such as Lucilia caesar and Lucilia illustris are difficult to identify. The aim of this study was to simplify species determination in Lucilia larvae for entomological and forensic purposes. Muscle attachment site (MAS) patterns were previously found to be a good tool for species determination in blowfly larvae. Here, distinctive MAS patterns are presented for European Lucilia ampullacea, L. caesar, L. illustris, L. richardsi, L. sericata, and L. silvarum. A joint pattern for the genus Lucilia is provided for a quick classification of a larva to the genus.
Collapse
Affiliation(s)
- Senta Niederegger
- Institute of Legal Medicine, University Hospital Jena, Thueringen, Germany,
| | | | | |
Collapse
|
29
|
Vidergar N, Toplak N, Kuntner M. Streamlining DNA barcoding protocols: automated DNA extraction and a new cox1 primer in arachnid systematics. PLoS One 2014; 9:e113030. [PMID: 25415202 PMCID: PMC4240537 DOI: 10.1371/journal.pone.0113030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/17/2014] [Indexed: 12/20/2022] Open
Abstract
Background DNA barcoding is a popular tool in taxonomic and phylogenetic studies, but for most animal lineages protocols for obtaining the barcoding sequences—mitochondrial cytochrome C oxidase subunit I (cox1 AKA CO1)—are not standardized. Our aim was to explore an optimal strategy for arachnids, focusing on the species-richest lineage, spiders by (1) improving an automated DNA extraction protocol, (2) testing the performance of commonly used primer combinations, and (3) developing a new cox1 primer suitable for more efficient alignment and phylogenetic analyses. Methodology We used exemplars of 15 species from all major spider clades, processed a range of spider tissues of varying size and quality, optimized genomic DNA extraction using the MagMAX Express magnetic particle processor—an automated high throughput DNA extraction system—and tested cox1 amplification protocols emphasizing the standard barcoding region using ten routinely employed primer pairs. Results The best results were obtained with the commonly used Folmer primers (LCO1490/HCO2198) that capture the standard barcode region, and with the C1-J-2183/C1-N-2776 primer pair that amplifies its extension. However, C1-J-2183 is designed too close to HCO2198 for well-interpreted, continuous sequence data, and in practice the resulting sequences from the two primer pairs rarely overlap. We therefore designed a new forward primer C1-J-2123 60 base pairs upstream of the C1-J-2183 binding site. The success rate of this new primer (93%) matched that of C1-J-2183. Conclusions The use of C1-J-2123 allows full, indel-free overlap of sequences obtained with the standard Folmer primers and with C1-J-2123 primer pair. Our preliminary tests suggest that in addition to spiders, C1-J-2123 will also perform in other arachnids and several other invertebrates. We provide optimal PCR protocols for these primer sets, and recommend using them for systematic efforts beyond DNA barcoding.
Collapse
Affiliation(s)
- Nina Vidergar
- Institute of Biology, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
- Molecular Virology lab, International Centre for Genetic Engineering and Biotechnology–ICGEB, Trieste, Italy
| | | | - Matjaž Kuntner
- Institute of Biology, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
- Centre for Behavioural Ecology & Evolution, College of Life Sciences, Hubei University, Wuhan, China
- National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
30
|
Ready PD, Wardhana AH, Adams ZJO, Sotiraki S, Hall MJR. Improved method for screening mitochondrial cytochrome b markers to identify regional populations of the Old World screwworm fly and other myiasis agents. Acta Trop 2014; 138 Suppl:S42-8. [PMID: 25016294 DOI: 10.1016/j.actatropica.2014.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 06/16/2014] [Accepted: 07/01/2014] [Indexed: 12/01/2022]
Abstract
A new protocol was developed to overcome obstacles to the high-throughput sequence analysis of the 716-717 nucleotides at the carboxyl terminal of the mitochondrial gene cytochrome b (cyt b) of the myiasis flies Chrysomya bezziana and Wohlfahrtia magnifica. For both of these obligate parasites, cyt b haplotypes provide diagnostic markers for phylogeographic populations, markers that identify the origins of emerging populations causing economically important myiasis in livestock and, in the case of C. bezziana (Old World screwworm fly), could help select reproductively-compatible populations for use in the Sterile insect technique as part of area wide integrated pest management. High sequence quality is important for unambiguously detecting the few mutations that are diagnostic for regional cyt b haplotypes and their lineages. A key innovation is the design of a new forward primer for the specific PCR amplification and high-quality sequencing of cyt b. The improved protocol will facilitate the use of this established comparative cyt b sequence analysis, not only by teams lacking the resources for whole genome sequencing (WGS) but also by those requiring reference sequences for developing comparative mitogenomics based on WGS.
Collapse
Affiliation(s)
- P D Ready
- Life Sciences Department, Natural History Museum, London SW7 5BD, UK; Disease Control Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK.
| | - A H Wardhana
- Life Sciences Department, Natural History Museum, London SW7 5BD, UK; Parasitology Department, Indonesian Research Centre for Veterinary Science (Balai Besar Penelitian Veteriner), Bogor, Indonesia
| | - Z J O Adams
- Life Sciences Department, Natural History Museum, London SW7 5BD, UK
| | | | - M J R Hall
- Life Sciences Department, Natural History Museum, London SW7 5BD, UK.
| |
Collapse
|
31
|
Szpila K, Hall MJR, Wardhana AH, Pape T. Morphology of the first instar larva of obligatory traumatic myiasis agents (Diptera: Calliphoridae, Sarcophagidae). Parasitol Res 2014; 113:1629-40. [PMID: 24553979 PMCID: PMC4544662 DOI: 10.1007/s00436-014-3808-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/02/2014] [Indexed: 11/08/2022]
Abstract
There are only three fly species that are obligate agents of traumatic myiasis of humans and livestock: a single species of flesh fly, Wohlfahrtia magnifica (Sarcophagidae), and two species of blow flies, Chrysomya bezziana and Cochliomyia hominivorax (Calliphoridae). The morphology of their first instar larvae is thoroughly and consistently documented here with light microscopy photographs and scanning electron microscopy micrographs. The following morphological structures are documented: pseudocephalon, antennal complex, maxillary palpus, oral ridges, thoracic and abdominal spinulation, spiracular field, posterior spiracles and cephaloskeleton. New diagnostic features drawn from the cephaloskeleton and the spinulation of abdominal segments, including the anal pad, are discovered and extensively described. Earlier descriptions in the literature are revisited, and major discrepancies between these and the results of the current study are discussed. The present results allow clarification, correction and, especially, complementation of information provided by earlier authors. The relatively distant taxonomic position of all three species is evidence that obligatory myiasis has arisen independently, and the extensively similar morphology in the first instar larvae of Chrysomya bezziana, Cochliomyia hominivorax and W. magnifica in comparison to necrophagous species, especially the enhancement of the anterior part of the cephaloskeleton and the segmental spinulation, is therefore best interpreted as homoplasic adaptations to a life strategy as obligate vertebrate parasites. An identification key for first instar larvae of all obligatory traumatic myiasis agents of mammals is provided.
Collapse
Affiliation(s)
- K. Szpila
- Chair of Ecology and Biogeography, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100 Poland
| | - M. J. R. Hall
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - A. H. Wardhana
- Department of Parasitology, Indonesian Research Centre for Veterinary Science, JL. Martadinata 30, Bogor, West Java Indonesia
| | - T. Pape
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, Copenhagen, 2100 Denmark
| |
Collapse
|
32
|
Szpila K, Hall MJR, Pape T, Grzywacz A. Morphology and identification of first instars of the European and Mediterranean blowflies of forensic importance. Part II. Luciliinae. MEDICAL AND VETERINARY ENTOMOLOGY 2013; 27:349-366. [PMID: 23205742 DOI: 10.1111/j.1365-2915.2012.01059.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
First instars of Lucilia ampullacea Villeneuve, Lucilia caesar Linnaeus, Lucilia cuprina Weidemann, Lucilia richardsi Collin, Lucilia sericata Meigen and Lucilia silvarum Meigen (Diptera: Calliphoridae) are thoroughly documented with scanning electron microscopy images, light microscopy photographs and line drawings. The following morphological structures are documented: pseudocephalon, antennal complex, maxillary palpus, facial mask, cephaloskeleton, thoracic and abdominal spinulation, spiracular field, and posterior spiracles. New diagnostic features of the cephaloskeleton are presented and the spinulation of the abdominal segments is described. Earlier descriptions are summarized and major discrepancies with the current study are discussed. The present results allow for the clarification, correction and, especially, complementing existing information provided by numerous authors. The first instar larva of L. richardsi is described for the first time and an identification key to the first instars of European species of Lucilia Robineau-Desvoidy of forensic importance is presented.
Collapse
Affiliation(s)
- K Szpila
- Department of Animal Ecology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, PolandDepartment of Life Sciences, Natural History Museum, London, U.K. andDepartment of Entomology, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
33
|
Li F, Vensko SP, Belikoff EJ, Scott MJ. Conservation and sex-specific splicing of the transformer gene in the calliphorids Cochliomyia hominivorax, Cochliomyia macellaria and Lucilia sericata. PLoS One 2013; 8:e56303. [PMID: 23409170 PMCID: PMC3567074 DOI: 10.1371/journal.pone.0056303] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 01/10/2013] [Indexed: 01/16/2023] Open
Abstract
Transformer (TRA) promotes female development in several dipteran species including the Australian sheep blowfly Lucilia cuprina, the Mediterranean fruit fly, housefly and Drosophila melanogaster. tra transcripts are sex-specifically spliced such that only the female form encodes full length functional protein. The presence of six predicted TRA/TRA2 binding sites in the sex-specific female intron of the L. cuprina gene suggested that tra splicing is auto-regulated as in medfly and housefly. With the aim of identifying conserved motifs that may play a role in tra sex-specific splicing, here we have isolated and characterized the tra gene from three additional blowfly species, L. sericata, Cochliomyia hominivorax and C. macellaria. The blowfly adult male and female transcripts differ in the choice of splice donor site in the first intron, with males using a site downstream of the site used in females. The tra genes all contain a single TRA/TRA2 site in the male exon and a cluster of four to five sites in the male intron. However, overall the sex-specific intron sequences are poorly conserved in closely related blowflies. The most conserved regions are around the exon/intron junctions, the 3′ end of the intron and near the cluster of TRA/TRA2 sites. We propose a model for sex specific regulation of tra splicing that incorporates the conserved features identified in this study. In L. sericata embryos, the male tra transcript was first detected at around the time of cellular blastoderm formation. RNAi experiments showed that tra is required for female development in L. sericata and C. macellaria. The isolation of the tra gene from the New World screwworm fly C. hominivorax, a major livestock pest, will facilitate the development of a “male-only” strain for genetic control programs.
Collapse
Affiliation(s)
- Fang Li
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Steven P. Vensko
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Esther J. Belikoff
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Maxwell J. Scott
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
34
|
Nelson LA, Lambkin CL, Batterham P, Wallman JF, Dowton M, Whiting MF, Yeates DK, Cameron SL. Beyond barcoding: a mitochondrial genomics approach to molecular phylogenetics and diagnostics of blowflies (Diptera: Calliphoridae). Gene 2012; 511:131-42. [PMID: 23043935 DOI: 10.1016/j.gene.2012.09.103] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 09/21/2012] [Accepted: 09/29/2012] [Indexed: 11/28/2022]
Abstract
Members of the Calliphoridae (blowflies) are significant for medical and veterinary management, due to the ability of some species to consume living flesh as larvae, and for forensic investigations due to the ability of others to develop in corpses. Due to the difficulty of accurately identifying larval blowflies to species there is a need for DNA-based diagnostics for this family, however the widely used DNA-barcoding marker, cox1, has been shown to fail for several groups within this family. Additionally, many phylogenetic relationships within the Calliphoridae are still unresolved, particularly deeper level relationships. Sequencing whole mt genomes has been demonstrated both as an effective method for identifying the most informative diagnostic markers and for resolving phylogenetic relationships. Twenty-seven complete, or nearly so, mt genomes were sequenced representing 13 species, seven genera and four calliphorid subfamilies and a member of the related family Tachinidae. PCR and sequencing primers developed for sequencing one calliphorid species could be reused to sequence related species within the same superfamily with success rates ranging from 61% to 100%, demonstrating the speed and efficiency with which an mt genome dataset can be assembled. Comparison of molecular divergences for each of the 13 protein-coding genes and 2 ribosomal RNA genes, at a range of taxonomic scales identified novel targets for developing as diagnostic markers which were 117-200% more variable than the markers which have been used previously in calliphorids. Phylogenetic analysis of whole mt genome sequences resulted in much stronger support for family and subfamily-level relationships. The Calliphoridae are polyphyletic, with the Polleninae more closely related to the Tachinidae, and the Sarcophagidae are the sister group of the remaining calliphorids. Within the Calliphoridae, there was strong support for the monophyly of the Chrysomyinae and Luciliinae and for the sister-grouping of Luciliinae with Calliphorinae. Relationships within Chrysomya were not well resolved. Whole mt genome data, supported the previously demonstrated paraphyly of Lucilia cuprina with respect to L. sericata and allowed us to conclude that it is due to hybrid introgression prior to the last common ancestor of modern sericata populations, rather than due to recent hybridisation, nuclear pseudogenes or incomplete lineage sorting.
Collapse
Affiliation(s)
- Leigh A Nelson
- Australian National Insect Collection, CSIRO Ecosystem Sciences, Canberra, ACT, 2601, Australia
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lucilia silvarum Meigen, 1826 (Diptera: Calliphoridae)—A new species of interest for forensic entomology in Europe. Forensic Sci Int 2012; 222:335-9. [DOI: 10.1016/j.forsciint.2012.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/19/2012] [Accepted: 07/26/2012] [Indexed: 11/21/2022]
|
36
|
Wardhana A, Hall M, Mahamdallie S, Muharsini S, Cameron M, Ready P. Phylogenetics of the Old World screwworm fly and its significance for planning control and monitoring invasions in Asia. Int J Parasitol 2012; 42:729-38. [DOI: 10.1016/j.ijpara.2012.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 11/29/2022]
|
37
|
|