1
|
Jain S, Narwal M, Omair Anwar M, Prakash N, Mohmmed A. Unravelling the anti-apoptotic role of Plasmodium falciparum Prohibitin-2 (PfPhb2) in maintaining mitochondrial homeostasis. Mitochondrion 2024; 79:101956. [PMID: 39245193 DOI: 10.1016/j.mito.2024.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The functional mitochondrion is vital for the propagation of the malaria parasite in the human host. Members of the SPFH protein family, Prohibitins (PHBs), are known to play crucial roles in maintaining mitochondrial homeostasis and cellular functions. Here, we have functionally characterized the homologue of the Plasmodium falciparumProhibitin-2 (PfPhb2) protein. A transgenic parasite line, generated using the selection-linked integration (SLI) strategy for C-terminal tagging, was utilized for cellular localization as well as for inducible knock-down of PfPhb2. We show that PfPhb2 localizes in the parasite mitochondrion during the asexual life cycle. Inducible knock-down of PfPhb2 by GlmS ribozyme caused no significant effect on the growth and multiplication of parasites. However, depletion of PfPhb2 under mitochondrial-specific stress conditions, induced by inhibiting the essential mitochondrial AAA-protease, ClpQ protease, results in enhanced inhibition of parasite growth, mitochondrial ROS production, mitochondrial membrane potential loss and led to mitochondrial fission/fragmentation, ultimately culminating in apoptosis-like cell-death. Further, PfPhb2 depletion renders the parasites more susceptible to mitochondrial targeting drug proguanil. These data suggest the functional involvement of PfPhb2 along with ClpQ protease in stabilization of various mitochondrial proteins to maintain mitochondrial homeostasis and functioning. Overall, we show that PfPhb2 has an anti-apoptotic role in maintaining mitochondrial homeostasis in the parasite.
Collapse
Affiliation(s)
- Shilpi Jain
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Monika Narwal
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Md Omair Anwar
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Neha Prakash
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India.
| |
Collapse
|
2
|
Almaazmi SY, Kaur RP, Singh H, Blatch GL. The Plasmodium falciparum exported J domain proteins fine-tune human and malarial Hsp70s: pathological exploitation of proteostasis machinery. Front Mol Biosci 2023; 10:1216192. [PMID: 37457831 PMCID: PMC10349383 DOI: 10.3389/fmolb.2023.1216192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Cellular proteostasis requires a network of molecular chaperones and co-chaperones, which facilitate the correct folding and assembly of other proteins, or the degradation of proteins misfolded beyond repair. The function of the major chaperones, heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90), is regulated by a cohort of co-chaperone proteins. The J domain protein (JDP) family is one of the most diverse co-chaperone families, playing an important role in functionalizing the Hsp70 chaperone system to form a powerful protein quality control network. The intracellular malaria parasite, Plasmodium falciparum, has evolved the capacity to invade and reboot mature human erythrocytes, turning them into a vehicles of pathology. This process appears to involve the harnessing of both the human and parasite chaperone machineries. It is well known that malaria parasite-infected erythrocytes are highly enriched in functional human Hsp70 (HsHsp70) and Hsp90 (HsHsp90), while recent proteomics studies have provided evidence that human JDPs (HsJDPs) may also be enriched, but at lower levels. Interestingly, P. falciparum JDPs (PfJDPs) are the most prominent and diverse family of proteins exported into the infected erythrocyte cytosol. We hypothesize that the exported PfJPDs may be an evolutionary consequence of the need to boost chaperone power for specific protein folding pathways that enable both survival and pathogenesis of the malaria parasite. The evidence suggests that there is an intricate network of PfJDP interactions with the exported malarial Hsp70 (PfHsp70-x) and HsHsp70, which appear to be important for the trafficking of key malarial virulence factors, and the proteostasis of protein complexes of human and parasite proteins associated with pathology. This review will critically evaluate the current understanding of the role of exported PfJDPs in pathological exploitation of the proteostasis machinery by fine-tuning the chaperone properties of both human and malarial Hsp70s.
Collapse
Affiliation(s)
- Shaikha Y. Almaazmi
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Rupinder P. Kaur
- The Department of Chemistry, Guru Nanak Dev University College Verka, Amritsar, Punjab, India
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Gregory L. Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
3
|
Almaazmi SY, Singh H, Dutta T, Blatch GL. Exported J domain proteins of the human malaria parasite. Front Mol Biosci 2022; 9:978663. [PMID: 36120546 PMCID: PMC9470956 DOI: 10.3389/fmolb.2022.978663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
The heat shock protein 40 (Hsp40) family, also called J domain proteins (JDPs), regulate their Hsp70 partners by ensuring that they are engaging the right substrate at the right time and in the right location within the cell. A number of JDPs can serve as co-chaperone for a particular Hsp70, and so one generally finds many more JDPs than Hsp70s in the cell. In humans there are 13 Hsp70s and 49 JDPs. The human malaria parasite, Plasmodium falciparum, has dedicated an unusually large proportion of its genome to molecular chaperones, with a disproportionately high number of JDPs (PfJDPs) of 49 members. Interestingly, just under half of the PfJDPs are exported into the host cell during the asexual stage of the life cycle, when the malaria parasite invades mature red blood cells. Recent evidence suggests that these PfJDPs may be functionalizing both host and parasite Hsp70s within the infected red blood cell, and thereby driving the renovation of the host cell towards pathological ends. PfJDPs have been found to localize to the host cytosol, mobile structures within the host cytosol (so called “J Dots”), the host plasma membrane, and specialized structures associated with malaria pathology such as the knobs. A number of these exported PfJDPs are essential, and there is growing experimental evidence that they are important for the survival and pathogenesis of the malaria parasite. This review critiques our understanding of the important role these exported PfJDPs play at the host-parasite interface.
Collapse
Affiliation(s)
- Shaikha Y. Almaazmi
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India
| | - Tanima Dutta
- Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia
- The Institute of Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
- PathWest Nedlands, QEII Medical Centre, Nedlands, WA, Australia
| | - Gregory L. Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
- Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia
- The Institute of Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- *Correspondence: Gregory L. Blatch,
| |
Collapse
|
4
|
Daniyan MO, Fisusi FA, Adeoye OB. Neurotransmitters and molecular chaperones interactions in cerebral malaria: Is there a missing link? Front Mol Biosci 2022; 9:965569. [PMID: 36090033 PMCID: PMC9451049 DOI: 10.3389/fmolb.2022.965569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Plasmodium falciparum is responsible for the most severe and deadliest human malaria infection. The most serious complication of this infection is cerebral malaria. Among the proposed hypotheses that seek to explain the manifestation of the neurological syndrome in cerebral malaria is the vascular occlusion/sequestration/mechanic hypothesis, the cytokine storm or inflammatory theory, or a combination of both. Unfortunately, despite the increasing volume of scientific information on cerebral malaria, our understanding of its pathophysiologic mechanism(s) is still very limited. In a bid to maintain its survival and development, P. falciparum exports a large number of proteins into the cytosol of the infected host red blood cell. Prominent among these are the P. falciparum erythrocytes membrane protein 1 (PfEMP1), P. falciparum histidine-rich protein II (PfHRP2), and P. falciparum heat shock proteins 70-x (PfHsp70-x). Functional activities and interaction of these proteins with one another and with recruited host resident proteins are critical factors in the pathology of malaria in general and cerebral malaria in particular. Furthermore, several neurological impairments, including cognitive, behavioral, and motor dysfunctions, are known to be associated with cerebral malaria. Also, the available evidence has implicated glutamate and glutamatergic pathways, coupled with a resultant alteration in serotonin, dopamine, norepinephrine, and histamine production. While seeking to improve our understanding of the pathophysiology of cerebral malaria, this article seeks to explore the possible links between host/parasite chaperones, and neurotransmitters, in relation to other molecular players in the pathology of cerebral malaria, to explore such links in antimalarial drug discovery.
Collapse
Affiliation(s)
- Michael Oluwatoyin Daniyan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Funmilola Adesodun Fisusi
- Drug Research and Production Unit, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Olufunso Bayo Adeoye
- Department of Biochemistry, Benjamin S. Carson (Snr.) College of Medicine, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| |
Collapse
|
5
|
Blatch GL. Plasmodium falciparum Molecular Chaperones: Guardians of the Malaria Parasite Proteome and Renovators of the Host Proteome. Front Cell Dev Biol 2022; 10:921739. [PMID: 35652103 PMCID: PMC9149364 DOI: 10.3389/fcell.2022.921739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum is a unicellular protozoan parasite and causative agent of the most severe form of malaria in humans. The malaria parasite has had to develop sophisticated mechanisms to preserve its proteome under the changing stressful conditions it confronts, particularly when it invades host erythrocytes. Heat shock proteins, especially those that function as molecular chaperones, play a key role in protein homeostasis (proteostasis) of P. falciparum. Soon after invading erythrocytes, the malaria parasite exports a large number of proteins including chaperones, which are responsible for remodeling the infected erythrocyte to enable its survival and pathogenesis. The infected host cell has parasite-resident and erythrocyte-resident chaperones, which appear to play a vital role in the folding and functioning of P. falciparum proteins and potentially host proteins. This review critiques the current understanding of how the major chaperones, particularly the Hsp70 and Hsp40 (or J domain proteins, JDPs) families, contribute to proteostasis of the malaria parasite-infected erythrocytes.
Collapse
Affiliation(s)
- Gregory L Blatch
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia.,Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa.,Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| |
Collapse
|
6
|
Sahu W, Bai T, Panda PK, Mazumder A, Das A, Ojha DK, Verma SK, Elangovan S, Reddy KS. Plasmodium falciparum HSP40 protein eCiJp traffics to the erythrocyte cytoskeleton and interacts with the human HSP70 chaperone HSPA1. FEBS Lett 2022; 596:95-111. [PMID: 34890056 DOI: 10.1002/1873-3468.14255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022]
Abstract
Renovation of host erythrocytes is vital for pathogenesis by Plasmodium falciparum. These changes are mediated by parasite proteins that translocate beyond the parasitophorous vacuolar membrane in an unfolded state, suggesting protein folding by chaperones is imperative for the functionality of exported proteins. We report a type IV P. falciparum heat-shock protein 40, PF11_0034, that localizes to the cytoplasmic side of J-dots and interacts with the erythrocyte cytoskeleton, and therefore named eCiJp (erythrocyte cytoskeleton-interacting J protein). Recombinant eCiJp binds to the human heat-shock protein 70 HsHSPA1 and promotes its ATPase activity. In addition, eCiJp could suppress protein aggregation. Our data suggest that eCiJp recruits HsHSPA1 to the host erythrocyte cytoskeleton, where it may become involved in remodeling of the erythrocyte cytoskeleton and/or folding of exported parasite proteins.
Collapse
Affiliation(s)
- Welka Sahu
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Tapaswini Bai
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Sweden
| | - Archita Mazumder
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Aleena Das
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
- Technology Business Incubator, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Deepak Kumar Ojha
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Suresh K Verma
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Selvakumar Elangovan
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| |
Collapse
|
7
|
Daniyan MO. Heat Shock Proteins as Targets for Novel Antimalarial Drug Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:205-236. [PMID: 34569027 DOI: 10.1007/978-3-030-78397-6_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Plasmodium falciparum, the parasitic agent that is responsible for a severe and dangerous form of human malaria, has a history of long years of cohabitation with human beings with attendant negative consequences. While there have been some gains in the fight against malaria through the application of various control measures and the use of chemotherapeutic agents, and despite the global decline in malaria cases and associated deaths, the continual search for new and effective therapeutic agents is key to achieving sustainable development goals. An important parasite survival strategy, which is also of serious concern to the scientific community, is the rate at which the parasites continually develop resistance to drugs. Among the key players in the parasite's ability to develop resistance, maintain cellular integrity, and survives within an unusual environment of the red blood cells are the molecular chaperones of the heat shock proteins (HSP) family. HSPs constitute a novel avenue for antimalarial drug discovery and by exploring their ubiquitous nature and multifunctional activities, they may be suitable targets for the discovery of multi-targets antimalarial drugs, needed to fight incessant drug resistance. In this chapter, features of selected families of plasmodial HSPs that can be exploited in drug discovery are presented. Also, known applications of HSPs in small molecule screening, their potential usefulness in high throughput drug screening, as well as possible challenges are highlighted.
Collapse
Affiliation(s)
- Michael Oluwatoyin Daniyan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.
| |
Collapse
|
8
|
华 慧, 董 昕, 张 雨, 方 凡, 张 蓓, 李 向, 于 倩, 郑 葵, 颜 超. [rCsHscB derived from Clonorchis sinensis has therapeutic effect on dextran sodium sulfate-induced chronic ulcerative colitis in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:664-670. [PMID: 34134952 PMCID: PMC8214966 DOI: 10.12122/j.issn.1673-4254.2021.05.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the therapeutic effect of rCsHscB derived from Clonorchis sinensis on dextran sodium sulfate (DSS)-induced chronic ulcerative colitis in mice. OBJECTIVE C57BL/6 mice were randomized into negative control (NC) group (n= 10), rCsHscB group (n=10), DSS group (n=15), and DSS+rCsHscB group (n=15), and in the latter two groups, chronic ulcerative colitis was induced in the mice using 2% DSS. In rCsHscB and DSS+ rCsHscB groups, the mice received intraperitoneal injections of 125 μg/mL rCsHscB on the 4th and 7th day following DSS administration, and PBS was injected in the other two groups. The mice were euthanized on the 84th day, and pathological changes of the colon were evaluated by HE and Masson staining. The levels of CD4+ and CD8+ T cells in the peripheral blood and lamina propria gastric lymphocytes (LPL) were analyzed by flow cytometer; the levels of IL-6, MCP-1 and IL-10 in colon homogenate were determined using ELISA, and the phosphorylation of ERK1/2, JNK and P38 was detected with Western blotting. OBJECTIVE Compared with those in NC group, the mice in rCsHscB group exhibited no adverse responses to the treatment. The mice in DSS group had severe pathologies in the colon with significantly increased ratios of CD4+ and CD4+/CD8+ T cells in peripheral blood and LPL, increased levels of IL-6 and MCP-1 but no obvious changes in IL-10 in colon homogenate, and significantly augmented phosphorylation levels of ERK1/2, JNK and P38. Compared with those in DSS group, the mice in DSS+ rCsHscB group showed ameliorated colon pathologies with decreased CD4+T/CD8+T cell ratio in the peripheral blood and LPL, significantly decreased IL-6 and MCP-1 levels and increased IL-10 in colon homogenate, and lowered phosphorylation levels of ERK1/2, JNK and P38. OBJECTIVE rCsHscB can produce therapeutic effect on DSS-induced chronic ulcerative colitis in mice possibly by inhibiting the production of pro-inflammatory factors and regulating the balance of CD4+/CD8+T cells through the MAPK pathway.
Collapse
Affiliation(s)
- 慧 华
- />徐州医科大学病原生物学与免疫学教研室,江苏省免疫与代谢重点实验室,徐州市感染与免疫重点实验室,江苏 徐州 221004Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Key Laboratory of Infection and Immunity, Department of Pathogen and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| | - 昕 董
- />徐州医科大学病原生物学与免疫学教研室,江苏省免疫与代谢重点实验室,徐州市感染与免疫重点实验室,江苏 徐州 221004Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Key Laboratory of Infection and Immunity, Department of Pathogen and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| | - 雨钊 张
- />徐州医科大学病原生物学与免疫学教研室,江苏省免疫与代谢重点实验室,徐州市感染与免疫重点实验室,江苏 徐州 221004Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Key Laboratory of Infection and Immunity, Department of Pathogen and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| | - 凡 方
- />徐州医科大学病原生物学与免疫学教研室,江苏省免疫与代谢重点实验室,徐州市感染与免疫重点实验室,江苏 徐州 221004Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Key Laboratory of Infection and Immunity, Department of Pathogen and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| | - 蓓蓓 张
- />徐州医科大学病原生物学与免疫学教研室,江苏省免疫与代谢重点实验室,徐州市感染与免疫重点实验室,江苏 徐州 221004Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Key Laboratory of Infection and Immunity, Department of Pathogen and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| | - 向阳 李
- />徐州医科大学病原生物学与免疫学教研室,江苏省免疫与代谢重点实验室,徐州市感染与免疫重点实验室,江苏 徐州 221004Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Key Laboratory of Infection and Immunity, Department of Pathogen and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| | - 倩 于
- />徐州医科大学病原生物学与免疫学教研室,江苏省免疫与代谢重点实验室,徐州市感染与免疫重点实验室,江苏 徐州 221004Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Key Laboratory of Infection and Immunity, Department of Pathogen and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| | - 葵阳 郑
- />徐州医科大学病原生物学与免疫学教研室,江苏省免疫与代谢重点实验室,徐州市感染与免疫重点实验室,江苏 徐州 221004Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Key Laboratory of Infection and Immunity, Department of Pathogen and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| | - 超 颜
- />徐州医科大学病原生物学与免疫学教研室,江苏省免疫与代谢重点实验室,徐州市感染与免疫重点实验室,江苏 徐州 221004Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Key Laboratory of Infection and Immunity, Department of Pathogen and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
9
|
Dutta T, Singh H, Gestwicki JE, Blatch GL. Exported plasmodial J domain protein, PFE0055c, and PfHsp70-x form a specific co-chaperone-chaperone partnership. Cell Stress Chaperones 2021; 26:355-366. [PMID: 33236291 PMCID: PMC7925779 DOI: 10.1007/s12192-020-01181-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Plasmodium falciparum is a unicellular protozoan parasite and causative agent of a severe form of malaria in humans, accounting for very high worldwide fatality rates. At the molecular level, survival of the parasite within the human host is mediated by P. falciparum heat shock proteins (PfHsps) that provide protection during febrile episodes. The ATP-dependent chaperone activity of Hsp70 relies on the co-chaperone J domain protein (JDP), with which it forms a chaperone-co-chaperone complex. The exported P. falciparum JDP (PfJDP), PFA0660w, has been shown to stimulate the ATPase activity of the exported chaperone, PfHsp70-x. Furthermore, PFA0660w has been shown to associate with another exported PfJDP, PFE0055c, and PfHsp70-x in J-dots, highly mobile structures found in the infected erythrocyte cytosol. Therefore, the present study aims to conduct a structural and functional characterization of the full-length exported PfJDP, PFE0055c. Recombinant PFE0055c was successfully expressed and purified and found to stimulate the basal ATPase activity of PfHsp70-x to a greater extent than PFA0660w but, like PFA0660w, did not significantly stimulate the basal ATPase activity of human Hsp70. Small-molecule inhibition assays were conducted to determine the effect of known inhibitors of JDPs (chalcone, C86) and Hsp70 (benzothiazole rhodacyanines, JG231 and JG98) on the basal and PFE0055c-stimulated ATPase activity of PfHsp70-x. In this study, JG231 and JG98 were found to inhibit both the basal and PFE0055c-stimulated ATPase activity of PfHsp70-x. C86 only inhibited the PFE0055c-stimulated ATPase activity of PfHsp70-x, consistent with PFE0055c binding to PfHsp70-x through its J domain. This research has provided further insight into the molecular basis of the interaction between these exported plasmodial chaperones, which could inform future antimalarial drug discovery studies.
Collapse
Affiliation(s)
- Tanima Dutta
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia
- The Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Gregory L Blatch
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia.
- The Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia.
| |
Collapse
|
10
|
Structural-functional diversity of malaria parasite's PfHSP70-1 and PfHSP40 chaperone pair gives an edge over human orthologs in chaperone-assisted protein folding. Biochem J 2021; 477:3625-3643. [PMID: 32893851 DOI: 10.1042/bcj20200434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Plasmodium falciparum, the human malaria parasite harbors a metastable proteome which is vulnerable to proteotoxic stress conditions encountered during its lifecycle. How parasite's chaperone machinery is able to maintain its aggregation-prone proteome in functional state, is poorly understood. As HSP70-40 system forms the central hub in cellular proteostasis, we investigated the protein folding capacity of PfHSP70-1 and PfHSP40 chaperone pair and compared it with human orthologs (HSPA1A and DNAJA1). Despite the structural similarity, we observed that parasite chaperones and their human orthologs exhibit striking differences in conformational dynamics. Comprehensive biochemical investigations revealed that PfHSP70-1 and PfHSP40 chaperone pair has better protein folding, aggregation inhibition, oligomer remodeling and disaggregase activities than their human orthologs. Chaperone-swapping experiments suggest that PfHSP40 can also efficiently cooperate with human HSP70 to facilitate the folding of client-substrate. SPR-derived kinetic parameters reveal that PfHSP40 has higher binding affinity towards unfolded substrate than DNAJA1. Interestingly, the observed slow dissociation rate of PfHSP40-substrate interaction allows PfHSP40 to maintain the substrate in folding-competent state to minimize its misfolding. Structural investigation through small angle x-ray scattering gave insights into the conformational architecture of PfHSP70-1 (monomer), PfHSP40 (dimer) and their complex. Overall, our data suggest that the parasite has evolved functionally diverged and efficient chaperone machinery which allows the human malaria parasite to survive in hostile conditions. The distinct allosteric landscapes and interaction kinetics of plasmodial chaperones open avenues for the exploration of small-molecule based antimalarial interventions.
Collapse
|
11
|
Role of the J Domain Protein Family in the Survival and Pathogenesis of Plasmodium falciparum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:97-123. [PMID: 34569022 DOI: 10.1007/978-3-030-78397-6_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plasmodium falciparum has dedicated an unusually large proportion of its genome to molecular chaperones (2% of all genes), with the heat shock protein 40 (Hsp40) family (now called J domain proteins, JDPs) exhibiting evolutionary radiation into 49 members. A large number of the P. falciparum JDPs (PfJDPs) are predicted to be exported, with certain members shown experimentally to be present in the erythrocyte cytosol (PFA0660w and PFE0055c) or erythrocyte membrane (ring-infected erythrocyte surface antigen, RESA). PFA0660w and PFE0055c are associated with an exported plasmodial Hsp70 (PfHsp70-x) within novel mobile structures called J-dots, which have been proposed to be dedicated to the trafficking of key membrane proteins such as erythrocyte membrane protein 1 (PfEMP1). Well over half of the PfJDPs appear to be essential, including the J-dot PfJDP, PFE0055c, while others have been found to be required for growth under febrile conditions (e.g. PFA0110w, the ring-infected erythrocyte surface antigen protein [RESA]) or involved in pathogenesis (e.g. PF10_0381 has been shown to be important for protrusions of the infected red blood cell membrane, the so-called knobs). Here we review what is known about those PfJDPs that have been well characterised, and may be directly or indirectly involved in the survival and pathogenesis of the malaria parasite.
Collapse
|
12
|
Shonhai A, Blatch GL. Heat Shock Proteins of Malaria: Highlights and Future Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:237-246. [PMID: 34569028 DOI: 10.1007/978-3-030-78397-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The deadliest malaria parasite of humans, Plasmodium falciparum, is an obligate parasite that has had to develop mechanisms for survival under the unfavourable conditions it confronts within host cells. The chapters in the book "Heat Shock Proteins of Malaria" provide a critique of the evidence that heat shock proteins (Hsps) play a key role in the survival of P. falciparum in host cells. The role of the plasmodial Hsp arsenal is not limited to the protection of the parasite cell (largely through their role as molecular chaperones), as some of these proteins also promote the pathological development of malaria. This is largely due to the export of a large number of these proteins into the infected erythrocyte cytosol. Although P. falciparum erythrocyte membrane protein 1 (PfEMP1) is the main virulence factor for the malaria parasite, some of the exported plasmodial Hsps appear to augment parasite virulence. While this book largely delves into experimentally validated information on the role of Hsps in the development and pathogenicity of malaria, some of the information is based on hypotheses yet to be fully tested. Therefore, here we highlight what we know to be definite roles of plasmodial Hsps. Furthermore, we distill information that could provide practical insights on the options available for future research directions, including interventions against malaria that may target the role of Hsps in the development of the disease.
Collapse
Affiliation(s)
- Addmore Shonhai
- Department of Biochemistry, University of Venda, Thohoyandou, South Africa.
| | - Gregory L Blatch
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia. .,Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa. .,The Institute of Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia. .,Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates.
| |
Collapse
|
13
|
Edkins AL, Boshoff A. General Structural and Functional Features of Molecular Chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:11-73. [PMID: 34569020 DOI: 10.1007/978-3-030-78397-6_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.
Collapse
Affiliation(s)
- Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
- Rhodes University, Makhanda/Grahamstown, South Africa.
| | - Aileen Boshoff
- Rhodes University, Makhanda/Grahamstown, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
14
|
Wang J, Jiang N, Sang X, Yang N, Feng Y, Chen R, Wang X, Chen Q. Protein Modification Characteristics of the Malaria Parasite Plasmodium falciparum and the Infected Erythrocytes. Mol Cell Proteomics 2020; 20:100001. [PMID: 33517144 PMCID: PMC7857547 DOI: 10.1074/mcp.ra120.002375] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Malaria elimination is still pending on the development of novel tools that rely on a deep understanding of parasite biology. Proteins of all living cells undergo myriad posttranslational modifications (PTMs) that are critical to multifarious life processes. An extensive proteome-wide dissection revealed a fine PTM map of most proteins in both Plasmodium falciparum, the causative agent of severe malaria, and the infected red blood cells. More than two-thirds of proteins of the parasite and its host cell underwent extensive and dynamic modification throughout the erythrocytic developmental stage. PTMs critically modulate the virulence factors involved in the host-parasite interaction and pathogenesis. Furthermore, P. falciparum stabilized the supporting proteins of erythrocyte origin by selective demodification. Collectively, our multiple omic analyses, apart from having furthered a deep understanding of the systems biology of P. falciparum and malaria pathogenesis, provide a valuable resource for mining new antimalarial targets.
Collapse
Affiliation(s)
- Jianhua Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China; College of Food Science, Shenyang Agricultural Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Na Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xinyi Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; College of Basic Sciences, Shenyang Agricultural University, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China.
| |
Collapse
|
15
|
The parasitophorous vacuole of the blood-stage malaria parasite. Nat Rev Microbiol 2020; 18:379-391. [PMID: 31980807 DOI: 10.1038/s41579-019-0321-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 12/31/2022]
Abstract
The pathology of malaria is caused by infection of red blood cells with unicellular Plasmodium parasites. During blood-stage development, the parasite replicates within a membrane-bound parasitophorous vacuole. A central nexus for host-parasite interactions, this unique parasite shelter functions in nutrient acquisition, subcompartmentalization and the export of virulence factors, making its functional molecules attractive targets for the development of novel intervention strategies to combat the devastating impact of malaria. In this Review, we explore the origin, development, molecular composition and functions of the parasitophorous vacuole of Plasmodium blood stages. We also discuss the relevance of the malaria parasite's intravacuolar lifestyle for successful erythrocyte infection and provide perspectives for future research directions in parasitophorous vacuole biology.
Collapse
|
16
|
Day J, Passecker A, Beck HP, Vakonakis I. The Plasmodium falciparum Hsp70-x chaperone assists the heat stress response of the malaria parasite. FASEB J 2019; 33:14611-14624. [PMID: 31690116 PMCID: PMC6894070 DOI: 10.1096/fj.201901741r] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/23/2019] [Indexed: 01/25/2023]
Abstract
Plasmodium falciparum is the most lethal of human-infective malaria parasites. A hallmark of P. falciparum malaria is extensive remodeling of host erythrocytes by the parasite, which facilitates the development of virulence properties such as host cell adhesion to the endothelial lining of the microvasculature. Host remodeling is mediated by a large complement of parasite proteins exported to the erythrocyte; among them is a single heat shock protein (Hsp)70-class protein chaperone, P. falciparum Hsp70-x (PfHsp70-x). PfHsp70-x was previously shown to assist the development of virulent cytoadherence characteristics. Here, we show that PfHsp70-x also supports parasite growth under elevated temperature conditions that simulate febrile episodes, especially at the beginning of the parasite life cycle when most of host cell remodeling takes place. Biochemical and biophysical analyses of PfHsp70-x, including crystallographic structures of its catalytic domain and the J-domain of its stimulatory Hsp40 cochaperone, suggest that PfHsp70-x is highly similar to human Hsp70 chaperones endogenous to the erythrocyte. Nevertheless, our results indicate that selective inhibition of PfHsp70-x function using small molecules may be possible and highlight specific sites of its catalytic domain as potentially of high interest. We discuss the likely roles of PfHsp70-x and human chaperones in P. falciparum biology and how specific inhibitors may assist us in disentangling their relative contributions.-Day, J., Passecker, A., Beck, H.-P., Vakonakis, I. The Plasmodium falciparum Hsp70-x chaperone assists the heat stress response of the malaria parasite.
Collapse
Affiliation(s)
- Jemma Day
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Armin Passecker
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Grijalva-Mañay R, Dorca-Fornell C, Enríquez-Villacreses W, Miño-Castro G, Oliva R, Ochoa V, Proaño-Tuma K, Armijos-Jaramillo V. DnaJ molecules as potential effectors in Meloidogyne arenaria. An unexplored group of proteins in plant parasitic nematodes. Commun Integr Biol 2019; 12:151-161. [PMID: 31666916 PMCID: PMC6802931 DOI: 10.1080/19420889.2019.1676138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023] Open
Abstract
Plant pathogenic organisms secrete proteins called effectors that recognize, infect and promote disease within host cells. Bacteria, like Pseudomona syringae, use effectors with DnaJ function to disrupt plant defenses. DnaJ proteins (also called Hsp40) are a group of co-chaperone molecules, which assist in the folding of proteins. Despite the described role of DnaJs as effectors in several groups of pathogens, this group of proteins has never been correlated with the infection process in plant parasitic nematodes. In this study, we analyze the importance of DnaJ for plant parasitic nematodes. To do that, we compare the number of DnaJ proteins in nematodes with different lifestyles. Then, we predict the secreted DnaJ proteins in order to detect effector candidates. We found that Meloidogyne species have more secreted DnaJs than the rest of the nematodes analyzed in the study. Particularly, M. arenaria possess the highest proportion of secreted DnaJ sequences in comparison to total DnaJ proteins. Furthermore, we found in this species at least five sequences with a putative nuclear localization signal, three of them with a serine rich region with an unknown function. Then, we chose one of these sequences (MG599854) to perform an expression analysis. We found that MG599854 is over-expressed from 3 days post inoculation onwards in tomato plants. Moreover, MG599854 seems to be enough to produce cell death in Nicotiana benthamiana under transient expression conditions. In concordance with our results, we propose that DnaJ proteins are a potential source of effector proteins in plant parasitic nematodes.
Collapse
Affiliation(s)
- Rosita Grijalva-Mañay
- Department of Life Sciences, Laboratory of Plant Biotechnology, Armed Forces University ESPE, Sangolquí, Ecuador
| | - Carmen Dorca-Fornell
- Department of Life Sciences, Laboratory of Plant Biotechnology, Armed Forces University ESPE, Sangolquí, Ecuador
| | | | - Gabriela Miño-Castro
- Department of Life Sciences, Laboratory of Plant Biotechnology, Armed Forces University ESPE, Sangolquí, Ecuador
| | - Ricardo Oliva
- Genetics and Biotechnology, International Rice Research Institute (IRRI), 4031 Laguna, Philippines
| | - Valeria Ochoa
- Department of Life Sciences, Laboratory of Plant Biotechnology, Armed Forces University ESPE, Sangolquí, Ecuador
| | - Karina Proaño-Tuma
- Department of Life Sciences, Laboratory of Plant Biotechnology, Armed Forces University ESPE, Sangolquí, Ecuador
| | - Vinicio Armijos-Jaramillo
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador.,Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
18
|
Daniyan MO, Przyborski JM, Shonhai A. Partners in Mischief: Functional Networks of Heat Shock Proteins of Plasmodium falciparum and Their Influence on Parasite Virulence. Biomolecules 2019; 9:E295. [PMID: 31340488 PMCID: PMC6681276 DOI: 10.3390/biom9070295] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
The survival of the human malaria parasite Plasmodium falciparum under the physiologically distinct environments associated with their development in the cold-blooded invertebrate mosquito vectors and the warm-blooded vertebrate human host requires a genome that caters to adaptability. To this end, a robust stress response system coupled to an efficient protein quality control system are essential features of the parasite. Heat shock proteins constitute the main molecular chaperone system of the cell, accounting for approximately two percent of the malaria genome. Some heat shock proteins of parasites constitute a large part (5%) of the 'exportome' (parasite proteins that are exported to the infected host erythrocyte) that modify the host cell, promoting its cyto-adherence. In light of their importance in protein folding and refolding, and thus the survival of the parasite, heat shock proteins of P. falciparum have been a major subject of study. Emerging evidence points to their role not only being cyto-protection of the parasite, as they are also implicated in regulating parasite virulence. In undertaking their roles, heat shock proteins operate in networks that involve not only partners of parasite origin, but also potentially functionally associate with human proteins to facilitate parasite survival and pathogenicity. This review seeks to highlight these interplays and their roles in parasite pathogenicity. We further discuss the prospects of targeting the parasite heat shock protein network towards the developments of alternative antimalarial chemotherapies.
Collapse
Affiliation(s)
- Michael O Daniyan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State 220005, Nigeria.
| | - Jude M Przyborski
- Center of Infectious Diseases, Parasitology, University of Heidelberg Medical School, INF324, 69120 Heidelberg, Germany
| | - Addmore Shonhai
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, P. Bag X5050, Thohoyandou 0950, South Africa.
| |
Collapse
|
19
|
Batista FA, Dores-Silva PR, Borges JC. Molecular Chaperones Involved in Protein Recovery from Aggregates are Present in Protozoa Causative of Malaria and Leishmaniasis. CURR PROTEOMICS 2018. [DOI: 10.2174/1570164615666180626123823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular chaperones have several critical functions in protein metabolism. Among them,
some are involved in processes that culminate in the extraction of entangled polypeptides from protein
aggregates, releasing unfolded structures prone to be refolded or directed to degradation. This action
avoids the effect of toxic aggregates on cells and tissues. Molecular chaperones belonging to the
Hsp100 family are widely distributed from unicellular and sessile organisms up to fungi and plants,
exerting key functions related to the reduction of the effects caused by different forms of stress. The
Hsp100 proteins belong to the AAA+ (ATPases Associated with diverse cellular Activities) family and
form multichaperone systems with Hsp70 and small Hsp chaperones families. However, Hsp100 are
absent in metazoan, where protein disaggregation action is performed by a system involving the Hsp70
family, including Hsp110 and J-protein co-chaperones. Here, the structural and functional aspects of
these protein disaggregation systems will be reviewed and discussed in the perspective of the Hsp100
system absent in the metazoan kingdom. This feature focuses on Hsp100 as a hot spot for drug discovery
against human infectious diseases such as leishmaniasis and malaria, as Hsp100 is critical for microorganisms.
The current data available for Hsp100 in Leishmania spp. and Plasmodium spp. are also
reviewed.
Collapse
Affiliation(s)
- Fernanda A.H. Batista
- Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP, Brazil
| | - Paulo R. Dores-Silva
- Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP, Brazil
| | - Júlio C. Borges
- Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP, Brazil
| |
Collapse
|
20
|
Pan J, Cao D, Gong J. The endoplasmic reticulum co-chaperone ERdj3/DNAJB11 promotes hepatocellular carcinoma progression through suppressing AATZ degradation. Future Oncol 2018; 14:3001-3013. [PMID: 29992839 DOI: 10.2217/fon-2018-0401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM The co-chaperone ERdj3/DNAJB11 is involved in the endoplasmic reticulum stress response observed in cancer cells. We hypothesized that ERdj3 functions as a hepatocellular carcinoma (HCC) oncogene by inhibiting AATZ degradation. MATERIALS & METHODS ERdj3 and AATZ expressions were analyzed in 84 HCC patients. Cell proliferation, epithelial-mesenchymal transition marker expression, migration and invasiveness were assessed in HepG2 and Huh-7 cells. A murine xenograft tumor model was constructed. RESULTS ERdj3 is upregulated in HCC tumors and cell lines. Tumor ERdj3 levels are positively associated with cirrhosis, enhanced HCC status, inferior survival outcomes and AATZ levels. ERdj3 suppresses AATZ degradation. ERdj3 overexpression enhances proliferation, epithelial-mesenchymal transition marker expression, migration, invasiveness and xenograft tumor growth in an AATZ-dependent manner. CONCLUSION ERdj3 enhances HCC progression through suppressing AATZ degradation.
Collapse
Affiliation(s)
- Junjiang Pan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ding Cao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
21
|
Cabral FJ, Vianna LG, Medeiros MM, Carlos BC, Martha RD, Silva NM, Silva LHPD, Stabeli RG, Wunderlich G. Immunoproteomics of Plasmodium falciparum-infected red blood cell membrane fractions. Mem Inst Oswaldo Cruz 2017; 112:850-856. [PMID: 29211247 PMCID: PMC5719555 DOI: 10.1590/0074-02760170041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/30/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The surface of infected red blood cells (iRBCs) has been widely investigated
because of the molecular complexity and pathogenesis mechanisms involved.
Asymptomatic individuals are important in the field because they can
perpetuate transmission as natural reservoirs and present a challenge for
diagnosing malaria because of their low levels of circulating parasites.
Recent studies of iRBC antibody recognition have shown that responses are
quantitatively similar in symptomatic and asymptomatic infections, but no
studies have characterised the plasmodial proteins targeted by this
response. OBJECTIVES Our main objective was to identify Plasmodium falciparum
proteins associated with iRBC ghosts recognised by antibodies in the sera of
symptomatic and asymptomatic individuals in the Brazilian Amazon. METHODS We collected symptomatic and asymptomatic sera from patients residing in the
Brazilian Amazon and P. falciparum iRBC ghosts to identify
the proteins involved in natural antibody recognition by 2D-electrophoresis,
western blotting, and high- resolution mass spectrometry. FINDINGS 2D gel-based immunoproteome analysis using symptomatic and asymptomatic sera
identified 11 proteins with at least one unique peptide, such as chaperones
HSP70-1 and HSP70-x, which likely are components of the secretion
machinery/PTEX translocon. PfEMP1 is involved in antigenic variation in
symptomatic infections and we found putative membrane proteins whose
functions are unknown. MAIN FINDINGS Our results suggest a potential role of old and new proteins, such as
antigenic variation proteins, iRBC remodelling, and membrane proteins, with
no assigned functions related to the immune response against P.
falciparum, providing insights into the pathogenesis,
erythrocyte remodelling, and secretion machinery important for alternative
diagnosis and/or malaria therapy.
Collapse
Affiliation(s)
- Fernanda J Cabral
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil.,Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| | | | - Marcia M Medeiros
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil.,Universidade Nova de Lisboa, Instituto de Higiene e Medicina Tropical, Lisboa, Portugal
| | - Bianca Cechetto Carlos
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| | | | - Nadia Maria Silva
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| | | | | | - Gerhard Wunderlich
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| |
Collapse
|
22
|
Saarikangas J, Caudron F. Spatial regulation of coalesced protein assemblies: Lessons from yeast to diseases. Prion 2017; 11:162-173. [PMID: 28574744 PMCID: PMC5480387 DOI: 10.1080/19336896.2017.1322239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Organisms rely on correctly folded proteins to carry out essential functions. Protein quality control factors guard proteostasis and prevent protein misfolding. When quality control fails and in response to diverse stresses, many proteins start to accumulate at specific deposit sites that maintain cellular organization and protect the functionality of coalescing proteins. These transitions involve dedicated proteins that promote coalescence and are facilitated by endo-membranes and cytoskeletal platforms. Moreover, several proteins make use of weak multivalent interactions or conformational templating to drive the formation of large-scale assemblies. Formation of such assemblies is often associated with a change in biochemical activity that can be used by cells to execute biochemical decisions in a localized manner during development and adaption. Since all assembly types impact cell physiology, their localization and dynamics need to be tightly regulated. Interestingly, at least some of the regulatory mechanisms are shared by functional membrane-less organelles and assemblies of terminally aggregated proteins. Furthermore, constituents of functional assemblies can aggregate and become non-functional during aging. Here we present the current knowledge as to how coalescing protein assemblies are spatially organized in cells and we postulate that failures in their spatial confinement might underscore certain aspects of aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Juha Saarikangas
- a ETH Zurich, Institute of Biochemistry , Zurich , Switzerland.,b Wissenschaftskolleg zu Berlin , Institute for Advanced Study , Berlin , Germany.,c Helsinki Institute of Life Science, University of Helsinki , Helsinki , Finland.,d Faculty of Biological and Environmental Sciences , University of Helsinki , Helsinki , Finland
| | - Fabrice Caudron
- e Randall Division of Cell and Molecular Biophysics , King's College London , London , UK
| |
Collapse
|
23
|
Daniyan MO, Boshoff A, Prinsloo E, Pesce ER, Blatch GL. The Malarial Exported PFA0660w Is an Hsp40 Co-Chaperone of PfHsp70-x. PLoS One 2016; 11:e0148517. [PMID: 26845441 PMCID: PMC4742251 DOI: 10.1371/journal.pone.0148517] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 01/19/2016] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum, the human pathogen responsible for the most dangerous malaria infection, survives and develops in mature erythrocytes through the export of proteins needed for remodelling of the host cell. Molecular chaperones of the heat shock protein (Hsp) family are prominent members of the exportome, including a number of Hsp40s and a Hsp70. PFA0660w, a type II Hsp40, has been shown to be exported and possibly form a complex with PfHsp70-x in the infected erythrocyte cytosol. However, the chaperone properties of PFA0660w and its interaction with human and parasite Hsp70s are yet to be investigated. Recombinant PFA0660w was found to exist as a monomer in solution, and was able to significantly stimulate the ATPase activity of PfHsp70-x but not that of a second plasmodial Hsp70 (PfHsp70-1) or a human Hsp70 (HSPA1A), indicating a potential specific functional partnership with PfHsp70-x. Protein binding studies in the presence and absence of ATP suggested that the interaction of PFA0660w with PfHsp70-x most likely represented a co-chaperone/chaperone interaction. Also, PFA0660w alone produced a concentration-dependent suppression of rhodanese aggregation, demonstrating its chaperone properties. Overall, we have provided the first biochemical evidence for the possible role of PFA0660w as a chaperone and as co-chaperone of PfHsp70-x. We propose that these chaperones boost the chaperone power of the infected erythrocyte, enabling successful protein trafficking and folding, and thereby making a fundamental contribution to the pathology of malaria.
Collapse
Affiliation(s)
- Michael O. Daniyan
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Earl Prinsloo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Eva-Rachele Pesce
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
- * E-mail: (GLB); (E-RP)
| | - Gregory L. Blatch
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
- * E-mail: (GLB); (E-RP)
| |
Collapse
|
24
|
Lo Presti L, López Díaz C, Turrà D, Di Pietro A, Hampel M, Heimel K, Kahmann R. A conserved co-chaperone is required for virulence in fungal plant pathogens. THE NEW PHYTOLOGIST 2016; 209:1135-1148. [PMID: 26487566 DOI: 10.1111/nph.13703] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
The maize pathogenic fungus Ustilago maydis experiences endoplasmic reticulum (ER) stress during plant colonization and relies on the unfolded protein response (UPR) to cope with this stress. We identified the U. maydis co-chaperone, designated Dnj1, as part of this conserved cellular response to ER stress. ∆dnj1 cells are sensitive to the ER stressor tunicamycin and display a severe virulence defect in maize infection assays. A dnj1 mutant allele unable to stimulate the ATPase activity of chaperones phenocopies the null allele. A Dnj1-mCherry fusion protein localizes in the ER and interacts with the luminal chaperone Bip1. The Fusarium oxysporum Dnj1 ortholog contributes to the virulence of this fungal pathogen in tomato plants. Unlike the human ortholog, F. oxysporum Dnj1 partially rescues the virulence defect of the Ustilago dnj1 mutant. By enabling the fungus to restore ER homeostasis and maintain a high secretory activity, Dnj1 contributes to the establishment of a compatible interaction with the host. Dnj1 orthologs are present in many filamentous fungi, but are absent in budding and fission yeasts. We postulate a conserved and essential role during virulence for this class of co-chaperones.
Collapse
Affiliation(s)
- Libera Lo Presti
- Max Planck Institute for Terrestrial Microbiology, Karl-von Frisch-Strasse 10, 35043, Marburg, Germany
| | - Cristina López Díaz
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071, Cordoba, Spain
| | - David Turrà
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071, Cordoba, Spain
| | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071, Cordoba, Spain
| | - Martin Hampel
- Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Kai Heimel
- Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Karl-von Frisch-Strasse 10, 35043, Marburg, Germany
| |
Collapse
|
25
|
Przyborski JM, Diehl M, Blatch GL. Plasmodial HSP70s are functionally adapted to the malaria parasite life cycle. Front Mol Biosci 2015; 2:34. [PMID: 26167469 PMCID: PMC4481151 DOI: 10.3389/fmolb.2015.00034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/12/2015] [Indexed: 11/13/2022] Open
Abstract
The human malaria parasite, Plasmodium falciparum, encodes a minimal complement of six heat shock protein 70s (PfHSP70s), some of which are highly expressed and are thought to play an important role in the survival and pathology of the parasite. In addition to canonical features of molecular chaperones, these HSP70s possess properties that reflect functional adaptation to a parasitic life style, including resistance to thermal insult during fever periods and host–parasite interactions. The parasite even exports an HSP70 to the host cell where it is likely to be involved in host cell modification. This review focuses on the features of the PfHSP70s, particularly with respect to their adaptation to the malaria parasite life cycle.
Collapse
Affiliation(s)
| | - Mathias Diehl
- Parasitology, Philipps University Marburg Marburg, Germany
| | - Gregory L Blatch
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University Melbourne, VIC, Australia ; Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University Grahamstown, South Africa
| |
Collapse
|
26
|
Njunge JM, Mandal P, Przyborski JM, Boshoff A, Pesce ER, Blatch GL. PFB0595w is a Plasmodium falciparum J protein that co-localizes with PfHsp70-1 and can stimulate its in vitro ATP hydrolysis activity. Int J Biochem Cell Biol 2015; 62:47-53. [PMID: 25701168 DOI: 10.1016/j.biocel.2015.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/05/2015] [Accepted: 02/10/2015] [Indexed: 12/01/2022]
Abstract
Heat shock proteins, many of which function as molecular chaperones, play important roles in the lifecycle and pathogenesis of the malaria parasite, Plasmodium falciparum. The P. falciparum heat shock protein 70 (PfHsp70) family of chaperones is potentially regulated by a large complement of J proteins that localize to various intracellular compartments including the infected erythrocyte cytosol. While PfHsp70-1 has been shown to be an abundant cytosolic chaperone, its regulation by J proteins is poorly understood. In this study, we characterized the J protein PFB0595w, a homologue of the well-studied yeast cytosolic J protein, Sis1. PFB0595w, similarly to PfHsp70-1, was localized to the parasite cytosol and its expression was upregulated by heat shock. Additionally, recombinant PFB0595w was shown to be dimeric and to stimulate the in vitro ATPase activity of PfHsp70-1. Overall, the expression, localization and biochemical data for PFB0595w suggest that it may function as a cochaperone of PfHsp70-1, and advances current knowledge on the chaperone machinery of the parasite.
Collapse
Affiliation(s)
- James M Njunge
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes, Rhodes University, Grahamstown 6140, South Africa
| | - Pradipta Mandal
- Parasitology, Philipps University Marburg, 35043 Marburg, Germany
| | | | - Aileen Boshoff
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes, Rhodes University, Grahamstown 6140, South Africa
| | - Eva-Rachele Pesce
- College of Health and Biomedicine, Victoria University, Melbourne 8001, VIC, Australia
| | - Gregory L Blatch
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes, Rhodes University, Grahamstown 6140, South Africa; College of Health and Biomedicine, Victoria University, Melbourne 8001, VIC, Australia.
| |
Collapse
|
27
|
|