1
|
Eom GD, Chu KB, Mao J, Yoon KW, Kang HJ, Moon EK, Kim SS, Quan FS. Heterologous immunization targeting the CST1 antigen confers better protection than ROP18 in mice. Nanomedicine (Lond) 2024; 19:2437-2446. [PMID: 39320318 PMCID: PMC11520538 DOI: 10.1080/17435889.2024.2403333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Aim: To evaluate the protective efficacy induced by heterologous immunization with recombinant baculoviruses or virus-like particles targeting the CST1 and ROP18 antigens of Toxoplasma gondii.Materials & methods: Recombinant baculovirus and virus-like particle vaccines expressing T. gondii CST1 or ROP18 antigens were developed to evaluate protective immunity in mice upon challenge infection with 450 Toxoplasma gondii (ME49).Results: Immunization with CST1 or ROP18 vaccines induced similar levels of T. gondii-specific IgG and IgA responses. Compared with ROP 18, CST1 vaccine showed better antibody-secreting cell response, germinal center B cell activation, and significantly reduced brain cyst burden and body weight loss.Conclusion: Our findings suggest that CST1 heterologous immunization elicited better protection than ROP18, providing important insight into improving the toxoplasmosis vaccine design strategy.
Collapse
Affiliation(s)
- Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ki Back Chu
- Department of Parasitology, Inje University College of Medicine, Busan, 47392, Republic of Korea
- Department of Infectious Disease & Malaria, Paik Institute of Clinical Research, Inje University, Busan, 47392, Republic of Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hae-Ji Kang
- Department of Microbiology, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sung Soo Kim
- Medical Research Center for Bioreaction to Reactive Oxygen Species & Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species & Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
2
|
Li J, Kang Y, Wu ZX, Yang SF, Tian YY, Zhu XQ, Zheng XN. Live-attenuated PruΔgra72 strain of Toxoplasma gondii induces strong protective immunity against acute and chronic toxoplasmosis in mice. Parasit Vectors 2024; 17:377. [PMID: 39237959 PMCID: PMC11378421 DOI: 10.1186/s13071-024-06461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Toxoplasma gondii is an intracellular opportunistic pathogenic protozoan that poses serious threats, particularly in immunocompromised individuals. In the absence of a robust prophylactic measure, the mitigation and management of toxoplasmosis present formidable challenges to public health. We recently found that GRA72 plays an important role in parasitophorous vacuole (PV) morphology, growth and virulence of T. gondii. However, whether gra72-deficient strain can be used as a vaccine remains unknown. METHODS We first examined the attenuated virulence of gra72 gene knockout strain (PruΔgra72) and the parasite load in organs of the infected mice. Subsequently, we evaluated the immune-protective effects of the PruΔgra72 vaccination against challenge with various types of T. gondii tachyzoites and Pru cysts. Furthermore, levels of antibodies and cytokines induced by PruΔgra72 vaccination were examined. Statistical analysis was conducted by Student's t-test or Mantel-Cox log-rank test based on data obtained from three independent experiments with GraphPad Prism 8.0. RESULTS We found that PruΔgra72 strain exhibited a significantly attenuated virulence even at the highest dose of 5 × 107 tachyzoites in Kunming mice model. The significant decrease of brain cyst burden and parasite load in the organs of the PruΔgra72-infected mice suggested its potentiality as a live-attenuated vaccine. Hence, we explored the protective immunity of PruΔgra72 vaccination against toxoplasmosis. Results showed that vaccination with 5 × 106 PruΔgra72 tachyzoites triggered a strong and sustained Th1-biased immune response, marked by significantly increased levels of anti-T. gondii IgG antibodies, and significantly higher levels of Th1 type cytokines (IL-2, IL-12 and IFN-γ) compared to that of Th2 type (IL-4 and IL-10). Vaccination with 5 × 106 PruΔgra72 tachyzoites in mice conferred long-term protection against T. gondii infection by less virulent tachyzoites (ToxoDB#9 PYS and Pru strains) and Pru cysts, provided partial protection against acute infection by high virulent Type I RH tachyzoites and significantly decreased brain cyst burden of chronically infected mice. CONCLUSIONS The avirulent PruΔgra72 induced strong protective immunity against acute and chronic T. gondii infection and is a promising candidate for developing a safe and effective live-attenuated vaccine against T. gondii infection.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China
| | - Yu Kang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China
| | - Ze-Xuan Wu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China
| | - Shu-Feng Yang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China
| | - Yu-Yang Tian
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China.
| | - Xiao-Nan Zheng
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China.
| |
Collapse
|
3
|
Majidiani H, Pourseif MM, Kordi B, Sadeghi MR, Najafi A. TgVax452, an epitope-based candidate vaccine targeting Toxoplasma gondii tachyzoite-specific SAG1-related sequence (SRS) proteins: immunoinformatics, structural simulations and experimental evidence-based approaches. BMC Infect Dis 2024; 24:886. [PMID: 39210269 PMCID: PMC11361240 DOI: 10.1186/s12879-024-09807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The highly expressed surface antigen 1 (SAG1)-related sequence (SRS) proteins of T. gondii tachyzoites, as a widespread zoonotic parasite, are critical for host cell invasion and represent promising vaccine targets. In this study, we employed a computer-aided multi-method approach for in silico design and evaluation of TgVax452, an epitope-based candidate vaccine against T. gondii tachyzoite-specific SRS proteins. METHODS Using immunoinformatics web-based tools, structural modeling, and static/dynamic molecular simulations, we identified and screened B- and T-cell immunodominant epitopes and predicted TgVax452's antigenicity, stability, safety, adjuvanticity, and physico-chemical properties. RESULTS The designed protein possessed 452 residues, a MW of 44.07 kDa, an alkaline pI (6.7), good stability (33.20), solubility (0.498), and antigenicity (0.9639) with no allergenicity. Comprehensive molecular dynamic (MD) simulation analyses confirmed the stable interaction (average potential energy: 3.3799 × 106 KJ/mol) between the TLR4 agonist residues (RS09 peptide) of the TgVax452 in interaction with human TLR4, potentially activating innate immune responses. Also, a dramatic increase was observed in specific antibodies (IgM and IgG), cytokines (IFN-γ), and lymphocyte responses, based on C-ImmSim outputs. Finally, we optimized TgVax452's codon adaptation and mRNA secondary structure for efficient expression in E. coli BL21 expression machinery. CONCLUSION Our findings suggest that TgVax452 is a promising candidate vaccine against T. gondii tachyzoite-specific SRS proteins and requires further experimental studies for its potential use in preclinical trials.
Collapse
MESH Headings
- Protozoan Proteins/immunology
- Protozoan Proteins/genetics
- Protozoan Proteins/chemistry
- Toxoplasma/immunology
- Toxoplasma/genetics
- Toxoplasma/chemistry
- Protozoan Vaccines/immunology
- Protozoan Vaccines/genetics
- Antigens, Protozoan/immunology
- Antigens, Protozoan/genetics
- Antigens, Protozoan/chemistry
- Animals
- Computational Biology
- Mice
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Female
- Antibodies, Protozoan/immunology
- Mice, Inbred BALB C
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/chemistry
- Humans
- Molecular Dynamics Simulation
- Immunodominant Epitopes/immunology
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/chemistry
- Toxoplasmosis/prevention & control
- Toxoplasmosis/immunology
- Immunoinformatics
Collapse
Affiliation(s)
- Hamidreza Majidiani
- Healthy Aging Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Engineered Biomaterial Research Center (EBRC), Khazar University, Baku, Azerbaijan.
| | - Bahareh Kordi
- Department of Agricultural Science, Technical and Vocational University (TVU), Tehran, Iran
| | - Mohammad-Reza Sadeghi
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Najafi
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Xing Y, Yang J, Yao P, Xie L, Liu M, Cai Y. Comparison of the immune response and protection against the experimental Toxoplasma gondii infection elicited by immunization with the recombinant proteins BAG1, ROP8, and BAG1-ROP8. Parasite Immunol 2024; 46:e13023. [PMID: 38372452 DOI: 10.1111/pim.13023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/20/2024]
Abstract
Toxoplasmosis is one of the most dangerous zoonotic diseases, causing serious economic losses worldwide due to abortion and reproductive problems. Vaccination is the best way to prevent disease; thus, it is imperative to develop a candidate vaccine for toxoplasmosis. BAG1 and ROP8 have the potential to become vaccine candidates. In this study, rTgBAG1, rTgROP8, and rTgBAG1-rTgROP8 were used to evaluate the immune effect of vaccines in each group by detecting the humoral and cellular immune response levels of BABL/c mice after immunization and the ability to resist acute and chronic infection with Toxoplasma gondii (T. gondii). We divided the mice into vaccine groups with different proteins, and the mice were immunized on days 0, 14, and 28. The protective effects of different proteins against T. gondii were analysed by measuring the cytokines, serum antibodies, splenocyte proliferation assay results, survival time, and number and diameter of brain cysts of mice after infection. The vaccine groups exhibited substantially higher IgG, IgG1, and IgG2a levels and effectively stimulated lymphocyte proliferation. The levels of IFN-γ and IL-2 in the vaccine group were significantly increased. The survival time of the mice in each vaccine group was prolonged and the diameter of the cysts in the vaccine group was smaller; rTgBAG1-rTgROP8 had a better protection. Our study showed that the rTgBAG1, rTgROP8, and rTgBAG1-rTgROP8 recombinant protein vaccines are partial but effective approaches against acute or chronic T. gondii infection. They are potential candidates for a toxoplasmosis vaccine.
Collapse
Affiliation(s)
- Yien Xing
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China
| | - Jun Yang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China
| | - Pengjing Yao
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China
| | - Linding Xie
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China
| | - Min Liu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China
| | - Yihong Cai
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Chyb M, Dziadek B, Dzitko K, Ferra BT, Kawka M, Holec-Gąsior L, Gatkowska J. Evaluation of long-term immunity and protection against T. gondii after immunization with multivalent recombinant chimeric T. gondii proteins. Sci Rep 2023; 13:12976. [PMID: 37563166 PMCID: PMC10415312 DOI: 10.1038/s41598-023-40147-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023] Open
Abstract
Toxoplasmosis caused by the opportunistic, cosmopolitan protozoan Toxoplasma gondii is one of the most common parasitoses in the world. Although it may prove dangerous or even fatal for immunocompromised individuals, immunoprophylaxis for humans is still nonexistent. Thus, the aim of the current work was to assess the ability of two immunogenic recombinant chimeric T. gondii proteins, SAG2-GRA1-ROP1 (SGR) and SAG1-MIC1-MAG1-GRA2 (SMMG), selected in previous experiments to induce long-lasting immunity when administered with a safe adjuvant. Thus, the determination of immunological parameters and parasite challenge were performed both two weeks after the last boost injection and 6 months postvaccination. Both experimental vaccines triggered specific humoral and cellular responses in immunized C3H/HeOuJ male mice, characterized by the production of specific IgG (IgG1/IgG2a) antibodies in vivo and the synthesis of key Th1/Th2 cytokines by Toxoplasma lysate antigen-stimulated splenocytes in vitro. Although the levels of specific antibodies and cytokine release were in most cases lower six months postimmunization, the protection rates conferred by the vaccination were comparable regardless of the time after the administration of the last vaccine dose. The results indicate that both preparations induce long-lasting immunity, which makes them attractive candidates for further research aimed at boosting their immunogenicity and immunoprotective capacity.
Collapse
Affiliation(s)
- Maciej Chyb
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Łódź, Poland
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Łódź, Poland
| | - Bożena Dziadek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Łódź, Poland
| | - Katarzyna Dzitko
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Łódź, Poland
| | - Bartłomiej Tomasz Ferra
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine in Gdynia, Medical University of Gdańsk, Powstania Styczniowego 9B, 81-519, Gdynia, Poland
| | - Malwina Kawka
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Łódź, Poland
| | - Lucyna Holec-Gąsior
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Justyna Gatkowska
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Łódź, Poland.
| |
Collapse
|
6
|
Gómez-Chávez F, Murrieta-Coxca JM, Caballero-Ortega H, Morales-Prieto DM, Markert UR. Host-pathogen interactions mediated by extracellular vesicles in Toxoplasma gondii infection during pregnancy. J Reprod Immunol 2023; 158:103957. [PMID: 37253287 DOI: 10.1016/j.jri.2023.103957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Molecular communication between a pathogen and its host is crucial for a successful interplay. Extracellular vesicles (EVs) act as mediators for the delivery of molecular signals among pathogens or between pathogens and the host. Toxoplasma gondii (T. gondii), an intracellular parasite with a worldwide presence, produces EVs itself, or induces the secretion of EVs from infected host cells potentially having capacities to modulate the host immune response. T. gondii infection is particularly important during pregnancy. Depending on the gestational age at the time of infection, the parasite can be transmitted through the placenta to the fetus, causing clinical complications such as jaundice, hepatosplenomegaly, chorioretinitis, cranioencephalic abnormalities, or even death. T. gondii infection is related to a pro-inflammatory immune response in both mother and fetus, which may enhance parasite transmission, but the implication of EV signaling in this process remains unclear. In this review, we summarize the current knowledge on EV release from T. gondii and its human host cells in regard to the immunological consequences and the passage through the placenta.
Collapse
Affiliation(s)
- Fernando Gómez-Chávez
- Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Medicina y Homeopatía-Instituto Politécnico Nacional, Mexico City, Mexico; Programa de Posgrado en Ciencia y Tecnología de Vacunas y Bioterapéuticos, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Heriberto Caballero-Ortega
- Secretaría de Salud, Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | - Udo R Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
7
|
Müller J, Hemphill A. Toxoplasma gondii infection: novel emerging therapeutic targets. Expert Opin Ther Targets 2023; 27:293-304. [PMID: 37212443 PMCID: PMC10330558 DOI: 10.1080/14728222.2023.2217353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Toxoplasmosis constitutes a challenge for public health, animal production, and welfare. So far, only a limited panel of drugs has been marketed for clinical applications. In addition to classical screening, the investigation of unique targets of the parasite may lead to the identification of novel drugs. AREAS COVERED Herein, the authors describe the methodology to identify novel drug targets in Toxoplasma gondii and review the literature with a focus on the last two decades. EXPERT OPINION Over the last two decades, the investigation of essential proteins of T. gondii as potential drug targets has fostered the hope of identifying novel compounds for the treatment of toxoplasmosis. Despite good efficacies in vitro, only a few classes of these compounds are effective in suitable rodent models, and none has cleared the hurdle to applications in humans. This shows that target-based drug discovery is in no way better than classical screening approaches. In both cases, off-target effects and adverse side effects in the hosts must be considered. Proteomics-driven analyses of parasite- and host-derived proteins that physically bind drug candidates may constitute a suitable tool to characterize drug targets, irrespectively of the drug discovery methods.
Collapse
Affiliation(s)
- Joachim Müller
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Bekier A, Gatkowska J, Chyb M, Sokołowska J, Chwatko G, Głowacki R, Paneth A, Dzitko K. 4-Arylthiosemicarbazide derivatives – Pharmacokinetics, toxicity and anti-Toxoplasma gondii activity in vivo. Eur J Med Chem 2022; 244:114812. [DOI: 10.1016/j.ejmech.2022.114812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022]
|
9
|
Li XW, Zhang N, Li ZL, Dibo N, Ma ZR, Lu B, Huang YH, Chang YF, Chen HZ, Wu X. Epitope vaccine design for Toxoplasma gondii based on a genome-wide database of membrane proteins. Parasit Vectors 2022; 15:364. [PMID: 36224608 PMCID: PMC9555269 DOI: 10.1186/s13071-022-05497-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Background There is presently no effective and safe vaccine for Toxoplasma gondii for humans. The study described here was designed to search for a novel group of optimal B cell and T cell epitopes from Toxoplasma membrane proteins using genome-wide comprehensive screening. Methods The amino acid sequences of membrane proteins of T. gondii were obtained from the UniProt database. The ABCPred and BepiPred servers were employed to predict the linear B cell epitopes. The Immune Epitope Database (IEDB) online service was utilized to forecast T cell epitopes within T. gondii membrane proteins that bind to human leukocyte antigen (HLA) class I (HLA-I) or HLA-II molecules. Results From the 314 membrane proteins of T. gondii, a total of 14 linear B cell epitopes embedded in 12 membrane proteins were identified. Eight epitopes for major histocompatibility complex (MHC) class I (MHC-I) molecules and 18 epitopes for MHC-II molecules were ultimately selected, for which world population coverage percentiles were 71.94% and 99.76%, respectively. The top rated combinations of linear B cell epitopes and T cell epitopes covering both BALB/c mice and a majority of the human population were identified for the development of a protective vaccine. Conclusions The ultimate vaccine construct described here, which comprises B cells, MHC-I and MHC-II epitopes, might protect individuals against T. gondii infection by inducing humoral and cellular immune responses. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material and is available at 10.1186/s13071-022-05497-z.
Collapse
Affiliation(s)
- Xuan-Wu Li
- National Clinical Research Center for Metabolic Disease, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Ni Zhang
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Zhuo-Lin Li
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Nouhoum Dibo
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Zhen-Rong Ma
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Bin Lu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Ye-Hong Huang
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Yun-Feng Chang
- Department of Forensic Medicine Science, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Hong-Zhi Chen
- National Clinical Research Center for Metabolic Disease, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Xiang Wu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China. .,Hunan Provincial Key Lab of Immunology and Transmission Control on Schistosomiasis, Changsha, China.
| |
Collapse
|
10
|
Tian X, Yang Z, Wan G, Xie T, Wang M, Sun H, Mei X, Zhang Z, Li X, Wang S. Vaccination with recombinant Toxoplasma gondii bradyzoite-formation deficient 1 (rTgBFD1) antigen provides partial protective immunity against chronic T. gondii infection. Front Vet Sci 2022; 9:957479. [PMID: 36172608 PMCID: PMC9510678 DOI: 10.3389/fvets.2022.957479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
As an apicomplexan pathogen, Toxoplasma gondii still remains a major threat to public health and requires special attention. In fact, positive attempts to identify more effective antigens to provide protection are important to control toxoplasmosis. Latest scientific advances in T. gondii study hint at the probability of the T. gondii bradyzoite-formation deficient 1 (TgBFD1) as an ideal vaccine candidate, since this molecule plays a critical role in regulating the chronic infection of T. gondii. Thus, BALB/c mouse models of acute and chronic T. gondii infections were used to evaluate the TgBFD1 protection efficacy in this study. Before conducting animal trials, antigen analysis of TgBFD1 was performed using DNAstar software and Western blots. The preliminary results suggested that TgBFD1 should be a potent immunogen. Then, this conclusion is confirmed by ELISA assays. After immunization with rTgBFD1, high levels of specific IgG, IgG1, IgG2a, and cytokines (Interferon γ and interleukin 10) were observed, indicating that TgBFD1 could induce strong protective antibody responses. While TgBFD1-specific IgG antibodies were measurable in vaccinated mice, no protection was observed in the acute T. gondii infection (RH strain) assay. However, a noticeable decrease in brain cysts counts of immunized mice compared with negative controls in the latent T. gondii infection (PRU strain) assay was observed. Taken together, these results indicated that rTgBFD1 had the remarkable ability to elicit both humoral and cellular immune responses and could provide partial protective immunity against chronic T. gondii infection.
Collapse
Affiliation(s)
- Xiaowei Tian
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhenke Yang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Guangmin Wan
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Tong Xie
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Meng Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hanqi Sun
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xuefang Mei
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhenchao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiangrui Li
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Xiangrui Li
| | - Shuai Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Shuai Wang
| |
Collapse
|
11
|
Tian X, Wang M, Xie T, Wan G, Sun H, Mei X, Zhang Z, Li X, Wang S. A recombinant protein vaccine encoding Toxoplasma gondii Cyst wall 2 (dense granule protein 47) provides partial protection against acute and chronic T. gondii infection in BALB/c mice. Acta Trop 2022; 232:106514. [PMID: 35580637 DOI: 10.1016/j.actatropica.2022.106514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
Abstract
Toxoplasma gondii poses a major threat to economies and public health, and there are still no available vaccines for human against T. gondii infection. T. gondii cyst wall 2 (TgCST2, also known as dense granule protein-47) is a critical molecule in the establishment of chronic infection, making it a potential vaccine candidate. In this research, the recombinant TgCST2 (rTgCST2) was employed to evaluate the protective efficacy of TgCST2 antigen using BALB/c mice model against T. gondii infections via active immunization trials. First, the strong immunogenicity of TgCST2 was indicated by immunoblotting and immunofluorescence, which mean that TgCST2 might elicit robust immune responses in the organism. Then, after triply subcutaneous immunization with rTgCST2/ISA 201 emulsion, high levels of Toxoplasma-specific IgG, IgG1, IgG2a and cytokines (Interferon γ and interleukin 10) further suggested that TgCST2 was a promising immunogenic antigen. More importantly, this antigen could prolong survival in RH strain infected mice and resulted in the lower brain cysts size and number of PRU strain infected mice. These preliminary results demonstrated the immunoprophylactic effects of TgCST2 antigen and will inform new studies in developing subunit recombinant vaccines against T. gondii.
Collapse
|
12
|
Tian X, Sun H, Wang M, Wan G, Xie T, Mei X, Zhang Z, Li X, Wang S. A Novel Vaccine Candidate: Recombinant Toxoplasma gondii Perforin-Like Protein 2 Stimulates Partial Protective Immunity Against Toxoplasmosis. Front Vet Sci 2022; 8:802250. [PMID: 35252413 PMCID: PMC8890382 DOI: 10.3389/fvets.2021.802250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/29/2021] [Indexed: 01/18/2023] Open
Abstract
Toxoplasma gondii is an apicomplexan pathogen infecting 2 billion people and numerous livestock, causing a major threat to economies and human health. Passive-active immunoprophylaxis is an efficient approach to provide protection against toxoplasmosis. T. gondii perforin-like protein 2 (TgPLP2) contains a membrane attack complex/perforin (MACPF) domain, making it a potential vaccine candidate. Here, we aimed to assess the protection efficacy of TgPLP2 using Bagg albino/c (BALB/c) mice model. The Escherichia coli system was used to obtain the recombinant TgPLP2 (rTgPLP2). Mice challenged by anti-rTgPLP2 polyclonal antibodies (PcAb) pretreated tachyzoites showed obviously increased survival outcomes. In addition, mice that passively received anti-rTgPLP2 PcAb following a lethal dose of tachyzoites infection had longer survival time compared with phosphate-buffered saline (PBS) controls. Furthermore, we demonstrated that immunization with rTgPLP2 could prolong survival in RH strain infected mice and resulted in the lowest brain cysts size and number of Prugniaud (PRU) genotype II strain infected mice. High levels of Toxoplasma-specific IgG, IgG1, IgG2a, and cytokines (IFN-γ and IL-10) were produced after two immunizations with rTgPLP2. Together these results indicated that TgPLP2 can induce both humoral and cellular immune responses to protect host against infection and thus is a potential candidate for T. gondii vaccines.
Collapse
Affiliation(s)
- Xiaowei Tian
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hanqi Sun
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Meng Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Guangmin Wan
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Tong Xie
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xuefang Mei
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhenchao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiangrui Li
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Xiangrui Li
| | - Shuai Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Shuai Wang
| |
Collapse
|
13
|
Liu F, Wu M, Wang J, Wen H, An R, Cai H, Yu L, Shen J, Chen L, Du J. Protective Effect Against Toxoplasmosis in BALB/c Mice Vaccinated With Recombinant Toxoplasma gondii MIF, CDPK3, and 14-3-3 Protein Cocktail Vaccine. Front Immunol 2021; 12:755792. [PMID: 35003067 PMCID: PMC8727341 DOI: 10.3389/fimmu.2021.755792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Toxoplasma gondii can infect almost all endotherm organisms including humans and cause life-threatening toxoplasmosis in immunocompromised individuals, which leads to serious public health problems. Developing an excellent vaccine against this disease is impending. In present study, we formulated a cocktail protein vaccine including the TgMIF, TgCDPK3, and Tg14-3-3 proteins, which play critical roles in T. gondii infection. The recombinant protein vaccines were constructed and assessed by vaccination in BALB/c mice. We organized the mice in various protein combination groups of vaccines, and all mice were immunized with corresponding proteins at 0, 2, and 4 weeks. The specific protective effects of the vaccines on mice against T. gondii were analyzed by the mensuration of cytokines, serum antibodies, splenocyte proliferation assay, survival time, and parasite cyst burden of mice after the challenge. The study indicated that mice immunized with all three multicomponent proteins vaccine triggered a strong immune response with highest levels of IFN-γ production and IgG antibody compared with the other two protein combinations and controls. Moreover, there was an increase in IL-4 production and antigen-specific lymphocyte proliferation. The parasite cysts were significantly reduced (resulting in an 82.7% reduction), and survival time was longer in immunized mice with three multicomponent proteins compared with the other groups of mice. The enhanced humoral and cell-mediated immunity indicated that the protein cocktail vaccine containing three antigens provided effective protection for mice. These results indicated that recombinant TgMIF, TgCDPK3, and Tg14-3-3 multicomponent proteins were potential candidates for vaccine against toxoplasmosis.
Collapse
Affiliation(s)
- Fang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Minmin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Hongyang Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Ran An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Haijian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Li Yu
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Jilong Shen
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Lijian Chen, ; Jian Du, ;
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
- *Correspondence: Lijian Chen, ; Jian Du, ;
| |
Collapse
|
14
|
Identification of Oocyst-Driven Toxoplasma gondii Infections in Humans and Animals through Stage-Specific Serology-Current Status and Future Perspectives. Microorganisms 2021; 9:microorganisms9112346. [PMID: 34835471 PMCID: PMC8618849 DOI: 10.3390/microorganisms9112346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
The apicomplexan zoonotic parasite Toxoplasma gondii has three infective stages: sporozoites in sporulated oocysts, which are shed in unsporulated form into the environment by infected felids; tissue cysts containing bradyzoites, and fast replicating tachyzoites that are responsible for acute toxoplasmosis. The contribution of oocysts to infections in both humans and animals is understudied despite being highly relevant. Only a few diagnostic antigens have been described to be capable of discriminating which parasite stage has caused an infection. Here we provide an extensive overview of the antigens and serological assays used to detect oocyst-driven infections in humans and animals according to the literature. In addition, we critically discuss the possibility to exploit the increasing knowledge of the T. gondii genome and the various 'omics datasets available, by applying predictive algorithms, for the identification of new oocyst-specific proteins for diagnostic purposes. Finally, we propose a workflow for how such antigens and assays based on them should be evaluated to ensure reproducible and robust results.
Collapse
|
15
|
Toxoplasma gondii Tyrosine-Rich Oocyst Wall Protein: A Closer Look through an In Silico Prism. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1315618. [PMID: 34692826 PMCID: PMC8531782 DOI: 10.1155/2021/1315618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Toxoplasmosis is a global threat with significant zoonotic concern. The present in silico study was aimed at determination of bioinformatics features and immunogenic epitopes of a tyrosine-rich oocyst wall protein (TrOWP) of Toxoplasma gondii. After retrieving the amino acid sequence from UniProt database, several parameters were predicted including antigenicity, allergenicity, solubility and physico-chemical features, signal peptide, transmembrane domain, and posttranslational modifications. Following secondary and tertiary structure prediction, the 3D model was refined, and immunogenic epitopes were forecasted. It was a 25.57 kDa hydrophilic molecule with 236 residues, a signal peptide, and significant antigenicity scores. Moreover, several linear and conformational B-cell epitopes were present. Also, potential mouse and human cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes were predicted in the sequence. The findings of the present in silico study are promising as they render beneficial characteristics of TrOWP to be included in future vaccination experiments.
Collapse
|
16
|
Grochow T, Beck B, Rentería-Solís Z, Schares G, Maksimov P, Strube C, Seeger J, Raqué L, Ulrich R, Daugschies A, Fietz SA. Establishment and validation of a guinea pig model for human congenital toxoplasmosis. Parasit Vectors 2021; 14:389. [PMID: 34362413 PMCID: PMC8344189 DOI: 10.1186/s13071-021-04890-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/23/2021] [Indexed: 11/28/2022] Open
Abstract
Background Toxoplasma gondii is an obligate intracellular parasite with a worldwide distribution. Congenital infection in humans and animals may lead to severe symptoms in the offspring, especially in the brain. A suitable animal model for human congenital toxoplasmosis is currently lacking. The aim of this study is to establish and validate the guinea pig as a model for human congenital toxoplasmosis by investigating the impact of the T. gondii infection dose, the duration of infection and the gestational stage at infection on the seroconversion, survival rate of dams, fate of the offspring, T. gondii DNA loads in various offspring tissues and organs and the integrity of the offspring brain. Methods Pregnant guinea pigs were infected with three different doses (10, 100, 500 oocysts) of T. gondii strain ME49 at three different time points during gestation (15, 30, 48 days post-conception). Serum of dams was tested for the presence of T. gondii antibodies using immunoblotting. T. gondii DNA levels in the dam and offspring were determined by qPCR. Offspring brains were examined histologically. Results We found the survival rate of dams and fate of the offspring to be highly dependent on the T. gondii infection dose with an inoculation of 500 oocysts ending lethally for all respective offspring. Moreover, both parameters differ depending on the gestational stage at infection with infection in the first and third trimester of gestation resulting in a high offspring mortality rate. The duration of infection was found to substantially impact the seroconversion rate of dams with the probability of seroconversion exceeding 50% after day 20 post-infection. Furthermore, the infection duration of dams influenced the T. gondii DNA loads in the offspring and the integrity of offspring brain. Highest DNA levels were found in the offspring brain of dams infected for ≥ 34 days. Conclusion This study contributes to establishing the guinea pig as a suitable model for human congenital toxoplasmosis and thus lays the foundation for using the guinea pig as a suitable animal model to study scientific questions of high topicality and clinical significance, which address the pathogenesis, diagnosis, therapy and prognosis of congenital toxoplasmosis. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04890-4.
Collapse
Affiliation(s)
- Thomas Grochow
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.,Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Britta Beck
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.,Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Zaida Rentería-Solís
- Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gereon Schares
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Pavlo Maksimov
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Johannes Seeger
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Lisa Raqué
- Veterinary Practice Raqué, Leipzig, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Arwid Daugschies
- Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
17
|
Asghari A, Shamsinia S, Nourmohammadi H, Majidiani H, Fatollahzadeh M, Nemati T, Irannejad H, Nouri HR, Ghasemi E, Shams M. Development of a chimeric vaccine candidate based on Toxoplasma gondii major surface antigen 1 and apicoplast proteins using comprehensive immunoinformatics approaches. Eur J Pharm Sci 2021; 162:105837. [PMID: 33836177 DOI: 10.1016/j.ejps.2021.105837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
This study was aimed at designing and evaluation of a multimeric vaccine construct against Toxoplasma gondii via utilization of SAG1 along with apicoplast ribosomal proteins (S2, S5 and L11). Top-ranked MHC-I and MHC-II binding as well as shared, immunodominant linear B-cell epitopes were predicted and joined together via appropriate linkers. Also, TLR-4 agonist (RS-09 synthetic protein) and His-tag were added to the N- and C-terminal of the vaccine sequence. The finally-engineered chimeric vaccine had a length of 291 amino acids with a molecular weight of 31.46 kDa. Physico-chemical features showed a soluble, highly-antigenic and non-allergenic candidate. Secondary and tertiary structures were predicted, and subsequent analyses confirmed the construct stability that was capable to properly interact with human TLR-4. Immunoinformatics-based simulation displayed potent stimulation of T- and B-cell mediated immune responses upon vaccination with the proposed multi-epitope candidate. In conclusion, obtained information demonstrated a highly antigenic vaccine candidate, which could develop high levels of IFN-γ and other components of cellular immune profile, and can be directed for toxoplasmosis prophylactic purposes.
Collapse
Affiliation(s)
- Ali Asghari
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadegh Shamsinia
- Department of Medical Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hassan Nourmohammadi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran; Department of Internal Medicine, Shahid Mostafa Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | - Hamidreza Majidiani
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Fatollahzadeh
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Taher Nemati
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ezatollah Ghasemi
- Department of Medical Parasitology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran.
| | - Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
18
|
Lanyon SR, O'Handley RM. Relationship between Toxoplasma gondii seroprevalence and lamb marking in South Australian sheep flocks. Aust Vet J 2020; 98:525-528. [PMID: 32779187 DOI: 10.1111/avj.13004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/04/2020] [Accepted: 06/28/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Toxoplasmosis in sheep has negative impacts on reproductive performance. This study aimed to estimate the prevalence in Toxoplasma gondii infection in the South Australian sheep population, and assess any association between within-flock prevalence and reproductive efficiency (measured by lamb marking percentage), climatic region and rainfall. METHODS A total of 875 individual mixed-age breeding ewes from 29 South Australian properties were blood sampled with an average of 30.2 ewes per property (min 28, max 32). Sera were tested for T. gondii-specific IgG antibody using a commercial Modified Agglutination Test kit. RESULTS Overall, 209 of 875 (23.9%; 95% confidence interval [CI] 16.3% to 31.4%) of individual ewes tested seropositive for T. gondii-specific IgG antibodies, with a flock level seroprevalence of 28/29 (96.6%, 95% CI 96.6% to 100%). On individual farms, the seroprevalence ranged from 0% to 93.3%. Analysis showed that Kangaroo Island properties had significantly higher mean seroprevalence than any mainland climatic regions, and that the mainland regions did not significantly differ from each other. Linear regression revealed a significant association between seroprevalence and lamb marking percentage, with a slope of -5.4% lamb marking per +10% seroprevalence.
Collapse
Affiliation(s)
- S R Lanyon
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - R M O'Handley
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, 5371, Australia
| |
Collapse
|
19
|
Sander VA, Sánchez López EF, Mendoza Morales L, Ramos Duarte VA, Corigliano MG, Clemente M. Use of Veterinary Vaccines for Livestock as a Strategy to Control Foodborne Parasitic Diseases. Front Cell Infect Microbiol 2020; 10:288. [PMID: 32670892 PMCID: PMC7332557 DOI: 10.3389/fcimb.2020.00288] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
Foodborne diseases (FBDs) are a major concern worldwide since they are associated with high mortality and morbidity in the human population. Among the causative agents of FBDs, Taenia solium, Echinococcus granulosus, Toxoplasma gondii, Cryptosporidium spp., and Trichinella spiralis are listed in the top global risk ranking of foodborne parasites. One common feature between them is that they affect domestic livestock, encompassing an enormous risk to global food production and human health from farm to fork, infecting animals, and people either directly or indirectly. Several approaches have been employed to control FBDs caused by parasites, including veterinary vaccines for livestock. Veterinary vaccines against foodborne parasites not only improve the animal health by controlling animal infections but also contribute to increase public health by controlling an important source of FBDs. In the present review, we discuss the advances in the development of veterinary vaccines for domestic livestock as a strategy to control foodborne parasitic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Marina Clemente
- Laboratorio de Molecular Farming y Vacunas, Unidad Biotecnológica 6-UB6, INTECH, UNSAM-CONICET, Chascomús, Argentina
| |
Collapse
|
20
|
Azadi Y, Ahmadpour E, Ahmadi A. Targeting Strategies in Therapeutic Applications of Toxoplasmosis: Recent Advances in Liposomal Vaccine Delivery Systems. Curr Drug Targets 2020; 21:541-558. [DOI: 10.2174/1389450120666191023151423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
Toxoplasma gondii is a prevalent parasitic pathogen that infected over one-third of the global population. Toxoplasmosis is diagnosed by isolating the parasite and detecting host antibodies. In contrast, the main problem with diagnosis relates to the sensitivity and specificity of the tests. Currently, treatment with pyrimethamine and sulfadiazine is recommended, despite their side effects and toxicity to humans. Moreover, the absence of a vaccine to completely protect against this infection is the main obstacle to the effective treatment and prevention of toxoplasmosis. Recently, nanoparticles and nanomaterials have been studied as delivery systems for the immunization and treatment of T. gondii infections. One of the most important applications of liposomes is drug and vaccine delivery, due to their biodegradability, low inherent toxicity, and immunogenicity. Liposomes are flexible delivery systems and immunological adjuvants able not only to load diverse antigens, such as proteins, peptides, nucleic acids, and carbohydrates but also to combine them with immunostimulators. Liposomes have the incredible potential within the development of modern types of vaccines and numerous endeavors have been made to improve the effectiveness of vaccines in recent years. In this review, we concentrate on the viable targeting strategies of liposome-based vaccine delivery systems to prevent, control and treat toxoplasmosis.
Collapse
Affiliation(s)
- Yaghob Azadi
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
21
|
RHΔ gra17Δ npt1 Strain of Toxoplasma gondii Elicits Protective Immunity Against Acute, Chronic and Congenital Toxoplasmosis in Mice. Microorganisms 2020; 8:microorganisms8030352. [PMID: 32121619 PMCID: PMC7142655 DOI: 10.3390/microorganisms8030352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/13/2020] [Accepted: 02/26/2020] [Indexed: 12/19/2022] Open
Abstract
: In the present study, a dense granule protein 17 (gra17) and novel putative transporter (npt1) double deletion mutant of Toxoplasma gondii RH strain was engineered. The protective efficacy of vaccination using RHΔgra17Δnpt1 tachyzoites against acute, chronic, and congenital toxoplasmosis was studied in a mouse model. Immunization using RHΔgra17Δnpt1 induced a strong humoral and cellular response, as indicated by the increased levels of anti-T. gondii specific IgG, interleukin 2 (IL-2), IL-10, IL-12, and interferon-gamma (IFN-γ). Vaccinated mice were protected against a lethal challenge dose (103 tachyzoites) of wild-type homologous (RH) strain and heterologous (PYS and TgC7) strains, as well as against 100 tissue cysts or oocysts of Pru strain. Vaccination also conferred protection against chronic infection with 10 tissue cysts or oocysts of Pru strain, where the numbers of brain cysts in the vaccinated mice were significantly reduced compared to those detected in the control (unvaccinated + infected) mice. In addition, vaccination protected against congenital infection with 10 T. gondii Pru oocysts (administered orally on day 5 of gestation) as shown by the increased litter size, survival rate and the bodyweight of pups born to vaccinated dams compared to those born to unvaccinated + infected dams. The brain cyst burden of vaccinated dams was significantly lower than that of unvaccinated dams infected with oocysts. Our data show that T. gondii RHΔgra17Δnpt1 mutant strain can protect mice against acute, chronic, and congenital toxoplasmosis by balancing inflammatory response with immunogenicity.
Collapse
|
22
|
Wang JL, Li TT, Elsheikha HM, Chen K, Cong W, Yang WB, Bai MJ, Huang SY, Zhu XQ. Live Attenuated Pru:Δcdpk2 Strain of Toxoplasma gondii Protects Against Acute, Chronic, and Congenital Toxoplasmosis. J Infect Dis 2019; 218:768-777. [PMID: 29669003 DOI: 10.1093/infdis/jiy211] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/11/2018] [Indexed: 11/14/2022] Open
Abstract
Background The threat of Toxoplasma gondii infection in immunocompromised individuals and pregnant women necessitates the development of a safe and effective vaccine. Here, we examined the immune protection conferred by a live attenuated strain of T. gondii. Methods We tested the efficacy of intraperitoneal vaccination using 500 Ca2+-dependent protein kinase 2 (cdpk2)-deficient tachyzoites of T. gondii Pru strain against acute, chronic, and congenital toxoplasmosis in mice. The kinetics of antibody response, cytokines, and other quantifiable correlates of protection against T. gondii infection were determined. Results Vaccination with Pru:Δcdpk2 induced a high level of anti-T. gondii immunoglobulin G titer, type 1 T-helper (Th1) response at 28 days postvaccination, and a mixed Th1/type 2 T-helper response at 70 days postvaccination. All vaccinated mice survived a heterologous challenge with 1000 tachyzoites of RH or ToxoDB#9 (PYS or TgC7) strains. Also, vaccination protected against homologous infection with 20 T. gondii Pru cysts, and improved pregnancy outcome by reducing parasite cyst load in the brain, maintaining litter size and body weight of pups born to vaccinated dams challenged with 10 Pru cysts compared to pups born to unvaccinated dams. Conclusions The use of T. gondii Pru:Δcdpk2 mutant strain represents a promising approach to protection against acute, chronic, and congenital toxoplasmosis in mice.
Collapse
Affiliation(s)
- Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
| | - Ting-Ting Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Kai Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
| | - Wei Cong
- College of Marine Science, Shandong University at Weihai, Weihai, Shandong Province, People's Republic of China
| | - Wen-Bin Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Meng-Jie Bai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
| | - Si-Yang Huang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
23
|
C57BL/6 mice immunized with synthetic peptides from Toxoplasma gondii surface and microneme immunodominant antigens are able to decrease parasite burden in the brain tissues. Acta Trop 2019; 196:1-6. [PMID: 31059707 DOI: 10.1016/j.actatropica.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/12/2019] [Accepted: 05/02/2019] [Indexed: 12/21/2022]
Abstract
Toxoplasmosis is a disease caused by Toxoplasma gondii, an intracellular protozoan able to infect a wide range of hosts. The infection is particularly severe in immunocompromised patients or during pregnancy, circumstances in which the parasite could find a more favorable microenvironment to replicate and invade host tissues. The current treatment consists in toxic drugs for the patients, being not appropriate for the fetuses and immunodeficient patients. So far, there is a lack of available vaccine to prevent the disease. The present study aimed to evaluate the immune response induced by peptides derived from parasite immunodominant proteins from key components, as surface, rhoptry, microneme and dense granule antigens. A panel of eleven peptides was selected considering the highest scores for B cell epitope prediction by in silico analyses. The peptides were divided in groups, according to the parasite organelle locations, and used to immunize C57BL/6 mice. The animals were submitted to three doses of immunization and infected by 10 cysts of T. gondii ME49 strain. Blood samples were collected and used to measure the production of antibodies and cytokines, while the brains were collected to determine the parasite burden by quantitative polymerase chain reaction (qPCR). It was found that synthetic peptides from all targets were able to induce IgG synthesis in immunized mice, as well as to modulate the Th1/Th2 cytokine production, particularly the MIC and SRS groups, which presented the IFN-γ/IL-10 and TNF-α/IL-10 ratios 30 and 10 times higher, respectively, when compared with non-immunized group. Interestingly, the animals from MIC and SRS groups had significantly lower levels of T. gondii DNA in their brains. In summary, it can be concluded that peptides mainly from SRS and MIC parasite components constitute relevant targets to design vaccine candidates against parasite burden observed during chronic toxoplasmosis.
Collapse
|
24
|
Wang JL, Zhang NZ, Li TT, He JJ, Elsheikha HM, Zhu XQ. Advances in the Development of Anti-Toxoplasma gondii Vaccines: Challenges, Opportunities, and Perspectives. Trends Parasitol 2019; 35:239-253. [PMID: 30718083 DOI: 10.1016/j.pt.2019.01.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Abstract
Important progress has been made in understanding how immunity is elicited against Toxoplasma gondii - a complex pathogen with multiple mechanisms of immune evasion. Many vaccine candidates have been tested using various strategies in animal models. However, none of these strategies has delivered as yet, and important challenges remain in the development of vaccines that can eliminate the tissue cysts and/or fully block vertical transmission. In this review, we provide an overview of the current understanding of the host immune response to T. gondii infection and summarize the key limitations for the development of an effective, safe, and durable toxoplasmosis vaccine. We also discuss how the successes and failures in developing and testing vaccine candidates have provided a roadmap for future vaccine development.
Collapse
Affiliation(s)
- Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Ting-Ting Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| |
Collapse
|
25
|
Foroutan M, Ghaffarifar F, Sharifi Z, Dalimi A, Jorjani O. Rhoptry antigens as Toxoplasma gondii vaccine target. Clin Exp Vaccine Res 2019; 8:4-26. [PMID: 30775347 PMCID: PMC6369123 DOI: 10.7774/cevr.2019.8.1.4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/10/2018] [Accepted: 01/14/2019] [Indexed: 01/14/2023] Open
Abstract
Toxoplasmosis is a cosmopolitan zoonotic infection, caused by a unicellular protozoan parasite known as Toxoplasma gondii that belongs to the phylum Apicomplexa. It is estimated that over one-third of the world's population has been exposed and are latently infected with the parasite. In humans, toxoplasmosis is predominantly asymptomatic in immunocompetent persons, while among immunocompromised individuals may be cause severe and progressive complications with poor prognosis. Moreover, seronegative pregnant mothers are other risk groups for acquiring the infection. The life cycle of T. gondii is very complex, indicating the presence of a plurality of antigenic epitopes. Despite of great advances, recognize and construct novel vaccines for prevent and control of toxoplasmosis in both humans and animals is still remains a great challenge for researchers to select potential protein sequences as the ideal antigens. Notably, in several past years, constant efforts of researchers have made considerable advances to elucidate the different aspects of the cell and molecular biology of T. gondii mainly on microneme antigens, dense granule antigens, surface antigens, and rhoptry proteins (ROP). These attempts thereby provided great impetus to the present focus on vaccine development, according to the defined subcellular components of the parasite. Although, currently there is no commercial vaccine for use in humans. Among the main identified T. gondii antigens, ROPs appear as a putative vaccine candidate that are vital for invasion procedure as well as survival within host cells. Overall, it is estimated that they occupy about 1%–30% of the total parasite cell volume. In this review, we have summarized the recent progress of ROP-based vaccine development through various strategies from DNA vaccines, epitope or multi epitope-based vaccines, recombinant protein vaccines to vaccines based on live-attenuated vectors and prime-boost strategies in different mouse models.
Collapse
Affiliation(s)
- Masoud Foroutan
- Abadan School of Medical Sciences, Abadan, Iran.,Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Abdolhosein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ogholniaz Jorjani
- Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
26
|
Zhang NZ, Gao Q, Wang M, Hou JL, Zhang FK, Hu LY, Zhu XQ. Protective Efficacy Against Acute and Chronic Toxoplasma gondii Infection Induced by Immunization With the DNA Vaccine TgDOC2C. Front Microbiol 2018; 9:2965. [PMID: 30564214 PMCID: PMC6288300 DOI: 10.3389/fmicb.2018.02965] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/18/2018] [Indexed: 01/27/2023] Open
Abstract
Toxoplasma gondii is a ubiquitous intracellular apicomplexan parasite that can cause zoonotic toxoplasmosis. Effective vaccines against T. gondii infection are necessary to prevent and control the spread of toxoplasmosis. The present study analyzed the B-linear epitopes of T. gondii DOC2 (TgDOC2) protein and then cloned the C-terminus of the TgDOC2 gene (TgDOC2C) to construct the pVAX-TgDOC2C eukaryotic vector. After intramuscular injection of pVAX-TgDOC2C, immune responses were monitored. Two weeks after the last immunization, the protective effects of pVAX-TgDOC2C against acute and chronic toxoplasmosis were evaluated by challenges with T. gondii RH tachyzoites (genotype I) and PRU cysts (genotype II). The DNA vaccine elicited strong humoral and cellular immune responses with high levels of IgG antibody, IL-2 and IFN-γ production compared to those of the controls. The percentage of CD4+ and CD8+ T cells in mice immunized with pVAX-TgDOC2C was significantly increased compared to that of mice injected with empty pVAX I or PBS. After acute infection with 103 lethal tachyzoites, mice immunized with pVAX-TgDOC2C survived longer (12.5 days) than mice treated with pVAX I (8 days) and PBS (7.5 days). Mice immunized with pVAX-TgDOC2C had significantly less brain cysts (1600.83 ± 284.61) compared to mice immunized with pVAX I (3016.67 ± 153.84) or PBS (3100 ± 246.98). Together, these results demonstrated that TgDOC2C confers protective immunity against T. gondii infection and may be a promising candidate antigen for further development of an effective multicomponent vaccine for veterinary use against toxoplasmosis in livestock animals.
Collapse
Affiliation(s)
- Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qi Gao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Hunan Entry-Exit Inspection and Quarantine Bureau, Changsha, China
| | - Meng Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ling-Ying Hu
- Fujian Yongcheng Agricultural and Animal Husbandry Sci-Tech Group, Fuzhou, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
27
|
Azadi Y, Ahmadpour E, Hamishehkar H, Daryani A, Spotin A, Mahami-Oskouei M, Barac A, Rajabi S, Alizadeh P, Montazeri M. Quantification of Toxoplasma gondii in the tissues of BALB/c mice after immunization with nanoliposomal excretory-secretory antigens using Real-Time PCR. Comp Immunol Microbiol Infect Dis 2018; 59:52-56. [PMID: 30290888 DOI: 10.1016/j.cimid.2018.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Toxoplasmosis is an infectious disease caused by the intracellular parasite Toxoplasma gondii. Although almost 1/3 of the world's population are seropositive, there is no effective vaccine against toxoplasmosis. Therefore, the development of an effective vaccine for control of toxoplasmosis is one of major concerns in parasitology. The aim of this study was to evaluate the efficacy of nano-liposomal excretory-secretory antigens (NLESA) in BALB/c mice. MATERIALS AND METHODS Excretory-secretory antigens (ESA) was obtained from tachyzoites, encapsulated in the liposome and studied by scanning electron microscope. BALB/c mice were immunized with NLESA and ESA, sterile phosphate-buffered saline (PBS). Immunization was performed three times at 14-day intervals and challenged with 1 × 104 tachyzoites of T. gondii RH strain four weeks later. The parasite load of mice blood, brain and spleen tissues were determined using quantitative PCR targeted at the repeated element (RE) gene. RESULTS The immunization with NLESA and ESA induced a significant increase of anti-Toxoplasma IgG antibody compared with PBS group (P < 0.05). After challenge with tachyzoites, qPCR analyses showed significant reduction of parasite load in NLESA and ESA immunized mice compared with control group (P < 0.05). Also, NLESAs were more effective than ESAs and showed significantly reduced parasite load in blood (P = 0.001) and brain tissue (P = 0.01). DISCUSSION The vaccination with NLESA showed more promising results comparing to ESA. Further studies are recommended in order to achieve effectiveness of the vaccine against T. gondii.
Collapse
Affiliation(s)
- Yaghob Azadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Department of Parasitology and Mycology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ahmadpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Adel Spotin
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Aleksandra Barac
- Clinic for Infectious and tropical diseases, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Serbia
| | - Saba Rajabi
- Student Research Committee, Department of Parasitology and Mycology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paria Alizadeh
- Student Research Committee, Department of Parasitology and Mycology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahbobeh Montazeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
28
|
Foroutan M, Zaki L, Ghaffarifar F. Recent progress in microneme-based vaccines development against Toxoplasma gondii. Clin Exp Vaccine Res 2018; 7:93-103. [PMID: 30112348 PMCID: PMC6082678 DOI: 10.7774/cevr.2018.7.2.93] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/18/2018] [Accepted: 07/06/2018] [Indexed: 11/25/2022] Open
Abstract
Toxoplasmosis is a cosmopolitan zoonotic disease, which infect several warm-blooded mammals. More than one-third of the human population are seropositive worldwide. Due to the high seroprevalence of Toxoplasma gondii infection worldwide, the resulting clinical, mental, and economical complications, as well as incapability of current drugs in the elimination of parasites within tissue cysts, the development of a vaccine against T. gondii would be critical. In the past decades, valuable advances have been achieved in order to identification of vaccine candidates against T. gondii infection. Microneme proteins (MICs) secreted by the micronemes play a critical role in the initial stages of host cell invasion by parasites. In this review, we have summarized the recent progress for MIC-based vaccines development, such as DNA vaccines, recombinant protein vaccines, vaccines based on live-attenuated vectors, and prime-boost strategy in different mouse models. In conclusion, the use of live-attenuated vectors as vehicles to deliver and express the target gene and prime-boost regimens showed excellent outcomes in the development of vaccines against toxoplasmosis, which need more attention in the future studies.
Collapse
Affiliation(s)
- Masoud Foroutan
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Zaki
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
29
|
Li ZY, Lu J, Zhang NZ, Elsheikha HM, Hou JL, Guo HT, Zhu XQ. Immunization with plasmid DNA expressing Heat Shock Protein 40 confers prophylactic protection against chronic Toxoplasma gondii infection in Kunming mice. ACTA ACUST UNITED AC 2018; 25:37. [PMID: 30040611 PMCID: PMC6057741 DOI: 10.1051/parasite/2018040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/07/2018] [Indexed: 01/08/2023]
Abstract
Toxoplasma gondii causes one of the most common protozoal diseases of humans and animals worldwide. With the aim of designing an effective vaccine against T. gondii infection, we examined the immunogenicity of a DNA vaccine expressing heat shock protein 40 (HSP40) against challenge with T. gondii (type I RH and type II Pru) strains in Kunming mice. The plasmid pVAX1-HSP40 was constructed and used to immunize mice by intramuscular injection for three sequential immunizations with two-week intervals. This immunization regimen significantly reduced parasite cyst burden in pVAX1-HSP40-immunized mice (1871.9 ± 142.3) compared with control mouse groups immunized with pVAX1 (3479.2 ± 204.4), phosphate buffered saline (3024.4 ± 212.8), or left untreated (3275.0 ± 179.8) as healthy controls (p < 0.01). However, immunization failed to protect mice against challenge with the virulent RH strain. There was a significant increase in T lymphocyte subclasses (CD3e+CD4+ T and CD3e+CD8a+ T lymphocytes) in splenic tissues in immunized mice compared with controls (p < 0.05). However, the level of antibodies, lymphocyte proliferation and concentration of cytokines (IFN-γ, IL-2, IL-4, IL-10 and IL-12p70) were not significantly different between immunized and control mouse groups (p < 0.05). These data indicate that pVAX1-HSP40 induced specific immune responses and achieved a significant reduction in the number of brain cysts in Pru-infected mice, and thus can be tested in future immunization studies along with plasmids containing other immunogenic proteins as a cocktail vaccine to fully abolish chronic toxoplasmosis.
Collapse
Affiliation(s)
- Zhong-Yuan Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China - State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Jing Lu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Hai-Ting Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China - College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, PR China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| |
Collapse
|
30
|
Foroutan M, Ghaffarifar F. Calcium-dependent protein kinases are potential targets for Toxoplasma gondii vaccine. Clin Exp Vaccine Res 2018; 7:24-36. [PMID: 29399577 PMCID: PMC5795042 DOI: 10.7774/cevr.2018.7.1.24] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 01/30/2023] Open
Abstract
Toxoplasma gondii belongs to the Apicomplexa phylum that caused a widespread zoonotic infection in wide range of intermediate hosts. Over one-third of the world's population are latently infected with T. gondii and carry it. The complex life cycle of T. gondii indicates the presence of a plurality of antigenic epitopes. During the recent years, continuous efforts of scientists have made precious advances to elucidate the different aspects of the cell and molecular biology of T. gondii. Despite of great progresses, the development of vaccine candidates for preventing of T. gondii infection in men and animals is still remains a challenge. The calcium-dependent protein kinases (CDPKs) belongs to the superfamily of kinases, which restricted to the apicomplexans, ciliates, and plants. It has been documented that they contribute several functions in the life cycle of T. gondii such as gliding motility, cell invasion, and egress as well as some other critical developmental processes. In current paper, we reviewed the recent progress concerning the development of CDPK-based vaccines against acute and chronic T. gondii.
Collapse
Affiliation(s)
- Masoud Foroutan
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
31
|
Resistance to Chronic Toxoplasma gondii Infection Induced by a DNA Vaccine Expressing GRA16. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1295038. [PMID: 28875149 PMCID: PMC5569751 DOI: 10.1155/2017/1295038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/09/2017] [Indexed: 01/23/2023]
Abstract
Toxoplasma gondii can infect all warm-blooded animals including human beings. T. gondii dense granule protein 16 (TgGRA16) as a crucial virulence factor could modulate the host gene expression. Here, a DNA vaccine expressing TgGRA16 was constructed to explore the protective efficacy against T. gondii infection in Kunming mice. The immune responses induced by pVAX-GRA16 were also evaluated. Mice immunized with pVAX-GRA16 could elicit higher levels of specific IgG antibody and strong cellular response compared to those in controls. The DNA vaccination significantly increased the levels of cytokines (IFN-γ, IL-2, IL-4, and IL-10) and the percentages of CD4+ and CD8+ T cells in mice. After lethal challenge, mice immunized with pVAX-GRA16 (8.4 ± 0.78 days) did not show a significant longer survival time than that in controls (7.1 ± 0.30 days) (p > 0.05). However, in chronic toxoplasmosis model (administration of 10 brain cysts of PRU strain orally), numbers of tissue cysts in mice immunized with pVAX-GRA16 were significantly reduced compared to those in controls (p < 0.05) and the rate of reduction could reach 43.89%. The results indicated that the TgGRA16 would be a promising vaccine candidate for further development of effective epitope-based vaccines against chronic T. gondii infection in mice.
Collapse
|
32
|
Wang JL, Elsheikha HM, Zhu WN, Chen K, Li TT, Yue DM, Zhang XX, Huang SY, Zhu XQ. Immunization with Toxoplasma gondii GRA17 Deletion Mutant Induces Partial Protection and Survival in Challenged Mice. Front Immunol 2017; 8:730. [PMID: 28706518 PMCID: PMC5489627 DOI: 10.3389/fimmu.2017.00730] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/09/2017] [Indexed: 01/10/2023] Open
Abstract
Toxoplasmosis remains a world-threatening disease largely because of the lack of a fully effective vaccine. Here, we created a ΔGRA17 mutant by disrupting the virulence factor GRA17 using CRISPR-Cas9 method. Then, we tested whether ΔGRA17 tachyzoites can be used as a live-attenuated vaccine against acute, chronic, and congenital Toxoplasma gondii infection in mice. Immune response evoked by ΔGRA17 immunization suggested a sequential Th1 and Th2 T cell response, indicated by high levels of Th1 and a mixed Th1/Th2 cytokines at 28 and 70 days after immunization, respectively. ΔGRA17-mediated immunity fully protected mice against lethal infection with wild-type (wt) RH strain, heterologous challenge with PYS, and TgC7 strains of the Chinese ToxoDB#9 genotype, and T. gondii Pru strain. Although parasite cysts were detected in 8 out of 10 immunized mice, cyst burden in the brain was significantly reduced (P < 0.05) in immunized mice (53 ± 15 cysts/brain) compared to non-immunized mice (4,296 ± 687 cysts/brain). In respect to congenital infection, the litter size, survival rate, and body weight (BW) of pups born to ΔGRA17-immunized dams were not different compared to pups born to naïve control dams (P = 0.24). However, a marked reduction in the litter size (P < 0.001), survival rate, and BW (P < 0.01) of pups born to non-immunized and infected dams was detected. Also, immunized dams infected with type II Pru strain had significantly (P < 0.001) less cyst burden in the brain compared with non-immunized and infected dams. These findings show that immunization with ΔGRA17 strain evokes cell-mediated and neutralizing antibody responses and confers some degree of protection against challenge with homologous and heterologous virulent T. gondii strains.
Collapse
Affiliation(s)
- Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Wei-Ning Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Kai Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ting-Ting Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dong-Mei Yue
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiao-Xuan Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Si-Yang Huang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
33
|
Liu Y, Cao A, Li Y, Li X, Cong H, He S, Zhou H. Immunization with a DNA vaccine encoding Toxoplasma gondii Superoxide dismutase (TgSOD) induces partial immune protection against acute toxoplasmosis in BALB/c mice. BMC Infect Dis 2017; 17:403. [PMID: 28592247 PMCID: PMC5463464 DOI: 10.1186/s12879-017-2507-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/30/2017] [Indexed: 11/21/2022] Open
Abstract
Background Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that infects all warm-blooded animals including humans and causes toxoplasmosis. An effective vaccine could be an ideal choice for preventing and controlling toxoplasmosis. T. gondii Superoxide dismutase (TgSOD) might participate in affecting the intracellular growth of both bradyzoite and tachyzoite forms. In the present study, the TgSOD gene was used to construct a DNA vaccine (pEGFP-SOD). Methods TgSOD gene was amplified and inserted into eukaryotic vector pEGFP-C1 and formed the DNA vaccine pEGFP-SOD. Then the BALB/c mice were immunized intramuscularly with the DNA vaccine and those injected with pEGFP-C1, PBS or nothing were treated as controls. Four weeks after the last immunization, all mouse groups followed by challenging intraperitoneally with tachyzoites of T. gondii ME49 strain. Results Results showed higher levels of total IgG, IgG2α in the sera and interferon gamma (IFN-γ) in the splenocytes from pEGFP-SOD inoculated mice than those unvaccinated, or inoculated with either empty plasmid vector or PBS. The proportions of CD4+ T cells and CD8+ T cells in the spleen from pEGFP-SOD inoculated mice were significantly (p < 0.05) increased compared to control groups. In addition, the survival time of mice immunized with pEGFP-SOD was significantly prolonged as compared to the controls (p < 0.05) although all the mice died. Conclusion The present study revealed that the DNA vaccine triggered strong humoral and cellular immune responses, and aroused partial protective immunity against acute T. gondii infection in BALB/c mice. The collective data suggests the SOD may be a potential vaccine candidate for further development.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Parasitology, School of Medicine, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Aiping Cao
- Department of Parasitology, School of Medicine, Shandong University, Jinan, Shandong Province, People's Republic of China.,Present address Department of Clinical Laboratory, The People's Hospital of Rizhao, Rizhao, Shandong Province, People's Republic of China
| | - Yawen Li
- Department of Parasitology, School of Medicine, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Xun Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Hua Cong
- Department of Parasitology, School of Medicine, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Shenyi He
- Department of Parasitology, School of Medicine, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Huaiyu Zhou
- Department of Parasitology, School of Medicine, Shandong University, Jinan, Shandong Province, People's Republic of China.
| |
Collapse
|
34
|
Enhancing immune responses to a DNA vaccine encoding Toxoplasma gondii GRA14 by calcium phosphate nanoparticles as an adjuvant. Immunol Lett 2017; 185:40-47. [DOI: 10.1016/j.imlet.2017.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/22/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
|
35
|
Ahmadpour E, Sarvi S, Hashemi Soteh MB, Sharif M, Rahimi MT, Valadan R, Tehrani M, Khalilian A, Montazeri M, Daryani A. Evaluation of the immune response in BALB/c mice induced by a novel DNA vaccine expressing GRA14 againstToxoplasma gondii. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12419] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/20/2017] [Indexed: 12/13/2022]
Affiliation(s)
- E. Ahmadpour
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - S. Sarvi
- Toxoplasmosis Research Center; Mazandaran University of Medical Sciences; Sari Iran
| | - M. B. Hashemi Soteh
- Molecular and Cell Biology Research Center; Mazandaran University of Medical Sciences; Sari Iran
| | - M. Sharif
- Toxoplasmosis Research Center; Mazandaran University of Medical Sciences; Sari Iran
| | - M. T. Rahimi
- School of Medicine; Shahroud University of Medical Sciences; Shahroud Iran
| | - R. Valadan
- Molecular and Cell Biology Research Center; Mazandaran University of Medical Sciences; Sari Iran
| | - M. Tehrani
- Molecular and Cell Biology Research Center; Mazandaran University of Medical Sciences; Sari Iran
| | - A. Khalilian
- Biostatistics Department; Mazandaran University of Medical Sciences; Sari Iran
| | - M. Montazeri
- Toxoplasmosis Research Center; Mazandaran University of Medical Sciences; Sari Iran
| | - A. Daryani
- Toxoplasmosis Research Center; Mazandaran University of Medical Sciences; Sari Iran
| |
Collapse
|
36
|
Palmieri N, Shrestha A, Ruttkowski B, Beck T, Vogl C, Tomley F, Blake DP, Joachim A. The genome of the protozoan parasite Cystoisospora suis and a reverse vaccinology approach to identify vaccine candidates. Int J Parasitol 2017; 47:189-202. [PMID: 28161402 PMCID: PMC5354109 DOI: 10.1016/j.ijpara.2016.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 12/16/2022]
Abstract
Vaccine development targeting protozoan parasites remains challenging, partly due to the complex interactions between these eukaryotes and the host immune system. Reverse vaccinology is a promising approach for direct screening of genome sequence assemblies for new vaccine candidate proteins. Here, we applied this paradigm to Cystoisospora suis, an apicomplexan parasite that causes enteritis and diarrhea in suckling piglets and economic losses in pig production worldwide. Using Next Generation Sequencing we produced an ∼84Mb sequence assembly for the C. suis genome, making it the first available reference for the genus Cystoisospora. Then, we derived a manually curated annotation of more than 11,000 protein-coding genes and applied the tool Vacceed to identify 1,168 vaccine candidates by screening the predicted C. suis proteome. To refine the set of candidates, we looked at proteins that are highly expressed in merozoites and specific to apicomplexans. The stringent set of candidates included 220 proteins, among which were 152 proteins with unknown function, 17 surface antigens of the SAG and SRS gene families, 12 proteins of the apicomplexan-specific secretory organelles including AMA1, MIC6, MIC13, ROP6, ROP12, ROP27, ROP32 and three proteins related to cell adhesion. Finally, we demonstrated in vitro the immunogenic potential of a C. suis-specific 42kDa transmembrane protein, which might constitute an attractive candidate for further testing.
Collapse
Affiliation(s)
- Nicola Palmieri
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria.
| | - Aruna Shrestha
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Bärbel Ruttkowski
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Tomas Beck
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Fiona Tomley
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, Hawkshead Lane, North Mymms AL9 7TA, UK
| | - Damer P Blake
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, Hawkshead Lane, North Mymms AL9 7TA, UK
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| |
Collapse
|
37
|
Continual renewal and replication of persistent Leishmania major parasites in concomitantly immune hosts. Proc Natl Acad Sci U S A 2017; 114:E801-E810. [PMID: 28096392 DOI: 10.1073/pnas.1619265114] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In most natural infections or after recovery, small numbers of Leishmania parasites remain indefinitely in the host. Persistent parasites play a vital role in protective immunity against disease pathology upon reinfection through the process of concomitant immunity, as well as in transmission and reactivation, yet are poorly understood. A key question is whether persistent parasites undergo replication, and we devised several approaches to probe the small numbers in persistent infections. We find two populations of persistent Leishmania major: one rapidly replicating, similar to parasites in acute infections, and another showing little evidence of replication. Persistent Leishmania were not found in "safe" immunoprivileged cell types, instead residing in macrophages and DCs, ∼60% of which expressed inducible nitric oxide synthase (iNOS). Remarkably, parasites within iNOS+ cells showed normal morphology and genome integrity and labeled comparably with BrdU to parasites within iNOS- cells, suggesting that these parasites may be unexpectedly resistant to NO. Nonetheless, because persistent parasite numbers remain roughly constant over time, their replication implies that ongoing destruction likewise occurs. Similar results were obtained with the attenuated lpg2- mutant, a convenient model that rapidly enters a persistent state without inducing pathology due to loss of the Golgi GDP mannose transporter. These data shed light on Leishmania persistence and concomitant immunity, suggesting a model wherein a parasite reservoir repopulates itself indefinitely, whereas some progeny are terminated in antigen-presenting cells, thereby stimulating immunity. This model may be relevant to understanding immunity to other persistent pathogen infections.
Collapse
|
38
|
Zhuo X, Sun H, Wang S, Guo X, Ding H, Yang Y, Shan Y, Du A. Ginseng Stem-and-Leaf Saponin (GSLS)-Enhanced Protective Immune Responses Induced by Toxoplasma gondii Heat Shocked Protein 70 (HSP70) Against Toxoplasmosis in Mice. J Parasitol 2016; 103:111-117. [PMID: 27828760 DOI: 10.1645/16-54] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite and is able to infect birds and mammals including humans. In order to find effective antigen-adjuvant combinations that can boost the immunogenicity and protection of antigen vaccines against toxoplasmosis, we examined the protective efficacy in mice immunized with recombinant protein HSP70 when co-administered with ginseng stem-and-leaf saponins (GSLS) isolated from Panax ginseng . All immunized mice produced significantly high levels of specific antibodies against rTgHSP70, and splenocytes from mice presented strong proliferative immune responses. Vaccinated mice displayed a significantly increased percentage of CD4+ and CD8+ T cells, indicating a strong immune response was triggered. The cellular and humoral immune responses were enhanced, which could be reflected of the increased mRNA levels of IFN-γ and IL-4, respectively. Immunization with rTgHSP70 and GSLS prolonged survival time of the treated mice compared to the controls, which died within 6 days after challenge with the virulent T. gondii RH strain. Our data demonstrate that by addition with GSLS, rTgHSP70 induced a strong immune response and provided partial protection against T. gondii ; therefore GSLS could be used as a promising vaccine adjuvant against acute toxoplasmosis.
Collapse
Affiliation(s)
- Xunhui Zhuo
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongchao Sun
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Suhua Wang
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaolu Guo
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haojie Ding
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Yang
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Shan
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Aifang Du
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
39
|
Nabi H, Rashid I, Ahmad N, Durrani A, Akbar H, Islam S, Bajwa AA, Shehzad W, Ashraf K, Imran N. Induction of specific humoral immune response in mice immunized with ROP18 nanospheres from Toxoplasma gondii. Parasitol Res 2016; 116:359-370. [DOI: 10.1007/s00436-016-5298-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/13/2016] [Indexed: 01/05/2023]
|
40
|
Rashid I, Moiré N, Héraut B, Dimier-Poisson I, Mévélec MN. Enhancement of the protective efficacy of a ROP18 vaccine against chronic toxoplasmosis by nasal route. Med Microbiol Immunol 2016; 206:53-62. [PMID: 27757545 DOI: 10.1007/s00430-016-0483-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
Infection with the parasite Toxoplasma gondii causes serious public health problems and is of great economic importance worldwide. No vaccine is currently available, so the design of efficient vaccine strategies is still a topical question. In this study, we evaluated the immunoprophylactic potential of a T. gondii virulence factor, the rhoptry kinase ROP18, in a mouse model of chronic toxoplasmosis: first using a recombinant protein produced in Schneider insect cells adjuvanted with poly I:C emulsified in Montanide SV71 by a parenteral route or adjuvanted with cholera toxin by the nasal route and second using a DNA plasmid encoding ROP18 adjuvanted with GM-CSF ± IL-12 DNA. If both intranasal and subcutaneous recombinant ROP18 immunizations induced predominantly anti-ROP18 IgG1 antibodies and generated a mixed systemic Th1-/Th2-type cellular immune response characterized by the production of IFN-γ, IL-2, Il-10 and IL-5, only intranasal vaccination induced a mucosal (IgA) humoral response in intestinal washes associated with a significant brain cyst reduction (50 %) after oral challenge with T. gondii cysts. DNA immunization induced antibodies and redirected the cellular immune response toward a Th1-type response (production of IFN-γ and IL-2) but did not confer protection. These results suggest that ROP18 could be a component of a subunit vaccine against toxoplasmosis and that strategies designed to enhance mucosal protective immune responses could lead to more encouraging results.
Collapse
Affiliation(s)
- Imran Rashid
- ISP, INRA, Université de Tours, UMR 1282, 37380, Nouzilly, France
| | - Nathalie Moiré
- ISP, INRA, Université de Tours, UMR 1282, 37380, Nouzilly, France
| | - Bruno Héraut
- ISP, INRA, Université de Tours, UMR 1282, 37380, Nouzilly, France
| | | | | |
Collapse
|
41
|
In silico analysis and recombinant expression of BamA protein as a universal vaccine against Escherichia coli in mice. Appl Microbiol Biotechnol 2016; 100:5089-98. [DOI: 10.1007/s00253-016-7467-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 02/05/2023]
|
42
|
Wang HL, Wen LM, Pei YJ, Wang F, Yin LT, Bai JZ, Guo R, Wang CF, Yin GR. Recombinant Toxoplasma gondii phosphoglycerate mutase 2 confers protective immunity against toxoplasmosis in BALB/c mice. ACTA ACUST UNITED AC 2016; 23:12. [PMID: 26984115 PMCID: PMC4794628 DOI: 10.1051/parasite/2016012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/05/2016] [Indexed: 11/21/2022]
Abstract
Toxoplasmosis is one of the most widespread zoonoses worldwide. It has a high incidence and can result in severe disease in humans and livestock. Effective vaccines are needed to limit and prevent infection with Toxoplasma gondii. In this study, we evaluated the immuno-protective efficacy of a recombinant Toxoplasma gondii phosphoglycerate mutase 2 (rTgPGAM 2) against T. gondii infection in BALB/c mice. We report that the mice nasally immunised with rTgPGAM 2 displayed significantly higher levels of special IgG antibodies against rTgPGAM 2 (including IgG1, IgG2a and IgAs) and cytokines (including IFN-γ, IL-2 and IL-4) in their blood sera and supernatant of cultured spleen cells compared to those of control animals. In addition, an increased number of spleen lymphocytes and enhanced lymphocyte proliferative responses were observed in the rTgPGAM 2-immunised mice. After chronic infection and lethal challenge with the highly virulent T. gondii RH strain by oral gavage, the survival time of the rTgPGAM 2-immunised mice was longer (P < 0.01) and the survival rate (70%) was higher compared with the control mice (P < 0.01). The reduction rate of brain and liver tachyzoites in rTgPGAM 2-vaccinated mice reached approximately 57% and 69% compared with those of the control mice (P < 0.01). These results suggest that rTgPGAM 2 can generate protective immunity against T. gondii infection in BALB/c mice and may be a promising antigen in the further development of an effective vaccine against T. gondii infection.
Collapse
Affiliation(s)
- Hai-Long Wang
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Li-Min Wen
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yan-Jiang Pei
- Department of General Surgery, Xi'an Red Cross Hospital, Xi'an, Shanxi 710000, PR China
| | - Fen Wang
- Department of Infection Control, The Central Hospital of Enshi Prefecture, Enshi, Hubei 445000, PR China
| | - Li-Tian Yin
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Ji-Zhong Bai
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92-019, Auckland 1142, New Zealand
| | - Rui Guo
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Chun-Fang Wang
- Laboratory Animal Center, Shanxi Medical University; Shanxi Key Laboratory of Laboratory Animals and Animal Models of Human Diseases, Taiyuan, Shanxi 030001, PR China
| | - Guo-Rong Yin
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| |
Collapse
|
43
|
Zorgi NE, Galisteo AJ, Sato MN, do Nascimento N, de Andrade HF. Immunity in the spleen and blood of mice immunized with irradiated Toxoplasma gondii tachyzoites. Med Microbiol Immunol 2016; 205:297-314. [PMID: 26732075 DOI: 10.1007/s00430-015-0447-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/21/2015] [Indexed: 01/14/2023]
Abstract
Toxoplasma gondii infection induces a strong and long-lasting immune response that is able to prevent most reinfections but allows tissue cysts. Irradiated, sterilized T. gondii tachyzoites are an interesting vaccine, and they induce immunity that is similar to infection, but without cysts. In this study, we evaluated the cellular immune response in the blood and spleen of mice immunized with this preparation by mouth (v.o.) or intraperitoneally (i.p.) and analyzed the protection after challenge with viable parasites. BALB/c mice were immunized with three i.p. or v.o. doses of irradiated T. gondii tachyzoites. Oral challenge with ten cysts of the ME-49 or VEG strain at 90 days after the last dose resulted in high levels of protection with low parasite burden in the immunized animals. There were higher levels of specific IgG, IgA and IgM antibodies in the serum, and the i.p. immunized mice had higher levels of the high-affinity IgG and IgM antibodies than the orally immunized mice, which had more high-affinity IgA antibodies. B cells (CD19(+)), plasma cells (CD138(+)) and the CD4(+) and CD8(+) T cell populations were increased in both the blood and spleen. Cells from the spleen of the i.p. immunized mice also showed antigen-induced production of interleukin-10 (IL-10), interferon gamma (IFN-γ) and interleukin 4 (IL-4). The CD4(+) T cells, B cells and likely CD8(+) T cells from the spleens of the i.p. immunized mice proliferated with a specific antigen. The protection was correlated with the spleen and blood CD8(+) T cell, high-affinity IgG and IgM and antigen-induced IL-10 and IL-4 production. Immunization with irradiated T. gondii tachyzoites induces an immune response that is mediated by B cells and CD4(+) and CD8(+) T cells, with increased humoral and cellular immune responses that are necessary for host protection after infection. The vaccine is similar to natural infection, but free of tissue cysts; this immunity restrains infection at challenge and can be an attractive and efficient model for vaccine development in toxoplasmosis.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Protozoan/blood
- B-Lymphocytes/immunology
- Blood/immunology
- Cell Proliferation
- Cytokines/metabolism
- Disease Models, Animal
- Immunity, Cellular
- Immunity, Humoral
- Immunoglobulin A/blood
- Immunoglobulin G/blood
- Immunoglobulin M/blood
- Injections, Intraperitoneal
- Male
- Mice, Inbred BALB C
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/immunology
- Spleen/immunology
- T-Lymphocyte Subsets/immunology
- Toxoplasma/immunology
- Toxoplasmosis, Animal/prevention & control
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Nahiara Esteves Zorgi
- Departamento de Parasitologia, Instituto de Ciências Biomédica, USP, Av. Prof. Lineu Prestes, 1374, Edifício Biomédicas II Cidade Universitária, São Paulo, SP, CEP: 05508-000, Brazil
- Laboratório de Protozoologia, Instituto de Medicina Tropical de São Paulo, FMUSP, USP, Av. Dr. Enéas de Carvalho Aguiar, 470, 1° Andar, São Paulo, SP, CEP: 05403-000, Brazil
| | - Andrés Jimenez Galisteo
- Laboratório de Protozoologia, Instituto de Medicina Tropical de São Paulo, FMUSP, USP, Av. Dr. Enéas de Carvalho Aguiar, 470, 1° Andar, São Paulo, SP, CEP: 05403-000, Brazil
| | - Maria Notomi Sato
- Departamento de Dermatologia, Instituto de Medicina Tropical de São Paulo, FMUSP, USP, Av. Dr. Enéas de Carvalho Aguiar, 470, 3° Andar, São Paulo, SP, CEP: 05403-000, Brazil
| | - Nanci do Nascimento
- Laboratório de Biologia Molecular, Instituto de Pesquisas Energéticas e Nucleares, IPEN, Rua Travessa 400, Cidade Universitária, São Paulo, SP, CEP: 05508-900, Brazil
| | - Heitor Franco de Andrade
- Departamento de Parasitologia, Instituto de Ciências Biomédica, USP, Av. Prof. Lineu Prestes, 1374, Edifício Biomédicas II Cidade Universitária, São Paulo, SP, CEP: 05508-000, Brazil.
- Laboratório de Protozoologia, Instituto de Medicina Tropical de São Paulo, FMUSP, USP, Av. Dr. Enéas de Carvalho Aguiar, 470, 1° Andar, São Paulo, SP, CEP: 05403-000, Brazil.
- Department of Pathology, Faculty of Medicine, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
44
|
Zhang NZ, Wang M, Xu Y, Petersen E, Zhu XQ. Recent advances in developing vaccines against Toxoplasma gondii: an update. Expert Rev Vaccines 2015; 14:1609-21. [PMID: 26467840 DOI: 10.1586/14760584.2015.1098539] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Toxoplasma gondii, a significant public health risk, is able to infect almost all warm-blooded animals including humans, and it results in economic losses in production animals. In the last three years, a large number of vaccination experiments have been performed to control T. gondii infection, with the target of limiting the acute infection and reducing or eliminating tissue cysts in the intermediate hosts. In this paper, we summarize the latest results of the veterinary vaccines against T. gondii infection since 2013. Immunization with live-attenuated whole organisms of non-reverting mutants has been shown to induce remarkably potent immune responses associated with control of acute and chronic toxoplasmosis. The non-cyst-forming mutants are promising new tools for the development of veterinary vaccines against T. gondii infection.
Collapse
Affiliation(s)
- Nian-Zhang Zhang
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China
| | - Meng Wang
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China
| | - Ying Xu
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China.,b Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine , China Agricultural University , Beijing , PR China
| | - Eskild Petersen
- c Department of Infectious Diseases, Clinical Institute, Faculty of Health Sciences , Aarhus University , Aarhus , Denmark
| | - Xing-Quan Zhu
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China
| |
Collapse
|
45
|
Grzybowski MM, Dziadek B, Gatkowska JM, Dzitko K, Długońska H. Towards vaccine against toxoplasmosis: evaluation of the immunogenic and protective activity of recombinant ROP5 and ROP18 Toxoplasma gondii proteins. Parasitol Res 2015; 114:4553-63. [PMID: 26337271 DOI: 10.1007/s00436-015-4701-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 08/24/2015] [Indexed: 02/01/2023]
Abstract
Toxoplasmosis is one of the most common parasitic infections worldwide. An effective vaccine against human and animal toxoplasmosis is still needed to control this parasitosis. The polymorphic rhoptry proteins, ROP5 and ROP18, secreted by Toxoplasma gondii during the invasion of the host cell have been recently considered as promising vaccine antigens, as they appear to be the major determinants of T. gondii virulence in mice. The goal of this study was to evaluate their immunogenic and immunoprotective activity after their administration (separately or both recombinant proteins together) with the poly I:C as an adjuvant. Immunization of BALB/c and C3H/HeOuJ mice generated both cellular and humoral specific immune responses with some predominance of IgG1 antibodies. The spleen cells derived from vaccinated animals reacted to the parasite's native antigens. Furthermore, the immunization led to a partial protection against acute and chronic toxoplasmosis. These findings confirm the previous assumptions about ROP5 and ROP18 antigens as valuable components of a subunit vaccine against toxoplasmosis.
Collapse
Affiliation(s)
- Marcin M Grzybowski
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland.
| | - Bożena Dziadek
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Justyna M Gatkowska
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Katarzyna Dzitko
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Henryka Długońska
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
46
|
ApiCOWplexa 2013 – 2nd International Meeting on Apicomplexan Parasites in Farm Animals. Parasitology 2014; 141:1355-8. [DOI: 10.1017/s0031182014001164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|