1
|
Anderson DC, Peterson MS, Lapp SA, Galinski MR. Proteomes of plasmodium knowlesi early and late ring-stage parasites and infected host erythrocytes. J Proteomics 2024; 302:105197. [PMID: 38759952 PMCID: PMC11357705 DOI: 10.1016/j.jprot.2024.105197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The emerging malaria parasite Plasmodium knowlesi threatens the goal of worldwide malaria elimination due to its zoonotic spread in Southeast Asia. After brief ex-vivo culture we used 2D LC/MS/MS to examine the early and late ring stages of infected Macaca mulatta red blood cells harboring P. knowlesi. The M. mulatta clathrin heavy chain and T-cell and macrophage inhibitor ERMAP were overexpressed in the early ring stage; glutaredoxin 3 was overexpressed in the late ring stage; GO term differential enrichments included response to oxidative stress and the cortical cytoskeleton in the early ring stage. P. knowlesi clathrin heavy chain and 60S acidic ribosomal protein P2 were overexpressed in the late ring stage; GO term differential enrichments included vacuoles in the early ring stage, ribosomes and translation in the late ring stage, and Golgi- and COPI-coated vesicles, proteasomes, nucleosomes, vacuoles, ion-, peptide-, protein-, nucleocytoplasmic- and RNA-transport, antioxidant activity and glycolysis in both stages. SIGNIFICANCE: Due to its zoonotic spread, cases of the emerging human pathogen Plasmodium knowlesi in southeast Asia, and particularly in Malaysia, threaten regional and worldwide goals for malaria elimination. Infection by this parasite can be fatal to humans, and can be associated with significant morbidity. Due to zoonotic transmission from large macaque reservoirs that are untreatable by drugs, and outdoor biting mosquito vectors that negate use of preventive measures such as bed nets, its containment remains a challenge. Its biology remains incompletely understood. Thus we examine the expressed proteome of the early and late ex-vivo cultured ring stages, the first intraerythrocyte developmental stages after infection of host rhesus macaque erythrocytes. We used GO term enrichment strategies and differential protein expression to compare early and late ring stages. The early ring stage is characterized by the enrichment of P. knowlesi vacuoles, and overexpression of the M. mulatta clathrin heavy chain, important for clathrin-coated pits and vesicles, and clathrin-mediated endocytosis. The M. mulatta protein ERMAP was also overexpressed in the early ring stage, suggesting a potential role in early ring stage inhibition of T-cells and macrophages responding to P. knowlesi infection of reticulocytes. This could allow expansion of the host P. knowlesi cellular niche, allowing parasite adaptation to invasion of a wider age range of RBCs than the preferred young RBCs or reticulocytes, resulting in proliferation and increased pathogenesis in infected humans. Other GO terms differentially enriched in the early ring stage include the M. mulatta cortical cytoskeleton and response to oxidative stress. The late ring stage is characterized by overexpression of the P. knowlesi clathrin heavy chain. Combined with late ring stage GO term enrichment of Golgi-associated and coated vesicles, and enrichment of COPI-coated vesicles in both stages, this suggests the importance to P. knowlesi biology of clathrin-mediated endocytosis. P. knowlesi ribosomes and translation were also differentially enriched in the late ring stage. With expression of a variety of heat shock proteins, these results suggest production of folded parasite proteins is increasing by the late ring stage. M. mulatta endocytosis was differentially enriched in the late ring stage, as were clathrin-coated vesicles and endocytic vesicles. This suggests that M. mulatta clathrin-based endocytosis, perhaps in infected reticulocytes rather than mature RBC, may be an important process in the late ring stage. Additional ring stage biology from enriched GO terms includes M. mulatta proteasomes, protein folding and the chaperonin-containing T complex, actin and cortical actin cytoskeletons. P knowlesi biology also includes proteasomes, as well as nucleosomes, antioxidant activity, a variety of transport processes, glycolysis, vacuoles and protein folding. Mature RBCs have lost internal organelles, suggesting infection here may involve immature reticulocytes still retaining organelles. P. knowlesi parasite proteasomes and translational machinery may be ring stage drug targets for known selective inhibitors of these processes in other Plasmodium species. To our knowledge this is the first examination of more than one timepoint within the ring stage. Our results expand knowledge of both host and parasite proteins, pathways and organelles underlying P. knowlesi ring stage biology.
Collapse
Affiliation(s)
- D C Anderson
- Biosciences Division, SRI International, Harrisonburg, VA 22802, USA.
| | - Mariko S Peterson
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Stacey A Lapp
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Mary R Galinski
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Johnson E, Sunil Kumar Sharma R, Ruiz Cuenca P, Byrne I, Salgado-Lynn M, Suraya Shahar Z, Col Lin L, Zulkifli N, Dilaila Mohd Saidi N, Drakeley C, Matthiopoulos J, Nelli L, Fornace K. Landscape drives zoonotic malaria prevalence in non-human primates. eLife 2024; 12:RP88616. [PMID: 38753426 PMCID: PMC11098556 DOI: 10.7554/elife.88616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Zoonotic disease dynamics in wildlife hosts are rarely quantified at macroecological scales due to the lack of systematic surveys. Non-human primates (NHPs) host Plasmodium knowlesi, a zoonotic malaria of public health concern and the main barrier to malaria elimination in Southeast Asia. Understanding of regional P. knowlesi infection dynamics in wildlife is limited. Here, we systematically assemble reports of NHP P. knowlesi and investigate geographic determinants of prevalence in reservoir species. Meta-analysis of 6322 NHPs from 148 sites reveals that prevalence is heterogeneous across Southeast Asia, with low overall prevalence and high estimates for Malaysian Borneo. We find that regions exhibiting higher prevalence in NHPs overlap with human infection hotspots. In wildlife and humans, parasite transmission is linked to land conversion and fragmentation. By assembling remote sensing data and fitting statistical models to prevalence at multiple spatial scales, we identify novel relationships between P. knowlesi in NHPs and forest fragmentation. This suggests that higher prevalence may be contingent on habitat complexity, which would begin to explain observed geographic variation in parasite burden. These findings address critical gaps in understanding regional P. knowlesi epidemiology and indicate that prevalence in simian reservoirs may be a key spatial driver of human spillover risk.
Collapse
Affiliation(s)
- Emilia Johnson
- School of Biodiversity, One Health and Veterinary Medicine, University of GlasgowGlasgowUnited Kingdom
- Department of Disease Control, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| | | | - Pablo Ruiz Cuenca
- Department of Disease Control, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
- Lancaster University, BailriggLancasterUnited Kingdom
- Liverpool School of Tropical Medicine, Pembroke Place LiverpoolLiverpoolUnited Kingdom
| | - Isabel Byrne
- Department of Disease Control, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| | - Milena Salgado-Lynn
- School of Biosciences, Cardiff UniversityCardiffUnited Kingdom
- Wildlife Health, Genetic and Forensic Laboratory, Sabah Wildlife Department, Wisma MuisKota KinabaluMalaysia
- Danau Girang Field Centre, Sabah Wildlife DepartmentKinabalu SabahMalaysia
| | | | - Lee Col Lin
- Faculty of Veterinary Medicine, Universiti Putra MalaysiaSelangorMalaysia
| | - Norhadila Zulkifli
- Faculty of Veterinary Medicine, Universiti Putra MalaysiaSelangorMalaysia
| | | | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| | - Jason Matthiopoulos
- School of Biodiversity, One Health and Veterinary Medicine, University of GlasgowGlasgowUnited Kingdom
| | - Luca Nelli
- School of Biodiversity, One Health and Veterinary Medicine, University of GlasgowGlasgowUnited Kingdom
| | - Kimberly Fornace
- School of Biodiversity, One Health and Veterinary Medicine, University of GlasgowGlasgowUnited Kingdom
- Department of Disease Control, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
- Saw Swee Hock School of Public Health, National University of SingaporeSingaporeSingapore
| |
Collapse
|
3
|
Tobin RJ, Harrison LE, Tully MK, Lubis IND, Noviyanti R, Anstey NM, Rajahram GS, Grigg MJ, Flegg JA, Price DJ, Shearer FM. Updating estimates of Plasmodium knowlesi malaria risk in response to changing land use patterns across Southeast Asia. PLoS Negl Trop Dis 2024; 18:e0011570. [PMID: 38252650 PMCID: PMC10833542 DOI: 10.1371/journal.pntd.0011570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/01/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Plasmodium knowlesi is a zoonotic parasite that causes malaria in humans. The pathogen has a natural host reservoir in certain macaque species and is transmitted to humans via mosquitoes of the Anopheles Leucosphyrus Group. The risk of human P. knowlesi infection varies across Southeast Asia and is dependent upon environmental factors. Understanding this geographic variation in risk is important both for enabling appropriate diagnosis and treatment of the disease and for improving the planning and evaluation of malaria elimination. However, the data available on P. knowlesi occurrence are biased towards regions with greater surveillance and sampling effort. Predicting the spatial variation in risk of P. knowlesi malaria requires methods that can both incorporate environmental risk factors and account for spatial bias in detection. METHODS & RESULTS We extend and apply an environmental niche modelling framework as implemented by a previous mapping study of P. knowlesi transmission risk which included data up to 2015. We reviewed the literature from October 2015 through to March 2020 and identified 264 new records of P. knowlesi, with a total of 524 occurrences included in the current study following consolidation with the 2015 study. The modelling framework used in the 2015 study was extended, with changes including the addition of new covariates to capture the effect of deforestation and urbanisation on P. knowlesi transmission. DISCUSSION Our map of P. knowlesi relative transmission suitability estimates that the risk posed by the pathogen is highest in Malaysia and Indonesia, with localised areas of high risk also predicted in the Greater Mekong Subregion, The Philippines and Northeast India. These results highlight areas of priority for P. knowlesi surveillance and prospective sampling to address the challenge the disease poses to malaria elimination planning.
Collapse
Affiliation(s)
- Ruarai J. Tobin
- Infectious Disease Dynamics Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Lucinda E. Harrison
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - Meg K. Tully
- Infectious Disease Dynamics Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Inke N. D. Lubis
- Department of Paediatrics, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Rintis Noviyanti
- Eijkman Research Center for Molecular Biology, BRIN, Jakarta, Indonesia
| | - Nicholas M. Anstey
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Giri S. Rajahram
- Infectious Diseases Society Kota Kinabalu Sabah, Menzies School of Health Research, Clinical Research Unit, Hospital Queen Elizabeth II, and Clinical Research Centre, Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Malaysia
| | - Matthew J. Grigg
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Jennifer A. Flegg
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - David J. Price
- Infectious Disease Dynamics Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and The University of Melbourne, Melbourne, Australia
| | - Freya M. Shearer
- Infectious Disease Dynamics Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Infectious Disease Ecology and Modelling Group, Telethon Kids Institute, Perth, Australia
| |
Collapse
|
4
|
Naserrudin NA, Lin PYP, Monroe A, Baumann SE, Adhikari B, Miller AC, Sato S, Fornace KM, Culleton R, Cheah PY, Hod R, Jeffree MS, Ahmed K, Hassan MR. Disentangling the intersection of inequities with health and malaria exposure: key lessons from rural communities in Northern Borneo. Malar J 2023; 22:343. [PMID: 37946259 PMCID: PMC10636872 DOI: 10.1186/s12936-023-04750-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The increasing incidence of Plasmodium knowlesi malaria poses a significant challenge to efforts to eliminate malaria from Malaysia. Macaque reservoirs, outdoors-biting mosquitoes, human activities, and agricultural work are key factors associated with the transmission of this zoonotic pathogen. However, gaps in knowledge regarding reasons that drive malaria persistence in rural Kudat, Sabah, Northern Borneo remain. This study was conducted to address this knowledge gap, to better understand the complexities of these entangled problems, and to initiate discussion regarding new countermeasures to address them. This study aims to highlight rural community members' perspectives regarding inequities to health relating to P. knowlesi malaria exposure. METHODS From January to October 2022, a study using qualitative methods was conducted in four rural villages in Kudat district of Sabah, Malaysia. A total of nine in-depth interviews were conducted with community and faith leaders, after the completion of twelve focus group discussions with 26 photovoice participants. The interviews were conducted using the Sabah Malay dialect, audio-recorded, transcribed, and translated into English. The research team led the discussion and analysis, which was approved by participants through member checking at the community level. RESULTS Participants identified disparity in health as a key issue affecting their health and livelihoods. Injustice in the social environment was also identified as a significant challenge, including the importance of listening to the voices of affected communities in disentangling the social and economic phenomena that can impact malaria control. Specific concerns included inadequate access to health-related resources and degradation of the environment. Participants recommended improving access to water and other necessities, increasing the availability of malaria control commodities in healthcare facilities, and developing sustainable programs to reduce socioeconomic disparities. CONCLUSION Inequities to health emerged as a key concern for malaria control in rural Kudat, Sabah. A locally targeted malaria programme cantered on improving the social and economic disparities associated with health outcomes, could be a potential strategy for malaria prevention in such areas. Community-level perspectives gathered from this study can be used as a foundation for future discussions and dialogues among policymakers and community members for achieving greater transparency, improving social equity, and interoperability in addressing P. knowlesi malaria control.
Collapse
Affiliation(s)
- Nurul Athirah Naserrudin
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
- Sabah State Health Department, Ministry of Health, 88590, Kota Kinabalu, Malaysia
| | - Pauline Yong Pau Lin
- Faculty of Social Sciences and Humanities, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Malaysia
| | - April Monroe
- Johns Hopkins Center for Communication Programs, Baltimore, MD, USA
| | - Sara Elizabeth Baumann
- Department of Behavioral and Community Health Sciences, University of Pittsburgh School of Public Health, Pittsburgh, PA, 15261, USA
| | - Bipin Adhikari
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Shigeharu Sato
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Malaysia
| | - Kimberly M Fornace
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Richard Culleton
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Phaik Yeong Cheah
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- The Ethox Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Rozita Hod
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Mohammad Saffree Jeffree
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
- Department of Public Health Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Malaysia
| | - Kamruddin Ahmed
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Malaysia
| | - Mohd Rohaizat Hassan
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia.
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
5
|
Tobin RJ, Harrison LE, Tully MK, Lubis IND, Noviyanti R, Anstey NM, Rajahram GS, Grigg MJ, Flegg JA, Price DJ, Shearer FM. Updating estimates of Plasmodium knowlesi malaria risk in response to changing land use patterns across Southeast Asia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.04.23293633. [PMID: 37609228 PMCID: PMC10441477 DOI: 10.1101/2023.08.04.23293633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background Plasmodium knowlesi is a zoonotic parasite that causes malaria in humans. The pathogen has a natural host reservoir in certain macaque species and is transmitted to humans via mosquitoes of the Anopheles Leucosphyrus Group. The risk of human P. knowlesi infection varies across Southeast Asia and is dependent upon environmental factors. Understanding this geographic variation in risk is important both for enabling appropriate diagnosis and treatment of the disease and for improving the planning and evaluation of malaria elimination. However, the data available on P. knowlesi occurrence are biased towards regions with greater surveillance and sampling effort. Predicting the spatial variation in risk of P. knowlesi malaria requires methods that can both incorporate environmental risk factors and account for spatial bias in detection. Methods & Results We extend and apply an environmental niche modelling framework as implemented by a previous mapping study of P. knowlesi transmission risk which included data up to 2015. We reviewed the literature from October 2015 through to March 2020 and identified 264 new records of P. knowlesi, with a total of 524 occurrences included in the current study following consolidation with the 2015 study. The modelling framework used in the 2015 study was extended, with changes including the addition of new covariates to capture the effect of deforestation and urbanisation on P. knowlesi transmission. Discussion Our map of P. knowlesi relative transmission suitability estimates that the risk posed by the pathogen is highest in Malaysia and Indonesia, with localised areas of high risk also predicted in the Greater Mekong Subregion, The Philippines and Northeast India. These results highlight areas of priority for P. knowlesi surveillance and prospective sampling to address the challenge the disease poses to malaria elimination planning.
Collapse
Affiliation(s)
- Ruarai J Tobin
- Infectious Disease Dynamics Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Lucinda E Harrison
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - Meg K Tully
- Infectious Disease Dynamics Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Inke N D Lubis
- Department of Paediatrics, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Rintis Noviyanti
- Eijkman Research Center for Molecular Biology, BRIN, Jakarta, Indonesia
| | - Nicholas M Anstey
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Giri S Rajahram
- Infectious Diseases Society Kota Kinabalu Sabah, Menzies School of Health Research Clinical Research Unit, Hospital Queen Elizabeth II, and Clinical Research Centre, Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Malaysia
| | - Matthew J Grigg
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Jennifer A Flegg
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - David J Price
- Infectious Disease Dynamics Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and The University of Melbourne, Melbourne, Australia
| | - Freya M Shearer
- Infectious Disease Dynamics Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Infectious Disease Ecology Modelling Group, Telethon Kids Institute, Perth, Australia
| |
Collapse
|
6
|
Turkiewicz A, Manko E, Oresegun DR, Nolder D, Spadar A, Sutherland CJ, Cox-Singh J, Moon RW, Lau YL, Campino S, Clark TG. Population genetic analysis of Plasmodium knowlesi reveals differential selection and exchange events between Borneo and Peninsular sub-populations. Sci Rep 2023; 13:2142. [PMID: 36750737 PMCID: PMC9905552 DOI: 10.1038/s41598-023-29368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The zoonotic Plasmodium knowlesi parasite is a growing public health concern in Southeast Asia, especially in Malaysia, where elimination of P. falciparum and P. vivax malaria has been the focus of control efforts. Understanding of the genetic diversity of P. knowlesi parasites can provide insights into its evolution, population structure, diagnostics, transmission dynamics, and the emergence of drug resistance. Previous work has revealed that P. knowlesi fall into three main sub-populations distinguished by a combination of geographical location and macaque host (Macaca fascicularis and M. nemestrina). It has been shown that Malaysian Borneo groups display profound heterogeneity with long regions of high or low divergence resulting in mosaic patterns between sub-populations, with some evidence of chromosomal-segment exchanges. However, the genetic structure of non-Borneo sub-populations is less clear. By gathering one of the largest collections of P. knowlesi whole-genome sequencing data, we studied structural genomic changes across sub-populations, with the analysis revealing differences in Borneo clusters linked to mosquito-related stages of the parasite cycle, in contrast to differences in host-related stages for the Peninsular group. Our work identifies new genetic exchange events, including introgressions between Malaysian Peninsular and M. nemestrina-associated clusters on various chromosomes, including in parasite invasion genes (DBP[Formula: see text], NBPX[Formula: see text] and NBPX[Formula: see text]), and important proteins expressed in the vertebrate parasite stages. Recombination events appear to have occurred between the Peninsular and M. fascicularis-associated groups, including in the DBP[Formula: see text] and DBP[Formula: see text] invasion associated genes. Overall, our work finds that genetic exchange events have occurred among the recognised contemporary groups of P. knowlesi parasites during their evolutionary history, leading to apparent mosaicism between these sub-populations. These findings generate new hypotheses relevant to parasite evolutionary biology and P. knowlesi epidemiology, which can inform malaria control approaches to containing the impact of zoonotic malaria on human communities.
Collapse
Affiliation(s)
- Anna Turkiewicz
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Emilia Manko
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Damiola R Oresegun
- Division of Infection, School of Medicine, University of St Andrews, St Andrews, UK
| | - Debbie Nolder
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- UK Health Security Agency Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Anton Spadar
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Colin J Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- UK Health Security Agency Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Janet Cox-Singh
- Division of Infection, School of Medicine, University of St Andrews, St Andrews, UK
| | - Robert W Moon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | | | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
7
|
Chua TH, Manin BO, Fornace K. Life table analysis of Anopheles balabacensis, the primary vector of Plasmodium knowlesi in Sabah, Malaysia. Parasit Vectors 2022; 15:442. [PMID: 36434625 PMCID: PMC9701013 DOI: 10.1186/s13071-022-05552-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Plasmodium knowlesi has become a major public health concern in Sabah, Malaysian Borneo, where it is now the only cause of indigenous malaria. The importance of P. knowlesi has spurred on a series of studies on this parasite, as well as on the biology and ecology of its principal vector, Anopheles balabacensis. However, there remain critical knowledge gaps on the biology of An. balabacensis, such as life history data and life table parameters. To fill these gaps, we conducted a life table study of An. balabacensis in the laboratory. Characterising vector life cycles and survival rates can inform more accurate estimations of the serial interval, the time between two linked cases, which is crucial to understanding and monitoring potentially changing transmission patterns. METHODS Individuals of An. balabacensis were collected in the field in Ranau district, Sabah to establish a laboratory colony. Induced mating was used, and the life history parameters of the progeny were recorded. The age-stage, two-sex life table approach was used in the analysis. The culture conditions in the laboratory were 9 h light:15 h dark, mean temperature 25.7 °C ± 0.05 and relative humidity 75.8% ± 0.31. RESULTS The eggs hatched within 2 days, and the larval stage lasted for 10.5 days in total, with duration of instar stages I, II, III and IV of 2.3, 3.7, 2.3, 2.2 days, respectively. The maximum total fecundity was 729 for one particular female, while the maximum female age-specific mean fecundity (mx) was 142 at age 59 days. The gross reproductive rate or number of offspring per individual was about 102. On average, each female laid 1.81 ± 0.19 (range 1-7) batches of eggs, with 63% of the females producing only one batch; only one female laid six batches, while one other laid seven. Each batch comprised 159 ± 17.1 eggs (range 5-224) and the female ratio of offspring was 0.28 ± 0.06. The intrinsic rate of increase, finite rate of increase, net reproductive rate, mean generation time and doubling time were, respectively, 0.12 ± 0.01 day-1, 1.12 ± 0.01 day-1, 46.2 ± 14.97, 33.02 ± 1.85 and 5.97 days. CONCLUSIONS Both the net reproductive rate and intrinsic rate of increase of An. balabacensis are lower than those of other species in published studies. Our results can be used to improve models of P. knowlesi transmission and to set a baseline for assessing the impacts of environmental change on malaria dynamics. Furthermore, incorporating these population parameters of An. balabacensis into spatial and temporal models on the transmission of P. knowlesi would provide better insight and increase the accuracy of epidemiological forecasting.
Collapse
Affiliation(s)
- Tock H. Chua
- grid.265727.30000 0001 0417 0814Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Benny Obrain Manin
- grid.265727.30000 0001 0417 0814Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Kimberly Fornace
- grid.8756.c0000 0001 2193 314XSchool of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK ,grid.4280.e0000 0001 2180 6431Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
A survey of simian Plasmodium infections in humans in West Kalimantan, Indonesia. Sci Rep 2022; 12:18546. [PMID: 36329096 PMCID: PMC9633791 DOI: 10.1038/s41598-022-21570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
The simian parasite Plasmodium knowlesi is the predominant species causing human malaria infection, including hospitalisations for severe disease and death, in Malaysian Borneo. By contrast, there have been only a few case reports of knowlesi malaria from Indonesian Borneo. This situation seems paradoxical since both regions share the same natural macaque hosts and Anopheles mosquito vectors, and therefore have a similar epidemiologically estimated risk of infection. To determine whether there is a true cross-border disparity in P. knowlesi prevalence, we conducted a community-based malaria screening study using PCR in Kapuas Hulu District, West Kalimantan. Blood samples were taken between April and September 2019 from 1000 people aged 6 months to 85 years attending health care facilities at 27 study sites within or close to jungle areas. There were 16 Plasmodium positive samples by PCR, five human malarias (two Plasmodium vivax, two Plasmodium ovale and one Plasmodium malariae) and 11 in which no species could be definitively identified. These data suggest that, if present, simian malarias including P. knowlesi are rare in the Kapuas Hulu District of West Kalimantan, Indonesian Borneo compared to geographically adjacent areas of Malaysian Borneo. The reason for this discrepancy, if confirmed in other epidemiologically similar regions of Indonesian Borneo, warrants further studies targeting possible cross-border differences in human activities in forested areas, together with more detailed surveys to complement the limited data relating to monkey hosts and Anopheles mosquito vectors in Indonesian Borneo.
Collapse
|
9
|
Naserrudin NA, Monroe A, Culleton R, Hod R, Jeffree MS, Ahmed K, Hassan MR. Reimagining zoonotic malaria control in communities exposed to Plasmodium knowlesi infection. J Physiol Anthropol 2022; 41:14. [PMID: 35413881 PMCID: PMC9004057 DOI: 10.1186/s40101-022-00288-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/31/2022] [Indexed: 12/21/2022] Open
Abstract
Plasmodium knowlesi malaria infection in humans has been reported throughout southeast Asia. The communities at risk are those living in areas where Macaque monkeys and Anopheles mosquito are present. Zoonotic malaria control is challenging due to the presence of the reservoir host and the possibility of human-vector-human transmission. Current control measures, including insecticide-treated nets (ITNs) and indoor residual spraying (IRS), are insufficient to address this threat due to gaps in protection associated with outdoor and early evening vector biting and social and economic activities, such as agricultural and forest work. Understanding the challenges faced by affected communities in preventing mosquito bites is important for reducing disease transmission. This opinion paper discusses opportunities to improve P. knowlesi malaria control through understanding the challenges faced by communities at risk and increasing community engagement and ownership of control measures. The paper highlights this issue by describing how the concept of reimagining malaria can be adapted to zoonotic malaria control measures including identifying current gaps in vector control, understanding interactions between environmental, economic, and human behavioral factors, and increasing community participation in and ownership of control measures.
Collapse
Affiliation(s)
- Nurul Athirah Naserrudin
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia.,Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Kota Kinabalu, Sabah, Malaysia.,Sabah State Health Department, Ministry of Health, Kota Kinabalu, Malaysia
| | - April Monroe
- Johns Hopkins Center for Communication Programs, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Richard Culleton
- Department of Molecular Parasitology, Proteo-Science Centre, Ehime University, Matsuyama, Japan
| | - Rozita Hod
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Muhammad Saffree Jeffree
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Kota Kinabalu, Sabah, Malaysia.,Department of Public Health, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Kamruddin Ahmed
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Kota Kinabalu, Sabah, Malaysia.,Department of Public Health, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Mohd Rohaizat Hassan
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Ruiz Cuenca P, Key S, Lindblade KA, Vythilingam I, Drakeley C, Fornace K. Is there evidence of sustained human-mosquito-human transmission of the zoonotic malaria Plasmodium knowlesi? A systematic literature review. Malar J 2022; 21:89. [PMID: 35300703 PMCID: PMC8929260 DOI: 10.1186/s12936-022-04110-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/27/2022] [Indexed: 12/03/2022] Open
Abstract
Background The zoonotic malaria parasite Plasmodium knowlesi has emerged across Southeast Asia and is now the main cause of malaria in humans in Malaysia. A critical priority for P. knowlesi surveillance and control is understanding whether transmission is entirely zoonotic or is also occurring through human-mosquito-human transmission. Methods A systematic literature review was performed to evaluate existing evidence which refutes or supports the occurrence of sustained human-mosquito-human transmission of P. knowlesi. Possible evidence categories and study types which would support or refute non-zoonotic transmission were identified and ranked. A literature search was conducted on Medline, EMBASE and Web of Science using a broad search strategy to identify any possible published literature. Results were synthesized using the Synthesis Without Meta-analysis (SWiM) framework, using vote counting to combine the evidence within specific categories. Results Of an initial 7,299 studies screened, 131 studies were included within this review: 87 studies of P. knowlesi prevalence in humans, 14 studies in non-human primates, 13 studies in mosquitoes, and 29 studies with direct evidence refuting or supporting non-zoonotic transmission. Overall, the evidence showed that human-mosquito-human transmission is biologically possible, but there is limited evidence of widespread occurrence in endemic areas. Specific areas of research were identified that require further attention, notably quantitative analyses of potential transmission dynamics, epidemiological and entomological surveys, and ecological studies into the sylvatic cycle of the disease. Conclusion There are key questions about P. knowlesi that remain within the areas of research that require more attention. These questions have significant implications for malaria elimination and eradication programs. This paper considers limited but varied research and provides a methodological framework for assessing the likelihood of different transmission patterns for emerging zoonotic diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04110-z.
Collapse
Affiliation(s)
- Pablo Ruiz Cuenca
- Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster University Medical School, Lancaster, UK. .,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Stephanie Key
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kim A Lindblade
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
11
|
Glidden CK, Nova N, Kain MP, Lagerstrom KM, Skinner EB, Mandle L, Sokolow SH, Plowright RK, Dirzo R, De Leo GA, Mordecai EA. Human-mediated impacts on biodiversity and the consequences for zoonotic disease spillover. Curr Biol 2021; 31:R1342-R1361. [PMID: 34637744 PMCID: PMC9255562 DOI: 10.1016/j.cub.2021.08.070] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human-mediated changes to natural ecosystems have consequences for both ecosystem and human health. Historically, efforts to preserve or restore 'biodiversity' can seem to be in opposition to human interests. However, the integration of biodiversity conservation and public health has gained significant traction in recent years, and new efforts to identify solutions that benefit both environmental and human health are ongoing. At the forefront of these efforts is an attempt to clarify ways in which biodiversity conservation can help reduce the risk of zoonotic spillover of pathogens from wild animals, sparking epidemics and pandemics in humans and livestock. However, our understanding of the mechanisms by which biodiversity change influences the spillover process is incomplete, limiting the application of integrated strategies aimed at achieving positive outcomes for both conservation and disease management. Here, we review the literature, considering a broad scope of biodiversity dimensions, to identify cases where zoonotic pathogen spillover is mechanistically linked to changes in biodiversity. By reframing the discussion around biodiversity and disease using mechanistic evidence - while encompassing multiple aspects of biodiversity including functional diversity, landscape diversity, phenological diversity, and interaction diversity - we work toward general principles that can guide future research and more effectively integrate the related goals of biodiversity conservation and spillover prevention. We conclude by summarizing how these principles could be used to integrate the goal of spillover prevention into ongoing biodiversity conservation initiatives.
Collapse
Affiliation(s)
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Morgan P Kain
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Natural Capital Project, Stanford University, Stanford, CA 94305, USA
| | | | - Eloise B Skinner
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Centre for Planetary Health and Food Security, Griffith University, Gold Coast, QLD 4222, Australia
| | - Lisa Mandle
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Natural Capital Project, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Susanne H Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA; Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Raina K Plowright
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Rodolfo Dirzo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Giulio A De Leo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA; Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Cuenca PR, Key S, Jumail A, Surendra H, Ferguson HM, Drakeley CJ, Fornace K. Epidemiology of the zoonotic malaria Plasmodium knowlesi in changing landscapes. ADVANCES IN PARASITOLOGY 2021; 113:225-286. [PMID: 34620384 DOI: 10.1016/bs.apar.2021.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Within the past two decades, incidence of human cases of the zoonotic malaria Plasmodium knowlesi has increased markedly. P. knowlesi is now the most common cause of human malaria in Malaysia and threatens to undermine malaria control programmes across Southeast Asia. The emergence of zoonotic malaria corresponds to a period of rapid deforestation within this region. These environmental changes impact the distribution and behaviour of the simian hosts, mosquito vector species and human populations, creating new opportunities for P. knowlesi transmission. Here, we review how landscape changes can drive zoonotic disease emergence, examine the extent and causes of these changes across Southeast and identify how these mechanisms may be impacting P. knowlesi dynamics. We review the current spatial epidemiology of reported P. knowlesi infections in people and assess how these demographic and environmental changes may lead to changes in transmission patterns. Finally, we identify opportunities to improve P. knowlesi surveillance and develop targeted ecological interventions within these landscapes.
Collapse
Affiliation(s)
- Pablo Ruiz Cuenca
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Stephanie Key
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Henry Surendra
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia; Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Chris J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
13
|
Chin AZ, Avoi R, Atil A, Awang Lukman K, Syed Abdul Rahim SS, Ibrahim MY, Ahmed K, Jeffree MS. Risk factor of plasmodium knowlesi infection in Sabah Borneo Malaysia, 2020: A population-based case-control study. PLoS One 2021; 16:e0257104. [PMID: 34506556 PMCID: PMC8432820 DOI: 10.1371/journal.pone.0257104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In the Malaysian state of Sabah, P. knowlesi notifications increased from 2% (59/2,741) of total malaria notifications in 2004 to 98% (2030/2,078) in 2017. There was a gap regarding P. knowlesi acquisition risk factors related to practice specifically in working age group. The main objective of this study was to identify the risk factors for acquiring P. knowlesi infection in Sabah among the working age group. METHODS AND METHODS This retrospective population-based case-control study was conducted in Ranau district to assess sociodemographic, behavioural and medical history risk factors using a pretested questionnaire. The data were entered and analyzed using IBM SPSS version 23. Bivariate analysis was conducted using binary logistic regression whereas multivariate analysis was conducted using multivariable logistic regression. We set a statistical significance at p-value less than or equal to 0.05. RESULTS A total of 266 cases and 532 controls were included in the study. Male gender (AOR = 2.71; 95% CI: 1.63-4.50), spending overnight in forest (AOR = 1.92; 95% CI: 1.20-3.06), not using mosquito repellent (AOR = 2.49; 95% CI: 1.36-4.56) and history of previous malaria infection (AOR = 49.34; 95% CI: 39.09-78.32) were found to be independent predictors of P. knowlesi infection. CONCLUSIONS This study showed the need to strengthen the strategies in preventing and controlling P. knowlesi infection specifically in changing the practice of spending overnight in forest and increasing the usage of personal mosquito repellent.
Collapse
Affiliation(s)
- Abraham Zefong Chin
- Faculty of Medicine and Health Sciences, Department of Public Health Medicine, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Richard Avoi
- Faculty of Medicine and Health Sciences, Department of Public Health Medicine, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Azman Atil
- Faculty of Medicine and Health Sciences, Department of Public Health Medicine, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Faculty of Medicine, Department of Community Health, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
| | - Khamisah Awang Lukman
- Faculty of Medicine and Health Sciences, Department of Public Health Medicine, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Syed Sharizman Syed Abdul Rahim
- Faculty of Medicine and Health Sciences, Department of Public Health Medicine, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Mohd Yusof Ibrahim
- Faculty of Medicine and Health Sciences, Department of Public Health Medicine, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Kamruddin Ahmed
- Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Faculty of Medicine and Health Sciences, Department of Pathology and Microbiology, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Mohammad Saffree Jeffree
- Faculty of Medicine and Health Sciences, Department of Public Health Medicine, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
14
|
Malijan RPB, Mechan F, Braganza JC, Valle KMR, Salazar FV, Torno MM, Aure WE, Bacay BA, Espino FE, Torr SJ, Fornace KM, Drakeley C, Ferguson HM. The seasonal dynamics and biting behavior of potential Anopheles vectors of Plasmodium knowlesi in Palawan, Philippines. Parasit Vectors 2021; 14:357. [PMID: 34233742 PMCID: PMC8261946 DOI: 10.1186/s13071-021-04853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A small number of human cases of the zoonotic malaria Plasmodium knowlesi have been reported in Palawan Island, the Philippines. Identification of potential vector species and their bionomics is crucial for understanding human exposure risk in this setting. Here, we combined longitudinal surveillance with a trap-evaluation study to address knowledge gaps about the ecology and potential for zoonotic spillover of this macaque malaria in Palawan Island. METHODS The abundance, diversity and biting behavior of human-biting Anopheles mosquitoes were assessed through monthly outdoor human landing catches (HLC) in three ecotypes representing different land use (forest edge, forest and agricultural area) across 8 months. Additionally, the host preference and biting activity of potential Anopheles vectors were assessed through comparison of their abundance and capture time in traps baited with humans (HLC, human-baited electrocuting net-HEN) or macaques (monkey-baited trap-MBT, monkey-baited electrocuting net-MEN). All female Anopheles mosquitoes were tested for the presence of Plasmodium parasites by PCR. RESULTS Previously incriminated vectors Anopheles balabacensis and An. flavirostris accounted for > 95% of anophelines caught in longitudinal surveillance. However, human biting densities were relatively low (An. balabacensis: 0.34-1.20 per night, An. flavirostris: 0-2 bites per night). Biting densities of An. balabacensis were highest in the forest edge, while An. flavirostris was most abundant in the agricultural area. The abundance of An. balabacensis and An. flavirostris was significantly higher in HLC than in MBT. None of the 357 female Anopheles mosquitoes tested for Plasmodium infection were positive. CONCLUSIONS The relatively low density and lack of malaria infection in Anopheles mosquitoes sampled here indicates that exposure to P. knowlesi in this setting is considerably lower than in neighboring countries (i.e. Malaysia), where it is now the primary cause of malaria in humans. Although anophelines had lower abundance in MBTs than in HLCs, An. balabacensis and An. flavirostris were caught by both methods, suggesting they could act as bridge vectors between humans and macaques. These species bite primarily outdoors during the early evening, confirming that insecticide-treated nets are unlikely to provide protection against P. knowlesi vectors.
Collapse
Affiliation(s)
- Richard Paul B Malijan
- Department of Medical Entomology, Research Institute for Tropical Medicine, Alabang, 1781, Muntinlupa City, Metro Manila, Philippines
| | - Frank Mechan
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5Q4, UK
| | - Jessie C Braganza
- Department of Medical Entomology, Research Institute for Tropical Medicine, Alabang, 1781, Muntinlupa City, Metro Manila, Philippines
| | - Kristelle Mae R Valle
- Department of Medical Entomology, Research Institute for Tropical Medicine, Alabang, 1781, Muntinlupa City, Metro Manila, Philippines
| | - Ferdinand V Salazar
- Department of Medical Entomology, Research Institute for Tropical Medicine, Alabang, 1781, Muntinlupa City, Metro Manila, Philippines
| | - Majhalia M Torno
- Department of Medical Entomology, Research Institute for Tropical Medicine, Alabang, 1781, Muntinlupa City, Metro Manila, Philippines.,Taxonomy & Pesticide Efficacy Branch, Vector Biology & Control Division, Environment Health Institute, National Environment Agency, Ministry of Sustainability and the Environment, 11 Biopolis Way, Singapore, 138667, Singapore
| | - Wilfredo E Aure
- Department of Medical Entomology, Research Institute for Tropical Medicine, Alabang, 1781, Muntinlupa City, Metro Manila, Philippines
| | - Brian A Bacay
- Department of Medical Entomology, Research Institute for Tropical Medicine, Alabang, 1781, Muntinlupa City, Metro Manila, Philippines
| | - Fe Esperanza Espino
- Department of Parasitology, Research Institute for Tropical Medicine, Alabang, 1781, Muntinlupa City, Ma, Metro Manila, Philippines
| | - Stephen J Torr
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5Q4, UK
| | - Kimberly M Fornace
- Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, London, WC1E 7HT, UK
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, London, WC1E 7HT, UK
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
15
|
Byrne I, Aure W, Manin BO, Vythilingam I, Ferguson HM, Drakeley CJ, Chua TH, Fornace KM. Environmental and spatial risk factors for the larval habitats of Plasmodium knowlesi vectors in Sabah, Malaysian Borneo. Sci Rep 2021; 11:11810. [PMID: 34083582 PMCID: PMC8175559 DOI: 10.1038/s41598-021-90893-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022] Open
Abstract
Land-use changes, such as deforestation and agriculture, can influence mosquito vector populations and malaria transmission. These land-use changes have been linked to increased incidence in human cases of the zoonotic malaria Plasmodium knowlesi in Sabah, Malaysian Borneo. This study investigates whether these associations are partially driven by fine-scale land-use changes creating more favourable aquatic breeding habitats for P. knowlesi anopheline vectors. Using aerial remote sensing data, we developed a sampling frame representative of all land use types within a major focus of P. knowlesi transmission. From 2015 to 2016 monthly longitudinal surveys of larval habitats were collected in randomly selected areas stratified by land use type. Additional remote sensing data on environmental variables, land cover and landscape configuration were assembled for the study site. Risk factor analyses were performed over multiple spatial scales to determine associations between environmental and spatial variables and anopheline larval presence. Habitat fragmentation (300 m), aspect (350 m), distance to rubber plantations (100 m) and Culex larval presence were identified as risk factors for Anopheles breeding. Additionally, models were fit to determine the presence of potential larval habitats within the areas surveyed and used to generate a time-series of monthly predictive maps. These results indicate that land-use change and topography influence the suitability of larval habitats, and may partially explain the link between P. knowlesi incidence and deforestation. The predictive maps, and identification of the spatial scales at which risk factors are most influential may aid spatio-temporally targeted vector control interventions.
Collapse
Affiliation(s)
- Isabel Byrne
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, Bloomsbury, London, WCIE 7HT, UK.
| | - Wilfredo Aure
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
- Research Institute for Tropical Medicine, Manila, Philippines
| | - Benny O Manin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Chris J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, Bloomsbury, London, WCIE 7HT, UK
| | - Tock H Chua
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Kimberly M Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, Bloomsbury, London, WCIE 7HT, UK
| |
Collapse
|
16
|
Fornace KM, Diaz AV, Lines J, Drakeley CJ. Achieving global malaria eradication in changing landscapes. Malar J 2021; 20:69. [PMID: 33530995 PMCID: PMC7856737 DOI: 10.1186/s12936-021-03599-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/20/2021] [Indexed: 11/10/2022] Open
Abstract
Land use and land cover changes, such as deforestation, agricultural expansion and urbanization, are one of the largest anthropogenic environmental changes globally. Recent initiatives to evaluate the feasibility of malaria eradication have highlighted impacts of landscape changes on malaria transmission and the potential of these changes to undermine malaria control and elimination efforts. Multisectoral approaches are needed to detect and minimize negative impacts of land use and land cover changes on malaria transmission while supporting development aiding malaria control, elimination and ultimately eradication. Pathways through which land use and land cover changes disrupt social and ecological systems to increase or decrease malaria risks are outlined, identifying priorities and opportunities for a global malaria eradication campaign. The impacts of land use and land cover changes on malaria transmission are complex and highly context-specific, with effects changing over time and space. Landscape changes are only one element of a complex development process with wider economic and social dimensions affecting human health and wellbeing. While deforestation and other landscape changes threaten to undermine malaria control efforts and have driven the emergence of zoonotic malaria, most of the malaria elimination successes have been underpinned by agricultural development and land management. Malaria eradication is not feasible without addressing these changing risks while, conversely, consideration of malaria impacts in land management decisions has the potential to significantly accelerate progress towards eradication. Multisectoral cooperation and approaches to linking malaria control and environmental science, such as conducting locally relevant ecological monitoring, integrating landscape data into malaria surveillance systems and designing environmental management strategies to reduce malaria burdens, are essential to achieve malaria eradication.
Collapse
Affiliation(s)
- Kimberly M Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK. .,Centre for Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK.
| | - Adriana V Diaz
- Pathology and Population Sciences, Royal Veterinary College, Hatfield, UK
| | - Jo Lines
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.,Centre for Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.,Centre for Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
17
|
Scott J. Proposed Integrated Control of Zoonotic Plasmodium knowlesi in Southeast Asia Using Themes of One Health. Trop Med Infect Dis 2020; 5:E175. [PMID: 33233871 PMCID: PMC7709578 DOI: 10.3390/tropicalmed5040175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 01/28/2023] Open
Abstract
Zoonotic malaria, Plasmodium knowlesi, threatens the global progression of malaria elimination. Southeast Asian regions are fronting increased zoonotic malaria rates despite the control measures currently implemented-conventional measures to control human-malaria neglect P. knowlesi's residual transmission between the natural macaque host and vector. Initiatives to control P. knowlesi should adopt themes of the One Health approach, which details that the management of an infectious disease agent should be scrutinized at the human-animal-ecosystem interface. This review describes factors that have conceivably permitted the emergence and increased transmission rates of P. knowlesi to humans, from the understanding of genetic exchange events between subpopulations of P. knowlesi to the downstream effects of environmental disruption and simian and vector behavioral adaptations. These factors are considered to advise an integrative control strategy that aligns with the One Health approach. It is proposed that surveillance systems address the geographical distribution and transmission clusters of P. knowlesi and enforce ecological regulations that limit forest conversion and promote ecosystem regeneration. Furthermore, combining individual protective measures, mosquito-based feeding trapping tools and biocontrol strategies in synergy with current control methods may reduce mosquito population density or transmission capacity.
Collapse
Affiliation(s)
- Jessica Scott
- College of Public Health and Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia
| |
Collapse
|
18
|
Naik DG. Plasmodium knowlesi-mediated zoonotic malaria: A challenge for elimination. Trop Parasitol 2020; 10:3-6. [PMID: 32775284 PMCID: PMC7365496 DOI: 10.4103/tp.tp_17_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Malaria, a mosquito-transmitted parasitic disease, has been targeted for elimination in many parts of the world. For many years, Plasmodium vivax, Plasmodium falciparum, Plasmodium ovale and Plasmodium malariae have been known to cause malaria in humans. Now, Plasmodium knowlesi is considered to be an important cause of malaria, especially in Southeast Asia. The emergence of P. knowlesi with zoonotic implication is a challenge in the elimination efforts of malaria in Southeast Asia. P. knowlesi is known to cause severe complicated malaria in humans. P. knowlesi parasite is transmitted between humans and wild macaque through mosquito vectors. It appears that the malaria disease severity and host immune evasion depend on antigenic variation exhibited at the surface of the infected erythrocyte. P. knowlesi is sensitive to antimalarial drug artemisinin. Identification of vector species, their biting behavior, timely correct diagnosis, and treatment are important steps in disease management and control. There is a need to identify and implement effective intervention measures to cut the chain of transmissions from animals to humans. The zoonotic malaria definitely poses a significant challenge in elimination and subsequent eradication of all types of malaria from this globe.
Collapse
Affiliation(s)
- Durgadas Govind Naik
- Department of Microbiology, International Medical School, Management and Science University, Selangor, Malaysia
| |
Collapse
|
19
|
Kokol P, Blažun Vošner H, Završnik J. Application of bibliometrics in medicine: a historical bibliometrics analysis. Health Info Libr J 2020; 38:125-138. [DOI: 10.1111/hir.12295] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 12/09/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Peter Kokol
- Faculty of Electrical Engineering and Computer Science University of Maribor Maribor Slovenia
| | - Helena Blažun Vošner
- Community Healthcare Centre Dr. Adolf Drolc Maribor Slovenia
- Faculty of Health and Social Sciences Slovenj Gradec Slovenj Gradec Slovenia
| | - Jernej Završnik
- Community Healthcare Centre Dr. Adolf Drolc Maribor Slovenia
| |
Collapse
|
20
|
Malaria. HIGHLY INFECTIOUS DISEASES IN CRITICAL CARE 2020. [PMCID: PMC7120402 DOI: 10.1007/978-3-030-33803-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Malaria is a significant cause of morbidity and mortality throughout the world, and environmental changes are likely to increase its importance in the coming years. Diagnosing this disease is difficult and requires a high index of suspicion, especially in non-endemic countries. Critical care providers play a major role in treating severe malaria and its complications, which has management particularities that might not be readily apparent. Fluid resuscitation should be carefully tailored to avoid complications, and dysperfusion seems more related to degree of parasitemia than hypovolemia. Antimalarial agents are effective, but resistance is growing. Complications can be found in nearly every organ, including cerebral malaria, acute respiratory distress syndrome, and acute kidney injury. As such, a critical care unit is frequently required for organ support when they appear. Superimposed infections are not infrequent. Despite all of this, mortality is encouragingly low with a timely diagnosis and access to appropriate treatment.
Collapse
|
21
|
Davidson G, Chua TH, Cook A, Speldewinde P, Weinstein P. The Role of Ecological Linkage Mechanisms in Plasmodium knowlesi Transmission and Spread. ECOHEALTH 2019; 16:594-610. [PMID: 30675676 DOI: 10.1007/s10393-019-01395-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 11/10/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Defining the linkages between landscape change, disease ecology and human health is essential to explain and predict the emergence of Plasmodium knowlesi malaria, a zoonotic parasite residing in Southeast Asian macaques, and transmitted by species of Anopheles mosquitos. Changing patterns of land use throughout Southeast Asia, particularly deforestation, are suggested to be the primary drivers behind the recent spread of this zoonotic parasite in humans. Local ecological changes at the landscape scale appear to be increasing the risk of disease in humans by altering the dynamics of transmission between the parasite and its primary hosts. This paper will focus on the emergence of P. knowlesi in humans in Malaysian Borneo and the ecological linkage mechanisms suggested to be playing an important role.
Collapse
Affiliation(s)
- Gael Davidson
- CENRM and School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Tock H Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia.
| | - Angus Cook
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | | | - Philip Weinstein
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
22
|
Becker DJ, Washburne AD, Faust CL, Mordecai EA, Plowright RK. The problem of scale in the prediction and management of pathogen spillover. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190224. [PMID: 31401958 PMCID: PMC6711304 DOI: 10.1098/rstb.2019.0224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2019] [Indexed: 01/28/2023] Open
Abstract
Disease emergence events, epidemics and pandemics all underscore the need to predict zoonotic pathogen spillover. Because cross-species transmission is inherently hierarchical, involving processes that occur at varying levels of biological organization, such predictive efforts can be complicated by the many scales and vastness of data potentially required for forecasting. A wide range of approaches are currently used to forecast spillover risk (e.g. macroecology, pathogen discovery, surveillance of human populations, among others), each of which is bound within particular phylogenetic, spatial and temporal scales of prediction. Here, we contextualize these diverse approaches within their forecasting goals and resulting scales of prediction to illustrate critical areas of conceptual and pragmatic overlap. Specifically, we focus on an ecological perspective to envision a research pipeline that connects these different scales of data and predictions from the aims of discovery to intervention. Pathogen discovery and predictions focused at the phylogenetic scale can first provide coarse and pattern-based guidance for which reservoirs, vectors and pathogens are likely to be involved in spillover, thereby narrowing surveillance targets and where such efforts should be conducted. Next, these predictions can be followed with ecologically driven spatio-temporal studies of reservoirs and vectors to quantify spatio-temporal fluctuations in infection and to mechanistically understand how pathogens circulate and are transmitted to humans. This approach can also help identify general regions and periods for which spillover is most likely. We illustrate this point by highlighting several case studies where long-term, ecologically focused studies (e.g. Lyme disease in the northeast USA, Hendra virus in eastern Australia, Plasmodium knowlesi in Southeast Asia) have facilitated predicting spillover in space and time and facilitated the design of possible intervention strategies. Such studies can in turn help narrow human surveillance efforts and help refine and improve future large-scale, phylogenetic predictions. We conclude by discussing how greater integration and exchange between data and predictions generated across these varying scales could ultimately help generate more actionable forecasts and interventions. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.
Collapse
Affiliation(s)
- Daniel J. Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Alex D. Washburne
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Christina L. Faust
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | - Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
23
|
Benavente ED, Gomes AR, De Silva JR, Grigg M, Walker H, Barber BE, William T, Yeo TW, de Sessions PF, Ramaprasad A, Ibrahim A, Charleston J, Hibberd ML, Pain A, Moon RW, Auburn S, Ling LY, Anstey NM, Clark TG, Campino S. Whole genome sequencing of amplified Plasmodium knowlesi DNA from unprocessed blood reveals genetic exchange events between Malaysian Peninsular and Borneo subpopulations. Sci Rep 2019; 9:9873. [PMID: 31285495 PMCID: PMC6614422 DOI: 10.1038/s41598-019-46398-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 06/28/2019] [Indexed: 12/19/2022] Open
Abstract
The zoonotic Plasmodium knowlesi parasite is the most common cause of human malaria in Malaysia. Genetic analysis has shown that the parasites are divided into three subpopulations according to their geographic origin (Peninsular or Borneo) and, in Borneo, their macaque host (Macaca fascicularis or M. nemestrina). Whilst evidence suggests that genetic exchange events have occurred between the two Borneo subpopulations, the picture is unclear in less studied Peninsular strains. One difficulty is that P. knowlesi infected individuals tend to present with low parasitaemia leading to samples with insufficient DNA for whole genome sequencing. Here, using a parasite selective whole genome amplification approach on unprocessed blood samples, we were able to analyse recent genomes sourced from both Peninsular Malaysia and Borneo. The analysis provides evidence that recombination events are present in the Peninsular Malaysia parasite subpopulation, which have acquired fragments of the M. nemestrina associated subpopulation genotype, including the DBPβ and NBPXa erythrocyte invasion genes. The NBPXb invasion gene has also been exchanged within the macaque host-associated subpopulations of Malaysian Borneo. Our work provides strong evidence that exchange events are far more ubiquitous than expected and should be taken into consideration when studying the highly complex P. knowlesi population structure.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ana Rita Gomes
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | - Matthew Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Harriet Walker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, 88300, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, 88300, Kota Kinabalu, Sabah, Malaysia.,Clinical Research Centre, Queen Elizabeth Hospital, 88300, Kota Kinabalu, Sabah, Malaysia.,Jesselton Medical Centre, 88300, Kota Kinabalu, Sabah, Malaysia
| | - Tsin Wen Yeo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Abhinay Ramaprasad
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Amy Ibrahim
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - James Charleston
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin L Hibberd
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Genomics Institute, Biopolis, Singapore
| | - Arnab Pain
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Robert W Moon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom. .,Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| |
Collapse
|
24
|
Davidson G, Chua TH, Cook A, Speldewinde P, Weinstein P. Defining the ecological and evolutionary drivers of Plasmodium knowlesi transmission within a multi-scale framework. Malar J 2019; 18:66. [PMID: 30849978 PMCID: PMC6408765 DOI: 10.1186/s12936-019-2693-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 03/01/2019] [Indexed: 01/12/2023] Open
Abstract
Plasmodium knowlesi is a zoonotic malaria parasite normally residing in long-tailed and pig-tailed macaques (Macaca fascicularis and Macaca nemestrina, respectively) found throughout Southeast Asia. Recently, knowlesi malaria has become the predominant malaria affecting humans in Malaysian Borneo, being responsible for approximately 70% of reported cases. Largely as a result of anthropogenic land use changes in Borneo, vectors which transmit the parasite, along with macaque hosts, are both now frequently found in disturbed forest habitats, or at the forest fringes, thus having more frequent contact with humans. Having access to human hosts provides the parasite with the opportunity to further its adaption to the human immune system. The ecological drivers of the transmission and spread of P. knowlesi are operating over many different spatial (and, therefore, temporal) scales, from the molecular to the continental. Strategies to prevent and manage zoonoses, such as P. knowlesi malaria require interdisciplinary research exploring the impact of land use change and biodiversity loss on the evolving relationship between parasite, reservoir hosts, vectors, and humans over multiple spatial scales.
Collapse
Affiliation(s)
- Gael Davidson
- School of Agriculture and Environment, University of Western Australia, Stirling Terrace, Albany, WA, 6330, Australia. .,School of Population and Global Health, University of Western Australia, Perth, Australia.
| | - Tock H Chua
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Angus Cook
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Peter Speldewinde
- School of Agriculture and Environment, University of Western Australia, Stirling Terrace, Albany, WA, 6330, Australia
| | - Philip Weinstein
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
25
|
Brock PM, Fornace KM, Grigg MJ, Anstey NM, William T, Cox J, Drakeley CJ, Ferguson HM, Kao RR. Predictive analysis across spatial scales links zoonotic malaria to deforestation. Proc Biol Sci 2019; 286:20182351. [PMID: 30963872 PMCID: PMC6367187 DOI: 10.1098/rspb.2018.2351] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
The complex transmission ecologies of vector-borne and zoonotic diseases pose challenges to their control, especially in changing landscapes. Human incidence of zoonotic malaria ( Plasmodium knowlesi) is associated with deforestation although mechanisms are unknown. Here, a novel application of a method for predicting disease occurrence that combines machine learning and statistics is used to identify the key spatial scales that define the relationship between zoonotic malaria cases and environmental change. Using data from satellite imagery, a case-control study, and a cross-sectional survey, predictive models of household-level occurrence of P. knowlesi were fitted with 16 variables summarized at 11 spatial scales simultaneously. The method identified a strong and well-defined peak of predictive influence of the proportion of cleared land within 1 km of households on P. knowlesi occurrence. Aspect (1 and 2 km), slope (0.5 km) and canopy regrowth (0.5 km) were important at small scales. By contrast, fragmentation of deforested areas influenced P. knowlesi occurrence probability most strongly at large scales (4 and 5 km). The identification of these spatial scales narrows the field of plausible mechanisms that connect land use change and P. knowlesi, allowing for the refinement of disease occurrence predictions and the design of spatially-targeted interventions.
Collapse
Affiliation(s)
- Patrick M. Brock
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Kimberly M. Fornace
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Matthew J. Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0810, Australia
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0810, Australia
| | - Timothy William
- Gleneagles Kota Kinabalu Hospital, 88100, Kota Kinabalu, Sabah, Malaysia
- Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu 88560, Sabah, Malaysia
| | - Jon Cox
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Chris J. Drakeley
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Heather M. Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Rowland R. Kao
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| |
Collapse
|
26
|
Loy DE, Plenderleith LJ, Sundararaman SA, Liu W, Gruszczyk J, Chen YJ, Trimboli S, Learn GH, MacLean OA, Morgan ALK, Li Y, Avitto AN, Giles J, Calvignac-Spencer S, Sachse A, Leendertz FH, Speede S, Ayouba A, Peeters M, Rayner JC, Tham WH, Sharp PM, Hahn BH. Evolutionary history of human Plasmodium vivax revealed by genome-wide analyses of related ape parasites. Proc Natl Acad Sci U S A 2018; 115:E8450-E8459. [PMID: 30127015 PMCID: PMC6130405 DOI: 10.1073/pnas.1810053115] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Wild-living African apes are endemically infected with parasites that are closely related to human Plasmodium vivax, a leading cause of malaria outside Africa. This finding suggests that the origin of P. vivax was in Africa, even though the parasite is now rare in humans there. To elucidate the emergence of human P. vivax and its relationship to the ape parasites, we analyzed genome sequence data of P. vivax strains infecting six chimpanzees and one gorilla from Cameroon, Gabon, and Côte d'Ivoire. We found that ape and human parasites share nearly identical core genomes, differing by only 2% of coding sequences. However, compared with the ape parasites, human strains of P. vivax exhibit about 10-fold less diversity and have a relative excess of nonsynonymous nucleotide polymorphisms, with site-frequency spectra suggesting they are subject to greatly relaxed purifying selection. These data suggest that human P. vivax has undergone an extreme bottleneck, followed by rapid population expansion. Investigating potential host-specificity determinants, we found that ape P. vivax parasites encode intact orthologs of three reticulocyte-binding protein genes (rbp2d, rbp2e, and rbp3), which are pseudogenes in all human P. vivax strains. However, binding studies of recombinant RBP2e and RBP3 proteins to human, chimpanzee, and gorilla erythrocytes revealed no evidence of host-specific barriers to red blood cell invasion. These data suggest that, from an ancient stock of P. vivax parasites capable of infecting both humans and apes, a severely bottlenecked lineage emerged out of Africa and underwent rapid population growth as it spread globally.
Collapse
Affiliation(s)
- Dorothy E Loy
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Sesh A Sundararaman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jakub Gruszczyk
- Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia
| | - Yi-Jun Chen
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Department of Medical Biology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Stephanie Trimboli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gerald H Learn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Oscar A MacLean
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Alex L K Morgan
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexa N Avitto
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jasmin Giles
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | | | - Sheri Speede
- Sanaga-Yong Chimpanzee Rescue Center, International Development Association-Africa, Portland, OR 97208
| | - Ahidjo Ayouba
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France
| | - Martine Peeters
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Genome Campus, Hinxton Cambridgeshire CB10 1SA, United Kingdom
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
27
|
Amir A, Cheong FW, de Silva JR, Liew JWK, Lau YL. Plasmodium knowlesi malaria: current research perspectives. Infect Drug Resist 2018; 11:1145-1155. [PMID: 30127631 PMCID: PMC6089103 DOI: 10.2147/idr.s148664] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Originally known to cause simian malaria, Plasmodium knowlesi is now known as the fifth human malaria species. Since the publishing of a report that largely focused on human knowlesi cases in Sarawak in 2004, many more human cases have been reported in nearly all of the countries in Southeast Asia and in travelers returning from these countries. The zoonotic nature of this infection hinders malaria elimination efforts. In order to grasp the current perspective of knowlesi malaria, this literature review explores the different aspects of the disease including risk factors, diagnosis, treatment, and molecular and functional studies. Current studies do not provide sufficient data for an effective control program. Therefore, future direction for knowlesi research is highlighted here with a final aim of controlling, if not eliminating, the parasite.
Collapse
Affiliation(s)
- Amirah Amir
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,
| | - Fei Wen Cheong
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,
| | - Jeremy Ryan de Silva
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,
| | - Jonathan Wee Kent Liew
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,
| |
Collapse
|
28
|
Grigg MJ, William T, Barber BE, Rajahram GS, Menon J, Schimann E, Piera K, Wilkes CS, Patel K, Chandna A, Drakeley CJ, Yeo TW, Anstey NM. Age-Related Clinical Spectrum of Plasmodium knowlesi Malaria and Predictors of Severity. Clin Infect Dis 2018; 67:350-359. [PMID: 29873683 PMCID: PMC6051457 DOI: 10.1093/cid/ciy065] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/25/2018] [Indexed: 12/31/2022] Open
Abstract
Background Plasmodium knowlesi is increasingly reported in Southeast Asia, but prospective studies of its clinical spectrum in children and comparison with autochthonous human-only Plasmodium species are lacking. Methods Over 3.5 years, we prospectively assessed patients of any age with molecularly-confirmed Plasmodium monoinfection presenting to 3 district hospitals in Sabah, Malaysia. Results Of 481 knowlesi, 172 vivax, and 96 falciparum malaria cases enrolled, 44 (9%), 71 (41%), and 31 (32%) children aged ≤12 years. Median parasitemia was lower in knowlesi malaria (2480/μL [interquartile range, 538-8481/μL]) than in falciparum (9600/μL; P < .001) and vivax malaria. In P. knowlesi, World Health Organization-defined anemia was present in 82% (95% confidence interval [CI], 67%-92%) of children vs 36% (95% CI, 31%-41%) of adults. Severe knowlesi malaria occurred in 6.4% (95% CI, 3.9%-8.3%) of adults but not in children; the commenst severity criterion was acute kideny injury. No patient had coma. Age, parasitemia, schizont proportion, abdominal pain, and dyspnea were independently associated with severe knowlesi malaria, with parasitemia >15000/μL the best predictor (adjusted odds ratio, 16.1; negative predictive value, 98.5%; P < .001). Two knowlesi-related adult deaths occurred (fatality rate: 4.2/1000 adults). Conclusions Age distribution and parasitemia differed markedly in knowlesi malaria compared to human-only species, with both uncomplicated and severe disease occurring at low parasitemia. Severe knowlesi malaria occurred only in adults; however, anemia was more common in children despite lower parasitemia. Parasitemia independently predicted knowlesi disease severity: Intravenous artesunate is warranted initially for those with parasitemia >15000/μL.
Collapse
Affiliation(s)
- Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
- Jesselton Medical Centre, Kota Kinabalu, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
| | - Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | - Giri S Rajahram
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
- Sabah Department of Health, Kota Kinabalu, Malaysia
| | - Jayaram Menon
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
- Sabah Department of Health, Kota Kinabalu, Malaysia
| | - Emma Schimann
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | - Kim Piera
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | - Christopher S Wilkes
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | - Kaajal Patel
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | - Arjun Chandna
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | | | - Tsin W Yeo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Communicable Disease Centre, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, Singapore
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| |
Collapse
|
29
|
Brown R, Hing CT, Fornace K, Ferguson HM. Evaluation of resting traps to examine the behaviour and ecology of mosquito vectors in an area of rapidly changing land use in Sabah, Malaysian Borneo. Parasit Vectors 2018; 11:346. [PMID: 29898780 PMCID: PMC6000972 DOI: 10.1186/s13071-018-2926-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/30/2018] [Indexed: 12/22/2022] Open
Abstract
Background Widespread deforestation occurring in the tropics is hypothesized to impact the transmission of vector-borne diseases (VBD). Predicting how environmental changes will impact VBD transmission is dependent on understanding the ecology and behaviour of potential vector species outside of domestic settings. However there are few reliable sampling tools for measuring the habitat preference and host choice of mosquito vectors; with almost none suitable for sampling recently blood-fed, resting mosquitoes. This study evaluated the use of two mosquito traps: the resting bucket (RB) and sticky resting bucket (SRB) traps relative to CDC backpack aspiration (CDC) for sampling mosquitoes resting in a range of habitats representing a gradient of deforestation. Eight habitats were selected for sampling around two villages in Kudat District, Malaysian Borneo, to reflect the range of habitats available to mosquitoes in and around human dwellings, and nearby forest habitats where reservoir hosts are present: secondary forest (edge, interior and canopy); plantations (palm and rubber); and human settlements (inside, under and around houses). Results Over 31 days, 2243 mosquitoes were collected in 5748 discrete collections. Nine mosquito genera were sampled with Aedes and Culex species being present in all habitats and most abundant. RB and CDC backpack aspiration were most efficient for sampling Culex whereas CDC backpack aspiration and SRB were most efficient for Aedes. Most Aedes identified to species level were Ae. albopictus (91%), with their abundance being highest in forest edge habitats. In contrast, Culex were most abundant under houses. Most blood-fed mosquitoes (76%) were found in human settlements; with humans and chickens being the only blood source. Conclusions RB and SRB traps proved capable of sampling mosquitoes resting in all sampled habitats. However, sampling efficiency was generally low (c.0.1 per trap per day), necessitating traps to be deployed in high numbers for mosquito detection. None of the traps were effective for sampling zoonotic malaria vectors; however, SRB collected relatively higher numbers of the dengue vector Ae. albopictus. The higher abundance of mosquitoes in forest edge habitats indicates the potential value of these traps for investigating sylvatic dengue transmission. This study has demonstrated the merits in application of simple resting traps for characterising mosquito vector resting behaviour outside of the home. Electronic supplementary material The online version of this article (10.1186/s13071-018-2926-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca Brown
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Chua Tock Hing
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
30
|
Fornace KM, Herman LS, Abidin TR, Chua TH, Daim S, Lorenzo PJ, Grignard L, Nuin NA, Ying LT, Grigg MJ, William T, Espino F, Cox J, Tetteh KKA, Drakeley CJ. Exposure and infection to Plasmodium knowlesi in case study communities in Northern Sabah, Malaysia and Palawan, The Philippines. PLoS Negl Trop Dis 2018; 12:e0006432. [PMID: 29902171 PMCID: PMC6001952 DOI: 10.1371/journal.pntd.0006432] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/05/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Primarily impacting poor, rural populations, the zoonotic malaria Plasmodium knowlesi is now the main cause of human malaria within Malaysian Borneo. While data is increasingly available on symptomatic cases, little is known about community-level patterns of exposure and infection. Understanding the true burden of disease and associated risk factors within endemic communities is critical for informing evidence-based control measures. METHODOLOGY/PRINCIPAL FINDINGS We conducted comprehensive surveys in three areas where P. knowlesi transmission is reported: Limbuak, Pulau Banggi and Matunggung, Kudat, Sabah, Malaysia and Bacungan, Palawan, the Philippines. Infection prevalence was low with parasites detected by PCR in only 0.2% (4/2503) of the population. P. knowlesi PkSERA3 ag1 antibody responses were detected in 7.1% (95% CI: 6.2-8.2%) of the population, compared with 16.1% (14.6-17.7%) and 12.6% (11.2-14.1%) for P. falciparum and P. vivax. Sero-prevalence was low in individuals <10 years old for P. falciparum and P. vivax consistent with decreased transmission of non-zoonotic malaria species. Results indicated marked heterogeneity in transmission intensity between sites and P. knowlesi exposure was associated with agricultural work (OR 1.63; 95% CI 1.07-2.48) and higher levels of forest cover (OR 2.40; 95% CI 1.29-4.46) and clearing (OR 2.14; 95% CI 1.35-3.40) around houses. Spatial patterns of P. knowlesi exposure differed from exposure to non-zoonotic malaria and P. knowlesi exposed individuals were younger on average than individuals exposed to non-zoonotic malaria. CONCLUSIONS/SIGNIFICANCE This is the first study to describe serological exposure to P. knowlesi and associated risk factors within endemic communities. Results indicate community-level patterns of infection and exposure differ markedly from demographics of reported cases, with higher levels of exposure among women and children. Further work is needed to understand these variations in risk across a wider population and spatial scale.
Collapse
Affiliation(s)
- Kimberly M. Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lou S. Herman
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tommy R. Abidin
- Infectious Diseases Society Kota Kinabalu- Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Tock Hing Chua
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Sylvia Daim
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Pauline J. Lorenzo
- Research Institute of Tropical Medicine, Department of Health, Muntinlupa City, Philippines
| | - Lynn Grignard
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nor Afizah Nuin
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Lau Tiek Ying
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Matthew J. Grigg
- Infectious Diseases Society Kota Kinabalu- Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Timothy William
- Infectious Diseases Society Kota Kinabalu- Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
- Jesselton Medical Centre, Kota Kinabalu, Malaysia
| | - Fe Espino
- Research Institute of Tropical Medicine, Department of Health, Muntinlupa City, Philippines
| | - Jonathan Cox
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kevin K. A. Tetteh
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Chris J. Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
31
|
de Alencar FEC, Malafronte RDS, Cerutti Junior C, Natal Fernandes L, Buery JC, Fux B, Rezende HR, Duarte AMRDC, Medeiros-Sousa AR, Miranda AE. Assessment of asymptomatic Plasmodium spp. infection by detection of parasite DNA in residents of an extra-Amazonian region of Brazil. Malar J 2018. [PMID: 29540186 PMCID: PMC5853114 DOI: 10.1186/s12936-018-2263-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The hypotheses put forward to explain the malaria transmission cycle in extra-Amazonian Brazil, an area of very low malaria incidence, are based on either a zoonotic scenario involving simian malaria, or a scenario in which asymptomatic carriers play an important role. Objectives To determine the incidence of asymptomatic infection by detecting Plasmodium spp. DNA and its role in residual malaria transmission in a non-Amazonian region of Brazil. Methods Upon the report of the first malaria case in 2010 in the Atlantic Forest region of the state of Espírito Santo, inhabitants within a 2 km radius were invited to participate in a follow-up study. After providing signed informed consent forms, inhabitants filled out a questionnaire and gave blood samples for PCR, and thick and thin smears. Follow-up visits were performed every 3 months over a 21 month period, when new samples were collected and information was updated. Results Ninety-two individuals were initially included for follow-up. At the first collection, all of them were clearly asymptomatic. One individual was positive for Plasmodium vivax, one for Plasmodium malariae and one for both P. vivax and P. malariae, corresponding to a prevalence of 3.4% (2.3% for each species). During follow-up, four new PCR-positive cases (two for each species) were recorded, corresponding to an incidence of 2.5 infections per 100 person-years or 1.25 infections per 100 person-years for each species. A mathematical transmission model was applied, using a low frequency of human carriers and the vector density in the region, and calculated based on previous studies in the same locality whose results were subjected to a linear regression. This analysis suggests that the transmission chain is unlikely to be based solely on human carriers, regardless of whether they are symptomatic or not. Conclusion The low incidence of cases and the low frequency of asymptomatic malaria carriers investigated make it unlikely that the transmission chain in the region is based solely on human hosts, as cases are isolated one from another by hundreds of kilometers and frequently by long periods of time, reinforcing instead the hypothesis of zoonotic transmission. Electronic supplementary material The online version of this article (10.1186/s12936-018-2263-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Filomena E C de Alencar
- Graduate Programme in Infectious Diseases, Federal University of Espírito Santo, Vitória, Brazil.
| | | | - Crispim Cerutti Junior
- Graduate Programme in Infectious Diseases, Federal University of Espírito Santo, Vitória, Brazil
| | - Lícia Natal Fernandes
- Protozoology Laboratory, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Julyana Cerqueira Buery
- Graduate Programme in Infectious Diseases, Federal University of Espírito Santo, Vitória, Brazil
| | - Blima Fux
- Graduate Programme in Infectious Diseases, Federal University of Espírito Santo, Vitória, Brazil
| | - Helder Ricas Rezende
- Entomology and Malacology Unit, Espírito Santo State Department of Health (SESA), Vitória, Brazil
| | | | | | | |
Collapse
|
32
|
Faust CL, McCallum HI, Bloomfield LSP, Gottdenker NL, Gillespie TR, Torney CJ, Dobson AP, Plowright RK. Pathogen spillover during land conversion. Ecol Lett 2018; 21:471-483. [DOI: 10.1111/ele.12904] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Christina L. Faust
- Department of Microbiology and Immunology; Montana State University; Montana MT USA
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ USA
- Institute of Biodiversity, Animal Health and Comparative Medicine; Universtiy of Glasgow; Glasgow UK
| | - Hamish I. McCallum
- Environmental Futures Research Institute and Griffith School of Environment; Griffith University; Griffith Qld. Australia
| | - Laura S. P. Bloomfield
- Emmett Interdisciplinary Program in Environment and Resources; Stanford University; Stanford CA USA
| | - Nicole L. Gottdenker
- Department of Veterinary Pathology; College of Veterinary Medicine; University of Georgia; Athens GA USA
| | - Thomas R. Gillespie
- Department of Environmental Sciences; Department of Environmental Health; Rollins School of Public Health; Program In Population; Biology, Ecology and Evolution; Emory University; Athens GA USA
| | - Colin J. Torney
- School of Mathematics and Statistics; University of Glasgow; Glasgow UK
| | - Andrew P. Dobson
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ USA
| | - Raina K. Plowright
- Department of Microbiology and Immunology; Montana State University; Montana MT USA
| |
Collapse
|
33
|
Abstract
Since the turn of the century, a remarkable expansion has been achieved in the range and effectiveness of products and strategies available to prevent, treat, and control malaria, including advances in diagnostics, drugs, vaccines, and vector control. These advances have once again put malaria elimination on the agenda. However, it is clear that even with the means available today, malaria control and elimination pose a formidable challenge in many settings. Thus, currently available resources must be used more effectively, and new products and approaches likely to achieve these goals must be developed. This paper considers tools (both those available and others that may be required) to achieve and maintain malaria elimination. New diagnostics are needed to direct treatment and detect transmission potential; new drugs and vaccines to overcome existing resistance and protect against clinical and severe disease, as well as block transmission and prevent relapses; and new vector control measures to overcome insecticide resistance and more powerfully interrupt transmission. It is also essential that strategies for combining new and existing approaches are developed for different settings to maximise their longevity and effectiveness in areas with continuing transmission and receptivity. For areas where local elimination has been recently achieved, understanding which measures are needed to maintain elimination is necessary to prevent rebound and the reestablishment of transmission. This becomes increasingly important as more countries move towards elimination.
Collapse
|
34
|
Diez Benavente E, Florez de Sessions P, Moon RW, Holder AA, Blackman MJ, Roper C, Drakeley CJ, Pain A, Sutherland CJ, Hibberd ML, Campino S, Clark TG. Analysis of nuclear and organellar genomes of Plasmodium knowlesi in humans reveals ancient population structure and recent recombination among host-specific subpopulations. PLoS Genet 2017; 13:e1007008. [PMID: 28922357 PMCID: PMC5619863 DOI: 10.1371/journal.pgen.1007008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/28/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022] Open
Abstract
The macaque parasite Plasmodium knowlesi is a significant concern in Malaysia where cases of human infection are increasing. Parasites infecting humans originate from genetically distinct subpopulations associated with the long-tailed (Macaca fascicularis (Mf)) or pig-tailed macaques (Macaca nemestrina (Mn)). We used a new high-quality reference genome to re-evaluate previously described subpopulations among human and macaque isolates from Malaysian-Borneo and Peninsular-Malaysia. Nuclear genomes were dimorphic, as expected, but new evidence of chromosomal-segment exchanges between subpopulations was found. A large segment on chromosome 8 originating from the Mn subpopulation and containing genes encoding proteins expressed in mosquito-borne parasite stages, was found in Mf genotypes. By contrast, non-recombining organelle genomes partitioned into 3 deeply branched lineages, unlinked with nuclear genomic dimorphism. Subpopulations which diverged in isolation have re-connected, possibly due to deforestation and disruption of wild macaque habitats. The resulting genomic mosaics reveal traits selected by host-vector-parasite interactions in a setting of ecological transition.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Robert W. Moon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Michael J. Blackman
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Cally Roper
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christopher J. Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Arnab Pain
- King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Colin J. Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin L. Hibberd
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Genome Institute of Singapore, Biopolis, Singapore
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
35
|
Abstract
Malaria is caused in humans by five species of single-celled eukaryotic Plasmodium parasites (mainly Plasmodium falciparum and Plasmodium vivax) that are transmitted by the bite of Anopheles spp. mosquitoes. Malaria remains one of the most serious infectious diseases; it threatens nearly half of the world's population and led to hundreds of thousands of deaths in 2015, predominantly among children in Africa. Malaria is managed through a combination of vector control approaches (such as insecticide spraying and the use of insecticide-treated bed nets) and drugs for both treatment and prevention. The widespread use of artemisinin-based combination therapies has contributed to substantial declines in the number of malaria-related deaths; however, the emergence of drug resistance threatens to reverse this progress. Advances in our understanding of the underlying molecular basis of pathogenesis have fuelled the development of new diagnostics, drugs and insecticides. Several new combination therapies are in clinical development that have efficacy against drug-resistant parasites and the potential to be used in single-dose regimens to improve compliance. This ambitious programme to eliminate malaria also includes new approaches that could yield malaria vaccines or novel vector control strategies. However, despite these achievements, a well-coordinated global effort on multiple fronts is needed if malaria elimination is to be achieved.
Collapse
Affiliation(s)
- Margaret A Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA
| | | | | | | | - Wesley C Van Voorhis
- University of Washington, Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Seattle, Washington, USA
| | | |
Collapse
|
36
|
Richards J, Mueller I. Identifying the risks for human transmission of Plasmodium knowlesi. Lancet Planet Health 2017; 1:e83-e85. [PMID: 29851611 DOI: 10.1016/s2542-5196(17)30053-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 06/08/2023]
Affiliation(s)
- Jack Richards
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia; Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Melbourne, VIC 3052, Australia; Institut Pasteur, Paris, France; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
37
|
Abstract
Plasmodium knowlesi is a simian malaria of primarily the macaque species of South East Asia. While it was known that human infections could be induced during the years of malariotherapy, naturally occurring P. knowlesi human infections were thought to be rare. However, in 2004, knowlesi infections became recognized as an important infection amongst human populations in Sarawak, Malaysian Borneo. Since then, it has become recognized as a disease affecting people living and visiting endemic areas across South East Asia. Over the last 12 years, clinical studies have improved our understanding of this potentially fatal disease. In this review article the current literature is reviewed to give a comprehensive description of the disease and treatment.
Collapse
|
38
|
Abstract
Plasmodium knowlesi a simian malaria parasite is currently affecting humans in Southeast Asia. Malaysia has reported the most number of cases and P. knowlesi is the predominant species occurring in humans. The vectors of P. knowlesi belong to the Leucosphyrus group of Anopheles mosquitoes. These are generally described as forest-dwelling mosquitoes. With deforestation and changes in land-use, some species have become predominant in farms and villages. However, knowledge on the distribution of these vectors in the country is sparse. From a public health point of view it is important to know the vectors, so that risk factors towards knowlesi malaria can be identified and control measures instituted where possible. Here, we review what is known about the knowlesi malaria vectors and ascertain the gaps in knowledge, so that future studies could concentrate on this paucity of data in-order to address this zoonotic problem.
Collapse
|
39
|
Moyes CL, Shearer FM, Huang Z, Wiebe A, Gibson HS, Nijman V, Mohd-Azlan J, Brodie JF, Malaivijitnond S, Linkie M, Samejima H, O'Brien TG, Trainor CR, Hamada Y, Giordano AJ, Kinnaird MF, Elyazar IRF, Sinka ME, Vythilingam I, Bangs MJ, Pigott DM, Weiss DJ, Golding N, Hay SI. Predicting the geographical distributions of the macaque hosts and mosquito vectors of Plasmodium knowlesi malaria in forested and non-forested areas. Parasit Vectors 2016; 9:242. [PMID: 27125995 PMCID: PMC4850754 DOI: 10.1186/s13071-016-1527-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/21/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Plasmodium knowlesi is a zoonotic pathogen, transmitted among macaques and to humans by anopheline mosquitoes. Information on P. knowlesi malaria is lacking in most regions so the first step to understand the geographical distribution of disease risk is to define the distributions of the reservoir and vector species. METHODS We used macaque and mosquito species presence data, background data that captured sampling bias in the presence data, a boosted regression tree model and environmental datasets, including annual data for land classes, to predict the distributions of each vector and host species. We then compared the predicted distribution of each species with cover of each land class. RESULTS Fine-scale distribution maps were generated for three macaque host species (Macaca fascicularis, M. nemestrina and M. leonina) and two mosquito vector complexes (the Dirus Complex and the Leucosphyrus Complex). The Leucosphyrus Complex was predicted to occur in areas with disturbed, but not intact, forest cover (> 60% tree cover) whereas the Dirus Complex was predicted to occur in areas with 10-100% tree cover as well as vegetation mosaics and cropland. Of the macaque species, M. nemestrina was mainly predicted to occur in forested areas whereas M. fascicularis was predicted to occur in vegetation mosaics, cropland, wetland and urban areas in addition to forested areas. CONCLUSIONS The predicted M. fascicularis distribution encompassed a wide range of habitats where humans are found. This is of most significance in the northern part of its range where members of the Dirus Complex are the main P. knowlesi vectors because these mosquitoes were also predicted to occur in a wider range of habitats. Our results support the hypothesis that conversion of intact forest into disturbed forest (for example plantations or timber concessions), or the creation of vegetation mosaics, will increase the probability that members of the Leucosphyrus Complex occur at these locations, as well as bringing humans into these areas. An explicit analysis of disease risk itself using infection data is required to explore this further. The species distributions generated here can now be included in future analyses of P. knowlesi infection risk.
Collapse
Affiliation(s)
- Catherine L Moyes
- Spatial Ecology & Epidemiology Group, The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK.
| | - Freya M Shearer
- Spatial Ecology & Epidemiology Group, The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK
| | - Zhi Huang
- Spatial Ecology & Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Antoinette Wiebe
- Spatial Ecology & Epidemiology Group, The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK
| | - Harry S Gibson
- Spatial Ecology & Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Vincent Nijman
- Department of Social Sciences, Oxford Brookes University, Oxford, OX1 0BP, UK
| | - Jayasilan Mohd-Azlan
- Department of Zoology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Jedediah F Brodie
- Departments of Zoology and Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Suchinda Malaivijitnond
- Primate Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Matthew Linkie
- Fauna & Flora International, Singapore, 247672, Singapore
| | - Hiromitsu Samejima
- Institute for Global Environmental Strategies, Kamiyamaguchi 2108-11, Hayama-cho, 240-0115, Kanagawa, Japan
| | - Timothy G O'Brien
- Wildlife Conservation Society, Mpala Research Center, Nanyuki, 10400, Kenya
| | - Colin R Trainor
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Northern Territory, 0909, Australia
- Faculty of Science and Technology, Federation University Australia, Mt Helen, Victoria, 3350, Australia
| | - Yuzuru Hamada
- Evolutionary Morphology Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Anthony J Giordano
- Field Conservation Program, S.P.E.C.I.E.S., Ventura, CA, USA
- Conservation Science Program, Tiger Creek Wildlife Refuge, Tyler, TX, USA
| | | | | | - Marianne E Sinka
- Spatial Ecology & Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Michael J Bangs
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
- Public Health and Malaria Control Department, International SOS, Jalan Kertajasa, Kuala Kencana, Papua, 99920, Indonesia
| | - David M Pigott
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, 98121, USA
| | - Daniel J Weiss
- Spatial Ecology & Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Nick Golding
- Spatial Ecology & Epidemiology Group, The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, 98121, USA
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|