1
|
Waddington JL, Wang X, Zhen X. 'Whole-Body' Perspectives of Schizophrenia and Related Psychotic Illness: miRNA-143 as an Exemplary Molecule Implicated across Multi-System Dysfunctions. Biomolecules 2024; 14:1185. [PMID: 39334950 PMCID: PMC11430658 DOI: 10.3390/biom14091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
A wide array of biological abnormalities in psychotic illness appear to reflect non-cerebral involvement. This review first outlines the evidence for such a whole-body concept of schizophrenia pathobiology, focusing particularly on cardiovascular disease, metabolic syndrome and diabetes, immunity and inflammation, cancer, and the gut-brain axis. It then considers the roles of miRNAs in general and of miRNA-143 in particular as they relate to the epidemiology, pathobiology, and treatment of schizophrenia. This is followed by notable evidence that miRNA-143 is also implicated in each of these domains of cardiovascular disease, metabolic syndrome and diabetes, immunity and inflammation, cancer, and the gut-brain axis. Thus, miRNA-143 is an exemplar of what may be a class of molecules that play a role across the multiple domains of bodily dysfunction that appear to characterize a whole-body perspective of illness in schizophrenia. Importantly, the existence of such an exemplary molecule across these multiple domains implies a coordinated rather than stochastic basis. One candidate process would be a pleiotropic effect of genetic risk for schizophrenia across the whole body.
Collapse
Affiliation(s)
- John L. Waddington
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (X.W.); (X.Z.)
| | - Xiaoyu Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (X.W.); (X.Z.)
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (X.W.); (X.Z.)
| |
Collapse
|
2
|
Armio RL, Laurikainen H, Ilonen T, Walta M, Sormunen E, Tolvanen A, Salokangas RKR, Koutsouleris N, Tuominen L, Hietala J. Longitudinal study on hippocampal subfields and glucose metabolism in early psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:66. [PMID: 39085221 PMCID: PMC11291638 DOI: 10.1038/s41537-024-00475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/11/2024] [Indexed: 08/02/2024]
Abstract
Altered hippocampal morphology and metabolic pathology, but also hippocampal circuit dysfunction, are established phenomena seen in psychotic disorders. Thus, we tested whether hippocampal subfield volume deficits link with deviations in glucose metabolism commonly seen in early psychosis, and whether the glucose parameters or subfield volumes change during follow-up period using one-year longitudinal study design of 78 first-episode psychosis patients (FEP), 48 clinical high-risk patients (CHR) and 83 controls (CTR). We also tested whether hippocampal morphology and glucose metabolism relate to clinical outcome. Hippocampus subfields were segmented with Freesurfer from 3T MRI images and parameters of glucose metabolism were determined in fasting plasma samples. Hippocampal subfield volumes were consistently lower in FEPs, and findings were more robust in non-affective psychoses, with strongest decreases in CA1, molecular layer and hippocampal tail, and in hippocampal tail of CHRs, compared to CTRs. These morphometric differences remained stable at one-year follow-up. Both non-diabetic CHRs and FEPs had worse glucose parameters compared to CTRs at baseline. We found that, insulin levels and insulin resistance increased during the follow-up period only in CHR, effect being largest in the CHRs converting to psychosis, independent of exposure to antipsychotics. The worsening of insulin resistance was associated with deterioration of function and symptoms in CHR. The smaller volume of hippocampal tail was associated with higher plasma insulin and insulin resistance in FEPs, at the one-year follow-up. Our longitudinal study supports the view that temporospatial hippocampal subfield volume deficits are stable near the onset of first psychosis, being more robust in non-affective psychoses, but less prominent in the CHR group. Specific subfield defects were related to worsening glucose metabolism during the progression of psychosis, suggesting that hippocampus is part of the circuits regulating aberrant glucose metabolism in early psychosis. Worsening of glucose metabolism in CHR group was associated with worse clinical outcome measures indicating a need for heightened clinical attention to metabolic problems already in CHR.
Collapse
Grants
- Turun Yliopistollisen Keskussairaalan Koulutus- ja Tutkimussäätiö (TYKS-säätiö)
- Alfred Kordelinin Säätiö (Alfred Kordelin Foundation)
- Finnish Cultural Foundation | Varsinais-Suomen Rahasto (Varsinais-Suomi Regional Fund)
- Suomalainen Lääkäriseura Duodecim (Finnish Medical Society Duodecim)
- Turun Yliopisto (University of Turku)
- This work was supported by funding for the VAMI-project (Turku University Hospital, state research funding, no. P3848), partly supported by EU FP7 grants (PRONIA, grant a # 602152 and METSY grant #602478). Dr. Armio received personal funding from Doctoral Programme in Clinical Research at the University of Turku, grants from State Research Funding, Turunmaa Duodecim Society, Finnish Psychiatry Research Foundation, Finnish University Society of Turku (Valto Takala Foundation), Tyks-foundation, The Finnish Medical Foundation (Maija and Matti Vaskio fund), University of Turku, The Alfred Kordelin Foundation, Finnish Cultural Foundation (Terttu Enckell fund and Ritva Helminen fund) and The Alfred Kordelin foundation. Further, Dr. Tuominen received personal grant from Sigrid Juselius and Orion research foundation and NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation.
- This work was supported by funding for the VAMI-project (Turku University Hospital, state research funding, no. P3848), partly supported by EU FP7 grants (PRONIA, grant a # 602152 and METSY grant #602478). Dr. Tuominen received personal grant from Sigrid Juselius and Orion research foundation and NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation.
Collapse
Affiliation(s)
- Reetta-Liina Armio
- PET Centre, Turku University Hospital, 20520, Turku, Finland.
- Department of Psychiatry, University of Turku, 20700, Turku, Finland.
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland.
| | - Heikki Laurikainen
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| | - Tuula Ilonen
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
| | - Maija Walta
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| | - Elina Sormunen
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| | - Arvi Tolvanen
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
| | | | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, D-80336, Munich, Germany
| | - Lauri Tuominen
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
- The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jarmo Hietala
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| |
Collapse
|
3
|
Rogdaki M, McCutcheon RA, D'Ambrosio E, Mancini V, Watson CJ, Fanshawe JB, Carr R, Telesia L, Martini MG, Philip A, Gilbert BJ, Salazar-de-Pablo G, Kyriakopoulos M, Siskind D, Correll CU, Cipriani A, Efthimiou O, Howes OD, Pillinger T. Comparative physiological effects of antipsychotic drugs in children and young people: a network meta-analysis. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:510-521. [PMID: 38897716 PMCID: PMC11790527 DOI: 10.1016/s2352-4642(24)00098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/27/2024] [Accepted: 04/02/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND The degree of physiological responses to individual antipsychotic drugs is unclear in children and adolescents. With network meta-analysis, we aimed to investigate the effects of various antipsychotic medications on physiological variables in children and adolescents with neuropsychiatric and neurodevelopmental conditions. METHODS For this network meta-analysis, we searched Medline, EMBASE, PsycINFO, Web of Science, and Scopus from database inception until Dec 22, 2023, and included randomised controlled trials comparing antipsychotics with placebo in children or adolescents younger than 18 years with any neuropsychiatric and neurodevelopmental condition. Primary outcomes were mean change from baseline to end of acute treatment in bodyweight, BMI, fasting glucose, total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, prolactin, heart rate, systolic blood pressure (SBP), and QT interval corrected for heart rate (QTc) for patients receiving either active treatment or placebo. For multigroup trials reporting several doses, we calculated a summary value for each physiological variable for all doses. After transitivity assessment, we fitted frequentist random-effects network meta-analyses for all comparisons in the network. A Kilim plot was used to summarise the results for all treatments and outcomes, providing information regarding the strength of the statistical evidence of treatment effects, using p values. Network heterogeneity was assessed with τ, risk of bias of individual trials was assessed with the Cochrane Collaboration's Tool for Assessing Risk of Bias, and the credibility of findings from each network meta-analysis was assessed with the Confidence in Network Meta-Analysis (CINEMA) app. This study is registered on PROSPERO (CRD42021274393). FINDINGS Of 6676 studies screened, 47 randomised controlled trials were included, which included 6500 children (mean age 13·29 years, SD 2·14) who received treatment for a median of 7 weeks (IQR 6-8) with either placebo (n=2134) or one of aripiprazole, asenapine, blonanserin, clozapine, haloperidol, lurasidone, molindone, olanzapine, paliperidone, pimozide, quetiapine, risperidone, or ziprasidone (n=4366). Mean differences for bodyweight change gain compared with placebo ranged from -2·00 kg (95% CI -3·61 to -0·39) with molindone to 5·60 kg (0·27 to 10·94) with haloperidol; BMI -0·70 kg/m2 (-1·21 to -0·19) with molindone to 2·03 kg/m2 (0·51 to 3·55) with quetiapine; total cholesterol -0·04 mmol/L (-0·39 to 0·31) with blonanserin to 0·35 mmol/L (0·17 to 0·53) with quetiapine; LDL cholesterol -0·12 mmol/L (-0·31 to 0·07) with risperidone or paliperidone to 0·17 mmol/L (-0·06 to 0·40) with olanzapine; HDL cholesterol 0·05 mmol/L (-0·19 to 0·30) with quetiapine to 0·48 mmol/L (0·18 to 0·78) with risperidone or paliperidone; triglycerides -0·03 mmol/L (-0·12 to 0·06) with lurasidone to 0·29 mmol/L (0·14 to 0·44) with olanzapine; fasting glucose from -0·09 mmol/L (-1·45 to 1·28) with blonanserin to 0·74 mmol/L (0·04 to 1·43) with quetiapine; prolactin from -2·83 ng/mL (-8·42 to 2·75) with aripiprazole to 26·40 ng/mL (21·13 to 31·67) with risperidone or paliperidone; heart rate from -0·20 bpm (-8·11 to 7·71) with ziprasidone to 12·42 bpm (3·83 to 21·01) with quetiapine; SBP from -3·40 mm Hg (-6·25 to -0·55) with ziprasidone to 10·04 mm Hg (5·56 to 14·51) with quetiapine; QTc from -0·61 ms (-1·47 to 0·26) with pimozide to 0·30 ms (-0·05 to 0·65) with ziprasidone. INTERPRETATION Children and adolescents show varied but clinically significant physiological responses to individual antipsychotic drugs. Treatment guidelines for children and adolescents with a range of neuropsychiatric and neurodevelopmental conditions should be updated to reflect each antipsychotic drug's distinct profile for associated metabolic changes, alterations in prolactin, and haemodynamic alterations. FUNDING UK Academy of Medical Sciences, Brain and Behaviour Research Foundation, UK National Institute of Health Research, Maudsley Charity, the Wellcome Trust, Medical Research Council, National Institute of Health and Care Research Biomedical Centre at King's College London and South London and Maudsley NHS Foundation Trust, the Italian Ministry of University and Research, the Italian National Recovery and Resilience Plan, and Swiss National Science Foundation.
Collapse
Affiliation(s)
- Maria Rogdaki
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Francis Crick Institute, London, UK.
| | - Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Enrico D'Ambrosio
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | | | - Cameron J Watson
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Neuropsychiatry Research and Education Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| | | | - Richard Carr
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Laurence Telesia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| | - Maria Giulia Martini
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Children and Young People Eating Disorder Service, Central and Northwest London NHS Foundation Trust, London, UK; Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Aaron Philip
- South West London and St George's Mental Health NHS Trust, London, UK
| | - Barnabas J Gilbert
- Psychiatric Imaging Group, Medical Research Council London Institute of Medical Sciences, Imperial College London, London, UK
| | - Gonzalo Salazar-de-Pablo
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Marinos Kyriakopoulos
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK; 1st Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece
| | - Dan Siskind
- Addiction and Mental Health Service, Metro South Health, Brisbane, QLD, Australia; Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Christoph U Correll
- Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, New York, NY, USA; Department of Psychiatry and Molecular Medicine, Zucker School of Medicine, Hofstra University, Hempstead, NY, USA; Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea Cipriani
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Orestis Efthimiou
- Department of Psychiatry, University of Oxford, Oxford, UK; Institute of Social and Preventive Medicine and Institute of Primary Health Care, University of Bern, Bern, Switzerland
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Psychiatric Imaging Group, Medical Research Council London Institute of Medical Sciences, Imperial College London, London, UK
| | - Toby Pillinger
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Psychiatric Imaging Group, Medical Research Council London Institute of Medical Sciences, Imperial College London, London, UK
| |
Collapse
|
4
|
Milanović S, Dedic N, Lew R, Burton D, Koblan KS, Camilleri M, Hopkins SC. TAAR1 agonist ulotaront delays gastric emptying of solids in patients with schizophrenia and concurrent metabolic syndrome with prediabetes. Diabetes Obes Metab 2024; 26:2466-2475. [PMID: 38533552 DOI: 10.1111/dom.15569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Metabolic syndrome (MetS), which can be induced or exacerbated by the current class of antipsychotic drugs, is highly prevalent in patients with schizophrenia and presents significant challenges to lifetime disease management. Supported by initial clinical results, trace amine-associated receptor 1 (TAAR1) agonists have emerged as potential novel treatments for schizophrenia. Notably, non-clinical studies have also shown weight-lowering and glucoregulatory effects of TAAR1 agonists, including the investigational agent ulotaront. However, the translatability of these findings to humans has not been adequately assessed. Given that delayed gastric emptying (GE) was identified as a potential mechanism contributing to the metabolic benefits of TAAR1 agonists in rodents, the aim of this study was to evaluate the effect of ulotaront on GE in patients with schizophrenia and concurrent MetS with prediabetes. METHODS Patients with schizophrenia were randomized to receive a single oral dose of ulotaront (150 mg) and their previous antipsychotic (PA) in an open-label, crossover, two-sequence design (NCT05402111). Eligible participants fulfilled at least three of five MetS criteria and had prediabetes defined by elevated glycated haemoglobin (5.7-6.4%) and/or fasting homeostatic model assessment of insulin resistance (i.e. ≥2.22). Following an overnight fast and 4 h post-dose, participants ingested a 99mTc-sulphur colloid radiolabelled egg meal (320 kcal, 30% fat). GE was measured by scintigraphy over 4 h. Endpoints included GE of solids half-time (T1/2) and percentage gastric retention at 1, 2 and 4 h. RESULTS Thirty-one adults were randomized and 27 completed the study. Ulotaront significantly delayed GE of solids [median GE T1/2 ulotaront at 139 min (119, 182) vs. the participant's PA of 124 min (109, 132), p = .006]. A significant increase in gastric retention was seen in the ulotaront versus the PA group at 1 h (80% vs. 75%, p = .015), 2 h (61% vs. 50%, p = .023) and 4 h (17% vs. 7%, p = .002) post-meal. CONCLUSION Ulotaront delayed the GE of solids in patients with schizophrenia and concurrent MetS with prediabetes. Additional studies are needed to assess whether treatment with TAAR1 agonists is associated with weight loss and glucoregulatory improvement.
Collapse
Affiliation(s)
| | - Nina Dedic
- Sumitomo Pharma America, Inc., Marlborough, Massachusetts, USA
| | - Robert Lew
- Sumitomo Pharma America, Inc., Marlborough, Massachusetts, USA
| | | | | | | | - Seth C Hopkins
- Sumitomo Pharma America, Inc., Marlborough, Massachusetts, USA
| |
Collapse
|
5
|
Dedic N, Wang L, Hajos-Korcsok E, Hecksher-Sørensen J, Roostalu U, Vickers SP, Wu S, Anacker C, Synan C, Jones PG, Milanovic S, Hopkins SC, Bristow LJ, Koblan KS. TAAR1 agonists improve glycemic control, reduce body weight and modulate neurocircuits governing energy balance and feeding. Mol Metab 2024; 80:101883. [PMID: 38237896 PMCID: PMC10839149 DOI: 10.1016/j.molmet.2024.101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
OBJECTIVE Metabolic Syndrome, which can be induced or exacerbated by current antipsychotic drugs (APDs), is highly prevalent in schizophrenia patients. Recent preclinical and clinical evidence suggest that agonists at trace amine-associated receptor 1 (TAAR1) have potential as a new treatment option for schizophrenia. Intriguingly, preclinical tudies have also identified TAAR1 as a novel regulator of metabolic control. Here we evaluated the effects of three TAAR1 agonists, including the clinical development candidate ulotaront, on body weight, metabolic parameters and modulation of neurocircuits implicated in homeostatic and hedonic feeding. METHODS Effects of TAAR1 agonists (ulotaront, RO5166017 and/or RO5263397) on body weight, food intake and/or metabolic parameters were investigated in rats fed a high-fat diet (HFD) and in a mouse model of diet-induced obesity (DIO). Body weight effects were also determined in a rat and mouse model of olanzapine-, and corticosterone-induced body weight gain, respectively. Glucose tolerance was assessed in lean and diabetic db/db mice and fasting plasma glucose and insulin examined in DIO mice. Effects on gastric emptying were evaluated in lean mice and rats. Drug-induced neurocircuit modulation was evaluated in mice using whole-brain imaging of c-fos protein expression. RESULTS TAAR1 agonists improved oral glucose tolerance by inhibiting gastric emptying. Sub-chronic administration of ulotaront in rats fed a HFD produced a dose-dependent reduction in body weight, food intake and liver triglycerides compared to vehicle controls. In addition, a more rapid reversal of olanzapine-induced weight gain and food intake was observed in HFD rats switched to ulotaront or RO5263397 treatment compared to those switched to vehicle. Chronic ulotaront administration also reduced body weight and improved glycemic control in DIO mice, and normalized corticosterone-induced body weight gain in mice. TAAR1 activation increased neuronal activity in discrete homeostatic and hedonic feeding centers located in the dorsal vagal complex and hypothalamus with concurrent activation of several limbic structures. CONCLUSION The current data demonstrate that TAAR1 agonists, as a class, not only lack APD-induced metabolic liabilities but can reduce body weight and improve glycemic control in rodent models. The underlying mechanisms likely include TAAR1-mediated peripheral effects on glucose homeostasis and gastric emptying as well as central regulation of energy balance and food intake.
Collapse
Affiliation(s)
- Nina Dedic
- Sumitomo Pharma America, Inc., Marlborough, MA, USA.
| | - Lien Wang
- Sumitomo Pharma America, Inc., Marlborough, MA, USA
| | | | | | | | | | - Serena Wu
- Department of Psychiatry, New York State Psychiatric Institute (NYSPI), Columbia University, NY, New York City, USA
| | - Christoph Anacker
- Department of Psychiatry, New York State Psychiatric Institute (NYSPI), Columbia University, NY, New York City, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Petrova NN, Semenova NV. [Metabolic syndrome and antipsychotic therapy of schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:165-170. [PMID: 39690565 DOI: 10.17116/jnevro2024124111165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The review article discusses the relationship of metabolic disorders with schizophrenia and antipsychotic therapy, the importance of metabolic syndrome for the health of patients with schizophrenia. Risk factors for the development of metabolic syndrome are considered. The metabolic side effects of various antipsychotics are characterized. Options for therapeutic tactics in the development of metabolic syndrome against the background of antipsychotic therapy are described.
Collapse
Affiliation(s)
- N N Petrova
- Saint Petersburg State University, St. Petersburg, Russia
| | - N V Semenova
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| |
Collapse
|
7
|
Miyakoshi T, Ishikawa S, Okubo R, Hashimoto N, Sato N, Kusumi I, Ito YM. Risk factors for abnormal glucose metabolism during antipsychotic treatment: A prospective cohort study. J Psychiatr Res 2023; 168:149-156. [PMID: 37913741 DOI: 10.1016/j.jpsychires.2023.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Antipsychotic medications increase the risk of abnormal glucose metabolism. However, in clinical practice, it is difficult to predict this risk because it is affected by medication-related and background factors. This study aimed to identify the risk factors for abnormal glucose metabolism during antipsychotic treatment. We conducted a multicenter, prospective, cohort study in patients with schizophrenia, schizoaffective disorder, or bipolar disorder. Of these patients, those with prediabetes or possible diabetes were excluded. Finally, 706 patients were included in the analysis. The hazard ratio (HR) for each factor was calculated for events of progression to hyperglycemia using time-dependent Cox regression analysis stratified according to facility type and adjusted for available background and drug-related factors. Treatments with olanzapine (HR = 2.06, 95% confidence interval [CI] = 1.05-4.05), clozapine (HR = 4.25, 95% CI = 1.56-11.60), and chlorpromazine (HR = 4.48, 95% CI = 1.21-16.57), overweight and obesity (HR = 1.57, 95% CI = 1.02-2.41), and hypertriglyceridemia (HR = 1.72, 95% CI = 1.02-2.88) were associated with a significantly higher occurrence of hyperglycemic progression. The number and daily dose of antipsychotics were not associated with their occurrence. Our study demonstrated that more careful monitoring is necessary during olanzapine, clozapine, and chlorpromazine treatment because of the higher occurrence of abnormalities in glucose metabolism. Furthermore, patients with obesity or hypertriglyceridemia warrant monitoring for the occurrence of abnormal glucose metabolism, regardless of the type of antipsychotic medication.
Collapse
Affiliation(s)
- Takashi Miyakoshi
- Department of Health Data Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Shuhei Ishikawa
- Department of Psychiatry, Hokkaido University Hospital, Sapporo, Japan.
| | - Ryo Okubo
- Department of Psychiatry and Neurology, National Hospital Organization Obihiro Hospital, Obihiro, Japan.
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Norihiro Sato
- Clinical Research & Medical Innovation Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan.
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Yoichi M Ito
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan.
| |
Collapse
|
8
|
Aymerich C, Pedruzo B, Pacho M, Laborda M, Herrero J, Pillinger T, McCutcheon RA, Alonso-Alconada D, Bordenave M, Martínez-Querol M, Arnaiz A, Labad J, Fusar-Poli P, González-Torres MÁ, Catalan A. Prolactin and morning cortisol concentrations in antipsychotic naïve first episode psychosis: A systematic review and meta-analysis. Psychoneuroendocrinology 2023; 150:106049. [PMID: 36758330 DOI: 10.1016/j.psyneuen.2023.106049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/02/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
IMPORTANCE Alterations in prolactin and cortisol levels have been reported in antipsychotic naïve patients with first episode psychosis (FEP). However, it has been studied in very small samples, and inter-group variability has never been studied before. OBJECTIVE To provide estimates of standardized mean differences (SMD) and inter-group variability for prolactin, cortisol awakening response (CAR) and morning cortisol concentrations in antipsychotic naïve FEP (AN-FEP) patients and healthy controls (HC). DATA SOURCES BIOSIS, KCI, MEDLINE, Russian Science Citation Index, SciELO, Cochrane, PsycINFO, Web of Science were searched from inception to February 28, 2022. STUDY SELECTION Peer-reviewed cohort studies that reported on prolactin or cortisol blood concentrations in AN- FEP patients and HC were included. DATA EXTRACTION AND SYNTHESIS Study characteristics, means and standard deviations (SD) were extracted from each article. Inter group differences in magnitude of effect were estimated using Hedges g. Inter-group variability was estimated with the coefficient of variation ratio (CVR). In both cases estimates were pooled using random-effects meta-analysis. Differences by study-level characteristics were estimated using meta-regression. PRISMA guideline was followed (No. CRD42022303555). MAIN OUTCOMES AND MEASURES Prolactin, CAR and morning cortisol blood concentrations in AN-FEP group in relation to HC group. RESULTS Fourteen studies for prolactin (N = 761 for AN-FEP group, N = 687 for HC group) and twelve studies for morning cortisol (N = 434 for AN-FEP group, N = 528 for HC group) were included. No studies were found in CAR in AN-FEP patients. Mean SMD for prolactin blood concentration was 0.88 (95% CI 0.57, 1.20) for male and 0.56 (95% CI 0.26, 0.87) for female. As a group, AN-FEP presented greater inter-group variability for prolactin levels than HC (CVR=1.28, 95% CI 1.02, 1.62). SMD for morning cortisol concentrations was non-significant: 0.34 (95% CI -0.01, 0.69) and no inter-group variability significant differences were detected: CVR= 1.05 (95% CI 0.91, 1.20). Meta-regression analyses for age and quality were non-significant. Funnel plots did not suggest a publication bias. CONCLUSIONS AND RELEVANCE Increased prolactin levels were found in AN-FEP patients. A greater inter-group variability in the AN-FEP group suggests the existence of patient subgroups with different prolactin levels. No significant abnormalities were found in morning cortisol levels. Further research is needed to clarify whether prolactin concentrations could be used as an illness biomarker.
Collapse
Affiliation(s)
- Claudia Aymerich
- Psychiatry Department, Basurto University Hospital, Basque Health Service (Osakidetza), Bilbao, Spain. Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
| | - Borja Pedruzo
- Psychiatry Department, Basurto University Hospital, Basque Health Service (Osakidetza), Bilbao, Spain
| | - Malein Pacho
- Psychiatry Department, Basurto University Hospital, Basque Health Service (Osakidetza), Bilbao, Spain
| | - María Laborda
- Psychiatry Department, Basurto University Hospital, Basque Health Service (Osakidetza), Bilbao, Spain
| | - Jon Herrero
- Psychiatry Department, Basurto University Hospital, Basque Health Service (Osakidetza), Bilbao, Spain
| | - Toby Pillinger
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Robert A McCutcheon
- Department of Psychiatry, University of Oxford, UK. Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Daniel Alonso-Alconada
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marta Bordenave
- Psychiatry Department, Basurto University Hospital, Basque Health Service (Osakidetza), Bilbao, Spain
| | | | - Ainara Arnaiz
- Erandio Mental Health Center, Basque Health Service (Osakidetza), Erandio, Spain. Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Javier Labad
- Mental Health Networking Biomedical Research Centre (CIBERSAM), Spain. Salut Mental Taulí, Parc Taulí University Hospital, I3PT, Autonomous University of Barcelona, Sabadell, Barcelona, Spain
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Section of Psychiatry, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; OASIS service, South London and Maudsley NHS Foundation Trust, London, UK; National Institute for Health Research, Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| | - Miguel Ángel González-Torres
- Psychiatry Department. Biocruces Bizkaia Health Research Institute, OSI Bilbao-Basurto. School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Centro de Investigación en Red de Salud Mental. (CIBERSAM), Instituto de Salud Carlos III, Plaza de Cruces 12, 48903 Barakaldo, Biscay, Spain
| | - Ana Catalan
- Psychiatry Department. Biocruces Bizkaia Health Research Institute, OSI Bilbao-Basurto. School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Centro de Investigación en Red de Salud Mental. (CIBERSAM), Instituto de Salud Carlos III, Plaza de Cruces 12, 48903 Barakaldo, Biscay, Spain
| |
Collapse
|
9
|
Pillinger T, Osimo EF, de Marvao A, Shah M, Francis C, Huang J, D'Ambrosio E, Firth J, Nour MM, McCutcheon RA, Pardiñas AF, Matthews PM, O'Regan DP, Howes OD. Effect of polygenic risk for schizophrenia on cardiac structure and function: a UK Biobank observational study. Lancet Psychiatry 2023; 10:98-107. [PMID: 36632818 DOI: 10.1016/s2215-0366(22)00403-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Cardiovascular disease is a major cause of excess mortality in people with schizophrenia. Several factors are responsible, including lifestyle and metabolic effects of antipsychotics. However, variations in cardiac structure and function are seen in people with schizophrenia in the absence of cardiovascular disease risk factors and after accounting for lifestyle and medication. Therefore, we aimed to explore whether shared genetic causes contribute to these cardiac variations. METHODS For this observational study, we used data from the UK Biobank and included White British or Irish individuals without diagnosed schizophrenia with variable polygenic risk scores for the condition. To test the association between polygenic risk score for schizophrenia and cardiac phenotype, we used principal component analysis and regression. Robust regression was then used to explore the association between the polygenic risk score for schizophrenia and individual cardiac phenotypes. We repeated analyses with fibro-inflammatory pathway-specific polygenic risk scores for schizophrenia. Last, we investigated genome-wide sharing of common variants between schizophrenia and cardiac phenotypes using linkage disequilibrium score regression. The primary outcome was principal component regression. FINDINGS Of 33 353 individuals recruited, 32 279 participants had complete cardiac MRI data and were included in the analysis, of whom 16 625 (51·5%) were female and 15 654 (48·5%) were male. 1074 participants were excluded on the basis of incomplete cardiac MRI data (for all phenotypes). A model regressing polygenic risk scores for schizophrenia onto the first five cardiac principal components of the principal components analysis was significant (F=5·09; p=0·00012). Principal component 1 captured a pattern of increased cardiac volumes, increased absolute peak diastolic strain rates, and reduced ejection fractions; polygenic risk scores for schizophrenia and principal component 1 were negatively associated (β=-0·01 [SE 0·003]; p=0·017). Similar to the principal component analysis results, for individual cardiac phenotypes, we observed negative associations between polygenic risk scores for schizophrenia and indexed right ventricular end-systolic volume (β=-0·14 [0·04]; p=0·0013, pFDR=0·015), indexed right ventricular end-diastolic volume (β=-0·17 [0·08]); p=0·025; pFDR=0·082), and absolute longitudinal peak diastolic strain rates (β=-0·01 [0·003]; p=0·0024, pFDR=0·015), and a positive association between polygenic risk scores for schizophrenia and right ventricular ejection fraction (β=0·09 [0·03]; p=0·0041, pFDR=0·015). Models examining the transforming growth factor-β (TGF-β)-specific and acute inflammation-specific polygenic risk scores for schizophrenia found significant associations with the first five principal components (F=2·62, p=0·022; F=2·54, p=0·026). Using linkage disequilibrium score regression, we observed genetic overlap with schizophrenia for right ventricular end-systolic volume and right ventricular ejection fraction (p=0·0090, p=0·0077). INTERPRETATION High polygenic risk scores for schizophrenia are associated with decreased cardiac volumes, increased ejection fractions, and decreased absolute peak diastolic strain rates. TGF-β and inflammatory pathways might be implicated, and there is evidence of genetic overlap for some cardiac phenotypes. Reduced absolute peak diastolic strain rates indicate increased myocardial stiffness and diastolic dysfunction, which increases risk of cardiac disease. Thus, genetic risk for schizophrenia is associated with cardiac structural changes that can worsen cardiac outcomes. Further work is required to determine whether these associations are specific to schizophrenia or are also seen in other psychiatric conditions. FUNDING National Institute for Health Research, Maudsley Charity, Wellcome Trust, Medical Research Council, Academy of Medical Sciences, Edmond J Safra Foundation, British Heart Foundation.
Collapse
Affiliation(s)
- Toby Pillinger
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychosis Studies, King's College London, London, UK; Psychiatric Imaging Group, Imperial College London, London, UK.
| | - Emanuele F Osimo
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK; Psychiatric Imaging Group, Imperial College London, London, UK
| | - Antonio de Marvao
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK; Department of Women and Children's Health, King's College London, London, UK
| | - Mit Shah
- Computational Cardiac Imaging Group, Imperial College London, London, UK
| | - Catherine Francis
- MRC London Institute of Medical Sciences, Department of Cardiovascular Genetics and Genomics, National Heart and Lung Institute, Imperial College London, London, UK; Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, Uxbridge, UK
| | - Jian Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK; Singapore Institute for Clinical Sciences (SICS), the Agency for Science, Technology and Research (A*STAR), Singapore
| | - Enrico D'Ambrosio
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychosis Studies, King's College London, London, UK; Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari 'Aldo Moro', Italy
| | - Joseph Firth
- Division of Psychology and Mental Health, University of Manchester, and Greater Manchester Mental Health NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Matthew M Nour
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychosis Studies, King's College London, London, UK; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, and Wellcome Trust Centre for Human Neuroimaging, University College London, London, UK; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychosis Studies, King's College London, London, UK; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Paul M Matthews
- Department of Brain Sciences and UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Declan P O'Regan
- Computational Cardiac Imaging Group, Imperial College London, London, UK
| | - Oliver D Howes
- Department of Psychological Medicine, King's College London, London, UK; Psychiatric Imaging Group, Imperial College London, London, UK; H Lundbeck A/S, St Albans, UK
| |
Collapse
|
10
|
Zhao X, Zhang S, Sanders AR, Duan J. Brain Lipids and Lipid Droplet Dysregulation in Alzheimer's Disease and Neuropsychiatric Disorders. Complex Psychiatry 2023; 9:154-171. [PMID: 38058955 PMCID: PMC10697751 DOI: 10.1159/000535131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023] Open
Abstract
Background Lipids are essential components of the structure and for the function of brain cells. The intricate balance of lipids, including phospholipids, glycolipids, cholesterol, cholesterol ester, and triglycerides, is crucial for maintaining normal brain function. The roles of lipids and lipid droplets and their relevance to neurodegenerative and neuropsychiatric disorders (NPDs) remain largely unknown. Summary Here, we reviewed the basic role of lipid components as well as a specific lipid organelle, lipid droplets, in brain function, highlighting the potential impact of altered lipid metabolism in the pathogenesis of Alzheimer's disease (AD) and NDPs. Key Messages Brain lipid dysregulation plays a pivotal role in the pathogenesis and progression of neurodegenerative and NPDs including AD and schizophrenia. Understanding the cell type-specific mechanisms of lipid dysregulation in these diseases is crucial for identifying better diagnostic biomarkers and for developing therapeutic strategies aiming at restoring lipid homeostasis.
Collapse
Affiliation(s)
- Xiaojie Zhao
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Alan R. Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| |
Collapse
|