1
|
Zheng M, Hong T, Zhou H, Garland EL, Hu Y. The acute effect of mindfulness-based regulation on neural indices of cue-induced craving in smokers. Addict Behav 2024; 159:108134. [PMID: 39178637 DOI: 10.1016/j.addbeh.2024.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/19/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Mindfulness has garnered attention for its potential in alleviating cigarette cravings; however, the neural mechanisms underlying its efficacy remain inadequately understood. This study (N=46, all men) aims to examine the impact of a mindfulness strategy on regulating cue-induced craving and associated brain activity. Twenty-three smokers, consuming over 10 cigarettes daily for at least 2 years, were compared to twenty-three non-smokers. During a regulation of craving task, participants were asked to practice mindfulness during smoking cue-exposure or passively view smoking cues while fMRI scans were completed. A 2 (condition: mindfulness-cigarette and look-cigarette) × 2 (phase: early, late of whole smoking cue-exposure period) repeated measures ANOVA showed a significant interaction of the craving scores between condition and phase, indicating that the mindfulness strategy dampened late-phase craving. Additionally, within the smoker group, the fMRI analyses revealed a significant main effect of mindfulness condition and its interaction with time in several brain networks involving reward, emotion, and interoception. Specifically, the bilateral insula, ventral striatum, and amygdala showed lower activation in the mindfulness condition, whereas the activation of right orbitofrontal cortex mirrored the strategy-time interaction effect of the craving change. This study illuminates the dynamic interplay between mindfulness, smoking cue-induced craving, and neural activity, offering insights into how mindfulness may effectively regulate cigarette cravings.
Collapse
Affiliation(s)
- Ming Zheng
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tiantian Hong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhou
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| | - Eric L Garland
- Sanford Institute for Empathy and Compassion, University of California San Diego, La Jolla, CA; Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, China; The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China; MOE Frontiers Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Wang Y, Xie M, Zheng L, Ma J, Wang M, Zhang L. Associations between parental rearing style and amygdala and hippocampal subfield abnormalities in drug-naive females with anorexia nervosa. BMC Psychiatry 2024; 24:648. [PMID: 39358695 PMCID: PMC11445996 DOI: 10.1186/s12888-024-06120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Altered volumes in the hippocampus and amygdala have been linked to anorexia nervosa (AN). This study aimed to investigate amygdala and hippocampal subfields volume abnormalities in AN patients, and their associations with parental rearing practices and clinical psychological characteristics. METHODS This study included twenty-nine drug-naive females with AN from West China Hospital of Sichuan University, China, and fifty-nine age- and gender-matched healthy controls (HCs) recruited through advertisement. All participants underwent T1-weighted imaging. Amygdala and hippocampal subfields volume was calculated using FreeSurfer 7.0. The Core Self-Evaluation Scale (CSES) and Rosenberg Self-Esteem Scale (RSES) were used to assess the psychological characteristics of AN patients. The Egna Minnen av Barndoms Uppfostran (EMBU) was employed to evaluate parental rearing practices. Group differences in brain volumes were analyzed with covariates like age and total intracranial volume (TIV). Partial correlation analysis explored the correlations between brain region volumes and clinical psychological characteristics. RESULTS AN patients exhibited lower RSES and CSES scores, and more adverse parental rearing style than healthy norms. After adjusting for covariates, AN patients showed decreased gray matter volume (GMV) in the left medial (Me) and cortical (Co) nucleus, as well as in the right hippocampal-amygdala transition area (HATA). GMV in the left Me was correlated with years of education among HCs but not among AN patients. GMV in the right HATA was positively correlated with paternal penalty and severity, as well as maternal overinterference. CONCLUSION This study supports structure abnormalities in amygdala and hippocampus in AN patients and suggests that parental rearing practices may be associated with hippocampal abnormalities, potentially contributing to the pathophysiology of AN. Addressing appropriate parental rearing styles may offer a positive impact on AN.
Collapse
Affiliation(s)
- Yu Wang
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China
| | - Min Xie
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China
| | - Linli Zheng
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China
| | - Jing Ma
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China
| | - Meiou Wang
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China
| | - Lan Zhang
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
3
|
Bernardoni F, Tam F, Poitz DM, Hellerhoff I, Arold D, Geisler D, Lemme F, Keeler J, Weidner K, Pariante C, Roessner V, King JA, Ehrlich S. Effect of serum concentrations of IL-6 and TNF-α on brain structure in anorexia nervosa: a combined cross-sectional and longitudinal study. Neuropsychopharmacology 2024; 49:1509-1517. [PMID: 38461330 PMCID: PMC11319803 DOI: 10.1038/s41386-024-01836-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 03/11/2024]
Abstract
Previous studies of brain structure in anorexia nervosa (AN) have reported reduced gray matter in underweight patients, which largely normalizes upon weight gain. One underlying biological mechanism may be glial cell alterations related to low-grade inflammation. Here, we investigated relationships between brain structure as measured by magnetic resonance imaging and serum concentrations of two pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor alpha) cross-sectionally in 82 underweight adolescent and young adult female patients (mean age 16.8 years; 59 of whom were observed longitudinally after short-term weight restoration; mean duration 2.8 months), 20 individuals long-term weight-recovered from AN (mean age 22.7 years) and 105 healthy control (HC) participants (mean age 17.2 years). We measured cortical thickness, subcortical volumes and local gyrification index, a measure of cortical folding. In contrast to most previous studies of cytokine concentrations in AN, we found no cross-sectional group differences (interleukin-6: p = 0.193, tumor necrosis factor alpha: p = 0.057) or longitudinal changes following weight restoration (interleukin-6: p = 0.201, tumor necrosis factor alpha: p = 0.772). As expected, widespread gray matter reductions (cortical thickness, subcortical volumes, cortical folding) were observed in underweight patients with AN compared to HC. However, we found no evidence of associations between cytokine concentrations and structural brain measures in any participant group. Furthermore, longitudinal changes in cytokine concentrations were unrelated to changes in gray matter. In conclusion, we did not identify any association between (sub-)inflammatory processes and structural brain changes in AN. Future studies are needed to elucidate which other factors besides nutritional status may contribute to brain morphological alterations.
Collapse
Affiliation(s)
- Fabio Bernardoni
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Friederike Tam
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - David M Poitz
- University Hospital Carl Gustav Carus, Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Inger Hellerhoff
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Dominic Arold
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Daniel Geisler
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Frances Lemme
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Johanna Keeler
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Kerstin Weidner
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Carmine Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Joseph A King
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
- Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
4
|
Peel HJ, Reggente N, Strober M, Feusner JD. Multivariate Neural Patterns of Reward and Anxiety in Adolescents with Anorexia Nervosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604826. [PMID: 39091848 PMCID: PMC11291162 DOI: 10.1101/2024.07.23.604826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
People with anorexia nervosa (AN) commonly exhibit elevated anxiety and atypical reward responsiveness. To examine multivariate neural patterns associated with reward and the impact of anxiety on reward, we analyzed fMRI data from a monetary reward task using representational similarity analysis, a multivariate approach that measures trial-by-trial consistency of neural responses. Twenty-five adolescent girls with AN and 22 mildly anxious controls lacking any history of AN were presented personalized anxiety-provoking or neutral words before receiving a reward, and neural response patterns in reward regions were analyzed. Consistent with our preregistered hypothesis, AN participants showed lower representational similarity than controls during neutral-word rewarded trials. Within groups, controls showed significant representational similarity in reward circuit regions including the left nucleus accumbens, left basolateral amygdala, and left medial orbitofrontal cortex, which were not observed in AN. Further, reward-related prefrontal cognitive control areas - left ventrolateral prefrontal cortex and left dorsolateral prefrontal cortex - showed significant representational similarity in both groups, but a larger spatial extent in controls. Contrary to predictions, there were no significant between-group differences for the effects of anxiety-words on reward representational similarity, and representational similarity did not predict longitudinal symptom change over six months. Overall, the results demonstrate relatively inconsistent trial-by-trial responses to reward receipt in the neutral state in AN compared with controls in both reward circuit and cognitive control regions, but no significant differential effects of anxiety states on reward responses. These results add to dynamic understandings of reward processing in AN that have potential implications for planning and guiding reward-focused interventions.
Collapse
Affiliation(s)
- Hayden J. Peel
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- La Trobe University, Melbourne, Victoria, Australia
| | - Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
| | - Michael Strober
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Jamie D. Feusner
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Division of Neurosciences & Clinical Translation, University of Toronto, Toronto, ON, Canada
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Keeler JL, Bahnsen K, Wronski ML, Bernardoni F, Tam F, Arold D, King JA, Kolb T, Poitz DM, Roessner V, Treasure J, Himmerich H, Ehrlich S. Longitudinal changes in brain-derived neurotrophic factor (BDNF) but not cytokines contribute to hippocampal recovery in anorexia nervosa above increases in body mass index. Psychol Med 2024; 54:2242-2253. [PMID: 38450444 DOI: 10.1017/s0033291724000394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
BACKGROUND Physical sequelae of anorexia nervosa (AN) include a marked reduction in whole brain volume and subcortical structures such as the hippocampus. Previous research has indicated aberrant levels of inflammatory markers and growth factors in AN, which in other populations have been shown to influence hippocampal integrity. METHODS Here we investigated the influence of concentrations of two pro-inflammatory cytokines (tumor necrosis factor-alpha [TNF-α] and interleukin-6 [IL-6]) and brain-derived neurotrophic factor (BDNF) on the whole hippocampal volume, as well as the volumes of three regions (the hippocampal body, head, and tail) and 18 subfields bilaterally. Investigations occurred both cross-sectionally between acutely underweight adolescent/young adult females with AN (acAN; n = 82) and people recovered from AN (recAN; n = 20), each independently pairwise age-matched with healthy controls (HC), and longitudinally in acAN after partial renourishment (n = 58). Hippocampal subfield volumes were quantified using FreeSurfer. Concentrations of molecular factors were analyzed in linear models with hippocampal (subfield) volumes as the dependent variable. RESULTS Cross-sectionally, there was no evidence for an association between IL-6, TNF-α, or BDNF and between-group differences in hippocampal subfield volumes. Longitudinally, increasing concentrations of BDNF were positively associated with longitudinal increases in bilateral global hippocampal volumes after controlling for age, age2, estimated total intracranial volume, and increases in body mass index (BMI). CONCLUSIONS These findings suggest that increases in BDNF may contribute to global hippocampal recovery over and above increases in BMI during renourishment. Investigations into treatments targeted toward increasing BDNF in AN may be warranted.
Collapse
Affiliation(s)
- Johanna Louise Keeler
- Centre for Research in Eating and Weight Disorders (CREW), Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Klaas Bahnsen
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Marie-Louis Wronski
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Fabio Bernardoni
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Friederike Tam
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Eating Disorder Treatment and Research Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Dominic Arold
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Joseph A King
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Theresa Kolb
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, TU Dresden, Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Janet Treasure
- Centre for Research in Eating and Weight Disorders (CREW), Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Hubertus Himmerich
- Centre for Research in Eating and Weight Disorders (CREW), Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Eating Disorder Treatment and Research Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
6
|
Hebebrand J, Plieger M, Milos G, Peters T, Hinney A, Antel J. Does hypoleptinemia trigger entrapment in anorexia nervosa? Etiological and clinical considerations. EUROPEAN EATING DISORDERS REVIEW 2024; 32:557-574. [PMID: 38303556 DOI: 10.1002/erv.3071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/08/2023] [Accepted: 01/13/2024] [Indexed: 02/03/2024]
Abstract
Based on the recent observation that human recombinant leptin (r-Met-hu-leptin; metreleptin) may induce a profound alleviation of the complex symptomatology of patients with anorexia nervosa (AN), we examine the implications for our conceptualisation of this eating disorder. Hypoleptinemia as a core endocrine feature of AN serves as a central and peripheral trigger of tissue-specific adaptations to starvation. In this narrative review, we argue that leptin deficiency may explain many of the puzzling features of this eating disorder. Weight loss can be viewed as a two-step process, with only the second step entailing hypoleptinemia and thereby the entrapment characteristic of AN. We discuss the central and peripheral distribution of leptin receptors and consider possible functional implications of hypoleptinemia. We contrast the slow psychological recovery of patients with AN and of people who experienced starvation upon weight recovery with the rapid onset of improvements upon off-label metreleptin treatment. Characteristics of the sex and age dependent secretion of leptin may contribute to the elevated vulnerability of young females to develop AN.
Collapse
Affiliation(s)
- Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Gabriella Milos
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
Alzaid H, Simon JJ, Brugnara G, Vollmuth P, Bendszus M, Friederich HC. Hypothalamic subregion alterations in anorexia nervosa and obesity: Association with appetite-regulating hormone levels. Int J Eat Disord 2024; 57:581-592. [PMID: 38243035 DOI: 10.1002/eat.24137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/21/2024]
Abstract
OBJECTIVE Anorexia nervosa (AN) and obesity are weight-related disorders with imbalances in energy homeostasis that may be due to hormonal dysregulation. Given the importance of the hypothalamus in hormonal regulation, we aimed to identify morphometric alterations to hypothalamic subregions linked to these conditions and their connection to appetite-regulating hormones. METHODS Structural magnetic resonance imaging (MRI) was obtained from 78 patients with AN, 27 individuals with obesity and 100 normal-weight healthy controls. Leptin, ghrelin, and insulin blood levels were measured in a subsample of each group. An automated segmentation method was used to segment the hypothalamus and its subregions. Volumes of the hypothalamus and its subregions were compared between groups, and correlational analysis was employed to assess the relationship between morphometric measurements and appetite-regulating hormone levels. RESULTS While accounting for total brain volume, patients with AN displayed a smaller volume in the inferior-tubular subregion (ITS). Conversely, obesity was associated with a larger volume in the anterior-superior, ITS, posterior subregions (PS), and entire hypothalamus. There were no significant volumetric differences between AN subtypes. Leptin correlated positively with PS volume, whereas ghrelin correlated negatively with the whole hypothalamus volume in the entire cohort. However, appetite-regulating hormone levels did not mediate the effects of body mass index on volumetric measures. CONCLUSION Our results indicate the importance of regional structural hypothalamic alterations in AN and obesity, extending beyond global changes to brain volume. Furthermore, these alterations may be linked to changes in hormonal appetite regulation. However, given the small sample size in our correlation analysis, further analyses in a larger sample size are warranted. PUBLIC SIGNIFICANCE Using an automated segmentation method to investigate morphometric alterations of hypothalamic subregions in AN and obesity, this study provides valuable insights into the complex interplay between hypothalamic alterations, hormonal appetite regulation, and body weight, highlighting the need for further research to uncover underlying mechanisms.
Collapse
Affiliation(s)
- Haidar Alzaid
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Joe J Simon
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Gianluca Brugnara
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Vollmuth
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hans-Christoph Friederich
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Wronski ML, Hohnemann C, Bernardoni F, Bahnsen K, Doose A, Arold D, Borucki K, Holsen LM, Lawson EA, Plessow F, Weidner K, Roessner V, Diestel S, King JA, Seidel M, Ehrlich S. Explicating the role of amygdala substructure alterations in the link between hypoleptinemia and rumination in anorexia nervosa. Acta Psychiatr Scand 2023; 148:368-381. [PMID: 37688292 DOI: 10.1111/acps.13607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/19/2023] [Accepted: 08/05/2023] [Indexed: 09/10/2023]
Abstract
OBJECTIVE The amygdaloid complex plays a pivotal role in emotion processing and has been associated with rumination transdiagnostically. In anorexia nervosa (AN), we previously observed differential reductions of amygdala nuclei volumes (rostral-medial cluster substantially affected) and, in another study, elevated food-/weight-related rumination. Both amygdala volumes and rumination frequency correlated with characteristically suppressed leptin levels in AN. Thus, we hypothesized that amygdala nuclei alterations might be associated with AN-related rumination and potentially mediate the leptin-rumination relationship in AN. METHODS Rumination (food-/weight-related) was assessed using ecological momentary assessment for a 14-day period. We employed frequentist and Bayesian linear mixed effects models in females with AN (n = 51, 12-29 years, majority admitted to inpatient treatment) and age-matched healthy females (n = 51) to investigate associations between rostral-medial amygdala nuclei volume alterations (accessory basal, cortical, medial nuclei, corticoamygdaloid transitions) and rumination. We analyzed mediation effects using multi-level structural equation models. RESULTS Reduced right accessory basal and cortical nuclei volumes predicted more frequent weight-related rumination in AN; both nuclei fully mediated the effect of leptin on weight-related rumination. In contrast, we found robust evidence for the absence of amygdala nuclei volume effects on rumination in healthy females. CONCLUSION This study provides first evidence for the relevance of specific amygdala substructure reductions regarding cognitive symptom severity in AN and points toward novel mechanistic insight into the relationship between hypoleptinemia and rumination, which might involve the amygdaloid complex. Our findings in AN may have important clinical value with respect to understanding the beneficial neuropsychiatric effects of leptin (treatment) in AN and potentially other psychiatric conditions such as depression.
Collapse
Affiliation(s)
- Marie-Louis Wronski
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Charlotte Hohnemann
- Schumpeter School of Business and Economics, Faculty of Economy, University of Wuppertal, Wuppertal, Germany
| | - Fabio Bernardoni
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Klaas Bahnsen
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Arne Doose
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Dominic Arold
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Katrin Borucki
- Department of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Laura M Holsen
- Division of Women's Health, Department of Medicine/Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Franziska Plessow
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kerstin Weidner
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Stefan Diestel
- Schumpeter School of Business and Economics, Faculty of Economy, University of Wuppertal, Wuppertal, Germany
| | - Joseph A King
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Maria Seidel
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Eating Disorder Treatment and Research Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|