1
|
Banday MT, Wani MA, Alqhtani HA, Bin-Jumah M, Rudayni HA, Allam AA, Algopishi UB, Adil S. Malva sylvestris leaf powder as a feed additive affects the performance, carcass traits, meat quality attributes, serum antioxidants, stress physiology, intestinal bacterial counts, and gut morphology of broiler chicken. Front Physiol 2024; 15:1462018. [PMID: 39387102 PMCID: PMC11461295 DOI: 10.3389/fphys.2024.1462018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
This study investigated the effect of supplementation of Malva sylvestris leaf powder (MSLP) on the production performance of broiler chicken. Ven Cobb broiler chicks (240 day-old male chicks) were distributed randomly into four treatments, each replicated four times, with 15 birds per replicate. The diets formulated were T1 (control) given basal diet only, T2 (basal diet +1.0% MSLP), T3 (basal diet +1.5% MSLP), and T4 (basal diet +2.0% MSLP). The highest improvement of 3.83% in the average daily gain (ADG) was recorded in the T3 group fed 1.5% Malva powder in the diet compared to the control (P = 0.009). The average daily feed intake (ADFI) tended to decrease with an increase in the dose of MSLP in the diet, with the lowest feed intake in the T4 group fed 2% MSLP. During the overall period (7-42 days), the feed/gain (F/G) ratio reduced significantly (P = 0.048) in the T3 and T4 groups compared to the control. The dressed and breast meat yield was found to be significantly (P < 0.05) higher in the T3 group, with no significant change (P > 0.05) in the thigh yield. The changes in the pH and water-holding capacity (WHC) of breast meat were found to be non-significant (p > 0.05) between the control and various other treatments. Thiobarbituric acid-reactive substances (TBARS) were significantly (P < 0.05) decreased in the T3 and T4 groups. There was no negative effect of including MSLP in the diet on the color coordinates of breast meat among different treatments. Compared to the control, the serum immunoglobulin values increased significantly (P < 0.05) in the T3 and T4 groups. Superoxide dismutase (SOD) showed no difference between various treatments; however, malondialdehyde (MDA) decreased significantly (P < 0.05) according to dietary treatments. Serum cortisol increased significantly (P < 0.05) in the T4 group compared to other treatments. The inclusion of Malva powder in the diet at the 2% level significantly (P < 0.05) decreased the coliform count compared to the control birds. Supplementation with Malva powder resulted in a significant (P < 0.05) increase in the villus height-to-crypt depth (VH:CD) ratio of broiler birds in the T3 and T4 groups. In conclusion, MSLP supplementation at 1.5% and 2% resulted in improved production performance of broiler chicken.
Collapse
Affiliation(s)
- Mohammad T. Banday
- Division of Livestock Production and Management, Faculty of Veterinary Sciences and Animal Husbandry, Srinagar, India
| | - Manzoor A. Wani
- Division of Livestock Production and Management, Faculty of Veterinary Sciences and Animal Husbandry, Srinagar, India
| | - Haifa A. Alqhtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - May Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hassan A. Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Ahmed A. Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef, Egypt
| | | | - Sheikh Adil
- Division of Livestock Production and Management, Faculty of Veterinary Sciences and Animal Husbandry, Srinagar, India
| |
Collapse
|
2
|
Adil S, Banday MT, Wani MA, Hussain SA, Shah S, Sheikh ID, Shafi M, Khan AA, Kashoo ZA, Pattoo RA, Swelum AA. Nano-protected form of rosemary essential oil has a positive influence on blood biochemistry parameters, haematological indices, immune-antioxidant status, intestinal microbiota and histomorphology of meat-type chickens. Poult Sci 2024; 103:104309. [PMID: 39303351 PMCID: PMC11426142 DOI: 10.1016/j.psj.2024.104309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
This study aimed to investigate the potential of free and nanoprotected rosemary essential oil (REO) as an antibiotic alternative in blood biochemistry, hematology, immune-antioxidant status, intestinal microbiology, and histomorphology of broilers. A total of 420 1-wk-old broiler chicks (Cobb) were randomly allotted into 7 treatments, each having 4 replicates of 15 chicks. The first group served as control received basal diet, while the second group was fed a basal diet plus 100 mg/kg enramycin and third group basal diet plus 150 mg/kg chitosan nanoparticles (CNPs). The fourth and fifth groups received diets supplemented with 100 mg and 200 mg free REO (F-REO)/kg diet. The sixth and seventh groups were supplemented with 100 mg and 200 mg nanoprotected REO (N-REO)/kg diet. Results revealed that supplementing nanoprotected REO significantly (P < 0.05) decreased the levels of blood cholesterol and low-density lipoproteins (LDL) compared to control and enramycin groups. The kidney and liver function parameters were not altered by adding free or nanoprotected REO to the diet. Both levels of nanoprotected REO significantly (P < 0.05) reduced heterophil: lymphocyte (H: L) ratio compared to all other groups. Birds receiving nanoprotected REO at 200 mg/kg diet had significantly (P ˂ 0.05) raised serum levels of immunoglobulin G (IgG) and immunoglobulin M (IgM) compared to control and other birds. Anti-SRBC titre and cell-mediated immunity improved significantly (P < 0.05) in nanoprotected REO groups. Supplementation of nanoprotected REO resulted in significantly (P < 0.05) higher values for superoxide dismutase (SOD), glutathione (GSH) and total antioxidant status (TAS). The caecal microbiota was improved in broiler birds fed diets supplemented with nanoprotected REO. The 200 mg nanoprotected REO/kg diet supplementation resulted in significantly (P < 0.05) better villus height (VH) and villus height: crypt depth (VH: CD) ratio in all the segments of the small intestine. In conclusion, feeding REO in nanoprotected form in a 200 mg/kg diet could be used as an antibiotic substitute to improve broiler chicken's lipid profile, immune-antioxidant status, and intestinal health.
Collapse
Affiliation(s)
- Sheikh Adil
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K 190025, Jammu and Kashmir, India
| | - Muhammad T Banday
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K 190025, Jammu and Kashmir, India
| | - Manzoor A Wani
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K 190025, Jammu and Kashmir, India
| | | | - Showkat Shah
- Division of Veterinary Pathology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K 190001, Jammu and Kashmir, India
| | - Islam D Sheikh
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K 190025, Jammu and Kashmir, India
| | - Majid Shafi
- Division of Veterinary Pathology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K 190001, Jammu and Kashmir, India
| | - Azmat A Khan
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K 190025, Jammu and Kashmir, India
| | - Zahid A Kashoo
- Division of Veterinary Microbiology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K 190001, Jammu and Kashmir, India
| | - Roof A Pattoo
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K 190025, Jammu and Kashmir, India
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
3
|
Alem WT. Effect of herbal extracts in animal nutrition as feed additives. Heliyon 2024; 10:e24973. [PMID: 38322944 PMCID: PMC10845724 DOI: 10.1016/j.heliyon.2024.e24973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
This paper is reviewed with the objective to understand the effect of herbal extracts on animal performance as feed additives. The number of both external and internal factors which affects the production and productivity of animals obviously includes nutrition as a major factor. Feed additives are products used in animal nutrition to increase the quality of feed and animal-derived foods, as well as the performance and the health of animals. Plant extracts as feed additives are described as herbal-derived components added to ration to improve livestock performance and product quality. Many herbal extracts contain chemical components that have antioxidant, antimicrobial, anti-inflammatory, anticoccidial and anthelmintic properties to improve ruminal microbial activity, diet palatability and stimulate digestion. Bioactive chemicals found in nature, such as flavonoids and glucosinolates isoprene derivatives, are primarily responsible for the qualities of plant extracts. Plant extracts are commonly added to feed to increase palatability, productivity and to inhibit lipid oxidation. When added to meals, herbal extracts aid to decrease rancidity, delay the generation of hazardous oxidation products, and retain nutritional quality. It is concluded that; herbal extracts are important to improve growth performance and product quality.
Collapse
|
4
|
Shahrajabian MH, Sun W. The Power of the Underutilized and Neglected Medicinal Plants and Herbs of the Middle East. Rev Recent Clin Trials 2024; 19:159-175. [PMID: 38409705 DOI: 10.2174/0115748871276544240212105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Abstract
The Middle east and North Africa harbour many native species with pharmaceutical and nutraceutical potential. Since the beginning of history, food and herbal medicinal plants have been an essential part of human lives and the traditional Middle Eastern healthcare system. The notable medicinal plants that have been mentioned in the Bible, which are common in West Asia and some regions of North Africa, are Aloe vera, anise, balm, cassia, cinnamon, cumin, flax, and fig. Chemical components of Aloe vera are aloin, sinapinic acid, catechin, chromone, myricetin, quercitrin and syringic acid. Anethole, safrole, and estragole are the main chemical components of anise. The chemical components of cassia are coumarin, emodin, cinnamyl alcohol, and cinnamaldehyde. The major chemical ingredients of cumin are terpinene, cuminaldehyde, sabinene, thujene, and thymoquinone. The goal of this article is to review the considerable health benefits and pharmaceutical benefits of medicinal herbs and plants that have been neglected and underutilized in the Middle East and North Africa, as well as to promote their utilization. On the basis of the results, the experimented neglected medicinal plant can offer various advantages when used together with conventional medicinal treatments for various health conditions, such as palliative care in managing the side effects of conventional treatments, access to a wider range of treatments, increased patient satisfaction, and improved emotional and mental well-being. Moreover, consuming medicinal plants may help to manage and prevent diabetes, cancer, and heart disease with notable anti-tumor, and anti-inflammatory properties.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
5
|
Shahrajabian MH, Sun W. The Golden Spice for Life: Turmeric with the Pharmacological Benefits of Curcuminoids Components, Including Curcumin, Bisdemethoxycurcumin, and Demethoxycurcumins. Curr Org Synth 2024; 21:665-683. [PMID: 37287298 DOI: 10.2174/1570179420666230607124949] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Turmeric (Curcuma longa L.), belonging to the Zingiberaceae family, is a perennial rhizomatous plant of tropical and subtropical regions. The three major chemical components responsible for the biological activities of turmeric are curcumin, demethoxycurcumin, and bisdemethoxycurcumin. METHODS The literature search included review articles, analytical studies, randomized control experiments, and observations, which have been gathered from various sources, such as Scopus, Google Scholar, PubMed, and ScienceDirect. A review of the literature was carried out using the keywords: turmeric, traditional Chinese medicine, traditional Iranian medicine, traditional Indian medicine, curcumin, curcuminoids, pharmaceutical benefits, turmerone, demethoxycurcumin, and bisdemethoxycurcumin. The main components of the rhizome of the leaf are α-turmerone, β-turmerone, and arturmerone. RESULTS The notable health benefits of turmeric are antioxidant activity, gastrointestinal effects, anticancer effects, cardiovascular and antidiabetic effects, antimicrobial activity, photoprotector activity, hepatoprotective and renoprotective effects, and appropriate for the treatment of Alzheimer's disease and inflammatory and edematic disorders. DISCUSSION Curcuminoids are phenolic compounds usually used as pigment spices with many health benefits, such as antiviral, antitumour, anti-HIV, anti-inflammatory, antiparasitic, anticancer, and antifungal effects. Curcumin, bisdemethoxycurcumin, and demethoxycurcumin are the major active and stable bioactive constituents of curcuminoids. Curcumin, which is a hydroponic polyphenol, and the main coloring agent in the rhizomes of turmeric, has anti-inflammatory, antioxidant, anti-cancer, and anticarcinogenic activities, as well as beneficial effects for infectious diseases and Alzheimer's disease. Bisdemethoxycurcumin possesses antioxidant, anti-cancer, and anti-metastasis activities. Demethoxycurcumin, which is another major component, has anti-inflammatory, antiproliferative, and anti-cancer activities and is the appropriate candidate for the treatment of Alzheimer's disease. CONCLUSION The goal of this review is to highlight the health benefits of turmeric in both traditional and modern pharmaceutical sciences by considering the important roles of curcuminoids and other major chemical constituents of turmeric.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
6
|
da Silva CA, Dias CP, Callegari MA, Romano GDS, Lais de Souza K, Jacob DV, Ulbrich AJ, Goossens T. Phytogenics and encapsulated sodium butyrate can replace antibiotics as growth promoters for lightly weaned piglets. PLoS One 2022; 17:e0279197. [PMID: 36548241 PMCID: PMC9778559 DOI: 10.1371/journal.pone.0279197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
The objective of this study was to evaluate the effect of essential oils plus dry herbs (PHYTO) and encapsulated sodium butyrate (BUT) supplementation compared with enramycin (ENR), as a growth promoter, on the performance, diarrhoea control and intestinal microbiota in lightly weaned piglets. Two hundred weaned piglets, 20 days old, 4.69 ± 0.56 kg, were submitted during the nursery phase (20 to 69 days of age) to four treatments: control (CTR)-without any additive supplementation; ENR (with 8 ppm of enramycin throughout), BUT (with 2000 ppm between 20 to 34 d, 1500 ppm between 34 to 48 d and 1000 ppm between 48 to 69 d), and PHYTO (150 ppm between 20 to 48 d). At 62 days old, forty piglets (10 replicates per treatment) were slaughtered to perform bacterial identification through 16S rRNA (V3-V4) sequencing of the caecal content. During the second phase of the trial (34 to 48 days), the BUT group showed higher DWG (P = 0.023) and BW (P = 0.039) than the CTR group, and all groups that received additives had better FCR than the CTR group (P = 0.001). In the last phase of the trial (48 to 69 days), the ENR group presented a better FCR (P = 0.054) than the CRT and other groups. In the total period (20 to 69 days), ENR and BUT showed better FCR (P = 0.006) than CRT. Diarrhoea incident data showed differences (P<0.05), favouring the BUT treatment compared to the CTR. Only the Megasphaeraceae and Streptococcaceae families showed differences (p<0.05) in relative abundance between CTR and PHYTO and between CTR and BUT, respectively. Differential abundances of the Megasphaera and Streptococcus genera were observed between CTR and PHYTO and CTR and BUT. Phytogenics and encapsulated sodium butyrate are able and effective for modulating the specific caecal microbiota, improving performance and controlling diarrhoea occurrence.
Collapse
Affiliation(s)
- Caio Abércio da Silva
- Animal Sciences Department, Center of Agrarian Sciences, State University of Londrina, Londrina, Paraná, Brazil
- * E-mail:
| | | | | | | | | | | | | | - Tim Goossens
- Nutriad Animal Nutrition Ltda., Campinas, São Paulo, Brazil
| |
Collapse
|
7
|
Fathima S, Hakeem WGA, Shanmugasundaram R, Selvaraj RK. Necrotic Enteritis in Broiler Chickens: A Review on the Pathogen, Pathogenesis, and Prevention. Microorganisms 2022; 10:1958. [PMID: 36296234 PMCID: PMC9610872 DOI: 10.3390/microorganisms10101958] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Clostridium perfringens type A and C are the primary etiological agents associated with necrotic enteritis (NE) in poultry. The predisposing factors implicated in the incidence of NE changes the physical properties of the gut, immunological status of birds, and disrupt the gut microbial homeostasis, causing an over-proliferation of C. perfringens. The principal virulence factors contributing to the pathogenesis of NE are the α-toxin, β-toxin, and NetB toxin. The immune response to NE in poultry is mediated by the Th1 pathway or cytotoxic T-lymphocytes. C. perfringens type A and C are also pathogenic in humans, and hence are of public health significance. C. perfringens intoxications are the third most common bacterial foodborne disease after Salmonella and Campylobacter. The restrictions on the use of antibiotics led to an increased incidence of NE in poultry. Hence, it is essential to develop alternative strategies to keep the prevalence of NE under check. The control strategies rely principally on the positive modulation of host immune response, nutritional manipulation, and pathogen reduction. Current knowledge on the etiology, pathogenesis, predisposing factors, immune response, effect on the gut microbial homeostasis, and preventative strategies of NE in this post-antibiotic era is addressed in this review.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| | | | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Athens, GA 30605, USA
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Abd El-Hack ME, El-Saadony MT, Salem HM, El-Tahan AM, Soliman MM, Youssef GBA, Taha AE, Soliman SM, Ahmed AE, El-Kott AF, Al Syaad KM, Swelum AA. Alternatives to antibiotics for organic poultry production: types, modes of action and impacts on bird's health and production. Poult Sci 2022; 101:101696. [PMID: 35150942 PMCID: PMC8844281 DOI: 10.1016/j.psj.2022.101696] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
The poultry industry contributes significantly to bridging the nutritional gap in many countries because of its meat and eggs products rich in protein and valuable nutrients at a cost less than other animal meat sources. The natural antibiotics alternatives including probiotics, prebiotics, symbiotics, organic acids, essential oils, enzymes, immunostimulants, and phytogenic (phytobiotic) including herbs, botanicals, essential oils, and oleoresins are the most common feed additives that acquire popularity in poultry industry following the ban of antibiotic growth promoters (AGPs). They are commonly used worldwide because of their unique properties and positive impact on poultry production. They can be easily mixed with other feed ingredients, have no tissue residues, improve feed intake, feed gain, feed conversion rate, improve bird immunity, improve digestion, increase nutrients availability as well as absorbability, have antimicrobial effects, do not affect carcass characters, decrease the usage of antibiotics, acts as antioxidants, anti-inflammatory, compete for stress factors and provide healthy organic products for human consumption. Therefore, the current review focuses on a comprehensive description of different natural antibiotic growth promoters' alternatives, the mode of their action, and their impacts on poultry production.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Amira M El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
| | - Mohamed M Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, 21995, Saudi Arabia
| | - Gehan B A Youssef
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Rasheed 22758, Egypt
| | - Soliman M Soliman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Ahmed E Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Attalla F El-Kott
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia; Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Khalid M Al Syaad
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia; Director of the Research Center, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P. O. Box 2460, Riyadh 11451, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia 44519, Egypt
| |
Collapse
|
9
|
Shahrajabian MH, Sun W, Cheng Q. Herbal Plants Application in Organic Poultry Nutrition and Production. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220308155156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Medicinal plants and natural feed additives are the most important alternatives in animal production, especially broiler production, due to the ban on the use of certain antibiotics, their cost-effectiveness and harmful residual effects.
Objective:
In this mini-review article, some important medicinal herbs and plants with positive effects on organic broiler production have been highlighted.
Methods:
A literature search was conducted in Science Direct, Google, Google Scholar, Springer, Medline and PubMed.
Results:
Medicinal plants such as ginger, ginkgo, thyme, ponderosa pine, soybean, forsythia, peppermint, Chinese star anise, astragalus, mistletoe, schisandra, cumin, capsicum, garlic, hooker chives, artichoke, Borreria latifolia, zataria, pomegranate, turmeric, lingzhi, Lippia javanica, neem, oriental chaff flower, mulberry leaf, goji berry, Aloe vera, pumpkin, grape, common nettle, marigold, coriandrum, Citrus sinensis, Alisma canaliculatum, Persian hogweed, Eucommiaulmoides, bamboo leaf extract, rosemary, Morina citrifolia, chestnut, green tea, wild mint, clove, sumac, satureja, ashwagandha, Lonicera japonica, Acacia, liquorice, Artemisia annua, milk thistle, cinnamon, black cumin and etc. have positive effects on organic broiler production.
Conclusion:
Herbal medicines lead to increased body weight due to a higher feed intake and a higher feed conversion ratio, and improve antioxidant activity of broiler chickens based on their phenolic compound contents. The combination of medicinal herbal additives also has a positive impact on broiler production. In organic broiler production with the usage of herbal plants, reducing hormones, growth promoters and antibiotics should be organized as well as considering appropriate organic feed management and higher production.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qi Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071000, China; Global Alliance of HeBAU-CLS&HeQiS for BioAl-Manufacturing, Baoding, Hebei 071000, China
| |
Collapse
|
10
|
CIMRIN TULAY. Effect of cinnamaldehyde and 1, 8-cineole on performance, egg quality and some blood parameters of laying hens. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i4.89146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study was aimed at determining the effects of the addition of cinnamaldehyde and 1, 8-cineole to laying hen rations on performance, egg quality and some blood parameters. For this purpose, 96 (48-week-old and initial body weight average 1,773.19 g) laying hens of the Bovans White lineage were used. Birds were fed on a standard basal ration (PC) and basal rations were added with 500 mg/kg of antibiotic (NC); 100 mg/kg of cinnamaldehyde (T1); and 100 mg/kg of 1, 8-cineole (T2) for 60 days. While the feed consumption levels of groups T1 and T2 were significantly lower than that of group PC, their egg production was significantly lower than that of groups PC and NC. When compared to groups PC and NC, it was observed that the feed additive given to group T2 had significantly reduced the feed conversion rate. All of the feed additives used in this study were determined to have decreased egg weight, eggshell strength and eggshell thickness, in comparison to the measurements of group PC. Furthermore, when compared to groups PC and NC, groups T1 and T2 were ascertained to have lower serum glucose and cholesterol levels. However, when compared to the other 3 groups, group T1 presented with significantly higher serum aspartate aminotransferase (AST) levels and group T2 displayed a significantly higher rate of defective eggs. In result, the addition of cinnamaldehyde and 1, 8-cineole to the ration was observed to show a positive impact on serum glucose and cholesterol levels, and a negative impact on other performance parameters and eggshell quality. It was concluded that further more detailed investigation is required in this added to laying hen rations.
Collapse
|