1
|
Schwartz NE, Schmill MP, Cadney MD, Castro AA, Hillis DA, McNamara MP, Rashid JO, Lampman W, DeLaCruz DF, Tran BD, Trutalli NL, Garland T. Maternal exercise opportunity before, during, and after pregnancy alters maternal care behavior and offspring development and survival, but has few effects on offspring physical activity or body composition. Physiol Behav 2025; 291:114752. [PMID: 39549866 DOI: 10.1016/j.physbeh.2024.114752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Early-life experiences, especially during critical periods of development and growth, can have long-lasting effects on adult phenotypes. Parents are a crucial part of the offspring early-life environment, particularly in mammals (e.g., via pregnancy), and parental behaviors (e.g., maternal exercise) can modify the early-life environment experienced by offspring. Such changes might be beneficial or detrimental, depending on how they affect offspring development and growth or interact with other key parental behaviors (e.g., nursing). We used mice from a long-term artificial selection experiment for high voluntary wheel-running behavior to determine whether maternal exercise opportunity affected (1) maternal physical activity, (2) maternal care behavior, or (3) offspring physical activity and body composition. Eighty prospective dams (40 from 4 selectively bred High Runner [HR] lines and 40 from 4 non-selected Control [CON] lines) were housed with continuous wheel access starting two weeks prior to breeding and ending 10 days postpartum, after which dams were housed without wheels until offspring weaning (21 days postpartum). An additional 100 dams (50 HR, 50 CON) were housed without wheels. Prospective dams from HR lines ran more revolutions/day (mainly by running faster) than those from CON lines when individually housed and in the days leading up to, but not after, birth. During postpartum days 1-5, HR and CON dams with wheels tended to exhibit less maternal behavior than those without (PWheel = 0.0672). During post-partum days 6-10, HR dams with wheels continued to exhibit less maternal behavior than those without, whereas CON dams with wheels exhibited more than those without (PLinetype*Wheel = 0.0218). The proportion of dams giving birth did not differ among groups. However, CON dams with wheels were less likely to have litter death between birth and weaning than those without wheels, whereas the opposite was true for HR dams (PLinetype*Wheel = 0.0447). Both HR and CON dams with wheels had litters with a higher proportion of females at weaning than those without wheels (PWheel = 0.0129). Maternal wheel access had few statistically significant effects on offspring, but may have resulted in developmental delays (e.g., delayed eye opening and decreased lean mass at weaning and sexual maturity). Additionally, maternal wheel access and sex may have interacted to affect wheel-running distance (PSex*Wheel = 0.0683) and duration (PSex*Wheel = 0.0926); female offspring from dams with wheels ran fewer revolutions per day, by running fewer minutes per day, than from dams without wheels, whereas males ran more. However, maternal exercise had no statistically significant effects on offspring food consumption (mass-adjusted), home-cage activity, open-field behavior, the reproductive characteristics of offspring, their adult body composition, nor relative organ masses; nor did maternal wheel access have statistically significant effects on grand-offspring food consumption, body composition or voluntary exercise behavior. Overall, our results provide some support for maternal exercise opportunity altering maternal care behavior. Altered maternal care could explain the observed trends in offspring survival, development, and voluntary exercise behavior. However, these effects did not have apparent long-lasting impacts on offspring or grand-offspring body composition or reproductive characteristics.
Collapse
Affiliation(s)
- Nicole E Schwartz
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA.
| | - Margaret P Schmill
- Neuroscience Graduate Program, University of California - Riverside, Riverside, CA, USA
| | - Marcell D Cadney
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - Alberto A Castro
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - David A Hillis
- Genetics, Genomics, and Bioinformatics Graduate Program, University of California - Riverside, Riverside, CA, USA
| | - Monica P McNamara
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - Jaanam O Rashid
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - William Lampman
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - Dorothea F DeLaCruz
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - Bao D Tran
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - Natalie L Trutalli
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| |
Collapse
|
2
|
Schwartz NE, Garland T. A meta-analysis of whole-body and heart mass effect sizes from a long-term artificial selection experiment for high voluntary exercise. J Exp Biol 2024; 227:jeb249213. [PMID: 39119628 DOI: 10.1242/jeb.249213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Selection experiments play an increasingly important role in comparative and evolutionary physiology. However, selection experiments can be limited by relatively low statistical power, in part because replicate line is the experimental unit for analyses of direct or correlated responses (rather than number of individuals measured). One way to increase the ability to detect correlated responses is through a meta-analysis of studies for a given trait across multiple generations. To demonstrate this, we applied meta-analytic techniques to two traits (body mass and heart ventricle mass, with body mass as a covariate) from a long-term artificial selection experiment for high voluntary wheel-running behavior. In this experiment, all four replicate High Runner (HR) lines reached apparent selection limits around generations 17-27, running approximately 2.5- to 3-fold more revolutions per day than the four non-selected Control (C) lines. Although both traits would also be expected to change in HR lines (relative heart size expected to increase, expected direction for body mass is less clear), their statistical significance has varied, despite repeated measurements. We compiled information from 33 unique studies and calculated a measure of effect size (Pearson's R). Our results indicate that, despite a lack of statistical significance in most generations, HR mice have evolved larger hearts and smaller bodies relative to controls. Moreover, plateaus in effect sizes for both traits coincide with the generational range during which the selection limit for wheel-running behavior was reached. Finally, since reaching the selection limit, absolute effect sizes for body mass and heart ventricle mass have become smaller (i.e. closer to 0).
Collapse
Affiliation(s)
- Nicole E Schwartz
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
3
|
Batista S, Madar VS, Freda PJ, Bhandary P, Ghosh A, Matsumoto N, Chitre AS, Palmer AA, Moore JH. Interaction models matter: an efficient, flexible computational framework for model-specific investigation of epistasis. BioData Min 2024; 17:7. [PMID: 38419006 PMCID: PMC10900690 DOI: 10.1186/s13040-024-00358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
PURPOSE Epistasis, the interaction between two or more genes, is integral to the study of genetics and is present throughout nature. Yet, it is seldom fully explored as most approaches primarily focus on single-locus effects, partly because analyzing all pairwise and higher-order interactions requires significant computational resources. Furthermore, existing methods for epistasis detection only consider a Cartesian (multiplicative) model for interaction terms. This is likely limiting as epistatic interactions can evolve to produce varied relationships between genetic loci, some complex and not linearly separable. METHODS We present new algorithms for the interaction coefficients for standard regression models for epistasis that permit many varied models for the interaction terms for loci and efficient memory usage. The algorithms are given for two-way and three-way epistasis and may be generalized to higher order epistasis. Statistical tests for the interaction coefficients are also provided. We also present an efficient matrix based algorithm for permutation testing for two-way epistasis. We offer a proof and experimental evidence that methods that look for epistasis only at loci that have main effects may not be justified. Given the computational efficiency of the algorithm, we applied the method to a rat data set and mouse data set, with at least 10,000 loci and 1,000 samples each, using the standard Cartesian model and the XOR model to explore body mass index. RESULTS This study reveals that although many of the loci found to exhibit significant statistical epistasis overlap between models in rats, the pairs are mostly distinct. Further, the XOR model found greater evidence for statistical epistasis in many more pairs of loci in both data sets with almost all significant epistasis in mice identified using XOR. In the rat data set, loci involved in epistasis under the XOR model are enriched for biologically relevant pathways. CONCLUSION Our results in both species show that many biologically relevant epistatic relationships would have been undetected if only one interaction model was applied, providing evidence that varied interaction models should be implemented to explore epistatic interactions that occur in living systems.
Collapse
Affiliation(s)
- Sandra Batista
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA.
| | | | - Philip J Freda
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA
| | - Priyanka Bhandary
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA
| | - Attri Ghosh
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA
| | - Nicholas Matsumoto
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., Mailcode: 0667, La Jolla, CA, 92093-0667, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., Mailcode: 0667, La Jolla, CA, 92093-0667, USA
- Institute for Genomic Medicine, University of California, San Diego, 9500 Gilman Dr., Mailcode: 0667, La Jolla, CA, 92093-0667, USA
| | - Jason H Moore
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA.
| |
Collapse
|
4
|
Abozaid A, Gerlai R. Paradoxical effects of feeding status on food consumption and learning performance in zebrafish (Danio rerio). Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110846. [PMID: 37611652 DOI: 10.1016/j.pnpbp.2023.110846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Associative learning is often studied using food reward as the unconditioned stimulus (US). With warm-blooded species, to get the subject more motivated the solution has been to feed less, making the subject hungrier. Here we show the opposite with zebrafish. We randomly assigned zebrafish to two groups: a once-a-day-fed and a five-times-a-day-fed group, with the same amount of food fed per occasion for fish of both groups, a feeding regimen that lasted for three months. Subsequently, we trained fish by pairing food (US) with a red cue card (the conditioned stimulus, CS), which were placed together in one arm of a plus-maze across eight training sessions. We also ran unpaired training, in which the CS and US were presented in different arms. We found the previously once-a-day-fed zebrafish to consume less food throughout habituation and training sessions compared to the previously five-times-a-day-fed ones. Furthermore, five-times-a-day-fed fish in the paired group swam significantly closer to the CS during a post-training probe trial compared to the five-times-a-day-fed unpaired fish, a paired training effect that was absent in once-a-day-fed fish. Groups did not differ in health or general activity. In sum, elevated chronic feeding improved food consumption and enhanced learning and memory performance without affecting activity levels in adult zebrafish.
Collapse
Affiliation(s)
- Amira Abozaid
- Department of Cell & Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto, Mississauga, Canada.
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto, Mississauga, Canada.
| |
Collapse
|
5
|
Schmill MP, Thompson Z, Lee D, Haddadin L, Mitra S, Ezzat R, Shelton S, Levin P, Behnam S, Huffman KJ, Garland T. Hippocampal, Whole Midbrain, Red Nucleus, and Ventral Tegmental Area Volumes Are Increased by Selective Breeding for High Voluntary Wheel-Running Behavior. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:245-263. [PMID: 37604130 DOI: 10.1159/000533524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
Uncovering relationships between neuroanatomy, behavior, and evolution are important for understanding the factors that control brain function. Voluntary exercise is one key behavior that both affects, and may be affected by, neuroanatomical variation. Moreover, recent studies suggest an important role for physical activity in brain evolution. We used a unique and ongoing artificial selection model in which mice are bred for high voluntary wheel-running behavior, yielding four replicate lines of high runner (HR) mice that run ∼3-fold more revolutions per day than four replicate nonselected control (C) lines. Previous studies reported that, with body mass as a covariate, HR mice had heavier whole brains, non-cerebellar brains, and larger midbrains than C mice. We sampled mice from generation 66 and used high-resolution microscopy to test the hypothesis that HR mice have greater volumes and/or cell densities in nine key regions from either the midbrain or limbic system. In addition, half of the mice were given 10 weeks of wheel access from weaning, and we predicted that chronic exercise would increase the volumes of the examined brain regions via phenotypic plasticity. We replicated findings that both selective breeding and wheel access increased total brain mass, with no significant interaction between the two factors. In HR compared to C mice, adjusting for body mass, both the red nucleus (RN) of the midbrain and the hippocampus (HPC) were significantly larger, and the whole midbrain tended to be larger, with no effect of wheel access nor any interactions. Linetype and wheel access had an interactive effect on the volume of the periaqueductal gray (PAG), such that wheel access increased PAG volume in C mice but decreased volume in HR mice. Neither linetype nor wheel access affected volumes of the substantia nigra, ventral tegmental area, nucleus accumbens, ventral pallidum (VP), or basolateral amygdala. We found no main effect of either linetype or wheel access on neuronal densities (numbers of cells per unit area) for any of the regions examined. Taken together, our results suggest that the increased exercise phenotype of HR mice is related to increased RN and hippocampal volumes, but that chronic exercise alone does not produce such phenotypes.
Collapse
Affiliation(s)
- Margaret P Schmill
- Neuroscience Graduate Program, University of California, Riverside, California, USA
| | - Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, California, USA
- Department of Biology, Utah Valley University, Orem, Utah, USA
| | - Daisy Lee
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Laurence Haddadin
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Shaarang Mitra
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Raymond Ezzat
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Samantha Shelton
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Phillip Levin
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Sogol Behnam
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Kelly J Huffman
- Neuroscience Graduate Program, University of California, Riverside, California, USA
- Department of Psychology, University of California, Riverside, California, USA
| | - Theodore Garland
- Neuroscience Graduate Program, University of California, Riverside, California, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| |
Collapse
|
6
|
Kay JC, Colbath J, Talmadge RJ, Garland T. Mice from lines selectively bred for voluntary exercise are not more resistant to muscle injury caused by either contusion or wheel running. PLoS One 2022; 17:e0278186. [PMID: 36449551 PMCID: PMC9710767 DOI: 10.1371/journal.pone.0278186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Muscle injury can be caused by strenuous exercise, repetitive tasks or external forces. Populations that have experienced selection for high locomotor activity may have evolutionary adaptations that resist exercise-induced injury and/or enhance the ability to cope with injury. We tested this hypothesis with an experiment in which mice are bred for high voluntary wheel running. Mice from four high runner lines run ~three times more daily distance than those from four non-selected control lines. To test recovery from injury by external forces, mice experienced contusion via weight drop on the calf. After injury, running distance and speed were reduced in high runner but not control lines, suggesting that the ability of control mice to run exceeds their motivation. To test effects of injury from exercise, mice were housed with/without wheels for six days, then trunk blood was collected and muscles evaluated for injury and regeneration. Both high runner and control mice with wheels had increased histological indicators of injury in the soleus, and increased indicators of regeneration in the plantaris. High runner mice had relatively more central nuclei (regeneration indicator) than control in the soleus, regardless of wheel access. The subset of high runner mice with the mini-muscle phenotype (characterized by greatly reduced muscle mass and type IIb fibers) had lower plasma creatine kinase (indicator of muscle injury), more markers of injury in the deep gastrocnemius, and more markers of regeneration in the deep and superficial gastrocnemius than normal-muscled individuals. Contrary to our expectations, high runner mice were not more resistant to either type of injury.
Collapse
Affiliation(s)
- Jarren C. Kay
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, United States of America
- * E-mail:
| | - James Colbath
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, United States of America
| | - Robert J. Talmadge
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States of America
| | - Theodore Garland
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, United States of America
| |
Collapse
|
7
|
Suresh S, Abozaid A, Tsang B, Gerlai R. Exposure of parents to alcohol alters behavior of offspring in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110143. [PMID: 33096155 DOI: 10.1016/j.pnpbp.2020.110143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/12/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Alcoholism and alcohol abuse represent a significant medical and societal problem, and have been thoroughly investigated in humans as well as using animal models. A less well understood aspect of alcohol related disorders is the possible effect of this drug on offspring whose parents were exposed prior to conception. The zebrafish has been successfully employed in alcohol research, however, the effect of exposing the parents to alcohol before fertilization of the eggs on offspring has not been demonstrated in this species. In this proof of concept study, we attempt to address this hiatus. We exposed both adult male and female zebrafish to 0.0% (control) or 0.5% (vol/vol) alcohol chronically for 7 days, subsequently bred the fish within their respective treatment group, collected the fertilized eggs, allowed them to develop, and tested the behavior of free-swimming offspring at their age of 7-9 days post-fertilization. We conducted the analysis in two genetically distinct quasi-inbred strains of zebrafish, AB and TL. Although gross morphology and general activity of the fish appeared unaffected, we found significant behavioral alterations in offspring of alcohol exposed parents compared to offspring of control parents in both strains. These alterations included robustly increased duration and reduced frequency of immobility, increased turn angle, and increased intra-individual variance of turn angle in offspring of alcohol exposed parents in both strains. The mechanisms underlying these behavioral effects or whether the effects are due to exposure of the father, the mother, or both to alcohol are unknown. Nevertheless, our results now set the stage for future studies with zebrafish that will address these questions.
Collapse
Affiliation(s)
| | - Amira Abozaid
- Department of Cell & System Biology, University of Toronto, Canada
| | - Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Canada; Department of Cell & System Biology, University of Toronto, Canada.
| |
Collapse
|
8
|
Schmill MP, Thompson Z, Argueta DA, DiPatrizio NV, Garland T. Effects of Selective Breeding, Voluntary Exercise, and Sex on Endocannabinoid Levels in the Mouse Small-Intestinal Epithelium. Physiol Behav 2021; 245:113675. [PMID: 34929258 DOI: 10.1016/j.physbeh.2021.113675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/17/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022]
Abstract
The endocannabinoid (eCB) system in the gut communicates with the body and brain as part of the homeostatic mechanisms that affect energy balance. Although perhaps best known for its effects on energy intake, the eCB system also regulates voluntary locomotor behavior. Here, we examined gut eCB concentrations in relation to voluntary exercise, specifically in mice selectively bred for high voluntary wheel running behavior. We measured gut eCBs in four replicate non-selected Control (C) lines and four replicate lines of High Runner (HR) mice that had been selectively bred for 74 generations based on the average number of wheel revolutions on days 5 and 6 of a 6-day period of wheel access when young adults. On average, mice from HR lines run voluntarily on wheels ∼3-fold more than C mice on a daily basis. A recent study showed that circulating levels of primary endocannabinoids 2-arachidonoyl-sn-glycerol (2-AG) and anandamide (AEA) are altered by six days of wheel access, by acute wheel running, and differ between HR and C mice in sex-specific ways [1]. We hypothesized that eCBs in the upper small-intestinal epithelium (i.e., proximal jejunum), a region firmly implicated in eCB signaling, would differ between HR and C mice (linetype), between the sexes, between mice housed with vs. without wheels for six days, and would covary with amounts of acute running and/or home-cage activity (during the previous 30 minutes). We used the same 192 mice as in [1] , half males and half females, half HR and half C (all 8 lines), and half either given or not given access to wheels for six days. We assessed the eCBs, 2-AG and AEA, and their analogs docosahexaenoylglycerol (DHG), docosahexaenoylethanolamide (DHEA), and oleoylethanolamide (OEA). Both 2-AG and DHG showed a significant 3-way interaction of linetype, wheel access, and sex. In addition, HR mice had lower concentrations of 2-AG in the small-intestinal epithelium when compared to C mice, which may be functionally related to differences in locomotor activity or to differences in body composition and/or food consumption. Moreover, the amount of home-cage activity during the prior 30 min was a negative predictor of 2-AG and AEA concentrations in jejunum mucosa, particularly in the mice with no wheel access. Lastly, 2-AG, but not AEA, was significantly correlated with 2-AG in plasma in the same mice.
Collapse
Affiliation(s)
- Margaret P Schmill
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA
| | - Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Department of Biology, Utah Valley University, Orem, UT, 84058, USA
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 92521, USA; Department of Medicine, School of Medicine, University of California, Irvine, 92697, USA
| | - Nicholas V DiPatrizio
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 92521, USA
| | - Theodore Garland
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, 92521, USA.
| |
Collapse
|
9
|
Torres-Rojas C, Zhao W, Zhuang D, O’Callaghan JP, Lu L, Mulligan MK, Williams RW, Jones BC. Paraquat Toxicogenetics: Strain-Related Reduction of Tyrosine Hydroxylase Staining in Substantia Nigra in Mice. FRONTIERS IN TOXICOLOGY 2021; 3:722518. [PMID: 35295113 PMCID: PMC8915807 DOI: 10.3389/ftox.2021.722518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022] Open
Abstract
Paraquat (PQ) is a putative risk factor for the development of sporadic Parkinson's disease. To model a possible genetic basis for individual differences in susceptibility to exposure to PQ, we recently examined the effects of paraquat on tyrosine hydroxylase (TH)-containing neurons in the substantia nigra pars compacta (SNc) of six members of the BXD family of mice (n = 2-6 per strain). We injected males with 5 mg/kg paraquat weekly three times. The density of TH+ neurons counted by immunocytochemistry at 200x in eight or more sections through the SNc is reduced in five of the six strains relative to control (N = 4 ± 2 mice per strain). TH+ loss ranged from 0 to 20% with an SEM of 1%. The heritability was estimated using standard ANOVA and jackknife resampling and is 0.37 ± 0.05 in untreated animals and 0.47 ± 0.04 in treated animals. These results demonstrate genetic modulation and GxE variation in susceptibility to PQ exposure and the loss of TH staining in the substantia nigra.
Collapse
Affiliation(s)
- Carolina Torres-Rojas
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wenyuan Zhao
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Daming Zhuang
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - James P. O’Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention-NIOSH, Morgantown, WV, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Megan K. Mulligan
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Byron C. Jones
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
10
|
McNamara MP, Singleton JM, Cadney MD, Ruegger PM, Borneman J, Garland T. Early-life effects of juvenile Western diet and exercise on adult gut microbiome composition in mice. J Exp Biol 2021; 224:jeb239699. [PMID: 33431595 PMCID: PMC7929929 DOI: 10.1242/jeb.239699] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
Alterations to the gut microbiome caused by changes in diet, consumption of antibiotics, etc., can affect host function. Moreover, perturbation of the microbiome during critical developmental periods potentially has long-lasting impacts on hosts. Using four selectively bred high runner and four non-selected control lines of mice, we examined the effects of early-life diet and exercise manipulations on the adult microbiome by sequencing the hypervariable internal transcribed spacer region of the bacterial gut community. Mice from high runner lines run ∼3-fold more on wheels than do controls, and have several other phenotypic differences (e.g. higher food consumption and body temperature) that could alter the microbiome, either acutely or in terms of coevolution. Males from generation 76 were given wheels and/or a Western diet from weaning until sexual maturity at 6 weeks of age, then housed individually without wheels on standard diet until 14 weeks of age, when fecal samples were taken. Juvenile Western diet reduced bacterial richness and diversity after the 8-week washout period (equivalent to ∼6 human years). We also found interactive effects of genetic line type, juvenile diet and/or juvenile exercise on microbiome composition and diversity. Microbial community structure clustered significantly in relation to both line type and diet. Western diet also reduced the relative abundance of Muribaculum intestinale These results constitute one of the first reports of juvenile diet having long-lasting effects on the adult microbiome after a substantial washout period. Moreover, we found interactive effects of diet with early-life exercise exposure, and a dependence of these effects on genetic background.
Collapse
Affiliation(s)
- Monica P McNamara
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| | - Jennifer M Singleton
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| | - Marcell D Cadney
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| | - Paul M Ruegger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 91521, USA
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 91521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| |
Collapse
|
11
|
Perlstein S, Waller R. Integrating the study of personality and psychopathology in the context of gene-environment correlations across development. J Pers 2020; 90:47-60. [PMID: 33251591 DOI: 10.1111/jopy.12609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE A key principle of individual differences research is that biological and environmental factors jointly influence personality and psychopathology. Genes and environments interact to influence the emergence and stability of both normal and abnormal behavior (i.e., genetic predisposition, X, is exacerbated or buffered under environmental conditions, Y, or vice versa), including by shaping the neural circuits underpinning behavior. The interplay of genes and environments is also reflected in various ways in which they are correlated (i.e., rGE). That is, the same genetic factors that give rise to personality or psychopathology also shape that person's environment. METHODS In this review, we outline passive, evocative, and active rGE processes and review the findings of studies that have addressed rGE in relation to understanding individual differences in personality and psychopathology across development. RESULTS Throughout, we evaluate the question of whether it is possible, not only to differentiate the person from their problems, but also to differentiate the person from their problems and their environment. CONCLUSIONS We provide recommendations for future research to model rGE and better inform our ability to study personality and psychopathology, while separating the influence of the environment.
Collapse
Affiliation(s)
- Samantha Perlstein
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Waller
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Ribeiro D, Nunes AR, Teles M, Anbalagan S, Blechman J, Levkowitz G, Oliveira RF. Genetic variation in the social environment affects behavioral phenotypes of oxytocin receptor mutants in zebrafish. eLife 2020; 9:56973. [PMID: 32902385 PMCID: PMC7481002 DOI: 10.7554/elife.56973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/18/2020] [Indexed: 12/15/2022] Open
Abstract
Oxytocin-like peptides have been implicated in the regulation of a wide range of social behaviors across taxa. On the other hand, the social environment, which is composed of conspecifics that may vary in their genotypes, also influences social behavior, creating the possibility for indirect genetic effects. Here, we used a zebrafish oxytocin receptor knockout line to investigate how the genotypic composition of the social environment (Gs) interacts with the oxytocin genotype of the focal individual (Gi) in the regulation of its social behavior. For this purpose, we have raised wild-type or knock-out zebrafish in either wild-type or knock-out shoals and tested different components of social behavior in adults. GixGs effects were detected in some behaviors, highlighting the need to control for GixGs effects when interpreting results of experiments using genetically modified animals, since the genotypic composition of the social environment can either rescue or promote phenotypes associated with specific genes.
Collapse
Affiliation(s)
| | | | - Magda Teles
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Savani Anbalagan
- Weizmann Institute of Science, Rehovot, Israel.,ReMedy-International Research Agenda Unit, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | | | | | - Rui F Oliveira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,ISPA - Instituto Universitário, Lisboa, Portugal.,Champalimaud Research, Lisboa, Portugal
| |
Collapse
|
13
|
Paul I, Tsang B, Gerlai R. Short Exposure to Moderate Concentration of Alcohol During Embryonic Development Does Not Alter Gross Morphology in Zebrafish. Zebrafish 2020; 17:253-260. [PMID: 32493176 DOI: 10.1089/zeb.2020.1872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several studies have demonstrated translational potential of the zebrafish in modeling fetal alcohol spectrum disorders (FASDs), including the less severe forms of this disease. Short exposure to even low doses of alcohol during embryonic development has been shown to disrupt behavior, alter neurochemistry, and expression of neuronal markers and glial cell phenotypes in zebrafish. However, no study to date has systematically analyzed the potential morphological effects of the short- and low-dose embryonic alcohol exposure regimen used before with zebrafish to model milder forms of human FASD. In this study, we use this previously used embryonic alcohol exposure regimen. We immerse intact zebrafish eggs of AB strain and of a genetically variable wild-type population for 2 h into 1% or 0% (vol/vol) ethanol bath at one of five developmental stages (8, 16, 24, 32, or 40 h postfertilization). At 8 days postfertilization, we quantify body length and width and eye diameter of the larvae. We report nonsignificant effects of embryonic alcohol exposure used at all developmental stages in both populations of zebrafish. Our results confirm that visual perception or motor function is unlikely to have contributed to previously reported behavioral abnormalities resulting from embryonic alcohol exposure in zebrafish.
Collapse
Affiliation(s)
- Ishti Paul
- Department of Psychology and University of Toronto Mississauga, Mississauga, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Benjamin Tsang
- Department of Psychology and University of Toronto Mississauga, Mississauga, Canada.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Research Operations, Hospital for Sick Children, Peter Gilgan Center for Research & Learning, Toronto, Canada
| | - Robert Gerlai
- Department of Psychology and University of Toronto Mississauga, Mississauga, Canada.,Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
Abozaid A, Trzuskot L, Najmi Z, Paul I, Tsang B, Gerlai R. Developmental stage and genotype dependent behavioral effects of embryonic alcohol exposure in zebrafish larvae. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109774. [PMID: 31655157 DOI: 10.1016/j.pnpbp.2019.109774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/29/2019] [Accepted: 10/02/2019] [Indexed: 01/01/2023]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) represent a worldwide problem. The severity and types of symptoms of FASD vary, which may be due to the genotype of the fetus and the developmental stage at which the fetus is exposed to alcohol. The most prevalent forms of FASD present less severe symptoms, including behavioral and cognitive abnormalities, and arise from exposure to low amounts of alcohol consumed infrequently. Treating or diagnosing FASD patients has been difficult because we do not understand the mechanisms underlying FASD. Animal models, including the zebrafish, have been suggested to answer this question. Here, we present a proof of concept analysis studying the behavioral effects of embryonic alcohol exposure in one-week old juvenile zebrafish. We exposed zebrafish embryos at one of five developmental stages (8, 16, 24, 32, or 40 hour post-fertilization) to 0% (control) or 1% (vol/vol) ethanol for 2 h, and tested the behavior of these fish at their age of 7-9 days post-fertilization. We employed two genetically distinct zebrafish populations, a quasi-inbred AB derivative strain, and a genetically variable WT population. We report significant developmental time and genotype dependent effects of alcohol on certain measures of motor function and/or anxiety-like responses. For example, we found embryonic alcohol exposed AB fish to swim faster, vary their speed more, stop moving more often and turn less compared to control fish, alcohol induced changes that were absent or less robust in WT fish. We conclude that our results open new avenues to the identification of genetic mechanisms that mediate or influence alcohol induced developmental alteration of brain function and behavior, which, on the long run, may allow us to identify diagnostic biomarkers and treatment options for human FASD.
Collapse
Affiliation(s)
- Amira Abozaid
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Lidia Trzuskot
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Zelaikha Najmi
- Department of Biology, University of Toronto Mississauga, Canada
| | - Ishti Paul
- Department of Biology, University of Toronto Mississauga, Canada
| | - Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Canada; Department of Cell & System Biology, University of Toronto, Canada.
| |
Collapse
|
15
|
Calvo P, Gagliano M, Souza GM, Trewavas A. Plants are intelligent, here's how. ANNALS OF BOTANY 2020; 125:11-28. [PMID: 31563953 PMCID: PMC6948212 DOI: 10.1093/aob/mcz155] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/01/2019] [Accepted: 09/26/2019] [Indexed: 05/07/2023]
Abstract
HYPOTHESES The drive to survive is a biological universal. Intelligent behaviour is usually recognized when individual organisms including plants, in the face of fiercely competitive or adverse, real-world circumstances, change their behaviour to improve their probability of survival. SCOPE This article explains the potential relationship of intelligence to adaptability and emphasizes the need to recognize individual variation in intelligence showing it to be goal directed and thus being purposeful. Intelligent behaviour in single cells and microbes is frequently reported. Individual variation might be underpinned by a novel learning mechanism, described here in detail. The requirements for real-world circumstances are outlined, and the relationship to organic selection is indicated together with niche construction as a good example of intentional behaviour that should improve survival. Adaptability is important in crop development but the term may be complex incorporating numerous behavioural traits some of which are indicated. CONCLUSION There is real biological benefit to regarding plants as intelligent both from the fundamental issue of understanding plant life but also from providing a direction for fundamental future research and in crop breeding.
Collapse
Affiliation(s)
- Paco Calvo
- Minimal Intelligence Laboratory, Universidad de Murcia, Murcia, Spain
| | - Monica Gagliano
- Biological Intelligence Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Gustavo M Souza
- Laboratory of Plant Cognition and Electrophysiology, Federal University of Pelotas, Pelotas - RS, Brazil
| | - Anthony Trewavas
- Institute of Molecular Plant Science, Kings Buildings, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Affiliation(s)
- Robert A Wilson
- Department of Politics, Media, and Philosophy, 325 Social Sciences, La Trobe University, Bundoora, 3083, Australia.
| |
Collapse
|
17
|
Song JH, Colasante T, Malti T. Taming anger and trusting others: Roles of skin conductance, anger regulation, and trust in children's aggression. BRITISH JOURNAL OF DEVELOPMENTAL PSYCHOLOGY 2019; 38:42-58. [PMID: 31560134 DOI: 10.1111/bjdp.12304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/26/2019] [Indexed: 11/30/2022]
Abstract
Proactive and reactive aggression subtypes are distinguishable as early as the preschool years. However, their early physiological and social-emotional correlates have not been examined simultaneously. We tested whether children's skin conductance level, anger regulation, and trust in others were differentially related to their proactive and reactive aggression. Four-year-olds and their primary caregivers were recruited from a large Canadian city (N = 150). Controlling for reactive aggression, higher trust was associated with lower proactive aggression, but only for children with low anger regulation or skin conductance level. Controlling for proactive aggression, lower anger regulation was related to higher reactive aggression, and higher trust was related to higher reactive aggression for children with high skin conductance level. Findings highlight the unique and collective relations of physiology, emotion regulation, and trust to different forms of aggression in early childhood. Statement of contribution What is already known on this subject Proactive and reactive aggression subtypes are distinguishable as early as the preschool years. Unique physiological and social-emotional correlates of each subtype have been studied in middle and late childhood. Trust is a critical milestone for positive social interactions in early childhood and has been linked to aggression. What the present study adds Physiological and social-emotional correlates are uniquely linked to subtypes of aggression already at age 4. Trust is differentially linked to aggression subtypes as a function of anger regulation and skin conductance level.
Collapse
Affiliation(s)
- Ju-Hyun Song
- Department of Child Development, California State University Dominguez Hills, Carson, California, USA
| | - Tyler Colasante
- Department of Psychology, University of Toronto, Mississauga, Ontario, Canada
| | - Tina Malti
- Department of Psychology, University of Toronto, Mississauga, Ontario, Canada
| |
Collapse
|
18
|
Fontana BD, Cleal M, Clay JM, Parker MO. Zebrafish (Danio rerio) behavioral laterality predicts increased short-term avoidance memory but not stress-reactivity responses. Anim Cogn 2019; 22:1051-1061. [PMID: 31342209 PMCID: PMC6834751 DOI: 10.1007/s10071-019-01296-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/26/2022]
Abstract
Once considered a uniquely human attribute, behavioral laterality has proven to be ubiquitous among non-human animals, and is associated with several neurophenotypes in rodents and fishes. Zebrafish (Danio rerio) is a versatile vertebrate model system widely used in translational neuropsychiatric research owing to their highly conserved genetic homology, well-characterized physiological responses, and extensive behavioral repertoire. Although spontaneous left- and right-biased responses, and associated behavioral domains (e.g., stress reactivity, aggression, and learning), have previously been observed in other teleost species, no information relating to whether spontaneous motor left–right-bias responses of zebrafish predicts other behavioral domains has been described. Thus, we aimed to investigate the existence and incidence of natural left–right bias in adult zebrafish, exploiting an unconditioned continuous free movement pattern (FMP) Y-maze task, and to explore the relationship of biasedness on performance within different behavioral domains. This included learning about threat cues in a Pavlovian fear conditioning test, and locomotion and anxiety-related behavior in the novel tank diving test. Although laterality did not change locomotion or anxiety-related behaviors, we found that biased animals displayed a different search strategy in the Y-maze, making them easily discernable from their unbiased counterparts, and increased learning associated to fear cues. In conclusion, we showed, for the first time, that zebrafish exhibit a natural manifestation of motor behavioral lateralization which can influence aversive learning responses.
Collapse
Affiliation(s)
- Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK.
| | - Madeleine Cleal
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK
| | - James M Clay
- Department of Psychology, University of Portsmouth, King Henry I Street, Portsmouth, PO1 2DY, UK
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK.
- The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA.
- Department of Psychology, University of Portsmouth, King Henry I Street, Portsmouth, PO1 2DY, UK.
| |
Collapse
|
19
|
Tsang B, Ansari R, Gerlai R. Dose dependent behavioral effects of acute alcohol administration in zebrafish fry. Pharmacol Biochem Behav 2019; 179:124-133. [PMID: 30807782 DOI: 10.1016/j.pbb.2019.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/19/2022]
Abstract
The zebrafish is becoming increasingly utilized in behavioral neuroscience as it appears to strike a good compromise between practical simplicity and system complexity. Particularly in alcohol (ethanol) research, the zebrafish has been employed as a translationally relevant model organism. However, the majority of studies investigating the effects of alcohol on brain function and behavior has used adult zebrafish. In the current study, we utilize 6-8 post-fertilization day old larval zebrafish (fry) to investigate the effects of a 40 min-long, acute, immersion into the alcohol bath. We measure the behavioral responses of the fry during the immersion session in relatively large arenas, the petri dish, instead of the often employed 96 well plate, and report on significant modification of behavior induced by alcohol. For example, we found the intermediate dose of alcohol (0.5%, vol/vol) to exert a stimulant effect manifesting as slight elevation of swim speed, robust increase of turning, temporal variability of swim speed and turning, and diminished frequency of staying immobile. We also found the high dose of 1% alcohol to elicit an opposite response, a sedative effect. This biphasic dose response of alcohol mimics what has been found in mammals, including humans, and thus we conclude that a few day-old zebrafish fry may be a cost effective and efficient tool with which one can screen for small molecules or mutations with alcohol-effect modifying properties.
Collapse
Affiliation(s)
- Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Rida Ansari
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Canada; Department of Cell and Systems Biology, University of Toronto, Canada.
| |
Collapse
|
20
|
Singleton JM, Garland T. Influence of corticosterone on growth, home-cage activity, wheel running, and aerobic capacity in house mice selectively bred for high voluntary wheel-running behavior. Physiol Behav 2019; 198:27-41. [DOI: 10.1016/j.physbeh.2018.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/20/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022]
|
21
|
Ethanol Conditioned Taste Aversion in High Drinking in the Dark Mice. Brain Sci 2019; 9:brainsci9010002. [PMID: 30609665 PMCID: PMC6356868 DOI: 10.3390/brainsci9010002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 11/24/2022] Open
Abstract
Two independent lines of High Drinking in the Dark (HDID-1, HDID-2) mice have been bred to reach high blood alcohol levels after a short period of binge-like ethanol drinking. Male mice of both lines were shown to have reduced sensitivity to develop a taste aversion to a novel flavor conditioned by ethanol injections as compared with their unselected HS/NPT founder stock. We have subsequently developed inbred variants of each line. The current experiments established that reduced ethanol-conditioned taste aversion is also seen in the inbred variants, in both males and females. In other experiments, we asked whether HDID mice would ingest sufficient doses of ethanol to lead to a conditioned taste aversion upon retest. Different manipulations were used to elevate consumption of ethanol on initial exposure. Access to increased ethanol concentrations, to multiple tubes of ethanol, and fluid restriction to increase thirst motivation all enhanced initial drinking of ethanol. Each condition led to reduced intake the next day, consistent with a mild conditioned taste aversion. These experiments support the conclusion that one reason contributing to the willingness of HDID mice to drink to the point of intoxication is a genetic insensitivity to the aversive effects of ethanol.
Collapse
|
22
|
Zhao M, Yang J, Qiu X, Yang X, Qiao Z, Song X, Wang L, Zhao E, Yang Y, Cao D. CACNA1C rs1006737, Threatening Life Events, and Gene-Environment Interaction Predict Major Depressive Disorder. Front Psychiatry 2019; 10:982. [PMID: 32038325 PMCID: PMC6987424 DOI: 10.3389/fpsyt.2019.00982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION CACNA1C rs1006737 is a novel variant in discovery of replicable associations in major depressive disorder (MDD). However, there have been no specific studies considered effect of environmental pathogens to date examining its clinical significance. In this study we investigated the interaction effect between CACNA1C rs1006737 polymorphism and threatening life events (TLEs) in MDD and carried out a meta-analysis of published findings. METHODS A total of 1,177 consecutive participants were genotyped. Information on exposure to TLEs, socio-demographic data, and history of psychological problems among first-degree relatives was collected. MDD was diagnosed according to the Chinese version of the 24-item Hamilton Rating Scale for Depression. RESULTS There was a significant interaction effect between CACNA1C rs1006737 polymorphism and TLEs in MDD. A dose-response relationship was found between CACNA1C rs1006737 genotypes and TLEs in MDD. The results of the meta-analysis showed that CACNA1C rs1006737 genotypes interacted with TLEs in MDD. CONCLUSION CACNA1C rs1006737 genotype and previous exposure to TLEs interact to influence the risk of developing MDD. We propose that CACNA1C rs1006737 may represent a target for novel pharmacological therapies to prevent or treat MDD.
Collapse
Affiliation(s)
- Mingzhe Zhao
- Psychology Department of the Public Health Institute of Harbin Medical University, Harbin, China
| | - Jiarun Yang
- Department of Health Management of Harbin Medical University, Harbin, China
| | - Xiaohui Qiu
- Psychology Department of the Public Health Institute of Harbin Medical University, Harbin, China
| | - Xiuxian Yang
- Psychology Department of the Public Health Institute of Harbin Medical University, Harbin, China
| | - Zhengxue Qiao
- Psychology Department of the Public Health Institute of Harbin Medical University, Harbin, China
| | - Xuejia Song
- Psychology Department of the Public Health Institute of Harbin Medical University, Harbin, China
| | - Lin Wang
- Psychology Department of the Public Health Institute of Harbin Medical University, Harbin, China
| | - Erying Zhao
- Psychology Department of the Public Health Institute of Harbin Medical University, Harbin, China
| | - Yanjie Yang
- Psychology Department of the Public Health Institute of Harbin Medical University, Harbin, China
| | - Depin Cao
- Department of Health Management of Harbin Medical University, Harbin, China
| |
Collapse
|
23
|
Kay JC, Claghorn GC, Thompson Z, Hampton TG, Garland T. Electrocardiograms of mice selectively bred for high levels of voluntary exercise: Effects of short-term exercise training and the mini-muscle phenotype. Physiol Behav 2018; 199:322-332. [PMID: 30508549 DOI: 10.1016/j.physbeh.2018.11.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/30/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022]
Abstract
Changes in cardiac function that occur with exercise training have been studied in detail, but those accompanying evolved increases in the duration or intensity of physical activity are poorly understood. To address this gap, we studied electrocardiograms (ECGs) of mice from an artificial selection experiment in which four replicate lines are bred for high voluntary wheel running (HR) while four non-selected lines are maintained as controls (C). ECGs were recorded using an ECGenie (Mouse Specifics, Inc.) both before and after six days of wheel access (as used in the standard protocol to select breeders). We hypothesized that HR mice would show innate differences in ECG characteristics and that the response to training would be greater in HR mice relative to C mice because the former run more. After wheel access, in statistical analyses controlling for variation in body mass, all mice had lower heart rates, and mice from HR lines had longer PR intervals than C lines. Also after wheel access, male mice had increased heart rate variability, whereas females had decreased heart rate variability. With body mass as a covariate, six days of wheel access significantly increased ventricle mass in both HR and C males. Within the HR lines, a subset of mice known as mini-muscle individuals have a 50% reduction in hindlimb muscle mass and generally larger internal organs, including the heart ventricles. As compared with normal-muscled individuals, mini-muscle individuals had a longer QRS complex, both before and after wheel access. Some studies in other species of mammals have shown correlations between athletic performance and QRS duration. Correlations between wheel running and either heart rate or QRS duration (before wheel running) among the eight individual lines of the HR selection experiment or among 17 inbred mouse strains taken from the literature were not statistically significant. However, total revolutions and average speed were negatively correlated with PR duration among lines of the HR selection experiment for males, and duration of running was negatively correlated with PR duration among 17 inbred strains for females. We conclude that HR mice have enhanced trainability of cardiac function as compared with C mice (as indicated by their longer PR duration after wheel access), and that the mini-muscle phenotype causes cardiac changes that have been associated with increased athletic performance in previous studies of mammals.
Collapse
Affiliation(s)
- Jarren C Kay
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA; Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35406, USA
| | - Gerald C Claghorn
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Zoe Thompson
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, USA; Department of Molecular & Integrative Physiology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
24
|
Moore DS. Gene × Environment interaction: What exactly are we talking about? RESEARCH IN DEVELOPMENTAL DISABILITIES 2018; 82:3-9. [PMID: 29748114 DOI: 10.1016/j.ridd.2018.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
An ambiguity exists in how psychological scientists use the word "interaction." This word can refer to physical interactions between components that form the mechanisms in complex systems, but it can also refer to statistical interactions revealed by General Linear Statistical Models (e.g., Analyses of Variance). Statistical interactions indicate that the nature of the relationship between two variables depends on a third variable, but the discovery of such interactions does not constitute evidence of physical interactions between components in a system. Studies conducted using traditional behavioral genetics methods sometimes reveal statistical interactions between genes and environments, but the presence or absence of such interactions tell us surprisingly little about actual, physical interactions between genes and their contexts. This is important, because it is only the latter kinds of interactions that cause the development of behavioral phenotypes, including developmental disabilities. Therefore, when behavioral scientists discover (or fail to discover) Genotype × Environment interactions, it is important to exercise care in interpreting their meaning and in assessing the utility of such findings.
Collapse
Affiliation(s)
- David S Moore
- Pitzer College and Claremont Graduate University, United States.
| |
Collapse
|
25
|
Tsang B, Ansari R, Azhar A, Gerlai R. Drinking in the morning versus evening: Time-dependent differential effects of acute alcohol administration on the behavior of zebrafish. Pharmacol Biochem Behav 2018; 175:174-185. [PMID: 30153446 DOI: 10.1016/j.pbb.2018.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022]
Abstract
Alcohol (ethanol) abuse remains to be a leading cause of medical, including mental, problems throughout the world. Whether alcohol consumption leads to chronic use, and subsequent alcohol dependency and abuse is known to be influenced by the acute effects of this drug. Numerous factors may influence how alcohol administered acutely affects the individual. For example, the mechanisms engaged by drugs of abuse, e.g. cocaine as well as alcohol, have been shown to overlap with those underlying circadian rhythm, and conversely, the effects of these drugs may be dependent upon the time of day of their consumption. To investigate the interaction between circadian rhythm and alcohol, here we employ a simple vertebrate model organism that was previously successfully utilized in other aspects of alcohol research, the zebrafish. We expose zebrafish to alcohol for 20 min in the morning or in the evening, and analyze the effects of this treatment by comparing 1% (vol/vol) alcohol-treated and control (alcohol naive) zebrafish. We record numerous swim path parameters, and report, for the first time, that the time of day of alcohol administration differentially affects certain behavioral parameters, enhancing some while blunting others. Our results suggest a complex interaction between circadian dependent and alcohol engaged mechanisms, findings that represent both practical complications as well as opportunities for understanding how alcohol affects brain function and behavior of vertebrates.
Collapse
Affiliation(s)
- Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Rida Ansari
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Amna Azhar
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Canada; Cell and Systems Biology Department, University of Toronto, Canada.
| |
Collapse
|
26
|
Song JH, Miller AL, Leung CYY, Lumeng JC, Rosenblum KL. Positive Parenting Moderates the Association between Temperament and Self-Regulation in Low-Income Toddlers. JOURNAL OF CHILD AND FAMILY STUDIES 2018; 27:2354-2364. [PMID: 30275671 PMCID: PMC6162054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Self-regulation develops rapidly during the toddler years and underlies many important developmental outcomes, including social-emotional competence and academic achievement. It is important to understand factors that contribute to early self-regulation skills among children at risk for adjustment difficulties in these domains, such as children growing up in poverty. The current study examined mother-reported child temperament (negative affect, effortful control) and observed maternal parenting (during a mother-child free play) as contributing factors to toddlers' observed self-regulation during delay of gratification tasks at 27 months (snack delay) and 33 months (gift delay). Participants were 198 toddlers (M age = 27 months; 53% boys; 48% non-Hispanic white) and their mothers from low-income families. Mothers' negative parenting characterized by negative affect, hostility, and negative control was associated with poorer self-regulation contemporaneously. Toddlers' lower negative affect and higher effortful control predicted better self-regulation at 33 months, but positive parenting characterized by positive affect and sensitivity moderated these associations at both time points. Specifically, we found a buffering effect of high positive parenting among toddlers with a temperamental risk and a deleterious effect of low positive parenting despite toddlers' temperamental strength. Results highlight the importance of positive parenting for fostering the development of self-regulation among toddlers growing up with poverty-related and child-level risks.
Collapse
Affiliation(s)
- Ju-Hyun Song
- Department of Psychology, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Alison L Miller
- Center for Human Growth and Development, Department of Health Behavior and Health Education, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Christy Y Y Leung
- TMW Center for Early Learning + Public Health, University of Chicago, Chicago, IL
| | - Julie C Lumeng
- Center for Human Growth and Development, Department of Pediatrics, Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Katherine L Rosenblum
- Center for Human Growth and Development, Department of Psychiatry, University of Michigan, Ann Arbor, MI
| |
Collapse
|
27
|
Zahid H, Tsang B, Ahmed H, Lee RCY, Tran S, Gerlai R. Diazepam fails to alter anxiety-like responses but affects motor function in a white-black test paradigm in larval zebrafish (Danio rerio). Prog Neuropsychopharmacol Biol Psychiatry 2018; 83:127-136. [PMID: 29360490 DOI: 10.1016/j.pnpbp.2018.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 11/30/2022]
Abstract
The growing popularity of zebrafish in psychopharmacology and behavioral brain research is partly due to the practicality and simplicity of drug administration in this species. Several drugs may be administered to zebrafish by immersing the fish in the drug solution. Furthermore, numerous drugs developed for mammals, including humans, have been found to show a similar effect profile in the zebrafish. Thus, the zebrafish has been suggested as a potentially useful animal screening tool. Despite decades of drug development, anxiety still represents a major unmet medical need, and the search for anxiolytic compounds is continuing. The zebrafish has been proposed for high throughput screens for anxiolytic compounds, and the effects of anxiolytic compounds on the behavior of zebrafish have started to be explored. Diazepam (Valium®) is a frequently prescribed human anxiolytic, a GABAA receptor agonist, has also started to be tested in zebrafish, but with occasional contradicting results. Here, we investigate the effects of diazepam in larval (6-day post-fertilization old) zebrafish in a black-white preference paradigm. We found significant white preference and thigmotaxis (edge preference) in our control fish, anxiety-like responses that habituated over time. However, unexpectedly, we observed no anxiolytic effects of diazepam on these behaviors, and only detected significant motor activity reducing effect of the drug. We discuss the complex interpretation of light/dark tests in zebrafish, and also speculate about the possibility of differential GABAergic mechanisms that diazepam affects in larval vs adult zebrafish.
Collapse
Affiliation(s)
- Hifsa Zahid
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Hira Ahmed
- Department of Psychology, University of Toronto Mississauga, Canada
| | | | - Steven Tran
- Department of Cell and System Biology, University of Toronto, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Canada; Department of Cell and System Biology, University of Toronto, Canada.
| |
Collapse
|
28
|
Kafkafi N, Agassi J, Chesler EJ, Crabbe JC, Crusio WE, Eilam D, Gerlai R, Golani I, Gomez-Marin A, Heller R, Iraqi F, Jaljuli I, Karp NA, Morgan H, Nicholson G, Pfaff DW, Richter SH, Stark PB, Stiedl O, Stodden V, Tarantino LM, Tucci V, Valdar W, Williams RW, Würbel H, Benjamini Y. Reproducibility and replicability of rodent phenotyping in preclinical studies. Neurosci Biobehav Rev 2018; 87:218-232. [PMID: 29357292 PMCID: PMC6071910 DOI: 10.1016/j.neubiorev.2018.01.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/13/2017] [Accepted: 01/11/2018] [Indexed: 12/15/2022]
Abstract
The scientific community is increasingly concerned with the proportion of
published “discoveries” that are not replicated in subsequent
studies. The field of rodent behavioral phenotyping was one of the first to
raise this concern, and to relate it to other methodological issues: the complex
interaction between genotype and environment; the definitions of behavioral
constructs; and the use of laboratory mice and rats as model species for
investigating human health and disease mechanisms. In January 2015, researchers
from various disciplines gathered at Tel Aviv University to discuss these
issues. The general consensus was that the issue is prevalent and of concern,
and should be addressed at the statistical, methodological and policy levels,
but is not so severe as to call into question the validity and the usefulness of
model organisms as a whole. Well-organized community efforts, coupled with
improved data and metadata sharing, have a key role in identifying specific
problems and promoting effective solutions. Replicability is closely related to
validity, may affect generalizability and translation of findings, and has
important ethical implications.
Collapse
Affiliation(s)
| | | | | | - John C Crabbe
- Oregon Health & Science University, and VA Portland Health Care System, United States
| | | | | | | | | | | | | | | | | | - Natasha A Karp
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | - William Valdar
- University of North Carolina at Chapel Hill, United States
| | | | | | | |
Collapse
|
29
|
Shams S, Amlani S, Buske C, Chatterjee D, Gerlai R. Developmental social isolation affects adult behavior, social interaction, and dopamine metabolite levels in zebrafish. Dev Psychobiol 2018; 60:43-56. [PMID: 29091281 PMCID: PMC5747993 DOI: 10.1002/dev.21581] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/28/2017] [Indexed: 12/18/2022]
Abstract
The zebrafish is a social vertebrate and an excellent translational model for a variety of human disorders. Abnormal social behavior is a hallmark of several human brain disorders. Social behavioral problems can arise as a result of adverse early social environment. Little is known about the effects of early social isolation in adult zebrafish. We compared zebrafish that were isolated for either short (7 days) or long duration (180 days) to socially housed zebrafish, testing their behavior across ontogenesis (ages 10, 30, 60, 90, 120, 180 days), and shoal cohesion and whole-brain monoamines and their metabolites in adulthood. Long social isolation increased locomotion and decreased shoal cohesion and anxiety in the open-field in adult. Additionally, both short and long social isolation reduced dopamine metabolite levels in response to social stimuli. Thus, early social isolation has lasting effects in zebrafish, and may be employed to generate zebrafish models of human neuropsychiatric conditions.
Collapse
Affiliation(s)
- Soaleha Shams
- Department of Cell & Systems Biology, University of Toronto
| | - Shahid Amlani
- Department of Psychology, University of Toronto Mississauga
| | | | - Diptendu Chatterjee
- Department of Nutritional Sciences, University of Toronto
- Department of Psychology, University of Toronto Mississauga
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto
- Department of Psychology, University of Toronto Mississauga
| |
Collapse
|
30
|
Mahabir S, Gerlai R. The Importance of Holding Water: Salinity and Chemosensory Cues Affect Zebrafish Behavior. Zebrafish 2017; 14:444-458. [DOI: 10.1089/zeb.2017.1472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Samantha Mahabir
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Robert Gerlai
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| |
Collapse
|
31
|
Seguin D, Gerlai R. Zebrafish prefer larger to smaller shoals: analysis of quantity estimation in a genetically tractable model organism. Anim Cogn 2017; 20:813-821. [PMID: 28616841 DOI: 10.1007/s10071-017-1102-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 01/24/2023]
Abstract
Numerical abilities have been demonstrated in a variety of non-human vertebrates. However, underlying biological mechanisms have been difficult to study due to a paucity of experimental tools. Powerful genetic and neurobiological tools already exist for the zebrafish, but numerical abilities remain scarcely explored with this species. Here, we investigate the choice made by single experimental zebrafish between numerically different shoals of conspecifics presented concurrently on opposite sides of the experimental tank. We examined this choice using the AB strain and pet store zebrafish. We found zebrafish of both populations to generally prefer the numerically larger shoal to the smaller one. This preference was significant for contrasted ratios above or equalling 2:1 (i.e. 4 vs. 0, 4 vs. 1, 8 vs. 2, 6 vs. 2 and 6 vs. 3). Interestingly, zebrafish showed no significant preference when each of the two contrasted shoals had at least 4 members, e.g. in a contrast 8 versus 4. These results confirm that zebrafish possess the ability to distinguish larger numbers of items from smaller number of items, in a shoaling context, with a potential limit above 4. Our findings confirm the utility of the zebrafish for the exploration of both the behavioural and the biological mechanisms underlying numerical abilities in vertebrates.
Collapse
Affiliation(s)
- Diane Seguin
- Department of Psychology, University of Toronto Mississauga, 3559 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, 3559 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
32
|
Wolf JB, Brodie ED. THE COADAPTATION OF PARENTAL AND OFFSPRING CHARACTERS. Evolution 2017; 52:299-308. [PMID: 28568322 DOI: 10.1111/j.1558-5646.1998.tb01632.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/1997] [Accepted: 01/28/1998] [Indexed: 11/28/2022]
Abstract
Parents often have important influences on their offspring's traits and/or fitness (i.e., maternal or paternal effects). When offspring fitness is determined by the joint influences of offspring and parental traits, selection may favor particular combinations that generate high offspring fitness. We show that this epistasis for fitness between the parental and offspring genotypes can result in the evolution of their joint distribution, generating genetic correlations between the parental and offspring characters. This phenomenon can be viewed as a coadaptive process in which offspring genotypes evolve to function with the parentally provided environment and, in turn, the genes for this environment become associated with specific offspring genes adapted to it. To illustrate this point, we present two scenarios in which selection on offspring alone alters the correlation between a maternal and an offspring character. We use a quantitative genetic maternal effect model combined with a simple quadratic model of fitness to examine changes in the linkage disequilibrium between the maternal and offspring genotypes. In the first scenario, stabilizing selection on a maternally affected offspring character results in a genetic correlation that is opposite in sign to the maternal effect. In the second scenario, directional selection on an offspring trait that shows a nonadditive maternal effect can result in selection for positive covariances between the traits. This form of selection also results in increased genetic variation in maternal and offspring characters, and may, in the extreme case, promote host-race formation or speciation. This model provides a possible evolutionary explanation for the ubiquity of large genetic correlations between maternal and offspring traits, and suggests that this pattern of coinheritance may reflect functional relationships between these characters (i.e., functional integration).
Collapse
Affiliation(s)
- Jason B Wolf
- Center for Ecology, Evolution and Behavior, T. H. Morgan School of Biological Sciences, 101 T. H. Morgan Building, University of Kentucky, Lexington, Kentucky, 40506-0225
| | - Edmund D Brodie
- Center for Ecology, Evolution and Behavior, T. H. Morgan School of Biological Sciences, 101 T. H. Morgan Building, University of Kentucky, Lexington, Kentucky, 40506-0225
| |
Collapse
|
33
|
Tran S, Fulcher N, Nowicki M, Desai P, Tsang B, Facciol A, Chow H, Gerlai R. Time-dependent interacting effects of caffeine, diazepam, and ethanol on zebrafish behaviour. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:16-27. [PMID: 28025019 DOI: 10.1016/j.pnpbp.2016.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/04/2016] [Accepted: 12/20/2016] [Indexed: 01/08/2023]
Abstract
Zebrafish have become a popular animal model for behavioural pharmacology due to their small size, rapid development, and amenability to high throughput behavioural drug screens. Furthermore, water-soluble compounds can be administered via immersion of the fish in the drug solution, which provides a non-invasive drug delivery method. Numerous studies have demonstrated stimulant effects of alcohol. Diazepam and caffeine, on the other hand have been found to have inhibitory effect on locomotor activity in zebrafish. However, the time-dependent changes induced by these psychoactive drugs are rarely reported, and potential drug interactions have not been examined in zebrafish, despite the translational relevance of this question. In the current study, we examine time- and dose-dependent changes in zebrafish following exposure to caffeine, diazepam, and ethanol quantifying four different behavioural parameters over a 30min recording session. We subsequently analyze potential drug-drug interactions by co-administering the three drugs in different combinations. Our time-course and dose-response analyses for each of the three drugs represent so far the most detailed studies available serving as a foundation for future psychopharmacology experiments with zebrafish. Furthermore, we report significant interactions between the three drugs corroborating findings obtained with rodent models as well as in humans, providing translational relevance for the zebrafish model.
Collapse
Affiliation(s)
- Steven Tran
- University of Toronto, Department of Cell and Systems Biology, Canada.
| | - Niveen Fulcher
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Magda Nowicki
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Priyanka Desai
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Benjamin Tsang
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Amanda Facciol
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Hayden Chow
- University of Western Ontario, Department of Physiology and Pharmacology, Canada
| | - Robert Gerlai
- University of Toronto, Department of Cell and Systems Biology, Canada; University of Toronto Mississauga, Department of Psychology, Canada.
| |
Collapse
|
34
|
Damage-induced alarm cues influence lateralized behaviour but not the relationship between behavioural and habenular asymmetry in convict cichlids (Amatitlania nigrofasciata). Anim Cogn 2017; 20:537-551. [PMID: 28324234 DOI: 10.1007/s10071-017-1081-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/05/2017] [Accepted: 03/13/2017] [Indexed: 10/19/2022]
Abstract
Cerebral lateralization, the partitioning of functions into a certain hemisphere of the brain, is ubiquitous among vertebrates. Evidence suggests that the cognitive processing of a stimulus is performed with a specific hemisphere depending in part upon the emotional valence of the stimulus (i.e. whether it is appetitive or aversive). Recent work has implicated a predominance of right-hemisphere processing for aversive stimuli. In fish with laterally placed eyes, the preference to view an object with a specific eye has been used as a proxy for assessing cerebral lateralization. The habenula, one of the most well-known examples of an asymmetrical neural structure, has been linked to behavioural asymmetry in some fish species. Here, we exposed convict cichlid fish (Amatitlania nigrofasciata) to both a social and non-social lateralization task and assessed behavioural lateralization in either the presence or absence of an aversive stimulus, damage-induced alarm cues. We also assessed whether behavioural asymmetry in these tests was related to asymmetry of the habenular nuclei. We found that when alarm cues were present, fish showed increased left-eye (and by proxy, right hemisphere) preference for stimulus viewing. In addition, females, but not males, showed stronger eye preferences when alarm cues were present. We did not find a relationship between behavioural lateralization and habenular lateralization. Our results conflict with previous reports of concordance between behavioural and habenular lateralization in this fish species. However, our results do provide support for the hypothesis of increased right-hemisphere use when an organism is exposed to aversive stimuli.
Collapse
|
35
|
Kelly SA, Zhao L, Jung KC, Hua K, Threadgill DW, Kim Y, de Villena FPM, Pomp D. Prevention of tumorigenesis in mice by exercise is dependent on strain background and timing relative to carcinogen exposure. Sci Rep 2017; 7:43086. [PMID: 28225043 PMCID: PMC5320535 DOI: 10.1038/srep43086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 01/19/2017] [Indexed: 12/15/2022] Open
Abstract
Among cancer diagnoses, colorectal cancer (CRC) is prevalent, with a lifetime risk of developing CRC being approximately 5%. Population variation surrounding the mean risk of developing CRCs has been associated with both inter-individual differences in genomic architecture and environmental exposures. Decreased risk of CRC has been associated with physical activity, but protective responses are variable. Here, we utilized a series of experiments to examine the effects of genetic background (strain), voluntary exercise (wheel running), and their interaction on azoxymethane (AOM)-induced intestinal tumor number and size in mice. Additionally, we investigated how the timing of exercise relative to AOM exposure, and amount of exercise, affected tumor number and size. Our results indicated that voluntary exercise significantly reduced tumor number in a strain dependent manner. Additionally, among strains where exercise reduced tumor number (A/J, CC0001/Unc) the timing of voluntary exercise relative to AOM exposure was crucial. Voluntary exercise prior to or during AOM treatment resulted in a significant reduction in tumor number, but exercise following AOM exposure had no effect. The results indicate that voluntary exercise should be used as a preventative measure to reduce risk for environmentally induced CRC with the realization that the extent of protection may depend on genetic background.
Collapse
Affiliation(s)
- Scott A Kelly
- Department of Zoology, Ohio Wesleyan University, Delaware, Ohio 43015, USA
| | - Liyang Zhao
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Kuo-Chen Jung
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Kunjie Hua
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - David W Threadgill
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas 77843, USA
| | - Yunjung Kim
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | - Daniel Pomp
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
36
|
Fulcher N, Tran S, Shams S, Chatterjee D, Gerlai R. Neurochemical and Behavioral Responses to Unpredictable Chronic Mild Stress Following Developmental Isolation: The Zebrafish as a Model for Major Depression. Zebrafish 2017; 14:23-34. [DOI: 10.1089/zeb.2016.1295] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Niveen Fulcher
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Steven Tran
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Soaleha Shams
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Diptendu Chatterjee
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
37
|
Kelly SA, Gomes FR, Kolb EM, Malisch JL, Garland T. Effects of activity, genetic selection, and their interaction on muscle metabolic capacities and organ masses in mice. J Exp Biol 2017; 220:1038-1047. [DOI: 10.1242/jeb.148759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/26/2016] [Indexed: 12/17/2022]
Abstract
Chronic voluntary exercise elevates total daily energy expenditure (DEE) and food consumption, potentially resulting in organ compensation supporting nutrient extraction/utilization. Additionally, species with naturally higher DEE often have larger processing organs, which may represent genetic differences and/or phenotypic plasticity. We tested for possible adaptive changes in organ masses of 4 replicate lines of house mice selected (37 generations) for high running (HR lines) compared with 4 non-selected control (C) lines. Females were housed with or without wheel access for 13-14 weeks beginning at 53-60 days of age. In addition to organ compensation, chronic activity may also require an elevated aerobic capacity. Therefore, we also measured hematocrit and both citrate synthase activity and myoglobin concentration in heart and gastrocnemius. Both selection (HR vs. C) and activity (wheels vs. no wheels) significantly affected morphological and biochemical traits. For example, with body mass as a covariate, mice from HR lines had significantly higher hematocrit and larger ventricles, with more myoglobin. Wheel access lengthened the small intestine, increased relative ventricle and kidney size, and increased skeletal muscle citrate synthase activity and myoglobin concentration. As compared with C lines, HR mice had greater training effects for ventricle mass, hematocrit, large intestine length, and gastrocnemius citrate synthase activity. For ventricle and gastrocnemius citrate synthase activity, the greater training was explainable quantitatively as a result of greater wheel running (i.e., “more pain, more gain”). For hematocrit and large intestine length, differences were not related to amount of wheel running and instead indicate inherently greater adaptive plasticity in HR lines.
Collapse
Affiliation(s)
- Scott A. Kelly
- Department of Biology, University of California, Riverside, Riverside, California 92521, USA
- Department of Zoology, Ohio Wesleyan University, Delaware, Ohio 43015, USA
| | - Fernando R. Gomes
- Department of Biology, University of California, Riverside, Riverside, California 92521, USA
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão. Trav.14, 101, 05508-900, São Paulo, SP, Brazil
| | - Erik M. Kolb
- Department of Biology, University of California, Riverside, Riverside, California 92521, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Jessica L. Malisch
- Department of Biology, University of California, Riverside, Riverside, California 92521, USA
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, Maryland 20686, USA
| | - Theodore Garland
- Department of Biology, University of California, Riverside, Riverside, California 92521, USA
| |
Collapse
|
38
|
Thompson Z, Argueta D, Garland T, DiPatrizio N. Circulating levels of endocannabinoids respond acutely to voluntary exercise, are altered in mice selectively bred for high voluntary wheel running, and differ between the sexes. Physiol Behav 2016; 170:141-150. [PMID: 28017680 DOI: 10.1016/j.physbeh.2016.11.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/07/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022]
Abstract
The endocannabinoid system serves many physiological roles, including in the regulation of energy balance, food reward, and voluntary locomotion. Signaling at the cannabinoid type 1 receptor has been specifically implicated in motivation for rodent voluntary exercise on wheels. We studied four replicate lines of high runner (HR) mice that have been selectively bred for 81 generations based on average number of wheel revolutions on days five and six of a six-day period of wheel access. Four additional replicate lines are bred without regard to wheel running, and serve as controls (C) for random genetic effects that may cause divergence among lines. On average, mice from HR lines voluntarily run on wheels three times more than C mice on a daily basis. We tested the general hypothesis that circulating levels of endocannabinoids (i.e., 2-arachidonoylglycerol [2-AG] and anandamide [AEA]) differ between HR and C mice in a sex-specific manner. Fifty male and 50 female mice were allowed access to wheels for six days, while another 50 males and 50 females were kept without access to wheels (half HR, half C for all groups). Blood was collected by cardiac puncture during the time of peak running on the sixth night of wheel access or no wheel access, and later analyzed for 2-AG and AEA content by ultra-performance liquid chromatography coupled to tandem mass spectrometry. We observed a significant three-way interaction among sex, linetype, and wheel access for 2-AG concentrations, with females generally having lower levels than males and wheel access lowering 2-AG levels in some but not all subgroups. The number of wheel revolutions in the minutes or hours immediately prior to sampling did not quantitatively predict plasma 2-AG levels within groups. We also observed a trend for a linetype-by-wheel access interaction for AEA levels, with wheel access lowering plasma concentrations of AEA in HR mice, while raising them in C mice. In addition, females tended to have higher AEA concentrations than males. For mice housed with wheels, the amount of running during the 30min before sampling was a significant positive predictor of plasma AEA within groups, and HR mice had significantly lower levels of AEA than C mice. Our results suggest that voluntary exercise alters circulating levels of endocannabinoids, and further demonstrate that selective breeding for voluntary exercise is associated with evolutionary changes in the endocannabinoid system.
Collapse
Affiliation(s)
- Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Donovan Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | - Nicholas DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| |
Collapse
|
39
|
Abstract
We report an exploratory study that investigated the interaction of trait and task in determining duration judgment. High and low absorption subjects (determined by median split along the Absorption Scale) viewed a series of paired slides, and were required to relate to each pair in one of two tasks: A metaphor-production task, and a story-production one. These tasks were carried out for an objective interval of fifteen minutes, following which the subject was required to verbally estimate this duration, retrospectively. In addition, from the individual protocols we measured the average time till response and the average time of response. A significant interaction between absorption and task was obtained for the latter two variables. In addition, a main effect for task was found for the duration estimation. These and other results are assessed in terms of both a cognitive-timer model for time estimation and a contextualistic approach to temporal processing.
Collapse
|
40
|
Seguin D, Shams S, Gerlai R. Behavioral Responses to Novelty or to a Predator Stimulus Are Not Altered in Adult Zebrafish by Early Embryonic Alcohol Exposure. Alcohol Clin Exp Res 2016; 40:2667-2675. [PMID: 27790739 DOI: 10.1111/acer.13249] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/21/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) may vary in symptoms and severity. In the milder and more prevalent forms of the disease, behavioral abnormalities may include impaired social behavior, for example, difficulty interpreting social cues. Patients with FASD remain often undiagnosed due to lack of biomarkers, and treatment is unavailable because the mechanisms of the disease are not yet understood. Animal models have been proposed to facilitate addressing these problems. More recently, short exposure of the zebrafish embryo to low concentrations of alcohol was shown to lead to significant and lasting impairment of behavior in response to social stimuli. The impairment may be the result of abnormal social behavior or altered fear/anxiety. The goal of the current study was to investigate the latter. METHODS Here, we employed the alcohol exposure regimen used previously (exposure of 24th hour postfertilization embryos to 0.00, 0.25, 0.50, 0.75, or 1.00% vol/vol alcohol for 2 hours), allowed the fish to reach adulthood, and measured the behavioral responses of these adults to a novel tank (anxiety-related behaviors) as well as to an animated image of a sympatric predator of zebrafish (fear-related behaviors). RESULTS We found behavioral responses of embryonic alcohol-exposed adult fish to remain statistically indistinguishable from those of controls, suggesting unaltered anxiety and fear in the embryonic alcohol-treated fish. CONCLUSIONS Given that motor and perceptual function was previously shown to be also unaltered in the adults after embryonic alcohol exposure, our current results suggest that the impaired response of these fish to social stimuli may be the result of abnormal social behavior.
Collapse
Affiliation(s)
- Diane Seguin
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Soaleha Shams
- Department of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada.,Department of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
41
|
Tran S, Chatterjee D, Facciol A, Gerlai R. Concentration, population, and context-dependent effects of AM251 in zebrafish. Psychopharmacology (Berl) 2016; 233:1445-54. [PMID: 26883874 DOI: 10.1007/s00213-016-4240-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/07/2016] [Indexed: 01/03/2023]
Abstract
RATIONALE The function of the cannabinoid type 1 receptor (CB1-R) is poorly understood in zebrafish, and numerous inconsistent effects have been reported on it in the literature. OBJECTIVE The objective of the present study is to determine whether differences in the reported effects of CB1-R antagonism on anxiety-like behavioural responses, dopaminergic and serotonergic responses are due to concentration, context-dependent and/or population (genotype-related) effects. METHOD Two genetically distinct populations of zebrafish (AB and short fin (SF)) were treated with different concentrations of AM251 (0, 0.1, 1mg/L), and behavioural responses were quantified under two different contexts: one, following habituation and two, subsequently in a novel environment. The levels of dopamine, serotonin and their metabolites 3,4-dihydroxyindole acetic acid (DOPAC) and 5-hydroxyindoleacetic acid (5-HIAA) were quantified from whole-brain tissue. RESULTS We demonstrate that a 60-min exposure to AM251 (0, 0.1, 1mg/L) does not alter behavioural performance following habituation in either populations. However, when subsequently transferred to a novel environment, zebrafish that were pre-treated with the highest dose of AM251 (1mg/L) exhibited increased anxiety-like behavioural responses including elevated absolute turn angle, freezing and bottom dwelling. We found that exposure to the highest dose of AM251 (1mg/L) for 60min increased serotonin in fish of both populations tested. In contrast, exposure to 0.1mg/L AM251 decreased, whereas to 1mg/L AM251 increased dopamine, DOPAC and 5-HIAA in fish of both populations. CONCLUSION Our results demonstrate a genotype-independent effect of AM251 but imply that the inconsistent findings obtained after pharmacological blockade of CB1-Rs in zebrafish may be due to a combination of concentration- and environmental context-dependent effects.
Collapse
Affiliation(s)
- Steven Tran
- Department of Cell & Systems Biology, University of Toronto, 3359 Mississauga Road North, DV 1022D, Mississauga, Ontario, L5L 1C6, Canada.
| | - Diptendu Chatterjee
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road North, CC4004, Mississauga, Ontario, L5L 1C6, Canada
| | - Amanda Facciol
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road North, CC4004, Mississauga, Ontario, L5L 1C6, Canada
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, 3359 Mississauga Road North, DV 1022D, Mississauga, Ontario, L5L 1C6, Canada.
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road North, CC4004, Mississauga, Ontario, L5L 1C6, Canada.
| |
Collapse
|
42
|
Maney DL. Perils and pitfalls of reporting sex differences. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150119. [PMID: 26833839 PMCID: PMC4785904 DOI: 10.1098/rstb.2015.0119] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2015] [Indexed: 12/21/2022] Open
Abstract
The idea of sex differences in the brain both fascinates and inflames the public. As a result, the communication and public discussion of new findings is particularly vulnerable to logical leaps and pseudoscience. A new US National Institutes of Health policy to consider both sexes in almost all preclinical research will increase the number of reported sex differences and thus the risk that research in this important area will be misinterpreted and misrepresented. In this article, I consider ways in which we might reduce that risk, for example, by (i) employing statistical tests that reveal the extent to which sex explains variation, rather than whether or not the sexes 'differ', (ii) properly characterizing the frequency distributions of scores or dependent measures, which nearly always overlap, and (iii) avoiding speculative functional or evolutionary explanations for sex-based variation, which usually invoke logical fallacies and perpetuate sex stereotypes. Ultimately, the factor of sex should be viewed as an imperfect, temporary proxy for yet-unknown factors, such as hormones or sex-linked genes, that explain variation better than sex. As scientists, we should be interested in discovering and understanding the true sources of variation, which will be more informative in the development of clinical treatments.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
43
|
Tran S, Nowicki M, Muraleetharan A, Chatterjee D, Gerlai R. Neurochemical factors underlying individual differences in locomotor activity and anxiety-like behavioral responses in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:25-33. [PMID: 26316057 DOI: 10.1016/j.pnpbp.2015.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/29/2015] [Accepted: 08/18/2015] [Indexed: 02/02/2023]
Abstract
Variation among individuals may arise for several reasons, and may have diverse underlying mechanisms. Individual differences have been studied in a variety of species, but recently a new model organism has emerged in this field that offers both sophistication in phenotypical characterization and powerful mechanistic analysis. Recently, zebrafish, one of the favorites of geneticists, have been shown to exhibit consistent individual differences in baseline locomotor activity. In the current study, we further explore this finding and examine whether individual differences in locomotor activity correlate with anxiety-like behavioral measures and with levels of dopamine, serotonin and the metabolites of these neurotransmitters. In addition, we examine whether individual differences in locomotor activity are also associated with reactivity to the locomotor stimulant effects of and neurochemical responses to acute ethanol exposure (30min long, 1% v/v ethanol bath application). Principal component analyses revealed a strong association among anxiety-like responses, locomotor activity, serotonin and dopamine levels. Furthermore, ethanol exposure was found to abolish the locomotion-dependent anxiety-like behavioral and serotonergic responses suggesting that this drug also engages a common underlying pathway. Overall, our results provide support for an important role of the serotonergic system in mediating individual differences in anxiety-like responses and locomotor activity in zebrafish and for a minor modulatory role of the dopaminergic system.
Collapse
Affiliation(s)
- Steven Tran
- Department of Cell and Systems Biology, University of Toronto, Canada.
| | - Magda Nowicki
- Department of Psychology, University of Toronto Mississauga, Canada
| | | | | | - Robert Gerlai
- Department of Cell and Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada.
| |
Collapse
|
44
|
Tran S, Nowicki M, Fulcher N, Chatterjee D, Gerlai R. Interaction between handling induced stress and anxiolytic effects of ethanol in zebrafish: A behavioral and neurochemical analysis. Behav Brain Res 2016; 298:278-85. [DOI: 10.1016/j.bbr.2015.10.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
|
45
|
The effect of the number and size of animated conspecific images on shoaling responses of zebrafish. Pharmacol Biochem Behav 2015; 139 Pt B:94-102. [DOI: 10.1016/j.pbb.2015.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/15/2014] [Accepted: 01/19/2015] [Indexed: 12/14/2022]
|
46
|
Shams S, Chatterjee D, Gerlai R. Chronic social isolation affects thigmotaxis and whole-brain serotonin levels in adult zebrafish. Behav Brain Res 2015; 292:283-7. [DOI: 10.1016/j.bbr.2015.05.061] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/24/2015] [Accepted: 05/29/2015] [Indexed: 12/16/2022]
|
47
|
Differential effects of acute administration of SCH-23390, a D₁ receptor antagonist, and of ethanol on swimming activity, anxiety-related responses, and neurochemistry of zebrafish. Psychopharmacology (Berl) 2015. [PMID: 26210378 DOI: 10.1007/s00213-015-4030-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE The zebrafish has become an increasingly popular animal model for investigating ethanol's actions in the brain and its effects on behavior. Acute exposure to ethanol in zebrafish has been shown to induce a dose-dependent increase of locomotor activity, to reduce fear- and anxiety-related behavioral responses, and to increase the levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC). OBJECTIVES The objective of the present study was to investigate the role of dopamine D1 receptors (D1-R) in ethanol-induced locomotor activity in zebrafish. METHODS Zebrafish were pre-treated with SCH-23390 (0 or 1 mg/L bath concentration), a D1-R antagonist, and subsequently exposed to ethanol (0, 0.25, 0.5, 1.0 % v/v). To explore potential underlying mechanisms, we quantified levels of dopamine, DOPAC, serotonin, and 5-HIAA from whole-brain tissue using high-precision liquid chromatography. RESULTS We found pre-treatment with the D1-R antagonist to attenuate locomotor activity independent of ethanol concentration. Furthermore, unlike ethanol, D1-R antagonism did not alter behavioral responses associated with fear and anxiety. Pre-treatment with SCH-23390 decreased levels of dopamine and DOPAC, but this effect was also independent of ethanol concentration. The D1-R antagonist also reduced serotonin and 5-hydroxyindole acetic acid (5-HIAA) levels. CONCLUSION These results suggest a multifaceted and at least partially independent role of dopamine D1 receptors in ethanol-induced locomotor activity and anxiety-related responses as well as in the functioning of the dopaminergic and serotoninergic neurotransmitter systems in zebrafish.
Collapse
|
48
|
Inhibition of phosphorylated tyrosine hydroxylase attenuates ethanol-induced hyperactivity in adult zebrafish (Danio rerio). Pharmacol Biochem Behav 2015; 138:32-9. [PMID: 26366782 DOI: 10.1016/j.pbb.2015.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/28/2015] [Accepted: 09/09/2015] [Indexed: 01/17/2023]
Abstract
Zebrafish have been successfully employed in the study of the behavioural and biological effects of ethanol. Like in mammals, low to moderate doses of ethanol induce motor hyperactivity in zebrafish, an effect that has been attributed to the activation of the dopaminergic system. Acute ethanol exposure increases dopamine (DA) in the zebrafish brain, and it has been suggested that tyrosine hydroxylase, the rate-limiting enzyme of DA synthesis, may be activated in response to ethanol via phosphorylation. The current study employed tetrahydropapaveroline (THP), a selective inhibitor of phosphorylated tyrosine hydroxylase, for the first time, in zebrafish. We treated zebrafish with a THP dose that did not alter baseline motor responses to examine whether it can attenuate or abolish the effects of acute exposure to alcohol (ethanol) on motor activity, on levels of DA, and on levels of dopamine's metabolite 3,4-dihydroxyphenylacetic acid (DOPAC). We found that 60-minute exposure to 1% alcohol induced motor hyperactivity and an increase in brain DA. Both of these effects were attenuated by pre-treatment with THP. However, no differences in DOPAC levels were found among the treatment groups. These findings suggest that tyrosine hydroxylase is activated via phosphorylation to increase DA synthesis during alcohol exposure in zebrafish, and this partially mediates alcohol's locomotor stimulant effects. Future studies will investigate other potential candidates in the molecular pathway to further decipher the neurobiological mechanism that underlies the stimulatory properties of this popular psychoactive drug.
Collapse
|
49
|
Gubner NR, Phillips TJ. Effects of nicotine on ethanol-induced locomotor sensitization: A model of neuroadaptation. Behav Brain Res 2015; 288:26-32. [PMID: 25857831 PMCID: PMC4442015 DOI: 10.1016/j.bbr.2015.03.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 01/24/2023]
Abstract
Co-morbid use of nicotine-containing tobacco products and alcohol (ethanol) is prevalent in young adults initiating use and in alcohol dependent adults, suggesting that these drugs in combination may increase risk to develop dependence on one or both drugs. Neuroadaptations caused by repeated drug exposure are related to the development of drug dependence and vulnerability to relapse. Locomotor sensitization has been used as a behavioral measure used to detect changes in neural drug sensitivity that are thought to contribute to drug dependence and relapse. Locomotor sensitization was measured in the current studies to examine potential differences in the effects of nicotine and ethanol given alone and in combination. Baseline activity levels of DBA/2J mice were assessed on 2 days, then mice were treated for 10 days with saline, nicotine (1 or 2mg/kg of nicotine tartrate), ethanol (1 or 2g/kg), or nicotine plus ethanol and locomotor activity was assessed every third day. On the following day, all mice were challenged with ethanol to measure the expression of sensitization. Mice treated with both nicotine and ethanol exhibited greater stimulation than predicted from the combined independent effects of these drugs, consistent with our previously published results. The combined effects of nicotine and ethanol on locomotor sensitization were dependent on the dose of ethanol and whether testing was performed after the drugs were given together, or after challenge with ethanol alone. These results suggest that nicotine and ethanol in combination can have neuroadaptive effects that differ from the independent effects of these drugs.
Collapse
Affiliation(s)
- Noah R Gubner
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Tamara J Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, USA; VA Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
50
|
|