1
|
Joshi MS, Shinde MS, Lavania M. Evaluation of different genomic regions of rotavirus B and rotavirus C for development of real-time RT‒PCR assays. Virol J 2024; 21:94. [PMID: 38659036 PMCID: PMC11044293 DOI: 10.1186/s12985-024-02369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND The causative agents of diarrhea, rotavirus B (RVB) and rotavirus C (RVC) are common in adults and patients of all age groups, respectively. Due to the Rotavirus A (RVA) vaccination program, a significant decrease in the number of gastroenteritis cases has been observed globally. The replacement of RVA infections with RVB, RVC, or other related serogroups is suspected due to the possibility of reducing natural selective constraints due to RVA infections. The data available on RVB and RVC incidence are scant due to the lack of cheap and rapid commercial diagnostic assays and the focus on RVA infections. The present study aimed to develop real-time RT‒PCR assays using the data from all genomic RNA segments of human RVB and RVC strains available in the Gene Bank. RESULTS Among the 11 gene segments, NSP3 and NSP5 of RVB and the VP6 gene of RVC were found to be suitable for real-time RT‒PCR (qRT‒PCR) assays. Fecal specimens collected from diarrheal patients were tested simultaneously for the presence of RVB (n = 192) and RVC (n = 188) using the respective conventional RT‒PCR and newly developed qRT‒PCR assays. All RVB- and RVC-positive specimens were reactive in their respective qRT‒PCR assays and had Ct values ranging between 23.69 and 41.97 and 11.49 and 36.05, respectively. All known positive and negative specimens for other viral agents were nonreactive, and comparative analysis showed 100% concordance with conventional RT‒PCR assays. CONCLUSIONS The suitability of the NSP5 gene of RVB and the VP6 gene of RVC was verified via qRT‒PCR assays, which showed 100% sensitivity and specificity. The rapid qRT‒PCR assays developed will be useful diagnostic tools, especially during diarrheal outbreaks for testing non-RVA rotaviral agents and reducing the unnecessary use of antibiotics.
Collapse
Affiliation(s)
- Madhuri S Joshi
- Enteric Viruses Group, ICMR- National Institute of Virology, 20-A, Dr. Ambedkar Road. Pune-411 001, Pune, India.
| | - Manohar S Shinde
- Enteric Viruses Group, ICMR- National Institute of Virology, 20-A, Dr. Ambedkar Road. Pune-411 001, Pune, India
| | - Mallika Lavania
- Enteric Viruses Group, ICMR- National Institute of Virology, 20-A, Dr. Ambedkar Road. Pune-411 001, Pune, India.
| |
Collapse
|
2
|
Veletanlic V, Sartalamacchia K, Diller JR, Ogden KM. Multiple rotavirus species encode fusion-associated small transmembrane (FAST) proteins with cell type-specific activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536061. [PMID: 37066280 PMCID: PMC10104117 DOI: 10.1101/2023.04.07.536061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Fusion-associated small transmembrane (FAST) proteins are viral nonstructural proteins that mediate cell-cell fusion to form multinucleated syncytia. We previously reported that human species B rotavirus NSP1-1 is a FAST protein that induces syncytia in primate epithelial cells but not rodent fibroblasts. We hypothesized that the NSP1-1 proteins of other rotavirus species could also mediate cell-cell fusion and that fusion activity might be limited to cell types derived from homologous hosts. To test this hypothesis, we predicted the structure and domain organization of NSP1-1 proteins of species B rotavirus from a human, goat, and pig, species G rotavirus from a pigeon and turkey, and species I rotavirus from a dog and cat. We cloned these sequences into plasmids and transiently expressed the NSP1-1 proteins in avian, canine, hamster, human, porcine, and simian cells. Regardless of host origin of the virus, each NSP1-1 protein induced syncytia in primate cells, while few induced syncytia in other cell types. To identify the domains that determined cell-specific fusion activity for human species B rotavirus NSP1-1, we engineered chimeric proteins containing domain exchanges with the p10 FAST protein from Nelson Bay orthoreovirus. Using the chimeric proteins, we found that the N-terminal and transmembrane domains determined the cell type specificity of fusion activity. Although the species and cell type criteria for fusion activity remain unclear, these findings suggest that rotavirus species B, G, and I NSP1-1 are functional FAST proteins whose N termini play a role in specifying the cells in which they mediate syncytia formation.
Collapse
Affiliation(s)
- Vanesa Veletanlic
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kylie Sartalamacchia
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julia R. Diller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kristen M. Ogden
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Omatola CA, Olaniran AO. Rotaviruses: From Pathogenesis to Disease Control-A Critical Review. Viruses 2022; 14:875. [PMID: 35632617 PMCID: PMC9143449 DOI: 10.3390/v14050875] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Since their first recognition in human cases about four decades ago, rotaviruses have remained the leading cause of acute severe dehydrating diarrhea among infants and young children worldwide. The WHO prequalification of oral rotavirus vaccines (ORV) a decade ago and its introduction in many countries have yielded a significant decline in the global burden of the disease, although not without challenges to achieving global effectiveness. Poised by the unending malady of rotavirus diarrhea and the attributable death cases in developing countries, we provide detailed insights into rotavirus biology, exposure pathways, cellular receptors and pathogenesis, host immune response, epidemiology, and vaccination. Additionally, recent developments on the various host, viral and environmental associated factors impacting ORV performance in low-and middle-income countries (LMIC) are reviewed and their significance assessed. In addition, we review the advances in nonvaccine strategies (probiotics, candidate anti-rotaviral drugs, breastfeeding) to disease prevention and management.
Collapse
Affiliation(s)
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
4
|
Arakaki L, Tollefson D, Kharono B, Drain PK. Prevalence of rotavirus among older children and adults with diarrhea: A systematic review and meta-analysis. Vaccine 2021; 39:4577-4590. [PMID: 34244008 DOI: 10.1016/j.vaccine.2021.06.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/10/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Older children and adults are susceptible to rotavirus, but the extent to which rotavirus affects this population is not fully understood, hindering accuracy of global rotavirus estimations. OBJECTIVE To determine what proportion of diarrhea cases are due to rotavirus among persons ≥ 5 years old and to estimate this proportion by age strata. METHODS We conducted a systematic review and meta-analysis using the PRISMA guidelines. We included studies that reported on conditional rotavirus prevalence (i.e., percent of diarrhea due to rotavirus) in persons ≥ 5 years old who were symptomatic with diarrhea/gastroenteritis and had laboratory confirmation for rotavirus infection. Studies on nosocomial infections and outbreak investigations were excluded. We collected age group-specific conditional rotavirus prevalence and other variables, such as study geography, study setting, and study type. We calculated pooled conditional rotavirus prevalence, corresponding 95% confidence intervals (95% CI), heterogeneity (I2) estimates, and prediction intervals (PI). RESULTS Sixty-six studies from 32 countries met the inclusion criteria. Conditional rotavirus prevalence ranged from 0% to 30% across the studies. The total pooled prevalence of rotavirus among persons ≥ 5 years old with diarrhea was 7.6% (95% CI: 6.2-9.2%, I2 = 99.6%, PI: 0-24%). The pooled prevalence of rotavirus among older children and adolescents was 8.7% (95% CI: 6.2-11.7%, I2 = 96%, PI:0-27%), among younger adults was 5.4% (95% CI: 1.4-11.8%, I2 = 96%, PI:0-31%), and among older adults was 4.7% (95% CI: 2.8-7.0%, I2 = 96%, PI:0-16%). Pooled conditional rotavirus prevalences did not differ by other variables. CONCLUSION In this systematic review and meta-analysis of rotavirus among persons ≥ 5 years old with diarrhea, we found relatively low pooled conditional rotavirus prevalence compared to what is typically reported for children < 5 years; however, results should be interpreted with caution as the wide prediction intervals suggest large heterogeneity.
Collapse
Affiliation(s)
- Lola Arakaki
- University of Washington, Strategic Analysis, Research, and Training (START) Center, 3980 15th Ave NE, Seattle, WA 98195, United States; University of Washington, Department of Epidemiology, 3980 15th Ave NE, Seattle, WA 98195, United States.
| | - Deanna Tollefson
- University of Washington, Strategic Analysis, Research, and Training (START) Center, 3980 15th Ave NE, Seattle, WA 98195, United States; University of Washington, Department of Global Health, 3980 15th Ave NE, Seattle, WA 98195, United States.
| | - Brenda Kharono
- University of Washington, Strategic Analysis, Research, and Training (START) Center, 3980 15th Ave NE, Seattle, WA 98195, United States; University of Washington, Department of Global Health, 3980 15th Ave NE, Seattle, WA 98195, United States.
| | - Paul K Drain
- University of Washington, Strategic Analysis, Research, and Training (START) Center, 3980 15th Ave NE, Seattle, WA 98195, United States; University of Washington, Department of Global Health, 3980 15th Ave NE, Seattle, WA 98195, United States; University of Washington, Department of Medicine, 1959 NE Pacific St, Seattle, WA 98195, United States.
| |
Collapse
|
5
|
Joshi MS, Lole KS, Barve US, Salve DS, Ganorkar NN, Chavan NA, Shinde MS, Gopalkrishna V. Investigation of a large waterborne acute gastroenteritis outbreak caused by group B rotavirus in Maharashtra state, India. J Med Virol 2019; 91:1877-1881. [PMID: 31276221 PMCID: PMC7167004 DOI: 10.1002/jmv.25523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/17/2019] [Indexed: 02/03/2023]
Abstract
An acute gastroenteritis outbreak at Devli Karad village, Maharashtra, India with an attack rate of 22.6% affected mainly adolescent and adult population. The viral investigations conducted on fecal specimens of patients hospitalized indicated the presence of rotavirus B (RVB) using RNA polyacrylamide gel electrophoresis and reverse transcription polymerase chain reaction. The samples collected from the source of drinking water also showed the presence of the only RVB. Absence of other viral agents and identification of RVB of genotype G2 as the etiological agent of the acute gastroenteritis outbreak highlights, the necessity of monitoring RVB, the viral agent known for its large outbreak potential.
Collapse
Affiliation(s)
- Madhuri S. Joshi
- Enteric Viruses GroupICMR‐National Institute of VirologyPuneIndia
| | - Kavita S. Lole
- Hepatitis GroupICMR‐National Institute of VirologyPuneIndia
| | - Uday S. Barve
- District Surveillance Unit, Department of HealthIntegrated Disease Surveillance ProgramNashikMaharashtraIndia
| | - Dawal S. Salve
- District Surveillance Unit, Department of HealthIntegrated Disease Surveillance ProgramNashikMaharashtraIndia
| | | | - Nutan A. Chavan
- Enteric Viruses GroupICMR‐National Institute of VirologyPuneIndia
| | | | | |
Collapse
|
6
|
Rotavirus Species B Encodes a Functional Fusion-Associated Small Transmembrane Protein. J Virol 2019; 93:JVI.00813-19. [PMID: 31375572 DOI: 10.1128/jvi.00813-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
Rotavirus is an important cause of diarrheal disease in young mammals. Rotavirus species A (RVA) causes most human rotavirus diarrheal disease and primarily affects infants and young children. Rotavirus species B (RVB) has been associated with sporadic outbreaks of human adult diarrheal disease. RVA and RVB are predicted to encode mostly homologous proteins but differ significantly in the proteins encoded by the NSP1 gene. In the case of RVB, the NSP1 gene encodes two putative protein products of unknown function, NSP1-1 and NSP1-2. We demonstrate that human RVB NSP1-1 mediates syncytium formation in cultured human cells. Based on sequence alignment, NSP1-1 proteins from species B, G, and I contain features consistent with fusion-associated small transmembrane (FAST) proteins, which have previously been identified in other genera of the Reoviridae family. Like some other FAST proteins, RVB NSP1-1 is predicted to have an N-terminal myristoyl modification. Addition of an N-terminal FLAG peptide disrupts NSP1-1-mediated fusion. NSP1-1 from a human RVB mediates fusion of human cells but not hamster cells and, thus, may serve as a species tropism determinant. NSP1-1 also can enhance RVA replication in human cells, both in single-cycle infection studies and during a multicycle time course in the presence of fetal bovine serum, which inhibits rotavirus spread. These findings suggest potential yet untested roles for NSP1-1 in RVB species tropism, immune evasion, and pathogenesis.IMPORTANCE While species A rotavirus is commonly associated with diarrheal disease in young children, species B rotavirus has caused sporadic outbreaks of adult diarrheal disease. A major genetic difference between species A and B rotaviruses is the NSP1 gene, which encodes two proteins for species B rotavirus. We demonstrate that the smaller of these proteins, NSP1-1, can mediate fusion of cultured human cells. Comparison with viral proteins of similar function provides insight into NSP1-1 domain organization and fusion mechanism. These comparisons suggest that there is a fatty acid modification at the amino terminus of the protein, and our results show that an intact amino terminus is required for NSP1-1-mediated fusion. NSP1-1 from a human virus mediates fusion of human cells, but not hamster cells, and enhances species A rotavirus replication in culture. These findings suggest potential, but currently untested, roles for NSP1-1 in RVB host species tropism, immune evasion, and pathogenesis.
Collapse
|
7
|
Joshi MS, Ganorkar NN, Ranshing SS, Basu A, Chavan NA, Gopalkrishna V. Identification of group B rotavirus as an etiological agent in the gastroenteritis outbreak in Maharashtra, India. J Med Virol 2017; 89:2244-2248. [PMID: 28710858 PMCID: PMC7167091 DOI: 10.1002/jmv.24901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/11/2017] [Indexed: 11/11/2022]
Abstract
Acute gastroenteritis outbreak occurred at Pargaon, Maharashtra, India in 1789 cases with an attack rate of 32.5% between November to December 2015. The stool specimens (n = 32) were investigated for different enteric viral agents using conventional methods. Transmission electron microscopy and RNA polyacrylamide gel electrophoresis respectively identified morphologically distinct rotavirus particles in 28% and RNA migration pattern of Group B Rotavirus (GBR) in 72% of the specimens. Reverse transcription polymerase chain reaction and nucleotide sequencing confirmed presence of GBR in 97% of the samples analyzed. The predominance of GBR infections and absence or insignificant presence of other agents confirmed GBR as an etiological agent of the gastroenteritis outbreak occurred in Maharashtra, India.
Collapse
Affiliation(s)
| | | | | | - Atanu Basu
- Enteric Viruses GroupNational Institute of VirologyPuneIndia
| | - Nutan A. Chavan
- Enteric Viruses GroupNational Institute of VirologyPuneIndia
| | | |
Collapse
|
8
|
Aung MS, Nahar S, Aida S, Paul SK, Hossain MA, Ahmed S, Haque N, Ghosh S, Malik YS, Urushibara N, Kawaguchiya M, Sumi A, Kobayashi N. Distribution of two distinct rotavirus B (RVB) strains in the north-central Bangladesh and evidence for reassortment event among human RVB revealed by whole genomic analysis. INFECTION GENETICS AND EVOLUTION 2016; 47:77-86. [PMID: 27825911 DOI: 10.1016/j.meegid.2016.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 01/05/2023]
Abstract
Human rotavirus B (RVB), a rare cause of diarrhea in several Asian countries, has been reported to be genetically highly conserved. However, 14 RVB strains with two distinct RNA electropherotypes E1 and E2 (11 and 3 strains, respectively) were detected in adult patients with diarrhea, in Mymensingh in the north-central Bangladesh in 2014. In this study, VP7 gene sequences of all the 14 strains and nearly full-length sequences of all the 11 RNA segments of four RVB (two strains each representing E1 and E2 types) were determined and analyzed phylogenetically. For all the gene segments, sequence identities among strains with the same RNA pattern were higher (99%-100%) than those between strains with different RNA patterns (94-98%). Although all the gene segments of RVB strains were grouped into Indian-Bangladeshi lineage, VP1-3, VP6, VP7, NSP1, NSP2 and NSP5 genes of strains with E1 and E2 types were assigned to distinct sublineages S1 and S2, respectively. E1-strains clustered with Bangladeshi RVB strains reported previously (e.g., Bang117), while E2-strains with those from India (e.g., NIV-1048101), Myanmar, and Nepal. In contrast, VP4, NSP3 and NSP4 genes of both E1 and E2 RVB strains were classified into sublineage S2. These findings indicated that two genetically distinct RVB strains were simultaneously circulating in Mymensingh, Bangladesh. RVB strains with E1 electropherotype were suggested to be reassortants acquiring three gene segments (VP4, NSP3 and NSP4 genes) from the foreign RVB in the genetic background of indigenous Bangladeshi RVB represented by the strain Bang117.
Collapse
Affiliation(s)
- Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Samsoon Nahar
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Satoru Aida
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shyamal Kumar Paul
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | | | - Salma Ahmed
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Nazia Haque
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Saint Kitts and Nevis
| | - Yashpal Singh Malik
- Division of Biological Standardisation, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsuyo Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ayako Sumi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
9
|
Group C rotavirus infection in patients with acute gastroenteritis in outbreaks in western India between 2006 and 2014. Epidemiol Infect 2016; 145:310-315. [PMID: 27780494 DOI: 10.1017/s0950268816002363] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Faecal specimens collected from outbreak (n = 253) and sporadic (n = 147) cases of acute gastroenteritis that occurred in western India between 2006 and 2014 were tested for group C rotavirus (GCR) using partial VP6 gene-based RT-PCR. All specimens were tested previously for the presence of other viral and bacterial aetiological agents by conventional methods. The rate of GCR detection was 8·6% and 0·7% in outbreak and sporadic cases, respectively. GCR infections prevailed in outbreaks reported from rural areas (10·9%) compared to urban areas (1·6%). Clinical severity score of the patients with GCR infection (n = 23) indicated severe disease in the majority (70%) of cases. The age distribution analysis indicated 52·1% of GCR infections in children aged <10 years. The male:female ratio in GCR-positive patients was 2·3:1. Of the 23 GCR-positive cases, 17 (73·9%) had a sole GCR infection and six had mixed infections with other viral and/or bacterial agents. Phylogenetic analysis of nucleotide sequences classified GCR strains of the study in to I2 genotype of the VP6 gene. This is the first study to show the occurrence of GCR in gastroenteritis outbreaks in India.
Collapse
|
10
|
Phan MVT, Anh PH, Cuong NV, Munnink BBO, van der Hoek L, My PT, Tri TN, Bryant JE, Baker S, Thwaites G, Woolhouse M, Kellam P, Rabaa MA, Cotten M. Unbiased whole-genome deep sequencing of human and porcine stool samples reveals circulation of multiple groups of rotaviruses and a putative zoonotic infection. Virus Evol 2016; 2:vew027. [PMID: 28748110 PMCID: PMC5522372 DOI: 10.1093/ve/vew027] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coordinated and synchronous surveillance for zoonotic viruses in both human clinical cases and animal reservoirs provides an opportunity to identify interspecies virus movement. Rotavirus (RV) is an important cause of viral gastroenteritis in humans and animals. In this study, we document the RV diversity within co-located humans and animals sampled from the Mekong delta region of Vietnam using a primer-independent, agnostic, deep sequencing approach. A total of 296 stool samples (146 from diarrhoeal human patients and 150 from pigs living in the same geographical region) were directly sequenced, generating the genomic sequences of sixty human rotaviruses (all group A) and thirty-one porcine rotaviruses (thirteen group A, seven group B, six group C, and five group H). Phylogenetic analyses showed the co-circulation of multiple distinct RV group A (RVA) genotypes/strains, many of which were divergent from the strain components of licensed RVA vaccines, as well as considerable virus diversity in pigs including full genomes of rotaviruses in groups B, C, and H, none of which have been previously reported in Vietnam. Furthermore, the detection of an atypical RVA genotype constellation (G4-P[6]-I1-R1-C1-M1-A8-N1-T7-E1-H1) in a human patient and a pig from the same region provides some evidence for a zoonotic event.
Collapse
Affiliation(s)
- My V T Phan
- Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Pham Hong Anh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nguyen Van Cuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Bas B Oude Munnink
- Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Phuc Tran My
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tue Ngo Tri
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Juliet E Bryant
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen Baker
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,London School of Tropical Medicine and Hygiene, London, UK
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mark Woolhouse
- Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh, UK
| | - Paul Kellam
- Kymab Inc., Cambridge, UK.,Imperial College, London, UK
| | - Maia A Rabaa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Matthew Cotten
- Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.,Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
11
|
Hayashi M, Murakami T, Kuroda Y, Takai H, Ide H, Awang A, Suzuki T, Miyazaki A, Nagai M, Tsunemitsu H. Reinfection of adult cattle with rotavirus B during repeated outbreaks of epidemic diarrhea. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2016; 80:189-196. [PMID: 27408331 PMCID: PMC4924552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/21/2016] [Indexed: 06/06/2023]
Abstract
Rotavirus B (RVB) infection in cattle is poorly understood. The objective of this study was to describe the epidemiological features of repeated outbreaks of epidemic diarrhea due to RVB infection in adult cattle on a large dairy farm complex in Japan. In October 2002, approximately 550 adult cows and approximately 450 in February 2005 had acute watery diarrhea at several farms on the complex. Four months before the first outbreak, RVB antibody-positive rates at subsequently affected farms were significantly lower than at non-affected farms (30% to 32% versus 61% to 67%). During the acute phase of both outbreaks, RVB antibody-positive rates in diarrheal cows tested were as low as 15% to 26%. Most of the farms affected in the second outbreak were also involved in the first outbreak. Some adult cows with RVB diarrhea in the first outbreak showed not only RVB seroresponse, but also RVB shedding in the second outbreak, although none of these cows developed diarrhea. Nucleotide sequences of the VP7 and VP4 genes revealed a close relationship between RVB strains in both outbreaks. Taken together, these results indicate that outbreaks of epidemic RVB diarrhea in adult cows might be influenced by herd immunity and could occur repeatedly at the same farms over several years. To our knowledge, this is the first report on repeated RVB infections in the same cattle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hiroshi Tsunemitsu
- Address all correspondence to Dr. Hiroshi Tsunemitsu; telephone: +81-11-851-2123; fax: +81-11-853-0767; e-mail:
| |
Collapse
|
12
|
Zhirakovskaia E, Tikunov A, Klemesheva V, Loginovskikh N, Netesov S, Tikunova N. First genetic characterization of rotavirus C in Russia. INFECTION GENETICS AND EVOLUTION 2016; 39:1-8. [DOI: 10.1016/j.meegid.2016.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/18/2015] [Accepted: 01/04/2016] [Indexed: 11/26/2022]
|
13
|
Lahon A, Ingle VC, Birade HS, Raut CG, Chitambar SD. Molecular characterization of group B rotavirus circulating in pigs from India: identification of a strain bearing a novel VP7 genotype, G21. Vet Microbiol 2014; 174:342-352. [PMID: 25465661 DOI: 10.1016/j.vetmic.2014.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/27/2014] [Accepted: 10/14/2014] [Indexed: 12/12/2022]
Abstract
The occurrence of group B rotavirus (RVB) infections in pigs has been reported from different parts of world. However, such infection in the pig population maintained in Indian farms has not been investigated as yet. A total of 187 faecal specimens were collected from pigs reared in different pig farms/pigsties located in western and northern regions of India and tested for the presence of porcine RVB by amplification of the NSP2 gene using conventional RT-PCR. Nine specimens (4.8%) were shown to contain RVB RNA. N2 and N4 genotypes of NSP2 gene were detected in three and six RVB strains respectively. VP7 (G-type) and NSP5 (H-type) genes of selected six RVB strains were characterized to identify the genotypes. Multiple G (G7, G19 and G20) and H (H4 and H5) genotypes detected in the RVB strains indicated circulation of heterogeneous population of RVB strains in pigs of India. Additionally, one strain was proposed to belong to a novel RVB genotype designated as G21 on account of <80% identity of VP7 gene sequence with its counterpart in RVB strains from 20 established genotypes. Deduced amino acid sequence of VP7 gene also displayed the presence of seven unique substitutions in the strain. The study reports for the first time the occurrence of RVB infections in Indian pig herds and provides important epidemiological data useful for better understanding of ecology and evolution of porcine RVBs.
Collapse
Affiliation(s)
- Anismrita Lahon
- Enteric Viruses Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India
| | - Vijay C Ingle
- Department of Veterinary Microbiology and Animal Biotechnology, Nagpur Veterinary College, Nagpur 400006, India
| | - Hemant S Birade
- Department of Animal Reproduction, Gynaecology & Obstetrics, Krantisinh Nana Patil College of Veterinary Science, Shirwal, Satara 412801, India
| | | | - Shobha D Chitambar
- Enteric Viruses Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India.
| |
Collapse
|
14
|
Desselberger U. Rotaviruses. Virus Res 2014; 190:75-96. [DOI: 10.1016/j.virusres.2014.06.016] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 01/12/2023]
|
15
|
Alam MM, Pun SB, Gauchan P, Yokoo M, Doan YH, Tran TNH, Nakagomi T, Nakagomi O, Pandey BD. The first identification of rotavirus B from children and adults with acute diarrhoea in kathmandu, Nepal. Trop Med Health 2013; 41:129-34. [PMID: 24155654 PMCID: PMC3801157 DOI: 10.2149/tmh.2013-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 05/29/2013] [Indexed: 11/11/2022] Open
Abstract
Rotavirus B (RVB) in the genus Rotavirus of the family Reoviridae is known to be a cause of acute gastroenteritis among children and adults in parts of Asia including China, India, Bangladesh and Myanmar. In a 15-month surveillance programme between March 2007 and May 2008, 3,080 stool specimens were collected from children and adults with acute gastroenteritis in an infectious disease hospital in Kathmandu, Nepal. In 25 (0.8%) specimens RVB was detected, for the first time in Nepal, by the use of polyacrylamide gel electrophoresis followed by confirmation with reverse-transcription PCR and sequencing. The strains detected in this study had very similar electropherotypes, and their VP7 sequences were almost identical and phylogenetically belonged to the Indo-Bangladeshi lineage which was distinct from the Chinese lineage. Thus, this study showed the circulation of RVB strains belonging to the Indo-Bangladeshi lineage in a broader region than previously documented, suggesting that this phylogenetic divide corresponded to the geographic divide created by the Himalayan Mountains. Further studies may be warranted to identify and characterize the RVB strains in northern Vietnam which is adjacent to southern China with a long and less mountainous border.
Collapse
Affiliation(s)
- Md Mahbub Alam
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, and the Global Centre of Excellence, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lahon A, Walimbe AM, Chitambar SD. Full genome analysis of group B rotaviruses from western India: genetic relatedness and evolution. J Gen Virol 2012; 93:2252-2266. [PMID: 22815276 DOI: 10.1099/vir.0.043497-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To date, full-genome sequences of only seven human group B rotavirus (RVBs) strains have been described. Such data on more RVBs are necessary to establish the evolutionary relationship and ecological features of RVBs from different geographical regions. The present study was aimed at determining the full-length sequences of all 11 genes of 13 human RVB strains detected during 1995-2010 in sporadic and outbreak cases of acute gastroenteritis from four different cities of western India. This study also included estimation of evolutionary rates and site-specific selection pressure analysis for all gene segments. Nucleotide/deduced amino acid sequence analyses of structural and non-structural genes showed 95.1-99.8/94.1-100 % identity with the counterparts of RVB strains isolated in India, Bangladesh and Myanmar. Phylogenetic analyses of all gene segments revealed formation of a monophyletic clade of the western Indian RVB strains, reflecting their highly conserved nature. All gene segments were also found to be under negative/purifying selection pressure. These data suggest that RVB is circulating in the natural host as a series of stable viral clones. Estimates of rates of nucleotide substitution in all RVBs ranged from 1.36-4.78×10(-3) substitutions per site per year. The rate for human RVB VP7 and NSP2 genes were comparable, respectively, with the evolution kinetics of genotype G9/G12 and N1 group A rotavirus strains. The time of the most recent common ancestor of the extant human RVBs was estimated to be during 1915-1974. Evolutionary and genetic analyses carried out in this study provide data that is useful for the elucidation of evolutionary relationship/timescale, stasis or dynamics existing in the RVB population.
Collapse
Affiliation(s)
- Anismrita Lahon
- Enteric Viruses Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, PO Box 11, Pune 411001, India
| | - Atul M Walimbe
- Bionformatics Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, PO Box 11, Pune 411001, India
| | - Shobha D Chitambar
- Enteric Viruses Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, PO Box 11, Pune 411001, India
| |
Collapse
|