1
|
Al Hakeem WG, Oladeinde A, Li X, Cho S, Kassem II, Rothrock MJ. Campylobacter Diversity Along the Farm-to-Fork Continuum of Pastured Poultry Flocks in the Southeastern United States. Zoonoses Public Health 2024. [PMID: 39358927 DOI: 10.1111/zph.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
INTRODUCTION Consumer demand for pasture raised, antibiotic-free poultry products has led to an increase in pastured poultry operations within the United States. Given the level of environmental interaction and the potential increase in exposure to foodborne pathogens in these settings, a greater understanding of the prevalence and diversity of Campylobacter populations inherent within pastured poultry flocks is needed. METHODS To achieve this, 40 pastured poultry flocks from nine farms were sampled using a farm-to-fork strategy, and Campylobacter was isolated and characterised from preharvest (faeces, soil) through postharvest (caeca, whole carcass rinse) to the final product the consumer would purchase (whole carcass rinse). RESULTS Campylobacter was isolated from 872 of 1820 samples, showing an overall prevalence of 47.91%. The caeca showed the highest (p < 0.05) Campylobacter load (4.64 log10 CFU/mL) and prevalence (95.5%), while the final product whole carcass rinses had the lowest (p < 0.05) Campylobacter load (0.32 log10 CFU/mL) and prevalence (15.45%), suggesting that the Campylobacter load in the caeca may not be indicative of the Campylobacter load on the final product. Of the 872 positive samples, 337 Campylobacter isolates were selected for further characterisation. Campylobacter jejuni and Campylobacter coli comprised 74.18% (250/337) and 21.95% (74/337) of the selected isolates respectively. While the Campylobacter isolates displayed resistance to several antibiotics, the most common resistance for both C. jejuni and C. coli was against tetracycline (55.86% and 70.31% respectively). Multidrug resistance phenotypes (≥ 3 antibiotic classes) were relatively low for both C. jejuni (2.80%) and C. coli (9.45%). CONCLUSIONS Campylobacter load, prevalence and diversity were more affected by farm location than by the type of sample from which the Campylobacter was isolated. Overall, these results indicated a need for farm-specific Campylobacter mitigation strategies to ensure the safety of these increasingly in-demand poultry products.
Collapse
Affiliation(s)
- Walid G Al Hakeem
- Egg & Poultry Production Safety Research Unit, USDA-ARS, US National Poultry Research Center, Athens, Georgia, USA
- US-DOE, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Adelumola Oladeinde
- Egg & Poultry Production Safety Research Unit, USDA-ARS, US National Poultry Research Center, Athens, Georgia, USA
| | - Xiang Li
- Egg & Poultry Production Safety Research Unit, USDA-ARS, US National Poultry Research Center, Athens, Georgia, USA
| | - Sohyun Cho
- Egg & Poultry Production Safety Research Unit, USDA-ARS, US National Poultry Research Center, Athens, Georgia, USA
| | - Issmat I Kassem
- Department of Food Science and Technology, Center for Food Safety, University of Georgia, Griffin, Georgia, USA
| | - Michael J Rothrock
- Egg & Poultry Production Safety Research Unit, USDA-ARS, US National Poultry Research Center, Athens, Georgia, USA
| |
Collapse
|
2
|
Hailu W, Alemayehu H, Wolde D, Hailu L, Medhin G, Rajashekara G, Gebreyes WA, Eguale T. Prevalence and antimicrobial susceptibility profile of Salmonella isolated from vegetable farms fertilized with animal manure in Addis Ababa Ethiopia. Sci Rep 2024; 14:19169. [PMID: 39160213 PMCID: PMC11333614 DOI: 10.1038/s41598-024-70173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
The resistance of foodborne pathogens to antimicrobial agents is a potential danger to human health. Hence, establishing the status of good agricultural practices (GAPs) and the antimicrobial susceptibility of major foodborne pathogens has a significant programmatic implication in planning interventions. The objective of this study was to assess the gap in attaining GAP and estimate the prevalence and antimicrobial susceptibility profile of Salmonella in vegetable farms fertilized with animal manure in Addis Ababa, Ethiopia. A total of 81 vegetable farms from four sub-cities in Addis Ababa were visited, and 1119 samples were collected: soil (n = 271), manure (n = 375), vegetables (n = 398), and dairy cattle feces (n = 75). Additional data were collected using a structured questionnaire. Isolation of Salmonella was done using standard microbiology techniques and antimicrobial susceptibility testing was conducted using disk diffusion assays. Carriage for antimicrobial resistance genes was tested using polymerase chain reaction (PCR). Among the 81 vegetable farms visited, 24.7% used animal manure without any treatment, 27.2% used properly stored animal manure and 80.2% were easily accessible to animals. The prevalence of Salmonella was 2.3% at the sample level, 17.3% at the vegetable farm level, and 2.5% in vegetables. The highest rate of resistance was recorded for streptomycin, 80.7% (21 of 26), followed by kanamycin, 65.4% (17 of 26), and gentamicin, 61.5% (16 of 26). Multidrug resistance was detected in 61.5% of the Salmonella isolates. Vegetable farms have a gap in attaining GAPs, which could contribute to increased contamination and the transfer of antimicrobial resistance to the vegetables. The application of GAPs, including proper preparation of compost and the appropriate use of antimicrobials in veterinary practices, are recommended to reduce the emergence and spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Woinshet Hailu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
- College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Haile Alemayehu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Deneke Wolde
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wachemo University, P.O. Box 667, Hossana, Ethiopia
| | - Lulit Hailu
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Girmay Medhin
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gireesh Rajashekara
- Global One Health Initiative (GOHi), Ohio State University, Columbus, OH, USA
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - Wondwossen A Gebreyes
- Global One Health Initiative (GOHi), Ohio State University, Columbus, OH, USA
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Ohio State University Global One Health LLC, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Parzygnat JL, Dunn RR, Koci MD, Crespo R, Harden L, Thakur S. Fluoroquinolone-resistant Campylobacter in backyard and commercial broiler production systems in the United States. JAC Antimicrob Resist 2024; 6:dlae102. [PMID: 38974944 PMCID: PMC11227224 DOI: 10.1093/jacamr/dlae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024] Open
Abstract
Objectives Campylobacter spp. are one of the leading foodborne pathogens in the world, and chickens are a known reservoir. This is significant considering broiler chicken is the top consumed meat worldwide. In the USA, backyard poultry production is increasing, but little research has been done to investigate prevalence and antimicrobial resistance associated with Campylobacter in these environments. Methods Our study encompasses a farm-to-genome approach to identify Campylobacter and investigate its antimicrobial resistance phenotypically and genotypically. We travelled to 10 backyard and 10 integrated commercial broiler farms to follow a flock throughout production. We sampled at days 10, 31 and 52 for backyard and 10, 24 and 38 for commercial farms. Bird faecal (n = 10) and various environmental samples (soil n = 5, litter/compost n = 5, and feeder and waterer swabs n = 6) were collected at each visit and processed for Campylobacter. Results Our results show a higher prevalence of Campylobacter in samples from backyard farms (21.9%) compared to commercial (12.2%). Most of our isolates were identified as C. jejuni (70.8%) and the remainder as C. coli (29.2%). Antimicrobial susceptibility testing reveals phenotypic resistance to ciprofloxacin (40.2%), an important treatment drug for Campylobacter infection, and tetracycline (46.6%). A higher proportion of resistance was found in C. jejuni isolates and commercial farms. Whole-genome sequencing revealed resistance genes, such as tet(O) and gyrA_T86I point mutation, that may confer resistance. Conclusion Overall, our research emphasizes the need for interventions to curb prevalence of resistant Campylobacter spp. on broiler production systems.
Collapse
Affiliation(s)
- Jessica L Parzygnat
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Matthew D Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Rocio Crespo
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| | - Lyndy Harden
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| |
Collapse
|
4
|
Flores Y, Chaves A, Suzán G. Prediction of edapho-climatic parameters in the incidence of Campylobacter spp. in northwestern Mexico. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002812. [PMID: 38662656 PMCID: PMC11045143 DOI: 10.1371/journal.pgph.0002812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/17/2024] [Indexed: 04/28/2024]
Abstract
Campylobacter spp. is one of the main causes of enteric zoonotic infections worldwide. In Mexico, although a commonly detected pathogen in both children and adults, there is limited surveillance and few studies. The northern part of Mexico stands out for an unnoticed outbreak of Campylobacter jejuni due to contaminated drinking water, which caused an abrupt increase in Guillain-Barré syndrome in the local population. Although it is suggested that its distribution in nature is related to edaphic and climatic factors, this relationship is scarcely known. To understand abiotic factors driving the occurrence and prevalence of Campylobacter spp. in three municipalities from three states in northwestern Mexico (Chihuahua, Sonora, and Baja California), we used the kriging interpolation method of unsampled areas and the correspondence analysis of 23 environmental variables. Of the three municipalities evaluated, Janos in Chihuahua (CHIH), has the highest number of geographic areas classified as high and medium incidence, followed by Santa Cruz, Sonora (SON) and Mexicali, Baja California (BC). Mexicali (BC) edaphic variables limit the potential incidence of the bacterium, mainly due to the lack of soil moisture and its difficulty of surviving on dry surfaces, related to electrical conductivity and salinity. Janos (CHIH) presents limitations in terms of soil water availability, although its presence is more heterogeneous (2 to 8 months). Santa Cruz (SON) has the highest soil water availability (4 to 5 months), and presents pH, texture and low percentage of salinity conditions for the potential incidence of Campylobacter spp. Mexicali (BC) reports a temperature in the warmest month of up to 43°C, which could influence the presence of thermophilic species. The annual precipitation is another limiting factor for the potential incidence of Campylobacter spp. since it does not exceed 509.5 mm, contributing to Janos (CHIH) as the municipality with the highest potential incidence of this bacterium.
Collapse
Affiliation(s)
- Yasiri Flores
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| | - Andrea Chaves
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Gerardo Suzán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
5
|
Gensler CA, Hempstead SC, Keelara S, Fedorka-Cray PJ, Urie NJ, Wiedenheft AM, Stuart K, Marshall KL, Jacob ME. Antimicrobial Resistance Characteristics of Fecal Escherichia coli and Enterococcus Species in U.S. Goats: 2019 National Animal Health Monitoring System Enteric Study. Foodborne Pathog Dis 2024. [PMID: 38502797 DOI: 10.1089/fpd.2023.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Escherichia coli and Enterococcus species are normal bacteria of the gastrointestinal tract and serve as indicator organisms for the epidemiology and emergence of antimicrobial resistance in their hosts and the environment. Some E. coli serovars, including E. coli O157:H7, are important human pathogens, although reservoir species such as goats remain asymptomatic. We describe the prevalence and antimicrobial resistance of generic E. coli, E. coli O157:H7, and Enterococcus species collected from a national surveillance study of goat feces as part of the National Animal Health Monitoring System (NAHMS) Goat 2019 study. Fecal samples were collected from 4918 goats on 332 operations across the United States. Expectedly, a high prevalence of E. coli (98.7%, 4850/4915) and Enterococcus species (94.8%, 4662/4918) was found. E. coli O157:H7 prevalence was low (0.2%; 10/4918). E. coli isolates, up to three per operation, were evaluated for antimicrobial susceptibility and 84.7% (571/674) were pansusceptible. Multidrug resistance (MDR; ≥3 classes) was uncommon among E. coli, occurring in 8.2% of isolates (55/674). Resistance toward seven antimicrobial classes was observed in a single isolate. Resistance to tetracycline alone (13.6%, 92/674) or to tetracycline, streptomycin, and sulfisoxazole (7.0% 47/674) was the most common pattern. All E. coli O157:H7 isolates were pansusceptible. Enterococcus isolates, up to four per operation, were prioritized by public health importance, including Enterococcus faecium and Enterococcus faecalis and evaluated. Resistance to lincomycin (93.8%, 1232/1313) was most common, with MDR detected in 29.5% (388/1313) of isolates. The combination of ciprofloxacin, lincomycin, and quinupristin resistance (27.1%, 105/388) was the most common pattern detected. Distribution and characteristics of antimicrobial resistance in E. coli and Enterococcus in the U.S. goat population from this study can inform stewardship considerations and public health efforts surrounding goats and their products.
Collapse
Affiliation(s)
- Catherine A Gensler
- Department of Agricultural and Human Sciences, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Stephanie C Hempstead
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Shivaramu Keelara
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Paula J Fedorka-Cray
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Natalie J Urie
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, USA
| | - Alyson M Wiedenheft
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Keira Stuart
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Katherine L Marshall
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, USA
| | - Megan E Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
6
|
Liu Y, Kjær LJ, Boklund AE, Hjulsager CK, Larsen LE, Kirkeby CT. Risk factors for avian influenza in Danish poultry and wild birds during the epidemic from June 2020 to May 2021. Front Vet Sci 2024; 11:1358995. [PMID: 38450025 PMCID: PMC10914952 DOI: 10.3389/fvets.2024.1358995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Exploring the risk factors of avian influenza (AI) occurrence helps us to monitor and control the disease. Since late 2020, the number of avian influenza outbreaks in domestic and wild birds has increased in most European countries, including Denmark. This study was conducted to identify potential risk factors for wild birds and poultry during the epidemic in 2020/2021 in Denmark. Using Danish AI surveillance data of actively surveyed poultry and passively surveyed wild birds from June 2020 to May 2021, we calculated geographical attributes for bird locations and assessed the potential risk factors of AI detections using logistic regression analyses. 4% of actively surveyed poultry and 39% of passively surveyed wild birds were detected with AI circulating or ongoing at the time. Of these, 10 and 99% tested positive for the H5/H7 AI subtypes, respectively. Our analyses did not find any statistically significant risk factors for actively surveyed poultry within the dataset. For passively surveyed wild birds, bird species belonging to the Anseriformes order had a higher risk of being AI virus positive than five other taxonomic bird orders, and Galliformes were of higher risk than two other taxonomic bird orders. Besides, every 1 km increase in the distance to wetlands was associated with a 5.18% decrease in the risk of being AI positive (OR (odds ratio) 0.95, 95% CI 0.91, 0.99), when all other variables were kept constant. Overall, bird orders and distance to wetlands were associated with the occurrence of AI. The findings may provide targets for surveillance strategies using limited resources and assist in risk-based surveillance during epidemics.
Collapse
Affiliation(s)
- Yangfan Liu
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lene Jung Kjær
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anette Ella Boklund
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Carsten Thure Kirkeby
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
7
|
Nigusu Y, Abdissa A, Tesfaw G. Campylobacter Gastroenteritis Among Under-Five Children in Southwest Ethiopia. Infect Drug Resist 2022; 15:2969-2979. [PMID: 35706923 PMCID: PMC9191834 DOI: 10.2147/idr.s354843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Under-five children are at an increased risk for foodborne illnesses because of the ingenuousness of their immune system. Although Campylobacter species are one of the bacterial etiologies of gastroenteritis, Campylobacter gastroenteritis among under-five children is not well considered in Ethiopia. Therefore, this study aimed at exploring the prevalence, associated risk factors, and antibiotic susceptibility patterns of Campylobacter species among under-five children with diarrhea. Methods The institution-based cross-sectional study was conducted among under-five children with diarrhea at Jimma Medical Center, southwestern Ethiopia from January 5 to April 21, 2020. Stool samples were collected and inoculated into Campylobacter agar medium. Isolation and identification were done using standard bacteriological techniques. Antibiotic susceptibility testing was conducted on Mueller-Hinton agar supplemented with 10% sheep blood using disk diffusion techniques. Bivariate and multivariate logistic regressions were used to assess the associated risk factors. Results A total of 214 under-five children were enrolled. The prevalence of Campylobacter infection was 8.9%. Absence of caretakers' handwashing before preparation of food [AOR = 3.7, 95% CI: (1.2-10.8)], direct contact with domestic animals [AOR = 3.6, 95% CI: (1.0-12.7)], and consumption of raw dairy products [AOR = 4.5, 95% CI: (1.4-13.9)] are the factors associated with Campylobacter infection. Some Campylobacter species were found to be resistant to most available antibiotics. Conclusion The magnitude of Campylobacter gastroenteritis indicates the need for routine isolation and identification of Campylobacter species from all under-five children clinically diagnosed with diarrhea. Species that are resistant to the drug of choice for Campylobacteriosis are also emerging. Health education on the importance of pasteurization of milk and caretakers' handwashing can mitigate the transmission. Mechanism of handling of domestic animals should be considered to reduce transmission of zoonotic diseases like Campylobacteriosis.
Collapse
Affiliation(s)
- Yared Nigusu
- Department of Medical Laboratory Science, College of Health Sciences, Mettu University, Mettu, Ethiopia
| | - Alemseged Abdissa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- School of Medical Laboratory Science, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Getnet Tesfaw
- School of Medical Laboratory Science, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
8
|
Risk factors of Shiga toxin-producing Escherichia coli in livestock raised on diversified small-scale farms in California. Epidemiol Infect 2022; 150:e125. [PMID: 35641482 PMCID: PMC9274804 DOI: 10.1017/s0950268822001005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The increasing number of diversified small-scale farms (DSSF) that raise outdoor-based livestock in the USA reflects growing consumer demand for sustainably produced food. Diversified farms are small scale and raise a combination of multiple livestock species and numerous produce varieties. This 2015–2016 cross-sectional study aimed to describe the unique characteristics of DSSF in California, estimate the prevalence of Shiga toxin-producing Escherichia coli (STEC) in livestock and evaluate the association between risk factors and the presence of STEC in livestock, using generalised linear mixed models. STEC prevalence was 13.62% (76/558). Significant variables in the mixed-effect logistic regression model included daily maximum temperature (OR 0.95; CI95% 0.91–0.98), livestock sample source (cattle (OR 4.61; CI95% 1.64–12.96) and sheep (OR 5.29; CI95% 1.80–15.51)), multiple species sharing the same barn (OR 6.23; CI95% 1.84–21.15) and livestock having contact with wild areas (OR 3.63; CI95% 1.37–9.62). Identification of STEC serogroups of public health concern (e.g. O157:H7, O26, O103) in this study indicated the need for mitigation strategies to ensure food safety by evaluating risk factors and management practices that contribute to the spread and prevalence of foodborne pathogens in a pre-harvest environment on DSSF.
Collapse
|
9
|
Prachantasena S, Ngasaman R, Wiriyaprom R. Prevalence and risk factors of Campylobacter infection in goats in southern provinces of Thailand. Trop Anim Health Prod 2022; 54:108. [DOI: 10.1007/s11250-022-03109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
|
10
|
Chala G, Eguale T, Abunna F, Asrat D, Stringer A. Identification and Characterization of Campylobacter Species in Livestock, Humans, and Water in Livestock Owning Households of Peri-urban Addis Ababa, Ethiopia: A One Health Approach. Front Public Health 2021; 9:750551. [PMID: 34926375 PMCID: PMC8677049 DOI: 10.3389/fpubh.2021.750551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
Campylobacter is the most common cause of bacterial infectious diarrhea and acute gastroenteritis globally, and is recognized as a significant zoonotic pathogen. Antimicrobial resistance amongst Campylobacter isolates is a significant global concern. A cross-sectional study was conducted to identify and characterize Campylobacter species in humans, animals and water sources in livestock owning households of peri-urban Addis Ababa, Ethiopia; and to characterize antimicrobial resistance. A total of 519 fecal samples from humans (n = 99), livestock (n = 179), poultry (n = 69), and water (n = 172) were collected. Samples were cultured for viable Campylobacter spp. and multiplex PCR utilized for the identification and confirmation. Antimicrobial susceptibility of the isolates was assessed using the Kirby-Bauer disc diffusion method. Campylobacter spp. was detected in 67/519 (13.0%) of the total tested samples, and the household level prevalence of Campylobacter was 42.4%. The prevalence of Campylobacter spp. was: humans (10.1%), cattle (18.5%), poultry (13.0%), sheep (13.3%), goats (7.1%), and water (10.5%). Campylobacter jejuni and C. fetus were the most frequently isolated species, followed by C. coli. The majority of isolates obtained from human samples had co-occurrence with isolates from cattle, poultry or water samples from the same household. The use of stored water, the practice of indoor and outdoor manure collecting, and animal species Campylobacter positivity were significantly associated with greater odds of human Campylobacter spp. positivity. All Campylobacter isolates from humans, poultry, sheep, goats and water, and 96.0% of isolates from cattle were resistant to at least one or more of the tested antimicrobials, with 95.5% of isolates resistant to three or more classes of antimicrobials. A One Health approach is recommended to further investigate Campylobacter species infections, and other zoonotic infectious diseases, in the livestock owning populations in Ethiopia, where there is close interaction between humans, animals and the environment.
Collapse
Affiliation(s)
- Gemechu Chala
- College of Veterinary Medicine, Hawassa University, Hawassa, Ethiopia
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Fufa Abunna
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Asrat
- College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Andrew Stringer
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
11
|
Ramos TDM, Jay-Russell MT, Millner PD, Baron JN, Stover J, Pagliari P, Hutchinson M, Lilley J, Rowley N, Haghani V, Aminabadi P, Kenney A, Hashem F, Martínez-López B, Bihn EA, Clements DP, Shade JB, Sciligo AR, Pires AFA. Survival and Persistence of Foodborne Pathogens in Manure-Amended Soils and Prevalence on Fresh Produce in Certified Organic Farms: A Multi-Regional Baseline Analysis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.674767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biological soil amendments of animal origin (BSAAOs), including untreated (e.g., raw or aged manure, or incompletely composted manure) and treated animal products (e.g., compost), are used for crop production and as part of soil health management. Application of BSAAO's must be done cautiously, as raw manure commonly contains enteric foodborne pathogens that can potentially contaminate edible produce that may be consumed without cooking. USDA National Organic Program (NOP) certified production systems follow the 90-or 120-day interval standards between applications of untreated BSAAOs and crop harvest, depending on whether the edible portions of the crops are in indirect or direct contact with the soil, respectively. This study was conducted to evaluate the survival of four foodborne pathogens in soils amended with BSAAOs and to examine the potential for bacterial transfer to fresh produce harvested from USDA NOP certified organic farms (19) from four states. Only 0.4% (2/527) of produce samples were positive for L. monocytogenes. Among the untreated manure and compost samples, 18.0% (42/233) were positive for at least one of the tested and culturable bacterial foodborne pathogens. The prevalence of non-O157 STEC and Salmonella in untreated manure was substantially > that of E. coli O157:H7 and L. monocytogenes. Of the 2,461 soil samples analyzed in this study, 12.9% (318) were positive for at least one pathogen. In soil amended with untreated manure, the prevalence of non-O157 STEC [7.7% (190) and L. monocytogenes (5.0% (122), was > that of Salmonella (1.1% (26)] or E. coli O157 [0.04% (1)]. Foodborne pathogen prevalence in the soil peaked after manure application and decreased significantly 30 days post-application (dpa). However, non-O157 STEC and L. monocytogenes were recovered from soil samples after 90 and 120 dpa. Results indicate that produce contamination by tested foodborne pathogens was infrequent, but these data should not be generalized outside of the specific wait-time regulations for organic crop production and the farms studied. Moreover, other sources of contamination, e.g., irrigation, wildlife, environmental conditions, cropping and management practices, should be considered. This study also provides multi-regional baseline data relating to current NOP application intervals and development of potential risk mitigation strategies to reduce pathogen persistence in soils amended with BSAAOs. These findings contribute to filling critical data gaps concerning occurrence of fecal pathogens in NOP-certified farming systems used for production of fresh produce in different US regions.
Collapse
|
12
|
Hoque N, Islam SKS, Uddin MN, Arif M, Haque AKMZ, Neogi SB, Hossain MM, Yamasaki S, Kabir SML. Prevalence, Risk Factors, and Molecular Detection of Campylobacter in Farmed Cattle of Selected Districts in Bangladesh. Pathogens 2021; 10:313. [PMID: 33800065 PMCID: PMC7998914 DOI: 10.3390/pathogens10030313] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
A cross-sectional survey was conducted in selected districts of Bangladesh to estimate prevalence, risk factors, and molecular detection of Campylobacter isolates from 540 farmed cattle of 90 herds. As an individual sample, 540 feces, and as a pooled sample, 180 milk samples, 90 feed samples, 90 water samples, 90 manure samples, and 90 animal attendants' hand-rinse water were collected and tested via culture, biochemical, and molecular assays. A pretested semi-structured questionnaire was used to collect herd-level data on risk factors with the herd owners. The herd-level data on risk factors were analyzed through univariate and multivariate analyses, and a p-value <0.05 was considered statistically significant for all analyses. Overall, farm-level prevalence of bovine Campylobacter was enumerated to be 53.3% (95% confidence interval [CI]: 42.5-63.9%). The feces sample was found to be a high level of contamination of 30.9% (95% CI: 27-35%) followed by the manure swab (pooled) at 15.6% (95% CI: 8.8-24.7%). Campylobacter jejuni was documented as an abundant species (12.6%), followed by Campylobacter coli (5.1%), and Campylobacter fetus (0.3%). Older farms (>5 years of age), no/minimum cleaning and disinfection practices, along with animal roaming outside of the farm, were documented as significant risk factors for farm-level Campylobacter occurrence. Evidence-based control measures need to be taken through stringent biosecurity and hygienic measurement to lessen the load of the Campylobacter pathogen in the farm environment and prevent further transmission to animals and humans.
Collapse
Affiliation(s)
- Nazmul Hoque
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (N.H.); (S.S.I.); (M.N.U.); (M.A.); (A.K.M.Z.H.)
| | - SK Shaheenur Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (N.H.); (S.S.I.); (M.N.U.); (M.A.); (A.K.M.Z.H.)
| | - Md. Nasir Uddin
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (N.H.); (S.S.I.); (M.N.U.); (M.A.); (A.K.M.Z.H.)
| | - Mohammad Arif
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (N.H.); (S.S.I.); (M.N.U.); (M.A.); (A.K.M.Z.H.)
| | - A. K. M. Ziaul Haque
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (N.H.); (S.S.I.); (M.N.U.); (M.A.); (A.K.M.Z.H.)
| | - Sucharit Basu Neogi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan; (S.B.N.); (S.Y.)
| | - Md. Mehedi Hossain
- Program Specialist (Livestock), Krishi Gobeshona Foundation (KGF), Dhaka 1215, Bangladesh;
| | - Shinji Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan; (S.B.N.); (S.Y.)
| | - S. M. Lutful Kabir
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (N.H.); (S.S.I.); (M.N.U.); (M.A.); (A.K.M.Z.H.)
| |
Collapse
|
13
|
Pires AFA, Stover J, Kukielka E, Haghani V, Aminabadi P, de Melo Ramos T, Jay-Russell MT. Salmonella and Escherichia coli Prevalence in Meat and Produce Sold at Farmers' Markets in Northern California. J Food Prot 2020; 83:1934-1940. [PMID: 32502236 DOI: 10.4315/jfp-20-079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/02/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT As the number of farmers' markets and other direct-to-consumer marketing channels increases, it is crucial to understand the potential risks associated with consuming directly marketed animal products and fresh produce. The overall aim of this project was to assess the prevalence of Salmonella and Escherichia coli in animal products and produce sold at farmers' markets in Northern California and to evaluate the food safety risks associated with consuming meat (e.g., beef, pork, and poultry) and fresh produce purchased from farmers' markets. Animal products and produce were purchased from a total of 44 certified farmers' markets in Northern California. Salmonella was found in 6 (1.8%) of 338 animal products and in 0 (0%) of 128 produce samples; E. coli was found in 40 (31.3%) of 128 fresh produce samples. E. coli concentration in produce ranged from 0 to 2.96, with an overall average of 0.13 log (most probable number + 1)/100 mL. Salmonella isolates were resistant to nalidixic acid and tetracycline. The results from this study highlight the need for further training on mitigation strategies to reduce contamination of animal products and fresh produce by foodborne pathogens. HIGHLIGHTS
Collapse
Affiliation(s)
- Alda F A Pires
- Department of Population Health and Reproduction, School of Veterinary Medicine
| | - James Stover
- Department of Population Health and Reproduction, School of Veterinary Medicine
| | - Esther Kukielka
- Department of Population Health and Reproduction, School of Veterinary Medicine
| | - Viktoria Haghani
- Department of Population Health and Reproduction, School of Veterinary Medicine
| | | | - Thais de Melo Ramos
- Department of Food Science and Technology, University of California-Davis, Davis, California 95616, USA (ORCID: https://orcid.org/0000-0001-9326-0298 [A.F.A.P.]; https://orcid.org/0000-0002-8655-3778 [E.K.]; https://orcid.org/0000-0002-3700-4027 [V.H.]; https://orcid.org/0000-0002-2656-6286 [P.A.]; https://orcid.org/0000-0001-9849-8086 [M.T.J.R.])
| | | |
Collapse
|