1
|
Sacristán C, Rodríguez A, Iglesias I, de la Torre A. Campylobacter assessment along the Spanish food chain: Identification of key points. Zoonoses Public Health 2024; 71:755-762. [PMID: 38982628 DOI: 10.1111/zph.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/05/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
AIMS Campylobacteriosis, caused by Campylobacter spp., is one of the most important foodborne zoonotic diseases in the world and a common cause of gastroenteritis. In the European Union, campylobacteriosis is considered the most common zoonotic disease, with over 10,000 cases in 2020 alone. This high occurrence highlights the need of more efficient surveillance methods and identification of key points. METHODS AND RESULTS Herein, we evaluated and identified key points of Campylobacter spp. occurrence along the Spanish food chain during 2015-2020, based on the following variables: product, stage and region. We analysed a dataset provided by the Spanish Agency for Food Safety and Nutrition using a machine learning algorithm (random forests). Campylobacter presence was influenced by the three selected explanatory variables, especially by product, followed by region and stage. Among the studied products, meat, especially poultry and sheep, presented the highest probability of occurrence of Campylobacter, where the bacterium was present in the initial, intermediate and final stages (e.g., wholesale, retail) of the food chain. The presence in final stages may represent direct consumer exposure to the bacteria. CONCLUSSIONS By using the random forest method, this study contributes to the identification of Campylobacter key points and the evaluation of control efforts in the Spanish food chain.
Collapse
Affiliation(s)
- Carlos Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Antonio Rodríguez
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
- Université Clermont Auververgne, INRAE, VetAgro Sup, UREP, Clermont-Ferrand, France
- INRAE, URP3F, Lusignan, France
| | - Irene Iglesias
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Ana de la Torre
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| |
Collapse
|
2
|
Middendorf PS, Wijnands LM, Boeren S, Zomer AL, Jacobs-Reitsma WF, den Besten HM, Abee T. Activation of the l-fucose utilization cluster in Campylobacter jejuni induces proteomic changes and enhances Caco-2 cell invasion and fibronectin binding. Heliyon 2024; 10:e34996. [PMID: 39220920 PMCID: PMC11365321 DOI: 10.1016/j.heliyon.2024.e34996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024] Open
Abstract
Most Campylobacter jejuni isolates carry the fucose utilization cluster (Cj0480c-Cj0489) that supports the metabolism of l-fucose and d-arabinose. In this study we quantified l-fucose and d-arabinose metabolism and metabolite production, and the impact on Caco-2 cell interaction and binding to fibronectin, using C. jejuni NCTC11168 and the closely related human isolate C. jejuni strain 286. When cultured with l-fucose and d-arabinose, both isolates showed increased survival and production of acetate, pyruvate and succinate, and the respective signature metabolites lactate and glycolic acid, in line with an overall upregulation of l-fucose cluster proteins. In vitro Caco-2 cell studies and fibronectin-binding experiments showed a trend towards higher invasion and a significantly higher fibronectin binding efficacy of C. jejuni NCTC11168 cells grown with l-fucose and d-arabinose, while no significant differences were found with C. jejuni 286. Both fibronectin binding proteins, CadF and FlpA, were detected in the two isolates, but were not significantly differentially expressed in l-fucose or d-arabinose grown cells. Comparative proteomics analysis linked the C. jejuni NCTC11168 phenotypes uniquely to the more than 135-fold upregulated protein Cj0608, putative TolC-like component MacC, which, together with the detected Cj0606 and Cj0607 proteins, forms the tripartite secretion system MacABC with putative functions in antibiotic resistance, cell envelope stress response and virulence in Gram negative pathogenic bacteria. Further studies are required to elucidate the role of the MacABC system in C. jejuni cell surface structure modulation and virulence.
Collapse
Affiliation(s)
- Pjotr S. Middendorf
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Lucas M. Wijnands
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Aldert L. Zomer
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
- WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, the Netherlands
| | | | | | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
3
|
Admasie A, Wei X, Johnson B, Burns L, Pawar P, Aurand-Cravens A, Voloshchuk O, Dudley EG, Sisay Tessema T, Zewdu A, Kovac J. Genomic diversity of Campylobacter jejuni and Campylobacter coli isolated from the Ethiopian dairy supply chain. PLoS One 2024; 19:e0305581. [PMID: 39159178 PMCID: PMC11332940 DOI: 10.1371/journal.pone.0305581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/31/2024] [Indexed: 08/21/2024] Open
Abstract
Campylobacteriosis outbreaks have previously been linked to dairy foods. While the genetic diversity of Campylobacter is well understood in high-income countries, it is largely unknown in low-income countries, such as Ethiopia. This study therefore aimed to conduct the first genomic characterization of Campylobacter isolates from the Ethiopian dairy supply chain to aid in future epidemiological studies. Fourteen C. jejuni and four C. coli isolates were whole genome sequenced using an Illumina platform. Sequences were analyzed using the bioinformatics tools in the GalaxyTrakr platform to identify MLST types, and single nucleotide polymorphisms, and infer phylogenetic relationships among the studied isolates. Assembled genomes were further screened to detect antimicrobial resistance and virulence gene sequences. Among 14 C. jejuni, ST 2084 and ST 51, which belong to the clonal complexes ST-353 and ST-443, respectively, were identified. Among the 4 sequenced C. coli isolates, two isolates belonged to ST 1628 and two to ST 830 from the clonal complex ST-828. The isolates of C. jejuni ST 2084 and ST 51 carried β-lactam resistance gene blaOXA-605, a fluoroquinolone resistance-associated mutation T86I in the gryA gene, and a macrolide resistance-associated mutation A103V in 50S L22. Only ST 2084 isolates carried the tetracycline resistance gene tetO. Conversely, all four C. coli ST 830 and ST 1628 isolates carried tetO, but only ST 1628 isolates also carried blaOXA-605. Lastly, C. jejuni ST 2084 isolates carried a total of 89 virulence genes, and ST 51 isolates carried up to 88 virulence genes. Among C. coli, ST 830 isolates carried 71 genes involved in virulence, whereas two ST 1628 isolates carried up to 82 genes involved in virulence. Isolates from all identified STs have previously been isolated from human clinical cases, demonstrating a potential food safety concern. This finding warrants further monitoring of Campylobacter in dairy foods in Ethiopia to better understand and manage the risks associated with Campylobacter contamination and transmission.
Collapse
Affiliation(s)
- Abera Admasie
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Xiaoyuan Wei
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States of America
| | - Beth Johnson
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY, United States of America
| | - Logan Burns
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY, United States of America
| | - Preeti Pawar
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY, United States of America
| | - Ashley Aurand-Cravens
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY, United States of America
| | - Olena Voloshchuk
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States of America
| | - Edward G. Dudley
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States of America
| | | | - Ashagrie Zewdu
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
4
|
Wysok B, Rudowska M, Wiszniewska-Łaszczych A. The Transmission of Campylobacter Strains in Dairy Herds in Different Housing Systems. Pathogens 2024; 13:317. [PMID: 38668272 PMCID: PMC11053475 DOI: 10.3390/pathogens13040317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
Cattle are frequent carriers of Campylobacter spp.; therefore, these bacteria may be transmitted to humans through meat or milk. Campylobacter spp. in raw milk derives most commonly from secondary fecal contamination during the milking process; however, the udder excretion of Campylobacter may be a cause of milk-borne infection. Studies were carried out on a Campylobacter-positive farm with two different housing systems (with free-stall and tie-stall systems). The sampling process comprised several stages, including samples being taken from animals, such as from raw milk and feces, and from the environment, such as the from floor in the milking parlor and from teat cups. None of the individual raw milk samples or swabs from the floor in the parlor before the milking process were positive for Campylobacter spp. Simultaneously, Campylobacter spp. was isolated from all swabs from the floor after the milking process and in the bulk tank milk samples from the two farms. The incidence of Campylobacter isolated from fecal and teat swab samples ranged from 15.4% to 26.7% and from 8.9% to 25%, respectively. Altogether, 59 recovered Campylobacter isolates were classified, based on sequencing of the flaA short variable region, showing 15 different allele types, and the majority of them were distributed among one farm. Analysis of the virulence and antimicrobial properties showed that genes related to adherence, invasion and cytotoxicity were widely distributed among the Campylobacter recovered strains. In relation to AMR, multidrug resistance was noted in 16.1% of strains.
Collapse
Affiliation(s)
- Beata Wysok
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-718 Olsztyn, Poland
| | - Małgorzata Rudowska
- Department of Animal Reproduction with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-718 Olsztyn, Poland
| | - Agnieszka Wiszniewska-Łaszczych
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-718 Olsztyn, Poland
| |
Collapse
|
5
|
Ahmadi Z, Pakbin B, Kazemi M, Rahimi Z, Mahmoudi R. Genotyping and antibiotic susceptibility of Campylobacter species isolated from raw milk samples in Qazvin, Iran. BMC Res Notes 2023; 16:314. [PMID: 37932835 PMCID: PMC10626807 DOI: 10.1186/s13104-023-06576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
OBJECTIVE Campylobacter species are major causes of foodborne illnesses, with unpasteurized milk being a significant carrier of these bacteria, posing a public health risk. One of the challenges in managing Campylobacter infections is the emergence and spread of antibiotic resistance. We conducted a study in Qazvin, Iran, testing 84 raw cow's milk samples to determine the frequency of C. jejuni and C. coli using culture-based and multiplex PCR methods. Additionally, the disk diffusion and RAPD-PCR approaches were utilized to evaluate the phenotypic antibiotic resistance profile and genetic diversity of Campylobacter strains. RESULTS The findings indicated that Campylobacter spp. was present in 19.05% of the samples, with C. coli being the predominant isolate. We tested eight antibiotic agents, and the resistance levels of the isolates were as follows: erythromycin 100%, tetracycline 75%, doxycycline 56.25%, ceftriaxone 43.75%, chloramphenicol 37.5%, amoxicillin-clavulanic acid 25%, nalidixic acid 12.5%, and azithromycin 6.25%. Genetic diversity analysis categorized Campylobacter isolates into 39 clusters, indicating a wide diversity among strains. However, no significant correlation was observed between antibiotic resistance and cluster patterns. These findings underscore the role of raw milk as a reservoir for Campylobacter spp. and highlight the substantial antibiotic resistance and genetic diversity within the species population.
Collapse
Affiliation(s)
- Zohreh Ahmadi
- Department of Food Safety and Health, School of Public Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Babak Pakbin
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748, Garching bei München, Germany
| | - Maryam Kazemi
- Department of Food Safety and Health, School of Public Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Rahimi
- Department of Food Safety and Health, School of Public Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Razzagh Mahmoudi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
6
|
Ohno Y, Sekizuka T, Kuroda M, Ikeda T. Outbreaks of Campylobacteriosis Caused by Drinking Raw Milk in Japan: Evidence of Relationship Between Milk and Patients by Using Whole Genome Sequencing. Foodborne Pathog Dis 2023; 20:375-380. [PMID: 37471207 DOI: 10.1089/fpd.2023.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Raw milk may contain some infectious bacteria and usually requires pasteurization before drinking. In this study, we report rare outbreaks of campylobacteriosis associated with raw milk in Japan, and the application of whole genome sequencing (WGS) to studies on foodborne diseases. In August 2018, there were three outbreaks of campylobacteriosis, presumably caused by the consumption of unpasteurized raw milk, derived from the same farm; thus, these three outbreaks seemed to be associated with a single contaminant at the farm. Therefore, we analyzed Campylobacter jejuni isolates obtained at the three locations using several genetic methods. The sequence type of each isolate, revealed by multilocus sequence typing, was ST-61, and the profile determined using pulsed-field gel electrophoresis was the same; however, neither method could distinguish these from previously obtained strains. Subsequently, we performed WGS and single nucleotide variant (SNV) analysis that provided evidence of clonality, indicating that C. jejuni contamination was attributed to the farm. As in this study, evidence suggests that SNV analysis provides molecular biological support in cases with sufficient epidemiological information. Hence, similar analytical methods may be used in other sporadic cases to elucidate the relevance of the cases.
Collapse
Affiliation(s)
- Yuta Ohno
- Department of Infectious Diseases, Hokkaido Institute of Public Health, Hokkaido, Japan
| | - Tsuyoshi Sekizuka
- Laboratory of Bacterial Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Kuroda
- Laboratory of Bacterial Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuya Ikeda
- Department of Infectious Diseases, Hokkaido Institute of Public Health, Hokkaido, Japan
| |
Collapse
|
7
|
Bumunang EW, Zaheer R, Niu D, Narvaez-Bravo C, Alexander T, McAllister TA, Stanford K. Bacteriophages for the Targeted Control of Foodborne Pathogens. Foods 2023; 12:2734. [PMID: 37509826 PMCID: PMC10379335 DOI: 10.3390/foods12142734] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Foodborne illness is exacerbated by novel and emerging pathotypes, persistent contamination, antimicrobial resistance, an ever-changing environment, and the complexity of food production systems. Sporadic and outbreak events of common foodborne pathogens like Shiga toxigenic E. coli (STEC), Salmonella, Campylobacter, and Listeria monocytogenes are increasingly identified. Methods of controlling human infections linked with food products are essential to improve food safety and public health and to avoid economic losses associated with contaminated food product recalls and litigations. Bacteriophages (phages) are an attractive additional weapon in the ongoing search for preventative measures to improve food safety and public health. However, like all other antimicrobial interventions that are being employed in food production systems, phages are not a panacea to all food safety challenges. Therefore, while phage-based biocontrol can be promising in combating foodborne pathogens, their antibacterial spectrum is generally narrower than most antibiotics. The emergence of phage-insensitive single-cell variants and the formulation of effective cocktails are some of the challenges faced by phage-based biocontrol methods. This review examines phage-based applications at critical control points in food production systems with an emphasis on when and where they can be successfully applied at production and processing levels. Shortcomings associated with phage-based control measures are outlined together with strategies that can be applied to improve phage utility for current and future applications in food safety.
Collapse
Affiliation(s)
- Emmanuel W Bumunang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 1M4, Canada
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Dongyan Niu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Claudia Narvaez-Bravo
- Food and Human Nutritional Sciences, Faculty of Agricultural & Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Trevor Alexander
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 1M4, Canada
| |
Collapse
|
8
|
Knipper AD, Göhlich S, Stingl K, Ghoreishi N, Fischer-Tenhagen C, Bandick N, Tenhagen BA, Crease T. Longitudinal Study for the Detection and Quantification of Campylobacter spp. in Dairy Cows during Milking and in the Dairy Farm Environment. Foods 2023; 12:foods12081639. [PMID: 37107434 PMCID: PMC10137412 DOI: 10.3390/foods12081639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Campylobacteriosis outbreaks have repeatedly been associated with the consumption of raw milk. This study aimed to explore the variation in the prevalence and concentration of Campylobacter spp. in cows' milk and feces, the farm environment and on the teat skin over an entire year at a small German dairy farm. Bi-weekly samples were collected from the environment (boot socks), teats, raw milk, milk filters, milking clusters and feces collected from the recta of dairy cows. Samples were analyzed for Campylobacter spp., E. coli, the total aerobic plate count and for Pseudomonas spp. The prevalence of Campylobacter spp. was found to be the highest in feces (77.1%), completely absent in milking equipment and low in raw milk (0.4%). The mean concentration of Campylobacter spp. was 2.43 log10 colony-forming units (CFU)/g in feces and 1.26 log10 CFU/teat swab. Only a single milk filter at the end of the milk pipeline and one individual cow's raw milk sample were positive on the same day, with a concentration of 2.74 log10 CFU/filter and 2.37 log10 CFU/mL for the raw milk. On the same day, nine teat swab samples tested positive for Campylobacter spp. This study highlights the persistence of Campylobacter spp. for at least one year in the intestine of individual cows and within the general farm environment and demonstrates that fecal cross-contamination of the teats can occur even when the contamination of raw milk is a rare event.
Collapse
Affiliation(s)
- Anna-Delia Knipper
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Steven Göhlich
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Kerstin Stingl
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Narges Ghoreishi
- Department Exposure, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Carola Fischer-Tenhagen
- Center for Protection of Experimental Animals, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Niels Bandick
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Bernd-Alois Tenhagen
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Tasja Crease
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
9
|
Kapoor S, Goel AD, Jain V. Milk-borne diseases through the lens of one health. Front Microbiol 2023; 14:1041051. [PMID: 37089537 PMCID: PMC10117966 DOI: 10.3389/fmicb.2023.1041051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 03/13/2023] [Indexed: 04/09/2023] Open
Abstract
Reviewing “zoonotic diseases” classically brings to mind human infections contracted in close association with animals, where outdoor occupations and afforested lands usually play a key role in the epidemiological triad. However, there is a very common, yet overlooked route of infection where humans may not come in direct contact with animals or implicated environments. Milk-borne diseases are a unique set of infections affecting all age groups and occupational categories of humans, causing 4% of all the foodborne diseases in the world. The infection reservoir may lie with milch animals and associated enzootic cycles, and the infectious agent is freely secreted into the animal’s milk. Commercial pooling and processing of milk create unique environmental challenges, where lapses in quality control could introduce infective agents during downstream processing and distribution. The infectious agent is finally brought to the doorstep of both rural and urban households through such animal products. The domestic hygiene of the household finally determines human infections. One health approach can target preventive measures like immunization in animals, pasteurization and stringent quality control during the commercial processing of milk, and finally, hygienic practices at the level of the consumer, to reduce the burden of milk-borne diseases. This review hopes to draw the attention of policymakers to this unique route of infection, because it can be easily regulated with cost-effective interventions, to ensure the safety of this precious food product, permeating the life and livelihood of humans from all walks of life.
Collapse
Affiliation(s)
- Sunandini Kapoor
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Akhil Dhanesh Goel
- Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Vidhi Jain
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, India
- *Correspondence: Vidhi Jain,
| |
Collapse
|
10
|
Occurrence and seasonality of Campylobacter spp. in Portuguese dairy farms. Int J Food Microbiol 2022; 383:109961. [DOI: 10.1016/j.ijfoodmicro.2022.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022]
|
11
|
Liu F, Lee SA, Xue J, Riordan SM, Zhang L. Global epidemiology of campylobacteriosis and the impact of COVID-19. Front Cell Infect Microbiol 2022; 12:979055. [PMID: 36519137 PMCID: PMC9742372 DOI: 10.3389/fcimb.2022.979055] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
Campylobacteriosis is a gastroenteritis caused by pathogenic Campylobacter species and an important topic in public health. Here we review the global epidemiology of campylobacteriosis in the last eight years between 2014-2021, providing comprehensive and updated information on the reported incidence and outbreaks of Campylobacter infections. The government public health website of each of the 195 countries and publications from 2014 to September 2022 in public databases were searched. The reported incidence of campylobacteriosis in pre-COVID-19 years was compared to that during the COVID-19 pandemic in countries where data were available. Czech Republic had the highest reported incidence of campylobacteriosis worldwide (215 per 100,000 in 2019), followed by Australia (146.8 per 100,000 in 2016) and New Zealand (126.1 per 100,000 in 2019). Campylobacter was one of the most common human enteric pathogens in both developed and developing countries. About 90% of cases of campylobacteriosis were caused by Campylobacter jejuni, whereas less than 10% of cases were caused by Campylobacter coli. Other Campylobacter species were also isolated. The reported incidence and case numbers of campylobacteriosis in developed nations have remained steadily high prior to the COVID-19 pandemic, whilst some countries reported an increasing trend such as France and Japan. While outbreaks were more frequently reported in some countries, Campylobacter infections were mainly sporadic cases in most of the developed countries. Campylobacter infection was more common in summer in some but not all countries. Campylobacter infection was more common in males than females. The COVID-19 pandemic has reduced the reported incidence of campylobacteriosis in most countries where 2020 epidemiology data were available. In conclusion, Campylobacter infection remains a global health concern. Increased research and improved strategies are needed for prevention and reduction of Campylobacter infection.
Collapse
Affiliation(s)
- Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Seul A. Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jessica Xue
- Faculty of Medicine, Monash University, Melbourne, VIC, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia,*Correspondence: Li Zhang,
| |
Collapse
|
12
|
Mughini‐Gras L, Benincà E, McDonald SA, de Jong A, Chardon J, Evers E, Bonačić Marinović AA. A statistical modelling approach for source attribution meta-analysis of sporadic infection with foodborne pathogens. Zoonoses Public Health 2022; 69:475-486. [PMID: 35267243 PMCID: PMC9545847 DOI: 10.1111/zph.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/15/2022] [Accepted: 02/26/2022] [Indexed: 11/30/2022]
Abstract
Numerous source attribution studies for foodborne pathogens based on epidemiological and microbiological methods are available. These studies provide empirical data for modelling frameworks that synthetize the quantitative evidence at our disposal and reduce reliance on expert elicitations. Here, we develop a statistical model within a Bayesian estimation framework to integrate attribution estimates from expert elicitations with estimates from microbial subtyping and case-control studies for sporadic infections with four major bacterial zoonotic pathogens in the Netherlands (Campylobacter, Salmonella, Shiga toxin-producing E. coli [STEC] O157 and Listeria). For each pathogen, we pooled the published fractions of human cases attributable to each animal reservoir from the microbial subtyping studies, accounting for the uncertainty arising from the different typing methods, attribution models, and year(s) of data collection. We then combined the population attributable fractions (PAFs) from the case-control studies according to five transmission pathways (domestic food, environment, direct animal contact, human-human transmission and travel) and 11 groups within the foodborne pathway (beef/lamb, pork, poultry meat, eggs, dairy, fish/shellfish, fruit/vegetables, beverages, grains, composite foods and food handlers/vermin). The attribution estimates were biologically plausible, allowing the human cases to be attributed in several ways according to reservoirs, transmission pathways and food groups. All pathogens were predominantly foodborne, with Campylobacter being mostly attributable to the chicken reservoir, Salmonella to pigs (albeit closely followed by layers), and Listeria and STEC O157 to cattle. Food-wise, the attributions reflected those at the reservoir level in terms of ranking. We provided a modelling solution to reach consensus attribution estimates reflecting the empirical evidence in the literature that is particularly useful for policy-making and is extensible to other pathogens and domains.
Collapse
Affiliation(s)
- Lapo Mughini‐Gras
- Centre for Infectious Disease Control (CIb)National Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Elisa Benincà
- Centre for Infectious Disease Control (CIb)National Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Scott A. McDonald
- Centre for Infectious Disease Control (CIb)National Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Aarieke de Jong
- Office for Risk Assessment & Research (BuRO)Netherlands Food and Consumer Product Safety AuthorityUtrechtThe Netherlands
| | - Jurgen Chardon
- Centre for Infectious Disease Control (CIb)National Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Eric Evers
- Centre for Infectious Disease Control (CIb)National Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Axel A. Bonačić Marinović
- Centre for Infectious Disease Control (CIb)National Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| |
Collapse
|
13
|
Taghizadeh M, Nematollahi A, Bashiry M, Javanmardi F, Mousavil M, Hosseini H. The global prevalence of Campylobacter spp. in milk A systematic review and meta-analysis. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Middendorf PS, Jacobs-Reitsma WF, Zomer AL, den Besten HMW, Abee T. Comparative Analysis of L-Fucose Utilization and Its Impact on Growth and Survival of Campylobacter Isolates. Front Microbiol 2022; 13:872207. [PMID: 35572645 PMCID: PMC9100392 DOI: 10.3389/fmicb.2022.872207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Campylobacter jejuni and Campylobacter coli were previously considered asaccharolytic, but are now known to possess specific saccharide metabolization pathways, including L-fucose. To investigate the influence of the L-fucose utilization cluster on Campylobacter growth, survival and metabolism, we performed comparative genotyping and phenotyping of the C. jejuni reference isolate NCTC11168 (human isolate), C. jejuni Ca1352 (chicken meat isolate), C. jejuni Ca2426 (sheep manure isolate), and C. coli Ca0121 (pig manure isolate), that all possess the L-fucose utilization cluster. All isolates showed enhanced survival and prolonged spiral cell morphology in aging cultures up to day seven in L-fucose-enriched MEMα medium (MEMαF) compared to MEMα. HPLC analysis indicated L-fucose utilization linked to acetate, lactate, pyruvate and succinate production, confirming the activation of the L-fucose pathway in these isolates and its impact on general metabolism. Highest consumption of L-fucose by C. coli Ca0121 is conceivably linked to its enhanced growth performance up to day 7, reaching 9.3 log CFU/ml compared to approximately 8.3 log CFU/ml for the C. jejuni isolates. Genetic analysis of the respective L-fucose clusters revealed several differences, including a 1 bp deletion in the Cj0489 gene of C. jejuni NCTC11168, causing a frameshift in this isolate resulting in two separate genes, Cj0489 and Cj0490, while no apparent phenotype could be linked to the presumed frameshift in this isolate. Additionally, we found that the L-fucose cluster of C. coli Ca0121 was most distant from C. jejuni NCTC11168, but confirmation of links to L-fucose metabolism associated phenotypic traits in C. coli versus C. jejuni isolates requires further studies.
Collapse
Affiliation(s)
- Pjotr S. Middendorf
- Food Microbiology, Wageningen University, Wageningen, Netherlands
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | | - Aldert L. Zomer
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
- WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, Netherlands
| | - Heidy M. W. den Besten
- Food Microbiology, Wageningen University, Wageningen, Netherlands
- Heidy M. W. den Besten,
| | - Tjakko Abee
- Food Microbiology, Wageningen University, Wageningen, Netherlands
- *Correspondence: Tjakko Abee,
| |
Collapse
|
15
|
Idland L, Granquist EG, Aspholm M, Lindbäck T. The prevalence of Campylobacter spp., Listeria monocytogenes and Shiga toxin-producing Escherichia coli in Norwegian dairy cattle farms; a comparison between free stall and tie stall housing systems. J Appl Microbiol 2022; 132:3959-3972. [PMID: 35244319 PMCID: PMC9315008 DOI: 10.1111/jam.15512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022]
Abstract
Aims This study explored how dairy farm operating systems with free‐stall or tie‐stall housing and cow hygiene score influence the occurrence of zoonotic bacteria in raw milk. Methods and Results Samples from bulk tank milk (BTM), milk filters, faeces, feed, teats and teat milk were collected from 11 farms with loose housing and seven farms with tie‐stall housing every second month over a period of 11 months and analysed for the presence of STEC by culturing combined with polymerase chain reaction and for Campylobacter spp. and L. monocytogenes by culturing only. Campylobacter spp., L. monocytogenes and STEC were present in samples from the farm environment and were also detected in 4%, 13% and 7% of the milk filters, respectively, and in 3%, 0% and 1% of BTM samples. Four STEC isolates carried the eae gene, which is linked to the capacity to cause severe human disease. L. monocytogenes were detected more frequently in loose housing herds compared with tie‐stalled herds in faeces (p = 0.02) and feed (p = 0.03), and Campylobacter spp. were detected more frequently in loose housing herds in faeces (p < 0.01) and teat swabs (p = 0.03). An association between cow hygiene score and detection of Campylobacter spp. in teat milk was observed (p = 0.03). Conclusion Since some samples collected from loose housing systems revealed a significantly higher (p < 0.05) content of L. monocytogenes and Campylobacter spp. than samples collected from tie‐stalled herds, the current study suggests that the type of housing system may influence the food safety of raw milk. Significance and Impact of the Study This study highlights that zoonotic bacteria can be present in raw milk independent of hygienic conditions at the farm and what housing system is used. Altogether, this study provides important knowledge for evaluating the risk of drinking unpasteurized milk.
Collapse
Affiliation(s)
- Lene Idland
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Erik G Granquist
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Toril Lindbäck
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
16
|
Biological Indicators for Fecal Pollution Detection and Source Tracking: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9112058] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fecal pollution, commonly detected in untreated or less treated sewage, is associated with health risks (e.g., waterborne diseases and antibiotic resistance dissemination), ecological issues (e.g., release of harmful gases in fecal sludge composting, proliferative bacterial/algal growth due to high nutrient loads) and economy losses (e.g., reduced aqua farm harvesting). Therefore, the discharge of untreated domestic sewage to the environment and its agricultural reuse are growing concerns. The goals of fecal pollution detection include fecal waste source tracking and identifying the presence of pathogens, therefore assessing potential health risks. This review summarizes available biological fecal indicators focusing on host specificity, degree of association with fecal pollution, environmental persistence, and quantification methods in fecal pollution assessment. The development of practical tools is a crucial requirement for the implementation of mitigation strategies that may help confine the types of host-specific pathogens and determine the source control point, such as sourcing fecal wastes from point sources and nonpoint sources. Emerging multidisciplinary bacterial enumeration platforms are also discussed, including individual working mechanisms, applications, advantages, and limitations.
Collapse
|
17
|
Mevo SIU, Ashrafudoulla M, Furkanur Rahaman Mizan M, Park SH, Ha SD. Promising strategies to control persistent enemies: Some new technologies to combat biofilm in the food industry-A review. Compr Rev Food Sci Food Saf 2021; 20:5938-5964. [PMID: 34626152 DOI: 10.1111/1541-4337.12852] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 01/22/2023]
Abstract
Biofilm is an advanced form of protection that allows bacterial cells to withstand adverse environmental conditions. The complex structure of biofilm results from genetic-related mechanisms besides other factors such as bacterial morphology or substratum properties. Inhibition of biofilm formation of harmful bacteria (spoilage and pathogenic bacteria) is a critical task in the food industry because of the enhanced resistance of biofilm bacteria to stress, such as cleaning and disinfection methods traditionally used in food processing plants, and the increased food safety risks threatening consumer health caused by recurrent contamination and rapid deterioration of food by biofilm cells. Therefore, it is urgent to find methods and strategies for effectively combating bacterial biofilm formation and eradicating mature biofilms. Innovative and promising approaches to control bacteria and their biofilms are emerging. These new approaches range from methods based on natural ingredients to the use of nanoparticles. This literature review aims to describe the efficacy of these strategies and provide an overview of recent promising biofilm control technologies in the food processing sector.
Collapse
Affiliation(s)
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| | | | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
18
|
Why knowledge is the best way to reduce the risks associated with raw milk and raw milk products. J DAIRY RES 2021; 88:238-243. [PMID: 33985596 DOI: 10.1017/s002202992100039x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In an age of flexible conditions about mandatory milk pasteurisation, this opinion-based research reflection supports the view that the knowledge and the awareness of milk-borne infections are key requirements to decrease the risks associated with raw milk. Providing an analysis of the current potential risks related to consumption of raw milk and raw milk products, we discuss the main reasons to continue to be vigilant about milk-borne pathogens and the current scenario in relation to the formal and clandestine sale of raw milk. Finally, we select some highly effective strategies to reduce the risks associated with raw milk in food services. Regardless of whether a country regulation allows or prohibits the trade of raw milk and its products, this is not the time to be negligent.
Collapse
|
19
|
|
20
|
Mughini-Gras L, Pijnacker R, Coipan C, Mulder AC, Fernandes Veludo A, de Rijk S, van Hoek AHAM, Buij R, Muskens G, Koene M, Veldman K, Duim B, van der Graaf-van Bloois L, van der Weijden C, Kuiling S, Verbruggen A, van der Giessen J, Opsteegh M, van der Voort M, Castelijn GAA, Schets FM, Blaak H, Wagenaar JA, Zomer AL, Franz E. Sources and transmission routes of campylobacteriosis: A combined analysis of genome and exposure data. J Infect 2020; 82:216-226. [PMID: 33275955 DOI: 10.1016/j.jinf.2020.09.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/13/2020] [Accepted: 09/26/2020] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To determine the contributions of several animal and environmental sources of human campylobacteriosis and identify source-specific risk factors. METHODS 1417 Campylobacter jejuni/coli isolates from the Netherlands in 2017-2019 were whole-genome sequenced, including isolates from human cases (n = 280), chickens/turkeys (n = 238), laying hens (n = 56), cattle (n = 158), veal calves (n = 49), sheep/goats (n = 111), pigs (n = 110), dogs/cats (n = 100), wild birds (n = 62), and surface water (n = 253). Questionnaire-based exposure data was collected. Source attribution was performed using core-genome multilocus sequence typing. Risk factors were determined on the attribution estimates. RESULTS Cases were mostly attributed to chickens/turkeys (48.2%), dogs/cats (18.0%), cattle (12.1%), and surface water (8.5%). Of the associations identified, never consuming chicken, as well as frequent chicken consumption, and rarely washing hands after touching raw meat, were risk factors for chicken/turkey-attributable infections. Consuming unpasteurized milk or barbecued beef increased the risk for cattle-attributable infections. Risk factors for infections attributable to environmental sources were open water swimming, contact with dog faeces, and consuming non-chicken/turkey avian meat like game birds. CONCLUSIONS Poultry and cattle are the main livestock sources of campylobacteriosis, while pets and surface water are important non-livestock sources. Foodborne transmission is only partially consistent with the attributions, as frequency and alternative pathways of exposure are significant.
Collapse
Affiliation(s)
- Lapo Mughini-Gras
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Roan Pijnacker
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Claudia Coipan
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Annemieke C Mulder
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | - Sharona de Rijk
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Angela H A M van Hoek
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ralph Buij
- Wageningen Environmental Research (WER), Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Gerard Muskens
- Wageningen Environmental Research (WER), Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Miriam Koene
- Wageningen Bioveterinary Research (WBVR), Wageningen University & Research (WUR), Lelystad, the Netherlands
| | - Kees Veldman
- Wageningen Bioveterinary Research (WBVR), Wageningen University & Research (WUR), Lelystad, the Netherlands
| | - Birgitta Duim
- Department of Infectious Diseases and Immunology (I&I), Utrecht University & WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, the Netherlands
| | - Linda van der Graaf-van Bloois
- Department of Infectious Diseases and Immunology (I&I), Utrecht University & WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, the Netherlands
| | - Coen van der Weijden
- Netherlands Food and Consumer Product Safety Authority (NVWA), Utrecht, the Netherlands
| | - Sjoerd Kuiling
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Anjo Verbruggen
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Joke van der Giessen
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marieke Opsteegh
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Menno van der Voort
- Wageningen Food Safety Research (WFSR), Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Greetje A A Castelijn
- Wageningen Food Safety Research (WFSR), Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Franciska M Schets
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hetty Blaak
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jaap A Wagenaar
- Department of Infectious Diseases and Immunology (I&I), Utrecht University & WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, the Netherlands
| | - Aldert L Zomer
- Department of Infectious Diseases and Immunology (I&I), Utrecht University & WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, the Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
21
|
Kingsbury JM, Soboleva TK. Evaluation of culture-based and molecular detection methods for Campylobacter in New Zealand raw cows' milk. J Appl Microbiol 2020; 130:478-492. [PMID: 32725959 DOI: 10.1111/jam.14798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/23/2023]
Abstract
AIMS This study evaluated the performance of a commercial molecular detection method (mericon Campylobacter triple kit real-time/quantitative (q)PCR) and a selective plating medium (R&F Campylobacter jejuni/Campylobacter coli Chromogenic Plating Medium (CCPM)) against a culture-based reference method (ISO 10272-1:2017 detection procedure B) for the detection of Campylobacter from raw milk enrichment broths. METHODS AND RESULTS New Zealand raw cows' milk and Ultra-High Temperature-processed milk samples were inoculated with 50, 125 and 500 colony forming units of C. jejuni and C. coli cocktail per analytical unit. Samples were tested for Campylobacter after 0, 24- and 48 h refrigeration. ISO 10272-1:2017 proved to be a sensitive detection method (77/80 positive samples); detection only failed for some milk samples tested 48 h postinoculation. CCPM was as effective as Cefoperazone Charcoal Deoxycholate Agar for selective plating of Campylobacter raw milk enrichments (78/80 positive samples). However, the qPCR detected Campylobacter in only 42/80 samples and qPCR reaction inhibition was observed. CONCLUSIONS The ISO 10272-1:2017 method was a more sensitive method for Campylobacter detection from raw milk than the mericon Campylobacter triple kit qPCR, and CCPM was a useful complementary medium to mCCDA where one of these media is required by the standard. SIGNIFICANCE AND IMPACT OF THE STUDY In regions where testing is required or recommended, optimized methods for Campylobacter detection from raw milk will reduce risk to the raw milk consumer. Although molecular methods are generally touted as a rapid alternative to culture, issues with inhibition due to matrix components mean that culture-based methods might provide the most sensitive option for Campylobacter detection in raw milk. Findings also emphasize the importance of minimizing the time between milk collection and testing for Campylobacter.
Collapse
Affiliation(s)
- J M Kingsbury
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - T K Soboleva
- New Zealand Food Safety, Ministry for Primary Industries, Wellington, New Zealand
| |
Collapse
|