1
|
MacIsaac AR, Wellington AJ, Filicetti K, Eggers ED. Impaired dopamine signaling in early diabetic retina: Insights from D1R and D4R agonist effects on whole retina responses. Exp Eye Res 2024; 247:110049. [PMID: 39151774 PMCID: PMC11392630 DOI: 10.1016/j.exer.2024.110049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The retina has low dopamine levels early in diabetes. To determine how low dopamine levels affected dopamine signaling, the effects of dopamine receptor agonists and mRNA localization were measured after 6 weeks of diabetes. Whole retina ex vivo electroretinogram (ERG) recordings were used to analyze how dopamine type 1 receptor (D1R) and type 4 (D4R) agonists change the light-evoked retinal responses of non-diabetic and 6-week diabetic (STZ injected) mouse retinas. Fluorescence in situ hybridization was utilized to analyze D4R and D1R mRNA locations and expression levels. D4R activation reduced A- and B-wave ERG amplitudes and increased B-wave implicit time and rise-time in the non-diabetic group without a corresponding change in the diabetic group. D1R activation increased B-wave rise-time and oscillatory potential peak time in the non-diabetic group also with no change in the diabetic group. The lack of responsivity to D1R or D4R agonists shows an impairment of dopamine signaling in the diabetic retina. D4R mRNA was found primarily in the outer nuclear layer where photoreceptor cell bodies reside. D1R mRNA was found in the inner nuclear layer and ganglion cell layer that contain bipolar, amacrine, horizontal and ganglion cells. There was no change in D4R or D1R mRNA expression between the non-diabetic and diabetic retinas. This suggests that the significant dopamine signaling changes observed were not from lower receptor expression levels but could be due to changes in dopamine receptor activity or protein levels. These studies show that changes in retinal dopamine signaling could be an important mechanism of diabetic retinal dysfunction.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Diabetes Mellitus, Experimental/metabolism
- Diabetic Retinopathy/metabolism
- Dopamine/metabolism
- Dopamine Agonists/pharmacology
- Electroretinography
- In Situ Hybridization, Fluorescence
- Mice, Inbred C57BL
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D4/metabolism
- Receptors, Dopamine D4/genetics
- Receptors, Dopamine D4/agonists
- Retina/metabolism
- Retina/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Angela R MacIsaac
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA.
| | - Andrea J Wellington
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA.
| | - Kyle Filicetti
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA.
| | - Erika D Eggers
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Moraes MA, Árabe LB, Resende BL, Codo BC, Reis ALDAL, Souza BR. Effects of L-Dopa, SKF-38393, and quinpirole on exploratory, anxiety- and depressive-like behaviors in pubertal female and male mice. Behav Brain Res 2024; 459:114805. [PMID: 38096922 DOI: 10.1016/j.bbr.2023.114805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Adolescence is a phase of substantial changes in the brain, characterized by maturational remodeling of many systems. This remodeling allows functional plasticity to adapt to a changing environment. The dopaminergic system is under morphological and physiological changes during this phase. In the present study, we investigated if changes in the dopaminergic tone alter mice behavior in a receptor and sex-specific manner, specifically at the beginning of the puberty period. We administered L-Dopa, SKF-38393 (D1 dopamine receptor agonist), and Quinpirole (D2 dopamine receptor agonist) and tested male and female mice's motor, anxiety- and depressive-like behavior. While females displayed an impaired exploratory drive, males presented an intense depressive-like response. Our results provide insights into the function of dopaminergic development in adolescent behavior and highlight the importance of studies in this time window with male and female subjects.
Collapse
Affiliation(s)
- Muiara Aparecida Moraes
- Laboratório de Neurodesenvolvimento e Evolução - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Laila Blanc Árabe
- Laboratório de Neurodesenvolvimento e Evolução - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Bruna Lopes Resende
- Laboratório de Neurodesenvolvimento e Evolução - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Beatriz Campos Codo
- Laboratório de Neurodesenvolvimento e Evolução - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Ana Luiza de Araújo Lima Reis
- Laboratório de Neurodesenvolvimento e Evolução - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Bruno Rezende Souza
- Laboratório de Neurodesenvolvimento e Evolução - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
3
|
Chrispell JD, Xiong Y, Weiss ER. Grk7 but not Grk1 undergoes cAMP-dependent phosphorylation in zebrafish cone photoreceptors and mediates cone photoresponse recovery to elevated cAMP. J Biol Chem 2022; 298:102636. [PMID: 36273582 PMCID: PMC9692042 DOI: 10.1016/j.jbc.2022.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
In the vertebrate retina, phosphorylation of photoactivated visual pigments in rods and cones by G protein-coupled receptor kinases (GRKs) is essential for sustained visual function. Previous in vitro analysis demonstrated that GRK1 and GRK7 are phosphorylated by PKA, resulting in a reduced capacity to phosphorylate rhodopsin. In vivo observations revealed that GRK phosphorylation occurs in the dark and is cAMP dependent. In many vertebrates, including humans and zebrafish, GRK1 is expressed in both rods and cones while GRK7 is expressed only in cones. However, mice express only GRK1 in both rods and cones and lack GRK7. We recently generated a mutation in Grk1 that deletes the phosphorylation site, Ser21. This mutant demonstrated delayed dark adaptation in mouse rods but not in cones in vivo, suggesting GRK1 may serve a different role depending upon the photoreceptor cell type in which it is expressed. Here, zebrafish were selected to evaluate the role of cAMP-dependent GRK phosphorylation in cone photoreceptor recovery. Electroretinogram analyses of larvae treated with forskolin show that elevated intracellular cAMP significantly decreases recovery of the cone photoresponse, which is mediated by Grk7a rather than Grk1b. Using a cone-specific dominant negative PKA transgene, we show for the first time that PKA is required for Grk7a phosphorylation in vivo. Lastly, immunoblot analyses of rod grk1a-/- and cone grk1b-/- zebrafish and Nrl-/- mouse show that cone-expressed Grk1 does not undergo cAMP-dependent phosphorylation in vivo. These results provide a better understanding of the function of Grk phosphorylation relative to cone adaptation and recovery.
Collapse
|
4
|
Roa JN, Ma Y, Mikulski Z, Xu Q, Ilouz R, Taylor SS, Skowronska-Krawczyk D. Protein Kinase A in Human Retina: Differential Localization of Cβ, Cα, RIIα, and RIIβ in Photoreceptors Highlights Non-redundancy of Protein Kinase A Subunits. Front Mol Neurosci 2021; 14:782041. [PMID: 34867193 PMCID: PMC8636463 DOI: 10.3389/fnmol.2021.782041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Protein kinase A (PKA) signaling is essential for numerous processes but the subcellular localization of specific PKA regulatory (R) and catalytic (C) subunits has yet to be explored comprehensively. Additionally, the localization of the Cβ subunit has never been spatially mapped in any tissue even though ∼50% of PKA signaling in neuronal tissues is thought to be mediated by Cβ. Here we used human retina with its highly specialized neurons as a window into PKA signaling in the brain and characterized localization of PKA Cα, Cβ, RIIα, and RIIβ subunits. We found that each subunit presented a distinct localization pattern. Cα and Cβ were localized in all cell layers (photoreceptors, interneurons, retinal ganglion cells), while RIIα and RIIβ were selectively enriched in photoreceptor cells where both showed distinct patterns of co-localization with Cα but not Cβ. Only Cα was observed in photoreceptor outer segments and at the base of the connecting cilium. Cβ in turn, was highly enriched in mitochondria and was especially prominent in the ellipsoid of cone cells. Further investigation of Cβ using RNA BaseScope technology showed that two Cβ splice variants (Cβ4 and Cβ4ab) likely code for the mitochondrial Cβ proteins. Overall, our data indicates that PKA Cα, Cβ, RIIα, and RIIβ subunits are differentially localized and are likely functionally non-redundant in the human retina. Furthermore, Cβ is potentially important for mitochondrial-associated neurodegenerative diseases previously linked to PKA dysfunction.
Collapse
Affiliation(s)
- Jinae N Roa
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States
| | - Yuliang Ma
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Qianlan Xu
- Department of Physiology and Biophysics and Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA, United States
| | - Ronit Ilouz
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics and Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
5
|
Charish J, Shabanzadeh AP, Chen D, Mehlen P, Sethuramanujam S, Harada H, Bonilha VL, Awatramani G, Bremner R, Monnier PP. Neogenin neutralization prevents photoreceptor loss in inherited retinal degeneration. J Clin Invest 2020; 130:2054-2068. [PMID: 32175920 DOI: 10.1172/jci125898] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/14/2020] [Indexed: 02/05/2023] Open
Abstract
Inherited retinal degenerations (IRDs) are characterized by the progressive loss of photoreceptors and represent one of the most prevalent causes of blindness among working-age populations. Cyclic nucleotide dysregulation is a common pathological feature linked to numerous forms of IRD, yet the precise mechanisms through which this contributes to photoreceptor death remain elusive. Here we demonstrate that cAMP induced upregulation of the dependence receptor neogenin in the retina. Neogenin levels were also elevated in both human and murine degenerating photoreceptors. We found that overexpressing neogenin in mouse photoreceptors was sufficient to induce cell death, whereas silencing neogenin in degenerating murine photoreceptors promoted survival, thus identifying a pro-death signal in IRDs. A possible treatment strategy is modeled whereby peptide neutralization of neogenin in Rd1, Rd10, and Rho P23H-knockin mice promotes rod and cone survival and rescues visual function as measured by light-evoked retinal ganglion cell recordings, scotopic/photopic electroretinogram recordings, and visual acuity tests. These results expose neogenin as a critical link between cAMP and photoreceptor death, and identify a druggable target for the treatment of retinal degeneration.
Collapse
Affiliation(s)
- Jason Charish
- Vision Division, Krembil Research Institute, Toronto, Ontario, Canada.,Department of Physiology and
| | - Alireza P Shabanzadeh
- Vision Division, Krembil Research Institute, Toronto, Ontario, Canada.,Department of Anatomy, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Danian Chen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory, INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
| | | | - Hidekiyo Harada
- Vision Division, Krembil Research Institute, Toronto, Ontario, Canada
| | - Vera L Bonilha
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gautam Awatramani
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Rod Bremner
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology and.,Department of Ophthalmology and Vision Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Philippe P Monnier
- Vision Division, Krembil Research Institute, Toronto, Ontario, Canada.,Department of Physiology and.,Department of Ophthalmology and Vision Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Rhodopsin-mediated light-off-induced protein kinase A activation in mouse rod photoreceptor cells. Proc Natl Acad Sci U S A 2020; 117:26996-27003. [PMID: 33046651 DOI: 10.1073/pnas.2009164117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Light-induced extrasynaptic dopamine release in the retina reduces adenosine 3',5'-cyclic monophosphate (cAMP) in rod photoreceptor cells, which is thought to mediate light-dependent desensitization. However, the fine time course of the cAMP dynamics in rods remains elusive due to technical difficulty. Here, we visualized the spatiotemporal regulation of cAMP-dependent protein kinase (PKA) in mouse rods by two-photon live imaging of retinal explants of PKAchu mice, which express a fluorescent biosensor for PKA. Unexpectedly, in addition to the light-on-induced suppression, we observed prominent light-off-induced PKA activation. This activation required photopic light intensity and was confined to the illuminated rods. The estimated maximum spectral sensitivity of 489 nm and loss of the light-off-induced PKA activation in rod-transducin-knockout retinas strongly suggest the involvement of rhodopsin. In support of this notion, rhodopsin-deficient retinal explants showed only the light-on-induced PKA suppression. Taken together, these results suggest that, upon photopic light stimulation, rhodopsin and dopamine signals are integrated to shape the light-off-induced cAMP production and following PKA activation. This may support the dark adaptation of rods.
Collapse
|
7
|
cAMP and Photoreceptor Cell Death in Retinal Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1185:301-304. [PMID: 31884628 DOI: 10.1007/978-3-030-27378-1_49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Inherited retinal degenerations (IRDs) are a genetically heterogeneous group of disorders characterized by the progressive loss of photoreceptor cells. Despite this heterogeneity in the disease-causing mutation, common underlying mechanisms promoting photoreceptor cell death may be present. Dysregulation of photoreceptor cyclic nucleotide signaling may be one such common feature differentiating healthy from diseased photoreceptors. Here we review evidence that elevated retinal cAMP levels promote photoreceptor death and are a common feature of numerous animal models of IRDs. Improving our understanding of how cAMP levels become elevated and identifying downstream effectors may prove important for the development of therapeutics that will be applicable to multiple forms of the disease.
Collapse
|
8
|
Kolesnikov AV, Chrispell JD, Osawa S, Kefalov VJ, Weiss ER. Phosphorylation at Serine 21 in G protein-coupled receptor kinase 1 (GRK1) is required for normal kinetics of dark adaption in rod but not cone photoreceptors. FASEB J 2020; 34:2677-2690. [PMID: 31908030 PMCID: PMC7043924 DOI: 10.1096/fj.201902535r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022]
Abstract
Timely recovery of the light response in photoreceptors requires efficient inactivation of photoactivated rhodopsin. This process is initiated by phosphorylation of its carboxyl terminus by G protein-coupled receptor kinase 1 (GRK1). Previously, we showed that GRK1 is phosphorylated in the dark at Ser21 in a cAMP-dependent manner and dephosphorylated in the light. Results in vitro indicate that dephosphorylation of Ser21 increases GRK1 activity, leading to increased phosphorylation of rhodopsin. This creates the possibility of light-dependent regulation of GRK1 activity and its efficiency in inactivating the visual pigment. To address the functional role of GRK1 phosphorylation in rods and cones in vivo, we generated mutant mice in which Ser21 is substituted with alanine (GRK1-S21A), preventing dark-dependent phosphorylation of GRK1. GRK1-S21A mice had normal retinal morphology, without evidence of degeneration. The function of dark-adapted GRK1-S21A rods and cones was also unaffected, as demonstrated by the normal amplitude and kinetics of their responses obtained by ex vivo and in vivo ERG recordings. In contrast, rod dark adaptation following exposure to bright bleaching light was significantly delayed in GRK1-S21A mice, suggesting that the higher activity of this kinase results in enhanced rhodopsin phosphorylation and therefore delays its regeneration. In contrast, dark adaptation of cones was unaffected by the S21A mutation. Taken together, these data suggest that rhodopsin phosphorylation/dephosphorylation modulates the recovery of rhodopsin to the ground state and rod dark adaptation. They also reveal a novel role for cAMP-dependent phosphorylation of GRK1 in regulating the dark adaptation of rod but not cone photoreceptors.
Collapse
Affiliation(s)
- Alexander V. Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jared D. Chrispell
- Department of Cell Biology and Physiology, The University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Shoji Osawa
- Department of Cell Biology and Physiology, The University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Vladimir J. Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ellen R. Weiss
- Department of Cell Biology and Physiology, The University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Astakhova LA, Nikolaeva DA, Fedotkina TV, Govardovskii VI, Firsov ML. Elevated cAMP improves signal-to-noise ratio in amphibian rod photoreceptors. J Gen Physiol 2017; 149:689-701. [PMID: 28611079 PMCID: PMC5496506 DOI: 10.1085/jgp.201611744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/31/2017] [Indexed: 11/20/2022] Open
Abstract
Vertebrate photoreceptors need to distinguish light signals from background noise to convey visual information to downstream bipolar cells. By affecting both signal and noise, Astakhova et al. find that increases in intracellular cAMP can improve the signal-to-noise ratio by twofold. The absolute sensitivity of vertebrate retinas is set by a background noise, called dark noise, which originates from several different cell types and is generated by different molecular mechanisms. The major share of dark noise is produced by photoreceptors and consists of two components, discrete and continuous. Discrete noise is generated by spontaneous thermal activations of visual pigment. These events are undistinguishable from real single-photon responses (SPRs) and might be considered an equivalent of the signal. Continuous noise is produced by spontaneous fluctuations of the catalytic activity of the cGMP phosphodiesterase. This masks both SPR and spontaneous SPR-like responses. Circadian rhythms affect photoreceptors, among other systems by periodically increasing intracellular cAMP levels ([cAMP]in), which increases the size and changes the shape of SPRs. Here, we show that forskolin, a tool that increases [cAMP]in, affects the magnitude and frequency spectrum of the continuous and discrete components of dark noise in photoreceptors. By changing both components of rod signaling, the signal and the noise, cAMP is able to increase the photoreceptor signal-to-noise ratio by twofold. We propose that this results in a substantial improvement of signal detection, without compromising noise rejection, at the rod bipolar cell synapse.
Collapse
Affiliation(s)
- Luba A Astakhova
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg, Russia
| | - Darya A Nikolaeva
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg, Russia
| | - Tamara V Fedotkina
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg, Russia
| | - Victor I Govardovskii
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg, Russia
| | - Michael L Firsov
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg, Russia
| |
Collapse
|
10
|
Regulation of photoreceptor gap junction phosphorylation by adenosine in zebrafish retina. Vis Neurosci 2015; 31:237-43. [PMID: 24844306 DOI: 10.1017/s095252381300062x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Electrical coupling of photoreceptors through gap junctions suppresses voltage noise, routes rod signals into cone pathways, expands the dynamic range of rod photoreceptors in high scotopic and mesopic illumination, and improves detection of contrast and small stimuli. In essentially all vertebrates, connexin 35/36 (gene homologs Cx36 in mammals, Cx35 in other vertebrates) is the major gap junction protein observed in photoreceptors, mediating rod-cone, cone-cone, and possibly rod-rod communication. Photoreceptor coupling is dynamically controlled by the day/night cycle and light/dark adaptation, and is directly correlated with phosphorylation of Cx35/36 at two sites, serine110 and serine 276/293 (homologous sites in teleost fish and mammals, respectively). Activity of protein kinase A (PKA) plays a key role during this process. Previous studies have shown that activation of dopamine D4 receptors on photoreceptors inhibits adenylyl cyclase, down-regulates cAMP and PKA activity, and leads to photoreceptor uncoupling, imposing the daytime/light condition. In this study, we explored the role of adenosine, a nighttime signal with a high extracellular concentration at night and a low concentration in the day, in regulating photoreceptor coupling by examining photoreceptor Cx35 phosphorylation in zebrafish retina. Adenosine enhanced photoreceptor Cx35 phosphorylation in daytime, but with a complex dose-response curve. Selective pharmacological manipulations revealed that adenosine A2a receptors provide a potent positive drive to phosphorylate photoreceptor Cx35 under the influence of endogenous adenosine at night. A2a receptors can be activated in the daytime as well by micromolar exogenous adenosine. However, the higher affinity adenosine A1 receptors are also present and have an antagonistic though less potent effect. Thus, the nighttime/darkness signal adenosine provides a net positive drive on Cx35 phosphorylation at night, working in opposition to dopamine to regulate photoreceptor coupling via a push-pull mechanism. However, the lower concentration of adenosine present in the daytime actually reinforces the dopamine signal through action on the A1 receptor.
Collapse
|
11
|
Popova E. Role of dopamine in distal retina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:333-58. [PMID: 24728309 DOI: 10.1007/s00359-014-0906-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/11/2023]
Abstract
Dopamine is the most abundant catecholamine in the vertebrate retina. Despite the description of retinal dopaminergic cells three decades ago, many aspects of their function in the retina remain unclear. There is no consensus among the authors about the stimulus conditions for dopamine release (darkness, steady or flickering light) as well as about its action upon the various types of retinal cells. Many contradictory results exist concerning the dopamine effect on the gross electrical activity of the retina [reflected in electroretinogram (ERG)] and the receptors involved in its action. This review summarized current knowledge about the types of the dopaminergic neurons and receptors in the retina as well as the effects of dopamine receptor agonists and antagonists on the light responses of photoreceptors, horizontal and bipolar cells in both nonmammalian and mammalian retina. Special focus of interest concerns their effects upon the diffuse ERG as a useful tool for assessment of the overall function of the distal retina. An attempt is made to reveal some differences between the dopamine actions upon the activity of the ON versus OFF channel in the distal retina. The author has included her own results demonstrating such differences.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
12
|
Li H, Zhang Z, Blackburn MR, Wang SW, Ribelayga CP, O'Brien J. Adenosine and dopamine receptors coregulate photoreceptor coupling via gap junction phosphorylation in mouse retina. J Neurosci 2013; 33:3135-50. [PMID: 23407968 PMCID: PMC3711184 DOI: 10.1523/jneurosci.2807-12.2013] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 12/20/2012] [Accepted: 12/24/2012] [Indexed: 11/21/2022] Open
Abstract
Gap junctions in retinal photoreceptors suppress voltage noise and facilitate input of rod signals into the cone pathway during mesopic vision. These synapses are highly plastic and regulated by light and circadian clocks. Recent studies have revealed an important role for connexin36 (Cx36) phosphorylation by protein kinase A (PKA) in regulating cell-cell coupling. Dopamine is a light-adaptive signal in the retina, causing uncoupling of photoreceptors via D4 receptors (D4R), which inhibit adenylyl cyclase (AC) and reduce PKA activity. We hypothesized that adenosine, with its extracellular levels increasing in darkness, may serve as a dark signal to coregulate photoreceptor coupling through modulation of gap junction phosphorylation. Both D4R and A2a receptor (A2aR) mRNAs were present in photoreceptors, inner nuclear layer neurons, and ganglion cells in C57BL/6 mouse retina, and showed cyclic expression with partially overlapping rhythms. Pharmacologically activating A2aR or inhibiting D4R in light-adapted daytime retina increased photoreceptor coupling. Cx36 among photoreceptor terminals, representing predominantly rod-cone gap junctions but possibly including some rod-rod and cone-cone gap junctions, was phosphorylated in a PKA-dependent manner by the same treatments. Conversely, inhibiting A2aR or activating D4R in daytime dark-adapted retina decreased Cx36 phosphorylation with similar PKA dependence. A2a-deficient mouse retina showed defective regulation of photoreceptor gap junction phosphorylation, fairly regular dopamine release, and moderately downregulated expression of D4R and AC type 1 mRNA. We conclude that adenosine and dopamine coregulate photoreceptor coupling through opposite action on the PKA pathway and Cx36 phosphorylation. In addition, loss of the A2aR hampered D4R gene expression and function.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Chromatography, High Pressure Liquid
- Connexins/metabolism
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Dark Adaptation/physiology
- Gap Junctions/metabolism
- Gap Junctions/physiology
- Gene Expression/physiology
- Image Processing, Computer-Assisted
- Immunohistochemistry
- In Situ Hybridization
- In Vitro Techniques
- Mice
- Mice, Inbred C57BL
- Phosphorylation
- Real-Time Polymerase Chain Reaction
- Receptors, Adenosine A2/genetics
- Receptors, Adenosine A2/physiology
- Receptors, Dopamine/genetics
- Receptors, Dopamine/physiology
- Receptors, Dopamine D4/biosynthesis
- Receptors, Dopamine D4/genetics
- Receptors, Purinergic P1/genetics
- Receptors, Purinergic P1/physiology
- Retinal Cone Photoreceptor Cells/physiology
- Retinal Rod Photoreceptor Cells/physiology
- Gap Junction delta-2 Protein
Collapse
Affiliation(s)
- Hongyan Li
- Richard S. Ruiz, MD, Department of Ophthalmology and Visual Science, The University of Texas Medical School and
| | - Zhijing Zhang
- Richard S. Ruiz, MD, Department of Ophthalmology and Visual Science, The University of Texas Medical School and
| | - Michael R. Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77030; and
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Steven W. Wang
- Richard S. Ruiz, MD, Department of Ophthalmology and Visual Science, The University of Texas Medical School and
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Christophe P. Ribelayga
- Richard S. Ruiz, MD, Department of Ophthalmology and Visual Science, The University of Texas Medical School and
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - John O'Brien
- Richard S. Ruiz, MD, Department of Ophthalmology and Visual Science, The University of Texas Medical School and
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030
| |
Collapse
|
13
|
Wang J, Zhang N, Beuve A, Townes-Anderson E. Mislocalized opsin and cAMP signaling: a mechanism for sprouting by rod cells in retinal degeneration. Invest Ophthalmol Vis Sci 2012; 53:6355-69. [PMID: 22899763 DOI: 10.1167/iovs.12-10180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE In human retinal degeneration, rod photoreceptors reactively sprout neurites. The mechanism is unknown in part because of the paucity of animal models displaying this feature of human pathology. We tested the role of cAMP and opsin in sprouting by tiger salamander rod cells, photoreceptors that can produce reactive growth. METHODS In vitro systems of isolated photoreceptor cells and intact neural retina were used. cAMP signaling was manipulated with nucleotide analogues, enzyme stimulators, agonists for adenosine and dopamine receptors, and the opsin agonist, β-ionone. Levels of cAMP were determined by radioimmunoassay, and protein levels by Western blot and quantitative immunocytochemistry. Neuritic growth was assayed by image analysis and conventional and confocal microscopy. RESULTS cAMP analogues and stimulation of adenylyl cyclase (AC) directly or through G-protein-coupled receptors resulted in significant increases in neuritic growth of isolated rod, but not cone, cells. The signaling pathway included protein kinase A (PKA) and phosphorylation of the transcription factor cAMP response element-binding protein (pCREB). Opsin, a G-linked receptor, is present throughout the plasmalemma of isolated cells; its activation also induced sprouting. In neural retina, rod sprouting was significantly increased by β-ionone with concomitant increases in cAMP, pCREB, and synaptic proteins. Notably, opsin stimulated sprouting only when mislocalized to the plasmalemma of the rod cell body. CONCLUSIONS cAMP causes neuritic sprouting in rod, but not cone, cells through the AC-PKA-CREB pathway known to be associated with synaptic plasticity. We propose that in retinal disease, mislocalized rod opsin gains access to cAMP signaling, which leads to neuritic sprouting.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Neurology and Neuroscience, New Jersey Medical School–University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
14
|
Jackson CR, Chaurasia SS, Hwang CK, Iuvone PM. Dopamine D₄ receptor activation controls circadian timing of the adenylyl cyclase 1/cyclic AMP signaling system in mouse retina. Eur J Neurosci 2011; 34:57-64. [PMID: 21676039 DOI: 10.1111/j.1460-9568.2011.07734.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the mammalian retina, dopamine binding to the dopamine D₄ receptor (D₄R) affects a light-sensitive pool of cyclic AMP by negatively coupling to the type 1 adenylyl cyclase (AC1). AC1 is the primary enzyme controlling cyclic AMP production in dark-adapted photoreceptors. A previous study demonstrated that expression of the gene encoding AC1, Adcy1, is downregulated in mice lacking Drd4, the gene encoding the D₄R. The present investigation provides evidence that D₄R activation entrains the circadian rhythm of Adcy1 mRNA expression. Diurnal and circadian rhythms of Drd4 and Adcy1 mRNA levels were observed in wild-type mouse retina. Also, rhythms in the Ca²⁺-stimulated AC activity and cyclic AMP levels were observed. However, these rhythmic activities were damped or undetectable in mice lacking the D₄R. Pharmacologically activating the D₄R 4 h before its normal stimulation at light onset in the morning advances the phase of the Adcy1 mRNA expression pattern. These data demonstrate that stimulating the D₄R is essential in maintaining the normal rhythmic production of AC1 from transcript to enzyme activity. Thus, dopamine/D₄R signaling is a novel zeitgeber that entrains the rhythm of Adcy1 expression and, consequently, modulates the rhythmic synthesis of cyclic AMP in mouse retina.
Collapse
Affiliation(s)
- Chad R Jackson
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
15
|
Osawa S, Jo R, Xiong Y, Reidel B, Tserentsoodol N, Arshavsky VY, Iuvone PM, Weiss ER. Phosphorylation of G protein-coupled receptor kinase 1 (GRK1) is regulated by light but independent of phototransduction in rod photoreceptors. J Biol Chem 2011; 286:20923-9. [PMID: 21504899 PMCID: PMC3121460 DOI: 10.1074/jbc.m111.230904] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/13/2011] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of rhodopsin by G protein-coupled receptor kinase 1 (GRK1, or rhodopsin kinase) is critical for the deactivation of the phototransduction cascade in vertebrate photoreceptors. Based on our previous studies in vitro, we predicted that Ser(21) in GRK1 would be phosphorylated by cAMP-dependent protein kinase (PKA) in vivo. Here, we report that dark-adapted, wild-type mice demonstrate significantly elevated levels of phosphorylated GRK1 compared with light-adapted animals. Based on comparatively slow half-times for phosphorylation and dephosphorylation, phosphorylation of GRK1 by PKA is likely to be involved in light and dark adaptation. In mice missing the gene for adenylyl cyclase type 1, levels of phosphorylated GRK1 were low in retinas from both dark- and light-adapted animals. These data are consistent with reports that cAMP levels are high in the dark and low in the light and also indicate that cAMP generated by adenylyl cyclase type 1 is required for phosphorylation of GRK1 on Ser(21). Surprisingly, dephosphorylation was induced by light in mice missing the rod transducin α-subunit. This result indicates that phototransduction does not play a direct role in the light-dependent dephosphorylation of GRK1.
Collapse
Affiliation(s)
- Shoji Osawa
- From the Department of Cell and Developmental Biology and
| | - Rebecca Jo
- From the Department of Cell and Developmental Biology and
| | - Yubin Xiong
- From the Department of Cell and Developmental Biology and
| | - Boris Reidel
- the Albert Eye Research Institute, Duke University, Durham, North Carolina 27710, and
| | | | - Vadim Y. Arshavsky
- the Albert Eye Research Institute, Duke University, Durham, North Carolina 27710, and
| | - P. Michael Iuvone
- the Departments of Pharmacology and Ophthalmology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Ellen R. Weiss
- From the Department of Cell and Developmental Biology and
- the Lineberger Comprehensive Cancer Center, the University of North Carolina, Chapel Hill, North Carolina 27599-7090
| |
Collapse
|
16
|
Heikkinen H, Vinberg F, Nymark S, Koskelainen A. Mesopic background lights enhance dark-adapted cone ERG flash responses in the intact mouse retina: a possible role for gap junctional decoupling. J Neurophysiol 2011; 105:2309-18. [PMID: 21389302 DOI: 10.1152/jn.00536.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cone-driven flash responses of mouse electroretinogram (ERG) increase as much as twofold over the course of several minutes during adaptation to a rod-compressing background light. The origins of this phenomenon were investigated in the present work by recording preflash-isolated (M-)cone flash responses ex vivo in darkness and during application of various steady background lights. In this protocol, the cone stimulating flash was preceded by a preflash that maintains rods under saturation (hyperpolarized) to allow selective stimulation of the cones at varying background light levels. The light-induced growth was found to represent true enhancement of cone flash responses with respect to their dark-adapted state. It developed within minutes, and its overall magnitude was a graded function of the background light intensity. The threshold intensity of cone response growth was observed with lights in the low mesopic luminance region, at which rod responses are partly compressed. Maximal effect was reached at intensities sufficient to suppress ∼ 90% of the rod responses. Light-induced enhancement of the cone photoresponses was not sensitive to antagonists and agonists of glutamatergic transmission. However, applying gap junction blockers to the dark-adapted retina produced qualitatively similar changes in the cone flash responses as did background light and prevented further growth during subsequent light-adaptation. These results are consistent with the idea that cone ERG photoresponses are suppressed in the dark-adapted mouse retina by gap junctional coupling between rods and cones. This coupling would then be gradually and reversibly removed by mesopic background lights, allowing larger functional range for the cone light responses.
Collapse
Affiliation(s)
- H Heikkinen
- Aalto University School of Science, Department of Biomedical Engineering and Computational Science, PO Box 12200, FI-00076 Aalto, Finland.
| | | | | | | |
Collapse
|
17
|
Whitaker CM, Cooper NGF. Differential distribution of exchange proteins directly activated by cyclic AMP within the adult rat retina. Neuroscience 2009; 165:955-67. [PMID: 19883736 DOI: 10.1016/j.neuroscience.2009.10.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/09/2009] [Accepted: 10/27/2009] [Indexed: 12/15/2022]
Abstract
The recently discovered exchange protein directly activated by cAMP (Epac), a guanine exchange factor for the G-protein RAP-1, is directly activated by cAMP independently of protein kinase A (PKA). While cAMP is known to be an important second messenger in the retina, the presence of Epac has not been investigated in this tissue. The goal of the present study was to determine if the Epac1 and Epac2 genes are present and to characterize their location within the retina. Western blot analysis revealed that Epac1 and Epac2 proteins are expressed within the retina, and the presence of mRNA was demonstrated with the aid of reverse transcriptase polymerase chain reaction (RT-PCR). Additionally, we used immunofluorescence and confocal microscopy to demonstrate that Epac1 and Epac2 have overlapping as well as unique distributions within the retina. Both are present within horizontal cells, rod and cone bipolar cells, cholinergic amacrine cells, retrograde labeled retinal ganglion cells, and Müller cells. Uniquely, Epac2 was expressed by cone photoreceptor inner and outer segments, cell bodies, and synaptic terminals. In contrast, Epac1 was expressed in vesicular glutamate transporter 1 (VGlut1) and C-terminal binding protein 2 (CtBP2) positive photoreceptor synaptic terminals. Together, these results provide evidence that Epac1 and Epac2 are differentially expressed within the retina and provide the framework for further functional studies of cAMP pathways within the retina.
Collapse
Affiliation(s)
- C M Whitaker
- Departments of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | |
Collapse
|
18
|
Jackson CR, Chaurasia SS, Zhou H, Haque R, Storm DR, Iuvone PM. Essential roles of dopamine D4 receptors and the type 1 adenylyl cyclase in photic control of cyclic AMP in photoreceptor cells. J Neurochem 2009; 109:148-57. [PMID: 19166506 DOI: 10.1111/j.1471-4159.2009.05920.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Light and dopamine regulate many physiological functions in the vertebrate retina. Light exposure decreases cyclic AMP formation in photoreceptor cells. Dopamine D(4) receptor (D(4)R) activation promotes light adaptation and suppresses the light-sensitive pool of cyclic AMP in photoreceptor cells. The key signaling pathways involved in regulating cyclic AMP in photoreceptor cells have not been identified. In the present study, we show that the light- and D(4)R-signaling pathways converge on the type 1 Ca(2+)/calmodulin-stimulated adenylyl cyclase (AC1) to regulate cyclic AMP synthesis in photoreceptor cells. In addition, we present evidence that D(4)R activation tonically regulates the expression of AC1 in photoreceptors. In retinas of mice with targeted deletion of the gene (Adcy1) encoding AC1, cyclic AMP levels and Ca(2+)/calmodulin-stimulated adenylyl cyclase activity are markedly reduced, and cyclic AMP accumulation is unaffected by either light or D(4)R activation. Similarly, in mice with disruption of the gene (Drd4) encoding D(4)R, cyclic AMP levels in the dark-adapted retina are significantly lower compared to wild-type retina and are unresponsive to light. These changes in Drd4-/- mice were accompanied by significantly lower Adcy1 mRNA levels in photoreceptor cells and lower Ca(2+)/calmodulin-stimulated adenylyl cyclase activity in retinal membranes compared with wild-type controls. Reduced levels of Adcy1 mRNA were also observed in retinas of wild-type mice treated chronically with a D(4)R antagonist, L-745870. Thus, activation of D(4)R is required for normal expression of AC1 and for the regulation of its catalytic activity by light. These observations illustrate a novel mechanism for cross-talk between dopamine and photic signaling pathways regulating cyclic AMP in photoreceptor cells.
Collapse
Affiliation(s)
- Chad R Jackson
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
19
|
Osawa S, Jo R, Weiss ER. Phosphorylation of GRK7 by PKA in cone photoreceptor cells is regulated by light. J Neurochem 2008; 107:1314-24. [PMID: 18803695 DOI: 10.1111/j.1471-4159.2008.05691.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The retina-specific G protein-coupled receptor kinases, GRK1 and GRK7, have been implicated in the shutoff of the photoresponse and adaptation to changing light conditions via rod and cone opsin phosphorylation. Recently, we have defined sites of phosphorylation by cAMP-dependent protein kinase (PKA) in the amino termini of both GRK1 and GRK7 in vitro. To determine the conditions under which GRK7 is phosphorylated in vivo, we have generated an antibody that recognizes GRK7 phosphorylated on Ser36, the PKA phosphorylation site. Using this phospho-specific antibody, we have shown that GRK7 is phosphorylated in vivo and is located in the cone inner and outer segments of mammalian, amphibian and fish retinas. Using Xenopus laevis as a model, GRK7 is phosphorylated under dark-adapted conditions, but becomes dephosphorylated when the animals are exposed to light. The conservation of phosphorylation at Ser36 in GRK7 in these different species (which span a 400 million-year evolutionary period), and its light-dependent regulation, indicates that phosphorylation plays an important role in the function of GRK7. Our work demonstrates for the first time that cAMP can regulate proteins involved in the photoresponse in cones and introduces a novel mode of regulation for the retinal GRKs by PKA.
Collapse
Affiliation(s)
- Shoji Osawa
- Department of Cell and Developmental Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7090, USA
| | | | | |
Collapse
|
20
|
Pozdeyev N, Tosini G, Li L, Ali F, Rozov S, Lee RH, Iuvone PM. Dopamine modulates diurnal and circadian rhythms of protein phosphorylation in photoreceptor cells of mouse retina. Eur J Neurosci 2008; 27:2691-700. [PMID: 18547251 DOI: 10.1111/j.1460-9568.2008.06224.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many aspects of photoreceptor metabolism are regulated as diurnal or circadian rhythms. The nature of the signals that drive rhythms in mouse photoreceptors is unknown. Dopamine amacrine cells in mouse retina express core circadian clock genes, leading us to test the hypothesis that dopamine regulates rhythms of protein phosphorylation in photoreceptor cells. To this end we investigated the phosphorylation of phosducin, an abundant photoreceptor-specific phosphoprotein. In mice exposed to a daily light-dark cycle, robust daily rhythms of phosducin phosphorylation and retinal dopamine metabolism were observed. Phospho-phosducin levels were low during the daytime and high at night, and correlated negatively with levels of the dopamine metabolite 3,4-dihydroxyphenylacetic acid. The effect of light on phospho-phosducin levels was mimicked by pharmacological activation of dopamine D4 receptors. The amplitude of the diurnal rhythm of phospho-phosducin was reduced by > 50% in D4 receptor-knockout mice, due to higher daytime levels of phospho-phosducin. In addition, the daytime level of phospho-phosducin was significantly elevated by L-745,870, a dopamine D4 receptor antagonist. These data indicate that dopamine and other light-dependent processes cooperatively regulate the diurnal rhythm of phosducin phosphorylation. Under conditions of constant darkness a circadian rhythm of phosducin phosphorylation was observed, which correlated negatively with the circadian rhythm of 3,4-dihydroxyphenylacetic acid levels. The circadian fluctuation of phospho-phosducin was completely abolished by constant infusion of L-745,870, indicating that the rhythm of phospho-phosducin level is driven by dopamine. Thus, dopamine release in response to light and circadian clocks drives daily rhythms of protein phosphorylation in photoreceptor cells.
Collapse
Affiliation(s)
- Nikita Pozdeyev
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Modulation of horizontal cell function by dopaminergic ligands in mammalian retina. Vision Res 2008; 48:1383-90. [PMID: 18440579 DOI: 10.1016/j.visres.2008.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 02/08/2008] [Accepted: 03/06/2008] [Indexed: 11/17/2022]
Abstract
Light responses of rabbit horizontal cell somata (HC) to flickering light stimuli recorded with sharp electrodes consist of a distinctive flicker component superimposed on a sustained hyperpolarisation. Activation of dopamine D1/D5 receptors depolarises HC dark membrane potential and suppresses the flicker component of responses to photopic stimuli without affecting the sustained hyperpolarising response component. Waveforms of responses to scotopic stimuli are preserved. Similar response modulation was observed in depolarising cells of the inner retina, suggesting that activation of D1/D5 receptors of HC causes modification of cone signal transmission to higher order neurons. The impact of dopamine D1/D5 receptor activation on the function of HC in the light stimulated retina is discussed.
Collapse
|
22
|
Ivanova TN, Alonso-Gomez AL, Iuvone PM. Dopamine D4 receptors regulate intracellular calcium concentration in cultured chicken cone photoreceptor cells: relationship to dopamine receptor-mediated inhibition of cAMP formation. Brain Res 2008; 1207:111-9. [PMID: 18371938 DOI: 10.1016/j.brainres.2008.02.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
Dopamine is a retinal neuromodulator secreted from amacrine and interplexiform cells. Activation of dopamine D4 receptors on photoreceptor cells reduces a light-sensitive pool of cAMP. The aim of the present study was to evaluate the role of dopamine receptors and cAMP in the regulation of intracellular Ca(2+) concentrations ([Ca(2+)](i)) in photoreceptor cells of chick retina. Retinal cells from 6 day-old chicken embryos were isolated and cultured for 5-7 days prior to experiments. Cone photoreceptors were the predominant cell type in these cultures. Dopamine and agonists of dopamine D4 receptors suppressed K(+)-stimulated uptake of (45)Ca(2+) and [Ca(2+)](i), measured with the Ca(2+)-sensitive fluorescent dye fura-2AM. The effects of the agonists were blocked by dopamine D2/D4 receptor antagonists or by pertussis toxin. 8Br-cAMP, a cell-permeable analog of cAMP, had no effect on inhibition of K(+)-stimulated (45)Ca(2+) influx or [Ca(2+)](i) by dopamine D2/D4 receptor agonists. Quinpirole inhibited the increase in cAMP level elicited by K(+), which requires Ca(2+) influx through voltage-gated Ca(2+) channels, but not that induced by the calcium ionophore A23187. Moreover, dopamine had no effect on either forskolin-stimulated or Ca(2+)/calmodulin-stimulated adenylyl cyclase activity in cell membranes prepared from the cultured cells. These data indicate that the decrease of cAMP elicited by dopamine D4 receptor stimulation may be secondary to decreased [Ca(2+)](i).
Collapse
Affiliation(s)
- Tamara N Ivanova
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
23
|
Willardson BM, Howlett AC. Function of phosducin-like proteins in G protein signaling and chaperone-assisted protein folding. Cell Signal 2007; 19:2417-27. [PMID: 17658730 PMCID: PMC2095786 DOI: 10.1016/j.cellsig.2007.06.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 06/15/2007] [Indexed: 01/08/2023]
Abstract
Members of the phosducin gene family were initially proposed to act as down-regulators of G protein signaling by binding G protein betagamma dimers (Gbetagamma) and inhibiting their ability to interact with G protein alpha subunits (Galpha) and effectors. However, recent findings have over-turned this hypothesis by showing that most members of the phosducin family act as co-chaperones with the cytosolic chaperonin complex (CCT) to assist in the folding of a variety of proteins from their nascent polypeptides. In fact rather than inhibiting G protein pathways, phosducin-like protein 1 (PhLP1) has been shown to be essential for G protein signaling by catalyzing the folding and assembly of the Gbetagamma dimer. PhLP2 and PhLP3 have no role in G protein signaling, but they appear to assist in the folding of proteins essential in regulating cell cycle progression as well as actin and tubulin. Phosducin itself is the only family member that does not participate with CCT in protein folding, but it is believed to have a specific role in visual signal transduction to chaperone Gbetagamma subunits as they translocate to and from the outer and inner segments of photoreceptor cells during light-adaptation.
Collapse
Affiliation(s)
- Barry M Willardson
- Department of Chemistry and Biochemistry, C-100 BNSN, Brigham Young University Provo, Utah 84602, USA.
| | | |
Collapse
|
24
|
Kumar R, Dutt K. Enhanced Neurotrophin Synthesis and Molecular Differentiation in Non-Transformed Human Retinal Progenitor Cells Cultured in a Rotating Bioreactor. ACTA ACUST UNITED AC 2006; 12:141-58. [PMID: 16499451 DOI: 10.1089/ten.2006.12.141] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
One approach to the treatment of retinal diseases, such as retinitis pigmentosa, is to replace diseased or degenerating cells with healthy cells. Even if all of the problems associated with tissue transplant were to be resolved, the availability of tissue would remain an ongoing problem. We have previously shown that transformed human retinal cells can be grown in a NASA-developed horizontally rotating culture vessel (bioreactor) to form three-dimensional-like structures with the expression of several retinal specific proteins. In this study, we have investigated growth of non-transformed human retinal progenitors (retinal stem cells) in a rotating bioreactor. This rotating culture vessel promotes cell-cell interaction between similar and dissimilar cells. We cultured retinal progenitors (Ret 1-4) alone or as a co-culture with human retinal pigment epithelial cells (RPE, D407) in this system to determine if 3D structures can be generated from non-transformed progenitors. Our second goal was to determine if the formation of 3D structures correlates with the upregulation of neurotrophins, basic fibroblast growth factor (bFGF), transforming growth factor alpha (TGFalpha), ciliary neurotrophic factor (CNTF), and brain-delivered neurotrophic factor (BDNF). These factors have been implicated in progenitor cell proliferation, commitment, differentiation, and survival. We also investigated the expression of the following retinal specific proteins in this system: neuron specific enolase (NSE); tyrosine hydroxylase (TH); D(2)D(3), D(4) receptors; protein kinase-C alpha (PKCalpha), and calbindin. The 3D structures generated were characterized by phase and scanning transmission electron microscopy. Retinal progenitors, cultured alone or as a co-culture in the rotating bioreactor, formed 3D structures with some degree of differentiation, accompanied by the upregulation of bFGF, CNTF, and TGFalpha. Brain-derived neurotrophic factor, which is expressed in vivo in RPE (D407), was not expressed in monolayer cultures of RPE but expressed in the rotating bioreactor-cultured RPE and retinal progenitors (Ret 1-4). Upregulation of neurotrophins was noted in all rotating bioreactor-cultured cells. Also, upregulation of D(4) receptor, calbindin, and PKCalpha was noted in the rotating bioreactor-cultured cells. We conclude that non-transformed retinal progenitors can be grown in the rotating bioreactor to form 3D structures with some degree of differentiation. We relied on molecular and biochemical analysis to characterize differentiation in cells grown in the rotating bioreactor.
Collapse
Affiliation(s)
- Ravindra Kumar
- Department of Pathology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | | |
Collapse
|
25
|
Horner TJ, Osawa S, Schaller MD, Weiss ER. Phosphorylation of GRK1 and GRK7 by cAMP-dependent protein kinase attenuates their enzymatic activities. J Biol Chem 2005; 280:28241-50. [PMID: 15946941 DOI: 10.1074/jbc.m505117200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Phosphorylation of G protein-coupled receptors is a critical step in the rapid termination of G protein signaling. In rod cells of the vertebrate retina, phosphorylation of rhodopsin is mediated by GRK1. In cone cells, either GRK1, GRK7, or both, depending on the species, are speculated to initiate signal termination by phosphorylating the cone opsins. To compare the biochemical properties of GRK1 and GRK7, we measured the K(m) and V(max) of these kinases for ATP and rhodopsin, a model substrate. The results demonstrated that these kinases share similar kinetic properties. We also determined that cAMP-dependent protein kinase (PKA) phosphorylates GRK1 at Ser(21) and GRK7 at Ser(23) and Ser(36) in vitro. These sites are also phosphorylated when FLAG-tagged GRK1 and GRK7 are expressed in HEK-293 cells treated with forskolin to stimulate the endogenous production of cAMP and activation of PKA. Rod outer segments isolated from bovine retina phosphorylated the FLAG-tagged GRKs in the presence of dibutyryl-cAMP, suggesting that GRK1 and GRK7 are physiologically relevant substrates. Although both GRKs also contain putative phosphorylation sites for PKC and Ca(2+)/calmodulin-dependent protein kinase II, neither kinase phosphorylated GRK1 or GRK7. Phosphorylation of GRK1 and GRK7 by PKA reduces the ability of GRK1 and GRK7 to phosphorylate rhodopsin in vitro. Since exposure to light causes a decrease in cAMP levels in rod cells, we propose that phosphorylation of GRK1 and GRK7 by PKA occurs in the dark, when cAMP levels in photoreceptor cells are elevated, and represents a novel mechanism for regulating the activities of these kinases.
Collapse
Affiliation(s)
- Thierry J Horner
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Carolina 27599-7090, USA
| | | | | | | |
Collapse
|
26
|
Lee BY, Thulin CD, Willardson BM. Site-specific phosphorylation of phosducin in intact retina. Dynamics of phosphorylation and effects on G protein beta gamma dimer binding. J Biol Chem 2004; 279:54008-17. [PMID: 15485848 DOI: 10.1074/jbc.m405669200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosducin (Pdc) is a G protein beta gamma dimer (G beta gamma) binding protein, highly expressed in retinal photoreceptor and pineal cells, yet whose physiological role remains elusive. Light controls the phosphorylation of Pdc in a cAMP and Ca(2+)-dependent manner, and phosphorylation in turn regulates the binding of Pdc to G(t)beta gamma or 14-3-3 proteins in vitro. To directly examine the phosphorylation of Pdc in intact retina, we prepared antibodies specific to the three principal phosphorylation sites (Ser-54, Ser-73, and Ser-106) and measured the kinetics of phosphorylation/dephosphorylation during light/dark adaptation and the subsequent effects on G(t)beta gamma binding. Ser-54 phosphorylation increased slowly (t((1/2)) approximately 90 min) during dark adaptation to approximately 70% phosphorylated and decreased rapidly (t((1/2)) approximately 2 min) during light adaptation to less than 20% phosphorylated. Ser-73 phosphorylation increased much faster during dark adaptation (t((1/2)) approximately 3 min) to approximately 50% phosphorylated and decreased more slowly during light adaptation (t((1/2)) approximately 9 min) to less than 20% phosphorylated. The Ca(2+) chelator BAPTA-AM blocked Ser-54 phosphorylation during dark adaptation but had no effect on Ser-73 phosphorylation. In contrast, Ser-106 was not phosphorylated in either the light or dark. Importantly, G beta gamma binding to Pdc was enhanced by Ca(2+) chelation and the binding kinetics closely paralleled those of Ser-54 dephosphorylation, indicating that Ser-54 phosphorylation controls G(t)beta gamma binding in vivo. These results suggest a pivotal role of Ser-54 and Ser-73 phosphorylation in determining the interactions of Pdc with its binding partners, G(t)beta gamma and 14-3-3 protein, which may regulate the light-dependent translocation of the photoreceptor G protein.
Collapse
Affiliation(s)
- Bruce Y Lee
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | | | | |
Collapse
|
27
|
Patel S, Chapman KL, Marston D, Hutson PH, Ragan CI. Pharmacological and functional characterisation of dopamine D4 receptors in the rat retina. Neuropharmacology 2003; 44:1038-46. [PMID: 12763097 DOI: 10.1016/s0028-3908(03)00112-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the retina, activation of dopamine receptors, particularly the D2-like family (D2, D3, D4 receptor subtypes), with quinpirole suppresses the light sensitive cAMP pool and inhibits melatonin synthesis in photoreceptor cells. We have characterised rat retinal D4 receptors using the D4 selective radioligand [(125)I] L-750667 which bound specifically and saturably to rat retinal membranes with high affinity (K(d) 0.06+/-0.02 nM) and exhibited a D4 receptor pharmacology. Comparison of the binding kinetics of [(125)I] L-750667 and [(3)H] spiperone revealed B(max) values of 134+/-27 fmol/mg and 219+/-47 fmol/mg respectively, indicating that the dopamine D4 receptor is a major component of D2-like dopamine receptors in the rat retina. Modulation of retinal cAMP levels by quinpirole was used to evaluate the functional relevance of rat retinal dopamine D4 receptors. Quinpirole (0.03-3 micro ) produced a dose-related decrease of the light sensitive cAMP pool which was reversed by haloperidol, clozapine and the D4 selective antagonist, L-745870 with a rank order of potency suggesting that the quinpirole effect is due to activation of the dopamine D4 receptors. The D2 selective ligand L-741626 had no effect on the quinpirole response confirming that the D4 receptor is the major receptor subtype mediating dopamine induced suppression of adenylate cyclase in the retina.
Collapse
Affiliation(s)
- Smita Patel
- Merck Sharp and Dohme, Neuroscience Research Centre, Terlings Park, Eastwick Rd, Harlow, Essex, UK.
| | | | | | | | | |
Collapse
|
28
|
Dysfunctional light-evoked regulation of cAMP in photoreceptors and abnormal retinal adaptation in mice lacking dopamine D4 receptors. J Neurosci 2002. [PMID: 11896146 DOI: 10.1523/jneurosci.22-06-02063.2002] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dopamine is a retinal neuromodulator that has been implicated in many aspects of retinal physiology. Photoreceptor cells express dopamine D4 receptors that regulate cAMP metabolism. To assess the effects of dopamine on photoreceptor physiology, we examined the morphology, electrophysiology, and regulation of cAMP metabolism in mice with targeted disruption of the dopamine D4 receptor gene. Photoreceptor morphology and outer segment disc shedding after light onset were normal in D4 knock-out (D4KO) mice. Quinpirole, a dopamine D2/D3/D4 receptor agonist, decreased cAMP synthesis in retinas of wild-type (WT) mice but not in retinas of D4KO mice. In WT retinas, the photoreceptors of which were functionally isolated by incubation in the presence of exogenous glutamate, light also suppressed cAMP synthesis. Despite the similar inhibition of cAMP synthesis, the effect of light is directly on the photoreceptors and independent of dopamine modulation, because it was unaffected by application of the D4 receptor antagonist l-745,870. Nevertheless, compared with WT retinas, basal cAMP formation was reduced in the photoreceptors of D4KO retinas, and light had no additional inhibitory effect. The results suggest that dopamine, via D4 receptors, normally modulates the cascade that couples light responses to adenylyl cyclase activity in photoreceptor cells, and the absence of this modulation results in dysfunction of the cascade. Dark-adapted electroretinogram (ERG) responses were normal in D4KO mice. However, ERG b-wave responses were greatly suppressed during both light adaptation and early stages of dark adaptation. Thus, the absence of D4 receptors affects adaptation, altering transmission of light responses from photoreceptors to inner retinal neurons. These findings indicate that dopamine D4 receptors normally play a major role in regulating photoreceptor cAMP metabolism and adaptive retinal responses to changing environmental illumination.
Collapse
|
29
|
Abstract
AIM Dopamine serves a variety of functions in the retina. Abnormalities of the retinal dopaminergic system have been described in the Royal College of Surgeons (RCS) rat as well as other models of retinal degeneration. Dopamine has been implicated in several retinal dysfunctions of retinitis pigmentosa. Dopaminergic amacrine cells respond to light by increasing their tyrosine hydroxylase (TH) activity and the rate of dopamine turnover. This study has, therefore, examined the ontogenesis of TH containing cells in the RCS rat retina to assess whether progressive photoreceptor degeneration affects the development or survival of TH containing cells in any way. METHODS TH immunoreactivity in developing dystrophic RCS rat retinae (postnatal day (PN) 0, 3, 6, 14, 18, 26, 32, 56, 85, 91, 12 month and 15 month) and normal retina (PN day 0, 6, 14, 19, 26, 30, 33, 54 and adults) was compared. RESULTS TH immunoreactivity in dystrophic retina closely resembled that in normal retina. In both groups, very faintly immunoreactive cells were detected in the proximal retina at PN 0. Immunoreactivity increased until PN 14, when faintly immunoreactive interplexiform (IP) fibers and fibers in the outer plexiform layer could be observed. In both groups, the IP connections reached their mature level of development at about PN 30. Thus the developmental expression of TH immunoreactive cells resembled that of non-dystrophic retina in both chronology as well as types of cells. These cells survived even in the advanced stages of degeneration. CONCLUSIONS The results suggest that the abnormalities in the dopaminergic system of the RCS retinae are not associated with abnormal ontogeny or survival of TH synthesizing cells.
Collapse
Affiliation(s)
- R K Sharma
- Department of Ophthalmology, University Hospital of Lund, Lund, Sweden.
| |
Collapse
|
30
|
Nir I, Haque R, Iuvone PM. Regulation of cAMP by light and dopamine receptors is dysfunctional in photoreceptors of dystrophic retinal degeneration slow(rds) mice. Exp Eye Res 2001; 73:265-72. [PMID: 11446777 DOI: 10.1006/exer.2001.1037] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
cAMP levels in dark and light were studied in dystrophic retinal degeneration slow(rds) mice, which carry a mutation in the rds/peripherin gene. cAMP levels were measured in vivo, in freshly isolated retinas, and in vitro in the presence of glutamate, which confines light modulation to photoreceptors. Experiments were conducted on young animals, when significant numbers of viable photoreceptor cells are present. In vivo levels of cAMP are higher in illuminated rds/rds retinas than levels measured in normal BALB/c retinas. Light-evoked down-regulation of cAMP levels was observed in vitro in normal photoreceptors. These measurements were made in the presence of the cyclic nucleotide phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine; therefore, they reflect an inhibition of cAMP formation. In contrast, light had no effect on cAMP formation in photoreceptors of mutant mice, measured under identical conditions. Thus, elevated levels of cAMP in rds/rds retinas in vivo result from abnormalities in cAMP synthesis in the mutant photoreceptor cells. In addition to regulation by light, cAMP formation in photoreceptor cells is regulated by dopamine, acting through dopamine D4 receptors. A dopamine D2/D4 receptor agonist, quinpirole, reduced cAMP levels in dark-adapted normal retinas in vitro, but not in rds/rds retinas. Our data indicate that alterations in a signal transduction pathway that leads to inhibition of adenylyl cyclase might underlie the abnormalities in cAMP levels in mutant rds/rds retinas. Heterozygous rds/+ photoreceptors demonstrated a normal pattern of light-evoked and quinpirole-mediated down-regulation of cAMP. Thus, partial expression of the normal phenotype is sufficient to render normal characteristics of cAMP regulation to the photoreceptors of the heterozygous mouse. The data obtained in the present study might be relevant to the understanding of photoreceptor pathology of patients with peripherin/rds mutations.
Collapse
Affiliation(s)
- I Nir
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
| | | | | |
Collapse
|
31
|
Affiliation(s)
- B Burnside
- Department of Molecular and Cell Biology, University of California, Berkeley, 335LSA #3200, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
32
|
Abstract
Dopamine is an important retinal neurotransmitter and neuromodulator that regulates key diurnal cellular and physiological functions. In the present study we carried out a comprehensive analysis of dopamine metabolism during the light phase of the diurnal cycle and evaluated the presence of diurnal and circadian rhythms of dopaminergic activity in the mouse retina. Steady-state levels of dopamine did not change significantly between the dark phase (night) and the light phase (day) of the diurnal cycle, nor did they change between early and late points in the day. Dopamine synthesis and utilization, however, revealed significant alterations between the night and day and between early and late time points in the day. A spike in synthesis and utilization was measured immediately after light onset at the end of the night. Subsequently, dopamine synthesis and utilization partially declined and remained stable throughout the remainder of the day at a level that was significantly higher than that at night. The burst of dopamine synthesis and utilization at the beginning of the day is entirely light evoked and not driven by a circadian clock. Similarly, there was no circadian rhythm in dopamine synthesis and utilization in mice kept in constant darkness. This daily pattern of dopaminergic activity may impact upon a variety of temporally regulated retinal events. Moreover, these data will provide a basis for evaluating the role of dopamine in retinal pathology in mouse models of retinal degeneration where mutations affect light perception.
Collapse
Affiliation(s)
- I Nir
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | |
Collapse
|
33
|
Nguyen-Legros J, Versaux-Botteri C, Vernier P. Dopamine receptor localization in the mammalian retina. Mol Neurobiol 1999; 19:181-204. [PMID: 10495103 DOI: 10.1007/bf02821713] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
After a short history of dopamine receptor discovery in the retina and a survey on dopamine receptor types and subtypes, the distribution of dopamine receptors in the retinal cells is described and correlated with their possible role in cell and retinal physiology. All the retinal cells probably bear dopamine receptors. For example, the recently discovered D1B receptor has a possible role in modulating phagocytosis by the pigment epithelium and a D4 receptor is likely to be involved in the inhibition of melatonin synthesis in photoreceptors. Dopamine uncouples horizontal and amacrine cell-gap junctions through D1-like receptors. Dopamine modulates the release of other transmitters by subpopulations of amacrine cells, including that of dopamine through a D2 autoreceptor. Ganglion cells express dopamine receptors, the role of which is still uncertain. Müller cells also are affected by dopamine. A puzzling action of dopamine is observed in the ciliary retina, in which D1- and D2-like receptors are likely to be involved in the cyclic regulation of intraocular pressure. Most of the dopaminergic actions appear to be extrasynaptic and the signaling pathways remain uncertain. Further studies are needed to better understand the multiple actions of dopamine in the retina, especially those that implicate rhythmic regulations.
Collapse
Affiliation(s)
- J Nguyen-Legros
- Laboratoire de Neurocytologie Oculaire, Inserm U 86, Paris, France
| | | | | |
Collapse
|
34
|
Hasegawa M, Cahill GM. A role for cyclic AMP in entrainment of the circadian oscillator in Xenopus retinal photoreceptors by dopamine but not by light. J Neurochem 1999; 72:1812-20. [PMID: 10217257 DOI: 10.1046/j.1471-4159.1999.0721812.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The circadian oscillator in Xenopus retinal photoreceptor layers can be reset in similar ways by light and agonists of D2-like dopamine receptors. Treatments that increase cyclic AMP levels act on this oscillator in an opposite fashion, mimicking darkness in the induction of phase shifts. Light and dopamine have each been reported to inhibit adenylate cyclase in photoreceptors. Together, these data suggest that the transduction pathways for entrainment by dopamine and/or light include suppression of cyclic AMP or a cyclic AMP-sensitive step. In these studies, we examined this hypothesis by measuring the effects of treatment with a cyclic AMP analogue on the phase shifts induced in photoreceptor melatonin rhythms by light or a D2 receptor agonist (quinpirole). When photoreceptor layers were treated simultaneously with 8-(4-chlorophenylthio)cyclic AMP (8-CPT-cAMP) and quinpirole at any of three different phases of the circadian cycle, the resulting phase shifts of the melatonin rhythm were always the same as those caused by 8-CPT-cAMP alone. This indicates that there is a cyclic AMP-sensitive step in the dopamine entrainment pathway. In contrast, light pulses did reset the oscillator in the presence of elevated cyclic AMP. This suggests a separate cyclic AMP-insensitive transduction pathway for entrainment by light. Quinpirole reduced basal levels of cyclic AMP in photoreceptors, but light did not. These data suggest that cyclic AMP plays a role in the entrainment pathway activated by dopamine but not in the entrainment pathway activated by light.
Collapse
Affiliation(s)
- M Hasegawa
- Department of Biology and Biochemistry, University of Houston, Texas 77204-5513, USA
| | | |
Collapse
|
35
|
Hasegawa M, Cahill GM. Modulation of rhythmic melatonin synthesis in Xenopus retinal photoreceptors by cyclic AMP. Brain Res 1999; 824:161-7. [PMID: 10196446 DOI: 10.1016/s0006-8993(99)01162-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cyclic AMP regulates melatonin synthesis in vertebrate photoreceptor cells. In the present study, we investigated whether the circadian rhythm of melatonin synthesis in Xenopus retinal photoreceptor layers is driven by rhythmic changes in cyclic AMP. When the photoreceptor layers were continuously treated with 8-(4-chlorophenylthio)-cyclic AMP (8-CPT-cAMP) at a saturating concentration (1 mM), melatonin release was increased at all times of the day, but robust melatonin rhythms were maintained for 2 days in constant darkness (DD). We also measured cyclic AMP efflux and melatonin release simultaneously from photoreceptor layers that were continuously treated with forskolin and/or 3-isobutyl-1-methylxanthine (IBMX) in light-dark (LD) and DD. Circadian rhythmicity was observed in melatonin release, but not in cyclic AMP efflux, suggesting that changes of melatonin levels are not always caused by the changes of the cyclic AMP levels. In addition, the simultaneous treatment of forskolin and IBMX appeared to saturate sensitivity of melatonin synthesis to cyclic AMP, but this treatment did not abolish melatonin rhythms. These results suggest that circadian rhythms of melatonin can be driven without rhythmic changes of cyclic AMP, and that cyclic AMP regulates melatonin in parallel with the output pathways from the circadian oscillator.
Collapse
Affiliation(s)
- M Hasegawa
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5513, USA.
| | | |
Collapse
|
36
|
|
37
|
Bjelke B, Goldstein M, Tinner B, Andersson C, Sesack SR, Steinbusch HW, Lew JY, He X, Watson S, Tengroth B, Fuxe K. Dopaminergic transmission in the rat retina: evidence for volume transmission. J Chem Neuroanat 1996; 12:37-50. [PMID: 9001947 DOI: 10.1016/s0891-0618(96)00176-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The study was designed to determine whether dopaminergic neurotransmission in the retina can operate via volume transmission. In double immunolabelling experiments, a mismatch as well as a match was demonstrated in the rat retina between tyrosine hydroxylase (TH) and dopamine (DA) immunoreactive (ir) terminals and cell bodies and dopamine D2 receptor-like ir cell bodies and processes. The match regions were located in the inner nuclear and plexiform layers (D2 ir cell bodies plus processes). The mismatch regions were located in the ganglion cell layer, the outer plexiform layer, and the outer segment of the photoreceptor layer, where very few TH ir terminals can be found in relation to the D2 like ir processes. In similar experiments analyzing D1 receptor like ir processes versus TH ir nerve terminals, mainly a mismatch in their distribution could be demonstrated, with the D1 like ir processes present in the outer plexiform layer and the outer segment where a mismatch in D2 like receptors also exists. The demonstration of a mismatch between the localization of the TH terminal plexus and the dopamine D2 and D1 receptor subtypes in the outer plexiform layer, the outer segment and the ganglion cell layer (only D2 immunoreactivity (IR)) suggests that dopamine, mainly from the inner plexiform layer, may reach the D2 and D1 mismatch receptors via diffusion in the extracellular space. After injecting dopamine into the corpus vitreum, dopamine diffuses through the retina, and strong catecholamine (CA) fluorescence appears in the entire inner plexiform layer and the entire outer plexiform layer, representing the match and mismatch DA receptor areas, respectively. The DA is probably bound to D1 and D2 receptors in both plexiform layers, since the DA receptor antagonist chlorpromazine fully blocks the appearance of the DA fluorescence, while only a partial blockade is found after haloperidol treatment which mainly blocks D2 receptors. These results indicate that the amacrine and/or interplexiform DA cells, with sparse branches in the outer plexiform layer, can operate via volume transmission in the rat retina to influence the outer plexiform layer and the outer segment, as well as other layers of the rat retina such as the ganglion cell layer.
Collapse
Affiliation(s)
- B Bjelke
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shulman LM, Fox DA. Dopamine inhibits mammalian photoreceptor Na+,K+-ATPase activity via a selective effect on the alpha3 isozyme. Proc Natl Acad Sci U S A 1996; 93:8034-9. [PMID: 8755598 PMCID: PMC38870 DOI: 10.1073/pnas.93.15.8034] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The rat retina contains dopaminergic interplexiform cells that send processes to the outer plexiform layer where dopamine is released in a light-dependent manner. We report herein that physiologically relevant concentrations of dopamine inhibited ouabain-sensitive photoreceptor oxygen consumption in dark- and light-adapted rat retinas and inhibited Na+,K+-ATPase specific activity (EC 3.6.1.37) in a rat rod outer-inner segment preparation. Experiments with the selective D1 agonist fenoldopam or D2 agonist quinpirole and experiments with dopamine plus either the D1 antagonist SCH23390 or D2/D4 antagonist clozapine showed that the inhibition of oxygen consumption and enzyme activity were mediated by D2/D4-like receptors. The amphetamine-induced release of dopamine, monitored by the inhibition of oxygen consumption, was blocked by L-2-amino-4-phosphonobutyric acid and kynurenic acid. Pharmacological and biochemical experiments determined that the IC50 values of ouabain for the alpha1-low and alpha3-high ouabain affinity isozymes of photoreceptor Na+,K+-ATPase were approximately 10(-5) and approximately 10(-7) M, respectively, and that the D2/D4-like mediated inhibition of Na+,K+-ATPase was exclusively selective for the alpha3 isozyme. The dopamine-mediated inhibition of alpha3 first occurred at 5 nM, was maximal at 100 microM (-47%), had an IC50 value of 382 +/- 23 nM, and exhibited negative cooperativity (Hill coefficient, 0.27). Prior homogenization of the rod outer-inner segment completely prevented the long-lasting inhibition, suggesting that the effect was coupled to a second messenger. Although the physiological significance of our findings to photoreceptor function is unknown, we hypothesize that these results may have relevance for the temporal tuning properties of rods.
Collapse
Affiliation(s)
- L M Shulman
- College of Optometry, University of Houston, TX 77204-6052, USA
| | | |
Collapse
|
39
|
Zawilska JB, Derbiszewska T, Sȩk B, Nowak JZ. Dopamine-dependent cyclic AMP generating system in chick retina and its relation to melatonin biosynthesis. Neurochem Int 1995. [DOI: 10.1016/0197-0186(95)80012-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Nir I, Iuvone PM. Alterations in light-evoked dopamine metabolism in dystrophic retinas of mutant rds mice. Brain Res 1994; 649:85-94. [PMID: 7953658 DOI: 10.1016/0006-8993(94)91051-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In dystrophic retinas of rds mice, which are devoid of photoreceptor outer segments, high steady state levels of dopamine were found in dark and light periods. These levels were similar to those observed in normal, BALB/c mouse retinas. Major differences were determined, however, between dopamine turnover in normal and dystrophic retinas. While substantial light-evoked elevation of dopamine synthesis and utilization was observed in normal retinas, dopamine synthesis and metabolism in rds retinas was very low and response to light was depressed. Retinal dopamine metabolism was already depressed in 2 week old rds mice, prior to the onset of photoreceptor cell death, relative to that in age-matched BALB/c mice. At 1 month of age, robust light/dark differences in retinal dopamine metabolism were observed in BALB/c mice, while no significant effect of light was seen in rds mice. The limited ability of the dopaminergic system in rds retinas to respond to light may be due to the absence of normal outer segments. Interestingly, in old rds retinas, although most photoreceptor cells had degenerated, a small but significant light-evoked increase in dopamine metabolism was measured. The presence of relatively high steady state levels of dopamine in rds retinas, despite the reduced dopamine synthetic activity, is maintained by a compensatory reduction in dopamine utilization. Thus, although a considerable amount of dopamine is present in the rds retina, it might not be available to exert its biological functions.
Collapse
Affiliation(s)
- I Nir
- Department of Pathology, University of Texas Health Science Center, San Antonio 78284
| | | |
Collapse
|
41
|
Abstract
In the retinas of many species of lower vertebrates, retinal photoreceptors and pigment epithelium pigment granules undergo daily movements in response to both diurnal, and in the case of teleost cone photoreceptors, endogenous circadian signals. Typically, these cone movements take place at dawn and at dusk when teleosts are maintained on a cyclic light (LD) regime, and at expected dawn and expected dusk when animals are maintained in continuous darkness (DD). Because these movements are so strictly controlled, they provide an overt indicator of the stage of the underlying clock mechanism. In this study we report that both light-induced and circadian-driven cone myoid movements in the Midas cichlid (Cichlasoma citrinellum), occur normally in vitro. Many of the features of retinomotor movements found in vivo also occur in our culture conditions, including responses to light and circadian stimuli and dopamine. Circadian induced predawn contraction and maintenance of expected day position in response to circadian modulation, are also normal. Our studies suggest that circadian regulation of cone myoid movement in vitro is mediated locally by dopamine, acting via a D2 receptor. Cone myoid contraction can be induced at midnight and expected mid-day by dark culture with dopamine or the D2 receptor agonist LY171555. Further, circadian induced predawn contraction can be increased with either dopamine or LY171555, or may be reversed with the dopamine D2 antagonist, sulpiride. Sulpiride will also induce cone myoid elongation in retinal cultures at expected mid-day, but will not induce cone myoid elongation at dusk. In contrast, circadian cone myoid movements in vitro were unaffected by the D1 receptor agonist SCH23390, or the D1 receptor antagonist SKF38393. Our short-term culture experiments indicate that circadian regulation of immediate cone myoid movement does not require humoral control but is regulated locally within the retina. The inclusion of dopamine, or dopamine receptor agonists and antagonists in our cultures, has indicated that retinal circadian regulation may be mediated by endogenously produced dopamine, which acts via a D2 mechanism.
Collapse
Affiliation(s)
- C A McCormack
- Department of Optometry and Vision Sciences, University of Wales College of Cardiff, United Kingdom
| | | |
Collapse
|
42
|
Hankins M, Ikeda H. Early abnormalities of retinal dopamine pathways in rats with hereditary retinal dystrophy. Doc Ophthalmol 1994; 86:325-34. [PMID: 7813383 DOI: 10.1007/bf01203555] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The dopaminergic pathway that affects rod-driven horizontal cells has been studied in the Royal College of Surgeons (RCS) rat during the period preceding photoreceptor degeneration (postnatal day 17-24). The experiments were performed by intracellular recording from single horizontal cells in vitro. Horizontal cells from the recessive control animals (postnatal day 17-24) were depolarized by dopamine (10 microM) and hyperpolarized by the D1 antagonist SCH 23,390 (10 microM). In contrast, cells from age-matched dystrophic retinas, though depolarized by dopamine, were unaffected by SCH 23390 (10-100 microM), suggesting a significant reduction in the level of endogenous dopamine release. Histologic examination for catecholaminergic neurons revealed no differences in either the cell number or anatomy between the retinas of the control and dystrophic animals. Furthermore, perfusion of the control retinas with melatonin (500 nM-1 microM) yielded response characteristic of the dystrophic type. In the period preceding degeneration, the RCS retina thus displays a discrete abnormality in dopaminergic pathways, such that there is a gross reduction in endogenous dopamine release below that required to activate D1 receptors. Since melatonin levels have been shown to be high in these retinas, we propose that abnormalities in the dopamine-melatonin systems give rise to an electrophysiologic deficit in the postphotoreceptoral retina of the RCS rat.
Collapse
Affiliation(s)
- M Hankins
- Gunnar Svaetichin Laboratory, Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire, UK
| | | |
Collapse
|
43
|
Sitaramayya A, Lombardi L, Margulis A. Influence of dopamine on cyclic nucleotide enzymes in bovine retinal membrane fractions. Vis Neurosci 1993; 10:991-6. [PMID: 7903047 DOI: 10.1017/s0952523800010099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dopamine is a major neurotransmitter and neuromodulator in vertebrate retina. Although its pharmacological and physiological actions are well understood, the biochemical mechanisms of its signal transduction are less clear. Acting via D1 receptors, dopamine was shown to increase cyclic AMP levels in intact retina and to activate adenylate cyclase in retinal homogenates. The action via activation of D2 receptors is controversial: it was reported to decrease cyclic AMP levels in intact retina but inhibition of cyclase could not be demonstrated in retinal homogenates; also it was reported to activate rod outer segment cyclic GMP phosphodiesterase in vitro but did not decrease cyclic GMP levels in aspartate-treated retinas. We made an attempt to fractionate bovine retinal membranes and to investigate the effects of dopamine, via D1 and D2 receptors, on the synthesis and hydrolysis of cyclic AMP and cyclic GMP. Activation of cyclic AMP synthesis was noted in all fractions, but no effects were evident on cyclic nucleotide hydrolysis or cyclic GMP synthesis in any fraction. Also, D2 agonist did not inhibit cyclic AMP synthesis. These observations suggest that D2 receptors may not be directly coupled to cyclic nucleotide metabolizing enzymes in bovine retina.
Collapse
Affiliation(s)
- A Sitaramayya
- Eye Research Institute, Oakland University, Rochester, MI 48309
| | | | | |
Collapse
|
44
|
Vuvan T, Geffard M, Denis P, Simon A, Nguyen-Legros J. Radioimmunoligand characterization and immunohistochemical localization of dopamine D2 receptors on rods in the rat retina. Brain Res 1993; 614:57-64. [PMID: 8348331 DOI: 10.1016/0006-8993(93)91018-n] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The retinal neurotransmitter dopamine (DA), elaborated from intrinsic dopaminergic neurons as amacrine and interplexiform cells, is known to modulate several complex functions mediated by D1 and D2 receptors in the vertebrate retina. In this paper, we characterized and localized DA receptors of the D2 family on rod outer segments (ROS) of the rat retina by a radioimmunoligand binding assay and by immunohistochemistry. Anti-anti-DA conjugated antibodies (or anti-idiotypic antibodies Ab2) were used as ligand; BSA-glutaraldehyde-conjugated spiperone, eticlopride (D2 antagonists) and DA were used as displacers. The linear Scatchard transformation indicated that data were best fit to the one-site model. By using the peroxidase-antiperoxidase technique, an intense labeling was located on rods. These results supported the paracrine action of DA on the photoreceptor cell.
Collapse
Affiliation(s)
- T Vuvan
- INSERM Unité de Physiopathologie de l'Oeil, Paris, France
| | | | | | | | | |
Collapse
|
45
|
Wagner HJ, Luo BG, Ariano MA, Sibley DR, Stell WK. Localization of D2 dopamine receptors in vertebrate retinae with anti-peptide antibodies. J Comp Neurol 1993; 331:469-81. [PMID: 8509505 DOI: 10.1002/cne.903310404] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dopamine plays an important role in modulating various aspects of retinal signal processing. The morphology of dopaminergic neurons and its physiological effects are well characterized. Two classes of receptor molecules (D1 and D2) were shown pharmacologically to mediate specific actions, with differences between individual groups of vertebrates. In an attempt to better understand dopaminergic mechanisms at the cellular level, we used antisera against D2 receptors and investigated the localization of the dopamine D2 receptor in the retinae of rat, rabbit, cow, chick, turtle, frog, and two fish species with immunofluorescence techniques. Antisera were raised in rabbits to two oligopeptides predicted from rat D2 receptor cDNA; one specific for the splice-variant insertion in the third cytoplasmic loop and the other directed towards the extracellular amino terminal region shared by both short and long isoforms. Preadsorption with the synthetic peptide resulted in a significant reduction of label, indicating the presence of specific binding in all species except turtle and goldfish. The pattern of labelling produced by the two antisera was essentially identical; however, the staining obtained with antiserum to the extracellular motif was always more intense. Specific staining was present in photoreceptor inner and outer segments, and in the outer and inner plexiform layers of all species. In mammals and chick, strongly fluorescent perikarya were observed in the ganglion cell layer and at the proximal margin of the inner nuclear layer. Label may be present in the pigment epithelium but could not be established beyond doubt. This pattern of labelling is in accordance with previous observations on D2 receptor localization by means of radioactive ligand binding and in situ hybridization techniques. It suggests that retinal dopamine acts as a neuromodulator as well as a transmitter. In the distal retina, it may reach its targets via diffusion over considerable distances, even crossing the outer limiting membrane; in the inner and outer plexiform layers, conventional synaptic transmission seems to coexist with paracrine addressing of more distant targets, and D2 receptors are expressed by both amacrine and ganglion cells.
Collapse
Affiliation(s)
- H J Wagner
- Department of Anatomy, University of Calgary Faculty of Medicine, Canada
| | | | | | | | | |
Collapse
|
46
|
Cohen AI, Todd RD, Harmon S, O'Malley KL. Photoreceptors of mouse retinas possess D4 receptors coupled to adenylate cyclase. Proc Natl Acad Sci U S A 1992; 89:12093-7. [PMID: 1334557 PMCID: PMC50704 DOI: 10.1073/pnas.89.24.12093] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the mouse, the light-sensitive pool of cAMP can be eliminated in the dark by application of the dopamine D2-like receptor agonists LY 171555 (quinpirole), (+)-N0437 (2-[N-(n-propyl)-N-2-(thienylethylamino)-5-hydroxytetralin]) , or (+)-3-PPP [3-(3-hydroxyphenyl)-N-propylpiperidine hydrochloride]. The rank-order affinity of the ability of the D2-like antagonists to block the action of LY 171555 matched that of the rat D4 receptor. Reverse transcription of retina mRNA followed by DNA amplification using D4-specific nucleotides demonstrates the presence of D4 mRNA in retina. In situ hybridization studies using D4-specific digoxygenin-labeled oligonucleotides or 35S-labeled UTP RNA probes demonstrate the presence of D4 mRNA in the photoreceptor cell layer and in the inner nuclear and ganglion cell layers. The modulation by D4 ligands of the dark level of light-sensitive cAMP in photoreceptors demonstrates the physiological coupling of the D4 receptor subtype.
Collapse
Affiliation(s)
- A I Cohen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | |
Collapse
|
47
|
McCormack CA, Burnside B. A role for endogenous dopamine in circadian regulation of retinal cone movement. Exp Eye Res 1992; 55:511-20. [PMID: 1426081 DOI: 10.1016/0014-4835(92)90125-c] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cone movements in the retina of the Midas cichlid (Cichlasoma citrinellum) take place in response both to light and endogenous circadian signals. In the normal light/dark cycle (LD) cone myoids are long at night (50-55 microns), begin to contract before expected dawn, and with light onset contract to their fully contracted positions (5 microns) which are retained throughout the day. In continuous darkness (DD) cone myoids are fully elongate at night, but undergo pre-dawn contractions to partially contracted positions which they retain throughout expected day (20-25 microns). To investigate the mechanisms by which circadian signals modulate cone myoid movements in teleost retinas, we have tested the effects on circadian cone movements of optic nerve section, intraocular injection of dopamine agonists or antagonists, and intraocular injection of melatonin. We report here that both light-induced and circadian-driven cone myoid movements can occur in the absence of efferent input from higher centres: both are retained with full amplitude after optic nerve section in vivo. Intraocular injection studies suggest that circadian regulation of cone myoid movement is mediated locally within the eye by dopamine acting via a dopaminergic D2-receptor. Cone myoid contraction can be induced at midnight in LD or DD animals by intraocular injection of dopamine or the D2-receptor agonist LY171555. The partially contracted cones of DD animals at expected mid-day can be induced to fully contract by intraocular injection of dopamine or the D2-receptor agonist, or to elongate by intraocular injection of the dopamine D2-antagonist sulpiride. Furthermore, the pre-dawn cone myoid contraction observed in both LD and DD animals in response to circadian signals can be completely blocked in DD animals by intraocular injection of the D2-antagonist sulpiride shortly before the time of expected light onset. In contrast, circadian cone myoid movements were unaffected by intraocular injection of the D1-receptor agonist SCH23390, or the D1-receptor antagonist SKF38393. In addition, we report that intraocularly injected melatonin had no effect on cone position when injected in the light at mid-day, in darkness at midnight or in darkness just before expected light onset at dawn. However, both melatonin and iodomelatonin induced cone myoid contraction (the light-adaptive movement) when injected in darkness at expected mid-day in DD animals. This paradoxical result is not consistent with observations from other species in which melatonin induces dark-adaptive photoreceptor responses.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C A McCormack
- Department of Optometry and Vision Sciences, University of Wales College of Cardiff, U.K
| | | |
Collapse
|
48
|
Savy C, Simon A, Nguyen-Legros J. Spatial geometry of the dopamine innervation in the avascular area of the human fovea. Vis Neurosci 1991; 7:487-98. [PMID: 1684910 DOI: 10.1017/s0952523800009779] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dopamine (DA) innervation, labeled by tyrosine hydroxylase immunohistochemistry in a wholemounted human retina, is described in the avascular area of the fovea. Eleven DA neurons give rise to this innervation, among which five are interplexiform cells, so that the DA innervation consists of two plexuses: one is internal and is formed by the dendrites of all of the DA cells, and the other is external and is formed by the scleral processes of the interplexiform cells. Five concentric zones are delineated according to the focal plane in which the internal DA plexus is observed. The central zone 1 contains DA processes crossing in all directions. Zones 2 and 3 do not contain any cell bodies. In zone 3 the internal plexus begins to undergo a concentric arrangement, which is clearly observed in zones 4 and 5. The external DA innervation displays a different appearance in zones 1, 2, and 3, in which it consists of vertically oriented thin processes and terminals penetrating the outer nuclear layer, vs. zones 4 and 5 in which it consists of both the same type and horizontal processes lying in the outer plexiform layer. On the basis of DA-innervation appearance and distribution of labeled and unlabeled cell somata, it was concluded that zones 1, 2, and 3 contained the DA innervation of the foveola. DA processes filtering between photoreceptor cells are particularly well-observed in this region. This anatomical study of the DA innervation in the human fovea leads to a better understanding of the important role of DA in primate central vision and can be used as a reference for an approach of macular pathology.
Collapse
Affiliation(s)
- C Savy
- Laboratoire de Neurocytologie Oculaire (INSERM U-86), Paris, France
| | | | | |
Collapse
|
49
|
Dearry A, Falardeau P, Shores C, Caron MG. D2 dopamine receptors in the human retina: cloning of cDNA and localization of mRNA. Cell Mol Neurobiol 1991; 11:437-53. [PMID: 1835903 DOI: 10.1007/bf00734808] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. We have obtained a cDNA clone encoding a human retinal D2 dopamine receptor. 2. The longest open reading frame (1242 bp) of this clone encodes a protein of 414 amino acids having a predicted molecular weight of 47,000 and a transmembrane topology similar to that of other G protein-coupled receptors. 3. Transient transfection of COS-7 cells with an expression vector containing the clone resulted in expression of a protein possessing a pharmacological profile similar to that of the D2 dopamine receptor found in striatum and retina. 4. Northern blot analysis indicated that, in rat brain and retina, the mRNA for this receptor was 2.9 kb in size. 5. In situ hybridization was performed to examine the distribution of the mRNA for this receptor in human retina. Specific hybridization was detected in both the inner and the outer nuclear layers. 6. These findings are consistent with prior physiological and autoradiographic studies describing the localization of D2 dopamine receptors in vertebrate retinas. Our observations suggest that photoreceptors as well as cells in the inner nuclear layer of human retinas may express the mRNA for this D2 dopamine receptor.
Collapse
Affiliation(s)
- A Dearry
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | |
Collapse
|
50
|
Abstract
A survey of the shapes of dopaminergic (DA) neurons in the retinas of representative vertebrates reveals that they are divisible into three groups. In teleosts and Cebus monkey, DA cells are interplexiform (IPC) neurons with an ascending process that ramifies to create an extensive arbor in the outer plexiform layer (OPL). All other vertebrates studied, including several primate species, have either DA amacrine cells or IPCs with an ascending process that either does not branch within the OPL or does so to a very limited degree. DA neurons of non-teleosts exhibit a dense plexus of fine caliber fibers which extends in the distal most sublamina of the inner plexiform layer (IPL). Teleosts lack this plexus. In all vertebrates, DA cells are distributed more or less evenly and at a low density (10-60 cells/mm2) over the retinal surface. Dendritic fields of adjacent DA neurons overlap. Most of the membrane area of the DA cell is contained within the plexus of fine fibers, which we postulate to be the major source of dopamine release. Thus, dopamine release can be modeled as occurring uniformly from a thin sheet located either in the OPL (teleosts) or in the distal IPL (most other vertebrates) or both (Cebus monkey). Assuming that net lateral spread of dopamine is zero, the fall of dopamine concentration with distance at right angles to the sheet (i.e. in the scleral-vitreal axis) will be exponential. The factors that influence the rate of fall-diffusion in extracellular space, uptake, and transport--are not yet quantified for dopamine, hence the dopamine concentration around its target cells cannot yet be assessed. This point is important in relation to the thresholds for activation of D1 and D2 dopamine receptors that are found on a variety of retinal cells.
Collapse
Affiliation(s)
- P Witkovsky
- Department of Ophthalmology, New York University Medical Center, NY 10016
| | | |
Collapse
|