1
|
Thoreson WB, Bartol TM, Conoan NH, Diamond JS. Geometric tortuosity at invaginating rod synapses slows glutamate diffusion and shapes synaptic responses: insights from anatomically realistic Monte Carlo simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621088. [PMID: 39554003 PMCID: PMC11565802 DOI: 10.1101/2024.10.30.621088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
At the first synapse in the vertebrate retina, rod photoreceptor terminals form deep invaginations occupied by multiple second-order rod bipolar and horizontal cell (RBP and HC) dendrites. Synaptic vesicles are released into this invagination at multiple sites beneath an elongated presynaptic ribbon. We investigated the impact of this complex architecture on the diffusion of synaptic glutamate and activity of postsynaptic receptors. We obtained serial electron micrographs of mouse retina and reconstructed four rod terminals along with their postsynaptic RBP and HC dendrites. We incorporated these structures into an anatomically realistic Monte Carlo simulation of neurotransmitter diffusion and receptor activation. We compared passive diffusion of glutamate in these realistic structures to existing, geometrically simplified models of the synapse and found that glutamate exits anatomically realistic synapses ten times more slowly than previously predicted. By comparing simulations with electrophysiological recordings, we modeled synaptic activation of EAAT5 glutamate transporters in rods, AMPA receptors on HC dendrites, and metabotropic glutamate receptors (mGluR6) on RRBP dendrites. Our simulations suggested that ∼3,000 EAAT5 transporters populate the rod presynaptic membrane and that, while uptake by surrounding glial Müller cells retrieves much of the glutamate released by rods, binding and uptake by EAAT5 influences RBP response kinetics. The relatively long lifetime of glutamate within the cleft allows mGluR6 on RBP dendrites to temporally integrate the steady stream of vesicles released at this synapse in darkness. Glutamate's tortuous diffusional path through realistic synaptic geometry confers quantal variability, as release from nearby ribbon sites exerts larger effects on RBP and HC receptors than release from more distant sites. While greater integration may allow slower sustained release rates, added quantal variability complicates the challenging task of detecting brief decreases in release produced by rod light responses at scotopic threshold.
Collapse
|
2
|
Mesnard CS, Hays CL, Townsend LE, Barta CL, Gurumurthy CB, Thoreson WB. SYNAPTOTAGMIN-9 IN MOUSE RETINA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.27.546758. [PMID: 37425946 PMCID: PMC10327071 DOI: 10.1101/2023.06.27.546758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Synaptotagmin-9 (Syt9) is a Ca2+ sensor mediating fast synaptic release expressed in various parts of the brain. The presence and role of Syt9 in retina is unknown. We found evidence for Syt9 expression throughout the retina and created mice to conditionally eliminate Syt9 in a cre-dependent manner. We crossed Syt9fl/fl mice with Rho-iCre, HRGP-Cre, and CMV-cre mice to generate mice in which Syt9 was eliminated from rods (rodSyt9CKO), cones (coneSyt9CKO), or whole animals (CMVSyt9). CMVSyt9 mice showed an increase in scotopic electroretinogram (ERG) b-waves evoked by bright flashes with no change in a-waves. Cone-driven photopic ERG b-waves were not significantly different in CMVSyt9 knockout mice and selective elimination of Syt9 from cones had no effect on ERGs. However, selective elimination from rods decreased scotopic and photopic b-waves as well as oscillatory potentials. These changes occurred only with bright flashes where cone responses contribute. Synaptic release was measured in individual rods by recording anion currents activated by glutamate binding to presynaptic glutamate transporters. Loss of Syt9 from rods had no effect on spontaneous or depolarization-evoked release. Our data show that Syt9 is acts at multiple sites in the retina and suggest that it may play a role in regulating transmission of cone signals by rods.
Collapse
Affiliation(s)
- Chris S. Mesnard
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Cassandra L. Hays
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Department of Medical Education, Creighton University, Omaha, NE 68178
| | - Lou E. Townsend
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Cody L. Barta
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | | | - Wallace B. Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
| |
Collapse
|
3
|
Thoreson WB, Chhunchha B. EAAT5 glutamate transporter rapidly binds glutamate with micromolar affinity in mouse rods. J Gen Physiol 2023; 155:e202313349. [PMID: 37477643 PMCID: PMC10359920 DOI: 10.1085/jgp.202313349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/17/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Light responses of rod photoreceptor cells in the retina are encoded by changes in synaptic glutamate release that is in turn shaped by reuptake involving EAAT5 plasma membrane glutamate transporters. Heterologously expressed EAAT5 activates too slowly upon glutamate binding to support significant uptake. We tested EAAT5 activation in mouse rods in vivo by stimulating glutamate transporter anion currents (IA(glu)) with UV flash photolysis of MNI-glutamate, varying flash intensity to vary glutamate levels. Responses to uncaging rose rapidly with time constants of 2-3 ms, similar to IA(glu) events arising from spontaneous release. Spontaneous release events and IA(glu) evoked by weak flashes also declined with similar time constants of 40-50 ms. Stronger flashes evoked responses that decayed more slowly. Time constants were twofold faster at 35°C, suggesting that they reflect transporter kinetics, not diffusion. Selective EAAT1 and EAAT2 inhibitors had no significant effect, suggesting IA(glu) in rods arises solely from EAAT5. We calibrated glutamate levels attained during flash photolysis by expressing a fluorescent glutamate sensor iGluSnFr in cultured epithelial cells. We compared fluorescence at different glutamate concentrations to fluorescence evoked by photolytic uncaging of MNI-glutamate. The relationship between flash intensity and glutamate yielded EC50 values for EAAT5 amplitude, decay time, and rise time of ∼10 μM. Micromolar affinity and rapid activation of EAAT5 in rods show it can rapidly bind synaptic glutamate. However, we also found that EAAT5 currents are saturated by the synchronous release of only a few vesicles, suggesting limited capacity and a role for glial uptake at higher release rates.
Collapse
Affiliation(s)
- Wallace B. Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, Omaha, NE, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, Omaha, NE, USA
| |
Collapse
|
4
|
Mesnard CS, Hays CL, Barta CL, Sladek AL, Grassmeyer JJ, Hinz KK, Quadros RM, Gurumurthy CB, Thoreson WB. Synaptotagmins 1 and 7 in vesicle release from rods of mouse retina. Exp Eye Res 2022; 225:109279. [PMID: 36280223 PMCID: PMC9830644 DOI: 10.1016/j.exer.2022.109279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 01/13/2023]
Abstract
Synaptotagmins are the primary Ca2+ sensors for synaptic exocytosis. Previous work suggested synaptotagmin-1 (Syt1) mediates evoked vesicle release from cone photoreceptor cells in the vertebrate retina whereas release from rods may involve another sensor in addition to Syt1. We found immunohistochemical evidence for syntaptotagmin-7 (Syt7) in mouse rod terminals and so performed electroretinograms (ERG) and single-cell recordings using mice in which Syt1 and/or Syt7 were conditionally removed from rods and/or cones. Synaptic release was measured in mouse rods by recording presynaptic anion currents activated during glutamate re-uptake and from exocytotic membrane capacitance changes. Deleting Syt1 from rods reduced glutamate release evoked by short depolarizing steps but not long steps whereas deleting Syt7 from rods reduced release evoked by long but not short steps. Deleting both sensors completely abolished depolarization-evoked release from rods. Effects of various intracellular Ca2+ buffers showed that Syt1-mediated release from rods involves vesicles close to ribbon-associated Ca2+ channels whereas Syt7-mediated release evoked by longer steps involves more distant release sites. Spontaneous release from rods was unaffected by eliminating Syt7. While whole animal knockout of Syt7 slightly reduced ERG b-waves and oscillatory potentials, selective elimination of Syt7 from rods had no effect on ERGs. Furthermore, eliminating Syt1 from rods and cones abolished ERG b-waves and additional elimination of Syt7 had no further effect. These results show that while Syt7 contributes to slow non-ribbon release from rods, Syt1 is the principal sensor shaping rod and cone inputs to bipolar cells in response to light flashes.
Collapse
Affiliation(s)
- C S Mesnard
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA; Pharmacology and Experimental Neuroscience, USA
| | - C L Hays
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA
| | - C L Barta
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA
| | - A L Sladek
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA
| | - J J Grassmeyer
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA; Pharmacology and Experimental Neuroscience, USA
| | - K K Hinz
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA
| | - R M Quadros
- Pharmacology and Experimental Neuroscience, USA; Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - C B Gurumurthy
- Pharmacology and Experimental Neuroscience, USA; Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - W B Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA; Pharmacology and Experimental Neuroscience, USA.
| |
Collapse
|
5
|
Mesnard CS, Barta CL, Sladek AL, Zenisek D, Thoreson WB. Eliminating Synaptic Ribbons from Rods and Cones Halves the Releasable Vesicle Pool and Slows Down Replenishment. Int J Mol Sci 2022; 23:6429. [PMID: 35742873 PMCID: PMC9223732 DOI: 10.3390/ijms23126429] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamate release from rod and cone photoreceptor cells involves presynaptic ribbons composed largely of the protein RIBEYE. To examine roles of ribbons in rods and cones, we studied mice in which GCamP3 replaced the B-domain of RIBEYE. We discovered that ribbons were absent from rods and cones of both knock-in mice possessing GCamP3 and conditional RIBEYE knockout mice. The mice lacking ribbons showed reduced temporal resolution and contrast sensitivity assessed with optomotor reflexes. ERG recordings showed 50% reduction in scotopic and photopic b-waves. The readily releasable pool (RRP) of vesicles in rods and cones measured using glutamate transporter anion currents (IA(glu)) was also halved. We also studied the release from cones by stimulating them optogenetically with ChannelRhodopsin2 (ChR2) while recording postsynaptic currents in horizontal cells. Recovery of the release from paired pulse depression was twofold slower in the rods and cones lacking ribbons. The release from rods at -40 mV in darkness involves regularly spaced multivesicular fusion events. While the regular pattern of release remained in the rods lacking ribbons, the number of vesicles comprising each multivesicular event was halved. Our results support conclusions that synaptic ribbons in rods and cones expand the RRP, speed up vesicle replenishment, and augment some forms of multivesicular release. Slower replenishment and a smaller RRP in photoreceptors lacking ribbons may contribute to diminished temporal frequency responses and weaker contrast sensitivity.
Collapse
Affiliation(s)
- Chris S. Mesnard
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.S.M.); (C.L.B.); (A.L.S.)
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Cody L. Barta
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.S.M.); (C.L.B.); (A.L.S.)
| | - Asia L. Sladek
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.S.M.); (C.L.B.); (A.L.S.)
| | - David Zenisek
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06510, USA;
| | - Wallace B. Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.S.M.); (C.L.B.); (A.L.S.)
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Lukasiewcz PD, Bligard GW, DeBrecht JD. EAAT5 Glutamate Transporter-Mediated Inhibition in the Vertebrate Retina. Front Cell Neurosci 2021; 15:662859. [PMID: 34025361 PMCID: PMC8134652 DOI: 10.3389/fncel.2021.662859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/19/2021] [Indexed: 12/29/2022] Open
Abstract
Glutamate transporters typically remove glutamate from the synaptic cleft. In addition, all glutamate transporters have a chloride channel, which is opened upon glutamate binding to the transporter. There are five types of glutamate transporter (EAATs 1–5, excitatory amino acid transporters), which have distinct chloride conductances. Some EAATs that have low chloride conductances, remove glutamate from the synaptic cleft most effectively (e.g., EAAT1). By contrast, EAATs that have high chloride conductances, remove glutamate less effectively (e.g., EAAT5). We have studied EAAT5 in the retina. In the retina, light activates a chloride current, mediated by the glutamate activation of EAAT5. EAAT5 is not a significant contributor to lateral inhibition in the retina. Instead, it is the main source of autoinhibition to rod bipolar cells (RBCs). EAAT5-mediated inhibition has a substantial effect on synaptic transmission from RBCs to downstream retinal neurons.
Collapse
Affiliation(s)
- Peter D Lukasiewcz
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Gregory W Bligard
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - James D DeBrecht
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| |
Collapse
|
7
|
Thoreson WB. Transmission at rod and cone ribbon synapses in the retina. Pflugers Arch 2021; 473:1469-1491. [PMID: 33779813 DOI: 10.1007/s00424-021-02548-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022]
Abstract
Light-evoked voltage responses of rod and cone photoreceptor cells in the vertebrate retina must be converted to a train of synaptic vesicle release events for transmission to downstream neurons. This review discusses the processes, proteins, and structures that shape this critical early step in vision, focusing on studies from salamander retina with comparisons to other experimental animals. Many mechanisms are conserved across species. In cones, glutamate release is confined to ribbon release sites although rods are also capable of release at non-ribbon sites. The role of non-ribbon release in rods remains unclear. Release from synaptic ribbons in rods and cones involves at least three vesicle pools: a readily releasable pool (RRP) matching the number of membrane-associated vesicles along the ribbon base, a ribbon reserve pool matching the number of additional vesicles on the ribbon, and an enormous cytoplasmic reserve. Vesicle release increases in parallel with Ca2+ channel activity. While the opening of only a few Ca2+ channels beneath each ribbon can trigger fusion of a single vesicle, sustained release rates in darkness are governed by the rate at which the RRP can be replenished. The number of vacant release sites, their functional status, and the rate of vesicle delivery in turn govern replenishment. Along with an overview of the mechanisms of exocytosis and endocytosis, we consider specific properties of ribbon-associated proteins and pose a number of remaining questions about this first synapse in the visual system.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Truhlsen Eye Institute, Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
8
|
Grassmeyer JJ, Cahill AL, Hays CL, Barta C, Quadros RM, Gurumurthy CB, Thoreson WB. Ca 2+ sensor synaptotagmin-1 mediates exocytosis in mammalian photoreceptors. eLife 2019; 8:e45946. [PMID: 31172949 PMCID: PMC6588344 DOI: 10.7554/elife.45946] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/06/2019] [Indexed: 11/24/2022] Open
Abstract
To encode light-dependent changes in membrane potential, rod and cone photoreceptors utilize synaptic ribbons to sustain continuous exocytosis while making rapid, fine adjustments to release rate. Release kinetics are shaped by vesicle delivery down ribbons and by properties of exocytotic Ca2+ sensors. We tested the role for synaptotagmin-1 (Syt1) in photoreceptor exocytosis by using novel mouse lines in which Syt1 was conditionally removed from rods or cones. Photoreceptors lacking Syt1 exhibited marked reductions in exocytosis as measured by electroretinography and single-cell recordings. Syt1 mediated all evoked release in cones, whereas rods appeared capable of some slow Syt1-independent release. Spontaneous release frequency was unchanged in cones but increased in rods lacking Syt1. Loss of Syt1 did not alter synaptic anatomy or reduce Ca2+ currents. These results suggest that Syt1 mediates both phasic and tonic release at photoreceptor synapses, revealing unexpected flexibility in the ability of Syt1 to regulate Ca2+-dependent synaptic transmission.
Collapse
Affiliation(s)
- Justin J Grassmeyer
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUnited States
| | - Asia L Cahill
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
| | - Cassandra L Hays
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaUnited States
| | - Cody Barta
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
| | - Rolen M Quadros
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research OfficeUniversity of Nebraska Medical CenterOmahaUnited States
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research OfficeUniversity of Nebraska Medical CenterOmahaUnited States
- Developmental Neuroscience, Munroe Meyer Institute for Genetics and RehabilitationUniversity of Nebraska Medical CenterOmahaUnited States
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUnited States
| |
Collapse
|
9
|
Cork KM, Van Hook MJ, Thoreson WB. Mechanisms, pools, and sites of spontaneous vesicle release at synapses of rod and cone photoreceptors. Eur J Neurosci 2016; 44:2015-27. [PMID: 27255664 DOI: 10.1111/ejn.13288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/21/2016] [Accepted: 05/24/2016] [Indexed: 01/31/2023]
Abstract
Photoreceptors have depolarized resting potentials that stimulate calcium-dependent release continuously from a large vesicle pool but neurons can also release vesicles without stimulation. We characterized the Ca(2+) dependence, vesicle pools, and release sites involved in spontaneous release at photoreceptor ribbon synapses. In whole-cell recordings from light-adapted horizontal cells (HCs) of tiger salamander retina, we detected miniature excitatory post-synaptic currents (mEPSCs) when no stimulation was applied to promote exocytosis. Blocking Ca(2+) influx by lowering extracellular Ca(2+) , by application of Cd(2+) and other agents reduced the frequency of mEPSCs but did not eliminate them, indicating that mEPSCs can occur independently of Ca(2+) . We also measured release presynaptically from rods and cones by examining quantal glutamate transporter anion currents. Presynaptic quantal event frequency was reduced by Cd(2+) or by increased intracellular Ca(2+) buffering in rods, but not in cones, that were voltage clamped at -70 mV. By inhibiting the vesicle cycle with bafilomycin, we found the frequency of mEPSCs declined more rapidly than the amplitude of evoked excitatory post-synaptic currents (EPSCs) suggesting a possible separation between vesicle pools in evoked and spontaneous exocytosis. We mapped sites of Ca(2+) -independent release using total internal reflectance fluorescence (TIRF) microscopy to visualize fusion of individual vesicles loaded with dextran-conjugated pHrodo. Spontaneous release in rods occurred more frequently at non-ribbon sites than evoked release events. The function of Ca(2+) -independent spontaneous release at continuously active photoreceptor synapses remains unclear, but the low frequency of spontaneous quanta limits their impact on noise.
Collapse
Affiliation(s)
- Karlene M Cork
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, 4050 Durham Research Center, University of Nebraska Medical Center, Omaha, NE, 68198-5840, USA.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, 4050 Durham Research Center, University of Nebraska Medical Center, Omaha, NE, 68198-5840, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, 4050 Durham Research Center, University of Nebraska Medical Center, Omaha, NE, 68198-5840, USA.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
10
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
11
|
Tse DY, Chung I, Wu SM. Possible roles of glutamate transporter EAAT5 in mouse cone depolarizing bipolar cell light responses. Vision Res 2014; 103:63-74. [PMID: 24972005 DOI: 10.1016/j.visres.2014.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/11/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
A remarkable feature of neuronal glutamate transporters (EAATs) is their dual functions of classical carriers and ligand-gated chloride (Cl(-)) channels. Cl(-) conductance is rapidly activated by glutamate in subtype EAAT5, which mediates light responses in depolarizing bipolar cells (DBC) in retinae of lower vertebrates. In this study, we examine whether EAAT5 also mediates the DBC light response in mouse. We took advantage of an infrared illuminated micro-injection system, and studied the effects of the EAAT blocker (TBOA) and a glutamate receptor agonist (LAP4) on the mouse electroretinogram (ERG) b-wave responses. Our results showed that TBOA and LAP4 shared similar temporal patterns of inhibition: both inhibited the ERG b-wave shortly after injection and recovered with similar time courses. TBOA inhibited the b-wave completely at mesopic light intensity with an IC50 value about 1 log unit higher than that of LAP4. The inhibitory effects of TBOA and LAP4 were found to be additive in the photopic range. Furthermore, TBOA alone inhibited the b-wave in the cone operative range in knockout mice lacking DBCRs at a low concentration that did not alter synaptic glutamate clearance activity. It also produced a stronger inhibition than that of LAP4 on the cone-driven b-wave measured with a double flash method in wildtype mice. These electrophysiological data suggest a significant role for EAAT5 in mediating cone-driven DBC light responses. Our immunohistochemistry data indicated the presence of postsynaptic EAAT5 on some DBCCs and some DBCRs, providing an anatomical basis for EAAT5's role in DBC light responses.
Collapse
Affiliation(s)
- Dennis Y Tse
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| | - Inyoung Chung
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA; Department of Ophthalmology, Gyeongsang National University, Jinju, Republic of Korea
| | - Samuel M Wu
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Abstract
Photoreceptors are exquisitely adapted to transform light stimuli into electrical signals that modulate neurotransmitter release. These cells are organized into several compartments including the unique outer segment (OS). Its whole function is to absorb light and transduce this signal into a change of membrane potential. Another compartment is the inner segment where much of metabolism and regulation of membrane potential takes place and that connects the OS and synapse. The synapse is the compartment where changes in membrane potentials are relayed to other neurons in the retina via release of neurotransmitter. The composition of the plasma membrane surrounding these compartments varies to accommodate their specific functions. In this chapter, we discuss the organization of the plasma membrane emphasizing the protein composition of each region as it relates to visual signaling. We also point out examples where mutations in these proteins cause visual impairment.
Collapse
Affiliation(s)
- Sheila A Baker
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| | | |
Collapse
|
13
|
Rowan MJM, Ripps H, Shen W. Fast glutamate uptake via EAAT2 shapes the cone-mediated light offset response in bipolar cells. J Physiol 2011; 588:3943-56. [PMID: 20807794 DOI: 10.1113/jphysiol.2010.191437] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) are responsible for extracellular glutamate uptake within the retina, and are expressed by retinal neurons and Müller cells. Their role within glutamatergic synapses is not completely understood. In the salamander retina, five distinct EAAT-encoding genes have been cloned, making the amphibian retina an excellent system to study EAAT function. This study focused on sEAAT2, which is expressed in photoreceptor terminals and Off-bipolar cells in two isoforms, sEAAT2A and sEAAT2B. Using whole-cell patch-clamp recording, florescence imaging and antibody labelling methods, we systematically studied the functions of these two isoforms at the synapse between photoreceptors and bipolar cells, both in dark and with photic stimulation. Both sEAAT2A and sEAAT2B were sensitive to dihydrokainic acid (DHKA), a known EAAT2-specific inhibitor. Each isoform of sEAAT2 was found to play a role in tonic glutamate uptake at the cone synapse in darkness. Furthermore, presynaptic sEAAT2A strongly suppressed the rapid, transient glutamate signal from cones following light-offset. This was achieved by quickly binding exocytosed glutamate, which subsequently limited glutamate spillover to adjacent receptors at postsynaptic sites. Since the intensity and duration of photic stimulation determine the magnitude of these cone transient signals, we postulate that presynaptic cone EAATs contribute to the encoding of contrast sensitivity in cone vision.
Collapse
Affiliation(s)
- Matthew J M Rowan
- Depatment of Basic Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | | |
Collapse
|
14
|
Cadetti L, Bartoletti TM, Thoreson WB. Quantal mEPSCs and residual glutamate: how horizontal cell responses are shaped at the photoreceptor ribbon synapse. Eur J Neurosci 2008; 27:2575-86. [PMID: 18547244 DOI: 10.1111/j.1460-9568.2008.06226.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
At the photoreceptor ribbon synapse, glutamate released from vesicles at different positions along the ribbon reaches the same postsynaptic receptors. Thus, vesicles may not exert entirely independent effects. We examined whether responses of salamander retinal horizontal cells evoked by light or direct depolarization during paired recordings could be predicted by summation of individual miniature excitatory postsynaptic currents (mEPSCs). For EPSCs evoked by depolarization of rods or cones, linear convolution of mEPSCs with photoreceptor release functions predicted EPSC waveforms and changes caused by inhibiting glutamate receptor desensitization. A low-affinity glutamate antagonist, kynurenic acid (KynA), preferentially reduced later components of rod-driven EPSCs, suggesting lower levels of glutamate are present during the later sustained component of the EPSC. A glutamate-scavenging enzyme, glutamic-pyruvic transaminase, did not inhibit mEPSCs or the initial component of rod-driven EPSCs, but reduced later components of the EPSC. Inhibiting glutamate uptake with a low concentration of DL-threo-beta-benzoyloxyaspartate (TBOA) also did not alter mEPSCs or the initial component of rod-driven EPSCs, but enhanced later components of the EPSC. Low concentrations of TBOA and KynA did not affect the kinetics of fast cone-driven EPSCs. Under both rod- and cone-dominated conditions, light-evoked currents (LECs) were enhanced considerably by TBOA. LECs were more strongly inhibited than EPSCs by KynA, suggesting the presence of lower glutamate levels. Collectively, these results indicate that the initial EPSC component can be largely predicted from a linear sum of individual mEPSCs, but with sustained release, residual amounts of glutamate from multiple vesicles pool together, influencing LECs and later components of EPSCs.
Collapse
Affiliation(s)
- Lucia Cadetti
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Durham Research Center Room 4050, Omaha, NE 68198-5840, USA
| | | | | |
Collapse
|
15
|
Rousseaux CG. A Review of Glutamate Receptors I: Current Understanding of Their Biology. J Toxicol Pathol 2008. [DOI: 10.1293/tox.21.25] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Colin G. Rousseaux
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa
| |
Collapse
|
16
|
Wersinger E, Schwab Y, Sahel JA, Rendon A, Pow DV, Picaud S, Roux MJ. The glutamate transporter EAAT5 works as a presynaptic receptor in mouse rod bipolar cells. J Physiol 2006; 577:221-34. [PMID: 16973698 PMCID: PMC2000664 DOI: 10.1113/jphysiol.2006.118281] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Membrane neurotransmitter transporters control the concentration of their substrate in the synaptic clefts, through the thermodynamic coupling of uptake to the movement of Na(+) and other ions. In addition, excitatory amino acid transporters (EAAT) have a Cl(-) conductance which is gated by the joint binding of Na(+) and glutamate, but thermodynamically uncoupled to the flux of glutamate. This conductance is particularly large in the retina-specific EAAT5 isoform. In the mouse retina, we located EAAT5 in both cone and rod photoreceptor terminals and in axon terminals of rod bipolar cells. In these later cells, application of glutamate on the axon terminal evoked a current that reversed at E(Cl), was insensitive to bicuculline, TPMPA, strychnine, dl-AP5, CNQX and MCPG, but blocked by the glutamate transporter inhibitor dl-tBOA. Furthermore, short depolarizations of the bipolar cells evoked a dl-tBOA and Cd(2+)-sensitive current whose amplitude was comparable to the glutamate-evoked current. Its kinetics indicated that EAAT5 was located close to the glutamate release site. For 2 ms depolarizations evoking maximal responses, the EAAT5-mediated current carried between 2 and 8 times more charge as an average inhibitory GABA or glycine postsynaptic current received spontaneously from amacrine cells, with 10 mm or 0.5 mm intracellular EGTA, respectively. In conditions for which reciprocal inhibition could be monitored, the charge carried by the EAAT5 current was 1.5 times larger than the one carried by the inhibitory postsynaptic currents received from amacrine cells. These results indicate that EAAT5 acts as a major inhibitory presynaptic receptor at mammalian rod bipolar cell axon terminals. This feedback mechanism could control glutamate release at the ribbon synapses of a non-spiking neuron and increase the temporal contrast in the rod photoreceptor pathway.
Collapse
Affiliation(s)
- Eric Wersinger
- Laboratory of Cellular and Molecular Physiopathology of the Retina, National Institute for Health and Medical Research (INSERM Unité 592), Université Pierre et Marie Curie-Paris6, Paris, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The molecular organization of ribbon synapses in photoreceptors and ON bipolar cells is reviewed in relation to the process of neurotransmitter release. The interactions between ribbon synapse-associated proteins, synaptic vesicle fusion machinery and the voltage-gated calcium channels that gate transmitter release at ribbon synapses are discussed in relation to the process of synaptic vesicle exocytosis. We describe structural and mechanistic specializations that permit the ON bipolar cell to release transmitter at a much higher rate than the photoreceptor does, under in vivo conditions. We also consider the modulation of exocytosis at photoreceptor synapses, with an emphasis on the regulation of calcium channels.
Collapse
Affiliation(s)
- Ruth Heidelberger
- Department of Neurobiology & Anatomy, University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Wallace B. Thoreson
- Department of Ophthalmology & Visual Sciences and Department of Pharmacology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul Witkovsky
- Department of Ophthalmology and Department of Physiology & Neuroscience, New York University School of Medicine, New York, NY 10016, USA
- *Corresponding author. Tel: +1 212 263 6488; fax: +1 212 263 7602. E-mail address: (P. Witkovsky)
| |
Collapse
|
18
|
Abstract
Sensory neurons with short conduction distances can use nonregenerative, graded potentials to modulate transmitter release continuously. This mechanism can transmit information at much higher rates than spiking. Graded signaling requires a synapse to sustain high rates of exocytosis for relatively long periods, and this capacity is the special virtue of ribbon synapses. Vesicles tethered to the ribbon provide a pool for sustained release that is typically fivefold greater than the docked pool available for fast release. The current article, which is part of the TINS Synaptic Connectivity series, reviews recent evidence for this fundamental computational strategy and its underlying cell biology.
Collapse
Affiliation(s)
- Peter Sterling
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
19
|
Rauen T, Wiessner M, Sullivan R, Lee A, Pow DV. A new GLT1 splice variant: cloning and immunolocalization of GLT1c in the mammalian retina and brain. Neurochem Int 2004; 45:1095-106. [PMID: 15337309 DOI: 10.1016/j.neuint.2004.04.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 03/10/2004] [Accepted: 04/27/2004] [Indexed: 01/18/2023]
Abstract
We have identified a novel carboxyl-terminal splice-variant of the glutamate transporter GLT1, which we denote as GLT1c. Within the rat brain only low levels of protein and message were detected, protein expression being restricted to end feet of astrocytes apposed to blood vessels or some astrocytes adjacent to the ventricles. Conversely, within the retina, this variant was selectively and heavily expressed in the synaptic terminals of both rod- and cone-photoreceptors in both humans and rats. Double-immunolabelling with antibodies to the carboxyl region of GLT1b/GLT1v, which is strongly expressed in apical dendrites of bipolar cells and in cone photoreceptors revealed that in the rat GLT1c was co-localised with GLT1b/GLT1v in cone photoreceptors but not with GLT1b/GLT1v in bipolar cells. GLT1c expression was developmentally regulated, only appearing at around postnatal day 7 in the rat retina, when photoreceptors first exhibit a dark current. Since the glutamate transporter EAAT5 is also expressed in terminals of rod photoreceptor terminals these data indicate that rod photoreceptors express two glutamate transporters with distinct properties. Similarly, cone photoreceptors express two glutamate transporters. We suggest that differential usage of these transporters by rod and cone photoreceptors may influence the kinetics of glutamate transmission by these neurons.
Collapse
Affiliation(s)
- Thomas Rauen
- Institut für Biochemie, Westfälische-Wilhelms-Universitat Münster, Wilhelm-Klemm-Street 2, D-48149 Münster, Germany.
| | | | | | | | | |
Collapse
|
20
|
Rabl K, Bryson EJ, Thoreson WB. Activation of glutamate transporters in rods inhibits presynaptic calcium currents. Vis Neurosci 2004; 20:557-66. [PMID: 14977334 DOI: 10.1017/s0952523803205095] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We found that L-glutamate (L-Glu) inhibits L-type Ca2+currents (ICa) in rod photoreceptors. This inhibition was studied in isolated rods or rods in retinal slices from tiger salamander using perforated patch whole cell recordings and Cl−-imaging techniques. Application of L-Glu inhibitedICaby ∼20% at 0.1 mM and ∼35% at 1 mM. L-Glu also produced an inward current that reversed aroundECl. The metabotropic glutamate receptor (mGluR) agonists t-ADA (Group I), DCG-IV (Group II), and L-AP4 (Group III) had no effect onICa. However, the glutamate transport inhibitor, TBOA (0.1 mM), prevented L-Glu from inhibitingICa. D-aspartate (D-Asp), a glutamate transporter substrate, also inhibitedICawith significantly more inhibition at 1 mM than 0.1 mM. Using Cl−imaging, L-Glu (0.1–1 mM) and D-Asp (0.1–1 mM) were found to stimulate a Cl−efflux from terminals of isolated rods whereas the ionotropic glutamate receptor agonists NMDA, AMPA, and kainate and the mGluR agonist, 1S,3R-ACPD, did not. Glutamate-evoked Cl−effluxes were blocked by the glutamate transport inhibitors TBOA and DHKA. Cl−efflux inhibits Ca2+channel activity in rod terminals (Thoreson et al. (2000),Visual Neuroscience17, 197). Consistent with the possibility that glutamate-evoked Cl−efflux may play a role in the inhibition, reducing intraterminal Cl−prevented L-Glu from inhibitingICa. In summary, the results indicate that activation of glutamate transporters inhibitsICain rods possibly as a consequence of Cl−efflux. The neurotransmitter L-Glu released from rod terminals might thus provide a negative feedback signal to inhibit further L-Glu release.
Collapse
Affiliation(s)
- Katalin Rabl
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha 68198-5540, USA
| | | | | |
Collapse
|
21
|
Abstract
Glutamate uptake by high-affinity transporters is responsible for limiting the activation of postsynaptic receptors and maintaining low levels of ambient glutamate. The reuptake process generates membrane currents, which can be activated by synaptically released glutamate in glial cells and some postsynaptic neurons. However, less is known about presynaptic transporter currents because the small size of synaptic boutons precludes direct recordings. Here, we have recorded from two giant nerve terminals: bipolar cell synaptic terminals in goldfish retina and the calyx of Held in rat auditory brainstem. Exocytosis was evoked by brief depolarizations and measured as an increase in membrane capacitance. In isolated bipolar cell terminals, exocytosis was associated with an anion (NO3- or Cl-) current. The current peaked 2.8 msec after the start of the depolarization and decayed with a mean time constant of 8.5 msec. It was inhibited by the nontransportable glutamate transporter antagonist sc-threo-beta-benzyloxyaspartate (TBOA) but was insensitive to the GLT1/EAAT2 subtype-selective antagonist dihydrokainate and was affected by extracellular pH buffering. A TBOA-sensitive anion current was also evoked by application of exogenous glutamate to bipolar cell terminals. The large single-channel conductance, derived from noise analysis, and previous immunolocalization studies suggest that synaptically released glutamate activates EAAT5-type transporters in bipolar cell terminals. In contrast, neither exocytosis nor exogenous glutamate evoked a transporter current in the calyx of Held. Glutamate transporter currents with rapid kinetics are therefore identified and characterized in bipolar cell terminals, providing a valuable system for investigating the function and modulation of presynaptic glutamate transporters.
Collapse
|
22
|
Hirasawa H, Shiells R, Yamada M. A metabotropic glutamate receptor regulates transmitter release from cone presynaptic terminals in carp retinal slices. J Gen Physiol 2002; 119:55-68. [PMID: 11773238 PMCID: PMC2233855 DOI: 10.1085/jgp.119.1.55] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The role of group III metabotropic glutamate receptors (mGluRs) in photoreceptor-H1 horizontal cell (HC) synaptic transmission was investigated by analyzing the rate of occurrence and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) in H1 HCs uncoupled by dopamine in carp retinal slices. Red light steps or the application of 100 microM cobalt reduced the sEPSC rate without affecting their peak amplitude, which is consistent with hyperpolarization or the suppression of Ca(2+) entry into cone synaptic terminals reducing vesicular transmitter release. Conversely, postsynaptic blockade of H1 HC AMPA receptors by 500 nM CNQX reduced the amplitude of sEPSCs without affecting their rate. This analysis of sEPSCs represents a novel methodology for distinguishing between presynaptic and postsynaptic sites of action. The selective agonist for group III mGluRs, l-2-amino-4-phosphonobutyrate (L-APB or L-AP4; 20 microM), reduced the sEPSC rate with a slight reduction in amplitude, which is consistent with a presynaptic action on cone synaptic terminals to reduce transmitter release. During L-APB application, recovery of sEPSC rate occurred with 500 microM (s)-2-methyl-2-amino-4-phosphonobutyrate (MAP4), a selective antagonist of group III mGluR, and with 200 microM 4-aminopyridine (4-AP), a blocker of voltage-dependent potassium channels. Whole-cell recordings from cones in the retinal slice showed no effect of L-APB on voltage-activated Ca(2+) conductance. These results suggest that the activation of group III mGluRs suppresses transmitter release from cone presynaptic terminals via a 4-AP-sensitive pathway. Negative feedback, operating via mGluR autoreceptors, may limit excessive glutamate release from cone synaptic terminals.
Collapse
Affiliation(s)
- Hajime Hirasawa
- Supermolecular Division, Electrotechnical Laboratory, Tsukuba, Ibaraki 305-8568, Japan
- Institute of Biological Science, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Richard Shiells
- Biophysics Unit, Physiology Department, University College London, London WC1E 6BT, United Kingdom
| | - Masahiro Yamada
- Supermolecular Division, Electrotechnical Laboratory, Tsukuba, Ibaraki 305-8568, Japan
- Institute of Biological Science, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
23
|
Gegelashvili G, Robinson MB, Trotti D, Rauen T. Regulation of glutamate transporters in health and disease. PROGRESS IN BRAIN RESEARCH 2001; 132:267-86. [PMID: 11544995 DOI: 10.1016/s0079-6123(01)32082-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- G Gegelashvili
- Department of Pharmacology, Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | |
Collapse
|
24
|
Witkovsky P, Thoreson W, Tranchina D. Transmission at the photoreceptor synapse. PROGRESS IN BRAIN RESEARCH 2001; 131:145-59. [PMID: 11420937 DOI: 10.1016/s0079-6123(01)31013-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- P Witkovsky
- Departments of Ophthalmology and Physiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | | | |
Collapse
|
25
|
Goldmakher GV, Moss RL. A subset of periglomerular neurons in the rat accessory olfactory bulb may be excited by GABA through a Na(+)-dependent mechanism. Brain Res 2000; 871:7-15. [PMID: 10882777 DOI: 10.1016/s0006-8993(00)02282-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The periglomerular (PG) cells of the accessory olfactory bulb (AOB) are GABAergic interneurons which receive input from the vomeronasal sensory neurons and form dendrodendritic synapses with each other and with mitral cells. Their electrophysiological properties have not been investigated. We have developed a novel method of isolating PG cells from the AOB, and used the whole-cell patch and gramicidin-perforated patch clamp techniques to measure their basic electrophysiological characteristics and their response to GABA. PG cells were found to be excitable neurons with voltage-gated Na(+) and K(+) currents, though it was very difficult to get PG cells to fire an action potential. The voltage-gated Na(+) currents of PG cells activate at more positive potentials than those of typical CNS neurons. PG cells respond to GABA with currents in which GABA(A) receptors play a significant role. A subset ( approximately 40%) of PG cells respond to GABA with currents which have unusually high reversal potentials, indicating that GABA may be excitatory to these neurons. This phenomenon cannot be explained entirely by elevation of intracellular chloride concentrations, and is dependent on the presence of extracellular sodium.
Collapse
Affiliation(s)
- G V Goldmakher
- Department of Physiology, UT Southwestern Medical Center, 75235, Dallas, TX, USA. goldmakh2utsw.swmed.edu
| | | |
Collapse
|
26
|
Abstract
Retinal Müller (glial) cells metabolize glucose to lactate, which is preferentially taken up by photoreceptor neurons as fuel for their oxidative metabolism. We explored whether lactate supply to neurons is a glial function controlled by neuronal signals. For this, we used subcellular fluorescence imaging and either amperometric or optical biosensors to monitor metabolic responses simultaneously from mitochondrial and cytosolic compartments of individual Müller cells from salamander retina. Our results demonstrate that lactate production and release is controlled by the combined action of glutamate and NH(4)(+), both at micromolar concentrations. Transport of glutamate by a high-affinity carrier can produce in Müller cells a rapid rise of glutamate concentration. In our isolated Müller cells, glutamine synthetase (GS) converted transported glutamate to glutamine that was released. This reaction, predominant when enough NH(4)(+) is available, was limited at micromolar concentrations of NH(4)(+), and more glutamate entered then as substrate into the mitochondrial tricarboxylic acid cycle (TCA). Increased production of glutamine by GS leads to increased utilization of ATP, some of which is generated glycolytically. Methionine sulfoximine, a specific inhibitor of GS, suppressed the stimulatory effect of glutamate and NH(4)(+) on glycolysis and induced massive entry of glutamate into the TCA cycle. The rate of glutamine production also determined the amount of pyruvate transaminated by glutamate to alanine. Lactate, alanine, and glutamine can be taken up and metabolized by photoreceptor neurons. We conclude that a major function of Müller glial cells is to nourish retinal neurons and to metabolize the neurotoxic ammonia and glutamate.
Collapse
|
27
|
Rauen T, Fischer F, Wiessner M. Glia-neuron interaction by high-affinity glutamate transporters in neurotransmission. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 468:81-95. [PMID: 10635021 DOI: 10.1007/978-1-4615-4685-6_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- T Rauen
- Max-Planck-Institut für Hirnforschung, Frankfurt/M. Germany
| | | | | |
Collapse
|
28
|
Abstract
The heated debate over the level of postsynaptic receptor occupancy by transmitter has not been extinguished - indeed, new evidence is fanning the flames. Recent experiments using two-photon microscopy suggest that the concentration of glutamate in the synaptic cleft does not attain levels previously suggested. In contrast, recordings from glial cells and studies of extrasynaptic receptor activation indicate that significant quantities of glutamate escape from the cleft following exocytosis. Determining the amount of glutamate efflux from the synaptic cleft and the distance it diffuses is critical to issues of synaptic specificity and the induction of synaptic plasticity.
Collapse
Affiliation(s)
- D E Bergles
- Vollum Institute, L474 Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
29
|
Abstract
As the most predominant excitatory neurotransmitter, glutamate has the potential to influence the function of most neuronal circuits in the central nervous system. To limit receptor activation during signaling and prevent the overstimulation of glutamate receptors that can trigger excitotoxic mechanisms and cell death, extracellular concentrations of excitatory amino acids are tightly controlled by transport systems on both neurons and glial cells. L-Glutamate is a potent neurotoxin, and the inadequate clearance of excitatory amino acids may contribute to the neurodegeneration seen in a variety of conditions, including epilepsy, ischemia, and amyotrophic lateral sclerosis. To establish the contributions of carrier systems to the etiology of neurological disorders, and to consider their potential utility as therapeutic targets, a detailed understanding of transporter function and pharmacology is required. This review summarizes current knowledge of the structural and functional diversity of excitatory amino acid transporters and explores how they might serve as targets for drug design.
Collapse
Affiliation(s)
- R P Seal
- Vollum Institute, Oregon Health Sciences University, Portland 97201, USA.
| | | |
Collapse
|
30
|
Estabel J, König N, Exbrayat JM. AMPA/kainate receptors permeable to divalent cations in amphibian central nervous system. Life Sci 1999; 64:607-16. [PMID: 10069524 DOI: 10.1016/s0024-3205(98)00603-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Glutamate receptors have been studied extensively in mammals but less explored in lower vertebrates. These receptors are present in amphibians. Using a recent method based upon agonist-induced cobalt uptake, we were able to detect the presence of functional alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors permeable to divalent cations in tadpoles and in adults. The uptake specificity was checked by co-application of an antagonist. We studied the distribution of receptor-bearing cells in the principal brain regions. The distribution was similar in the two species studied: Rana esculenta (green frog) and Bufo bufo (common toad). The high number of cobalt-positive cells suggests that the AMPA/kainate receptors permeable to divalent cations play an important role in the anuran nervous system.
Collapse
Affiliation(s)
- J Estabel
- Laboratoire de Biologie Générale, Université Catholique de Lyon, France
| | | | | |
Collapse
|
31
|
Palacín M, Estévez R, Bertran J, Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 1998; 78:969-1054. [PMID: 9790568 DOI: 10.1152/physrev.1998.78.4.969] [Citation(s) in RCA: 587] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Molecular biology entered the field of mammalian amino acid transporters in 1990-1991 with the cloning of the first GABA and cationic amino acid transporters. Since then, cDNA have been isolated for more than 20 mammalian amino acid transporters. All of them belong to four protein families. Here we describe the tissue expression, transport characteristics, structure-function relationship, and the putative physiological roles of these transporters. Wherever possible, the ascription of these transporters to known amino acid transport systems is suggested. Significant contributions have been made to the molecular biology of amino acid transport in mammals in the last 3 years, such as the construction of knockouts for the CAT-1 cationic amino acid transporter and the EAAT2 and EAAT3 glutamate transporters, as well as a growing number of studies aimed to elucidate the structure-function relationship of the amino acid transporter. In addition, the first gene (rBAT) responsible for an inherited disease of amino acid transport (cystinuria) has been identified. Identifying the molecular structure of amino acid transport systems of high physiological relevance (e.g., system A, L, N, and x(c)- and of the genes responsible for other aminoacidurias as well as revealing the key molecular mechanisms of the amino acid transporters are the main challenges of the future in this field.
Collapse
Affiliation(s)
- M Palacín
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
32
|
Eliasof S, Arriza JL, Leighton BH, Amara SG, Kavanaugh MP. Localization and function of five glutamate transporters cloned from the salamander retina. Vision Res 1998; 38:1443-54. [PMID: 9667010 DOI: 10.1016/s0042-6989(97)00452-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate retina. Native glutamate transporters have been well characterized in several retinal neurons, particularly from the salamander retina. We have cloned five distinct glutamate transporters from the salamander retina and examined their localization and functional properties: sEAAT1, sEEAAT2A, sEAAT2B, sEAAT5A and sEAAT5B. sEAAT1 is a homologue of the glutamate transporter EAAT1 (GLAST), sEAAT2A and sEAAT2B are homologues of EAAT2 (GLT-1) and sEAAT5A and sEAAT5B are homologues of the recently cloned human retinal glutamate transporter EAAT5. Localization was determined by immunocytochemical techniques using antibodies directed at portions of the highly divergent carboxy terminal. Glutamate transporters were found in glial, photoreceptor, bipolar, amacrine and ganglion cells. The pharmacology and ionic dependence were determined by two-electrode voltage clamp recordings from Xenopus laevis oocytes which had previously been injected with one of the glutamate transporter mRNAs. Each of the transporters behaved in a manner consistent with a glutamate transporter and there were some distinguishing characteristics which make it possible to link the function in native cells with the behavior of the cloned transporters in this study.
Collapse
Affiliation(s)
- S Eliasof
- Vollum Institute L-474, Oregon Health Sciences University, Portland 97210, USA.
| | | | | | | | | |
Collapse
|
33
|
Excitatory amino acid transporters of the salamander retina: identification, localization, and function. J Neurosci 1998. [PMID: 9425012 DOI: 10.1523/jneurosci.18-02-00698.1998] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rapid re-uptake of extracellular glutamate mediated by a family of high-affinity glutamate transporter proteins is essential to continued glutamatergic signaling and neuronal viability, but the contributions of individual transporter subtypes toward cellular physiology are poorly understood. Because the physiology of glutamate transport in the salamander retina has been well described, we have examined the expression and function of glutamate transporter subtypes in this preparation. cDNAs encoding five distinct salamander excitatory amino acid transporter (sEAAT) subtypes were isolated, and their molecular properties and distributions of expression were compared. We report evidence that at least four distinct sEAAT subtypes are expressed in glial (Müller) cells. In addition, four of the five transporter subtypes are localized in neurons throughout the retina. The brightest immunostaining was seen in the synaptic regions of the inner and outer plexiform layers and in the outer nuclear layer. Using electrophysiological measurements in the Xenopus oocyte expression system, we also examined the pharmacology and ionic dependence of the four expressing transporter subtypes that make it possible to distinguish, on the basis of functional behavior, among the various subtypes. Although no simple correlation between transporter subtype and retinal cell physiology can be made, the diverse population of sEAAT transporter subtypes with unique localization and functional properties indicates that glutamate transporters play a wide variety of roles in retinal function and are likely to underlie both the uptake of glutamate by Müller cells and the glutamate-elicited chloride conductance involved in signal transduction by photoreceptors and bipolar cells.
Collapse
|
34
|
Gaal L, Roska B, Picaud SA, Wu SM, Marc R, Werblin FS. Postsynaptic response kinetics are controlled by a glutamate transporter at cone photoreceptors. J Neurophysiol 1998; 79:190-6. [PMID: 9425190 DOI: 10.1152/jn.1998.79.1.190] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We evaluated the role of the sodium/glutamate transporter at the synaptic terminals of cone photoreceptors in controlling postsynaptic response kinetics. The strategy was to measure the changes in horizontal cell response rate induced by blocking transporter uptake in cones with dihydrokainate (DHK). DHK was chosen as the uptake blocker because, as we show through autoradiographic uptake measurements, DHK specifically blocked uptake in cones without affecting uptake in Mueller cells. Horizontal cells depolarized from about -70 to -20 mV as the exogenous glutamate concentration was increased from approximately 1 to 40 microM, so horizontal cells can serve as "glutamate electrodes" during the light response. DHK slowed the rate of hyperpolarization of the horizontal cells in a dose-dependent way, but didn't affect the kinetics of the cone responses. At 300 microM DHK, the rate of the horizontal cell hyperpolarization was slowed to only 17 +/- 8.5% (mean +/- SD) of control. Translating this to changes in glutamate concentration using the slice dose response curve as calibration in Fig. 2, DHK reduced the rate of removal of glutamate from approximately 0.12 to 0.031 microM/s. The voltage dependence of uptake rate in the transporter alone was capable of modulating glutamate concentration: we blocked vesicular released glutamate with bathed 20 mM Mg2+ and then added 30 microM glutamate to the bath to reestablish a physiological glutamate concentration level at the synapse and thereby depolarize the horizontal cells. Under these conditions, a light flash elicited a 17-mV hyperpolarization in the horizontal cells. When we substituted kainate, which is not transported, for glutamate, horizontal cells were depolarized but light did not elicit any response, indicating that the transporter alone was responsible for the removal of glutamate under these conditions. This suggests that the transporter was both voltage dependent and robust enough to modulate glutamate concentration. The transporter must be at least as effective as diffusion in removing glutamate from the synapse because there is only a very small light response once the transporter is blocked. The transporter, via its voltage dependence on cone membrane potential, appears to contribute significantly to the control of postsynaptic response kinetics.
Collapse
Affiliation(s)
- L Gaal
- Department of Molecular and Cell Biology, Division of Neurobiology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
35
|
Schmitz Y, Witkovsky P. Dependence of photoreceptor glutamate release on a dihydropyridine-sensitive calcium channel. Neuroscience 1997; 78:1209-16. [PMID: 9174087 DOI: 10.1016/s0306-4522(96)00678-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A "reduced retina" preparation, consisting of the photoreceptor layer attached to the pigment epithelium in the eyecup, was used to study the pharmacology of the calcium channels controlling glutamate release by photoreceptors in Xenopus. Glutamate release was evoked either by dark adaptation or by superfusion with elevated (20 mM) potassium medium. Both darkness- and potassium-induced release were blocked by cadmium (200 microM). The N-type calcium channel blocker, omega-conotoxin GVIA (500 nM), the P-type calcium channel blocker, omega-agatoxin IVA (20 nM), and the P- and Q-type channel blocker omega-conotoxin MVIIC (1 microM) had no effect on glutamate release. In contrast, the dihydropyridines, nifedipine (10 microM) and nitrendipine (10 microM), which affect L-type calcium channels, blocked both darkness- and potassium-induced release. Bay K 8644 (10 microM), which promotes the open state of L-type calcium channels, enhanced glutamate release. These results indicate that photoreceptor glutamate release is controlled mainly by dihydropyridine-sensitive calcium channels. A dependence of glutamate release on L-type calcium channels also has been reported for depolarizing bipolar cells of a fish retina. Thus, it appears that non-inactivating L-type calcium channels are appropriate to mediate transmitter release in neurons whose physiological responses are sustained, graded potentials.
Collapse
Affiliation(s)
- Y Schmitz
- Department of Ophthalmology, New York University Medical Center, New York 10016, USA
| | | |
Collapse
|
36
|
Arriza JL, Eliasof S, Kavanaugh MP, Amara SG. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci U S A 1997; 94:4155-60. [PMID: 9108121 PMCID: PMC20584 DOI: 10.1073/pnas.94.8.4155] [Citation(s) in RCA: 714] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although a glutamate-gated chloride conductance with the properties of a sodium-dependent glutamate transporter has been described in vertebrate retinal photoreceptors and bipolar cells, the molecular species underlying this conductance has not yet been identified. We now report the cloning and functional characterization of a human excitatory amino acid transporter, EAAT5, expressed primarily in retina. Although EAAT5 shares the structural homologies of the EAAT gene family, one novel feature of the EAAT5 sequence is a carboxy-terminal motif identified previously in N-methyl-D-aspartate receptors and potassium channels and shown to confer interactions with a family of synaptic proteins that promote ion channel clustering. Functional properties of EAAT5 were examined in the Xenopus oocyte expression system by measuring radiolabeled glutamate flux and two-electrode voltage clamp recording. EAAT5-mediated L-glutamate uptake is sodium- and voltage-dependent and chloride-independent. Transporter currents elicited by glutamate are also sodium- and voltage-dependent, but ion substitution experiments suggest that this current is largely carried by chloride ions. These properties of EAAT5 are similar to the glutamate-elicited chloride conductances previously described in retinal neurons, suggesting that the EAAT5-associated chloride conductance may participate in visual processing.
Collapse
Affiliation(s)
- J L Arriza
- Vollum Institute for Advanced Biomedical Research, Oregon Health Sciences University, Portland 97210, USA
| | | | | | | |
Collapse
|
37
|
Eliasof S, Jahr CE. Retinal glial cell glutamate transporter is coupled to an anionic conductance. Proc Natl Acad Sci U S A 1996; 93:4153-8. [PMID: 8633032 PMCID: PMC39503 DOI: 10.1073/pnas.93.9.4153] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Application of L-glutamate to retinal glial (Müller) cells results in an inwardly rectifying current due to the net influx of one positive charge per molecule of glutamate transported into the cell. However, at positive potentials an outward current can be elicited by glutamate. This outward current is eliminated by removal of external chloride ions. Substitution of external chloride with the anions thiocyanate, perchlorate, nitrate, and iodide, which are known to be more permeant at other chloride channels, results in a considerably larger glutamate-elicited outward current at positive potentials. The large outward current in external nitrate has the same ionic dependence, apparent affinity for L-glutamate, and pharmacology as the glutamate transporter previously reported to exist in these cells. Varying the concentration of external nitrate shifts the reversal potential in a manner consistent with a conductance permeable to nitrate. Together, these results suggest that the glutamate transporter in retinal glial cells is associated with an anionic conductance. This anionic conductance may be important for preventing a reduction in the rate of transport due the depolarization that would otherwise occur as a result of electrogenic glutamate uptake.
Collapse
Affiliation(s)
- S Eliasof
- Vollum Institute, Oregon Health Sciences University, Portland 97201, USA
| | | |
Collapse
|