1
|
Moses E, Yu Z, Taubert J, Pegna AJ. Investigating the hemiretinal asymmetry in emotion processing as a function of spatial frequency. Proc Biol Sci 2024; 291:20241909. [PMID: 39500374 PMCID: PMC11537754 DOI: 10.1098/rspb.2024.1909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 11/09/2024] Open
Abstract
The subcortical visual pathway to the amygdala has long been considered a rapid and crude stream for processing emotionally salient information that is reliant on low spatial frequency (LSF) information. Recently, research has called this LSF dependency into question. To resolve this debate, we take advantage of an anatomical hemiretinal asymmetry, whereby the nasal hemiretina sends a higher proportion of information through the subcortical pathway than the temporal hemiretina. We recorded brain activity using electroencephalography (EEG) in human participants (N = 40) while they completed a monocular viewing paradigm. Pairs of faces (one fearful and one neutral, or both neutral) were projected simultaneously to the nasal and temporal hemiretina in three contrast-equated blocks; faces filtered to display only (i) LSF, (ii) high spatial frequency (HSF), or (iii) unfiltered information (broadband spatial frequency; BSF). BSF fearful faces were found to produce a greater naso-temporal asymmetry, with greater N170 amplitudes evoked by BSF faces in the nasal field, compared to HSF faces. Conversely, the naso-temporal asymmetry for LSF fearful faces did not differ between BSF and HSF. Collectively, these findings provide crucial evidence that the subcortical pathway carries combined spatial frequency visual signals, with a potential bias against HSF content.
Collapse
Affiliation(s)
- Eleanor Moses
- School of Psychology, The University of Queensland, Brisbane, Queensland4072, Australia
| | - Zhou Yu
- School of Psychology, The University of Queensland, Brisbane, Queensland4072, Australia
| | - Jessica Taubert
- School of Psychology, The University of Queensland, Brisbane, Queensland4072, Australia
| | - Alan J. Pegna
- School of Psychology, The University of Queensland, Brisbane, Queensland4072, Australia
| |
Collapse
|
2
|
Antal C, de Almeida RG. Grasping the Concept of an Object at a Glance: Category Information Accessed by Brief Dichoptic Presentation. Cogn Sci 2024; 48:e70002. [PMID: 39428757 DOI: 10.1111/cogs.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/14/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
What type of conceptual information about an object do we get at a brief glance? In two experiments, we investigated the nature of conceptual tokening-the moment at which conceptual information about an object is accessed. Using a masked picture-word congruency task with dichoptic presentations at "brief" (50-60 ms) and "long" (190-200 ms) durations, participants judged the relation between a picture (e.g., a banana) and a word representing one of four property types about the object: superordinate (fruit), basic level (banana), a high-salient (yellow), or low-salient feature (peel). In Experiment 1, stimuli were presented in black-and-white; in Experiment 2, they were presented in red and blue, with participants wearing red-blue anaglyph glasses. This manipulation allowed for the independent projection of stimuli to the left- and right-hemisphere visual areas, aiming to probe the early effects of these projections in conceptual tokening. Results showed that superordinate and basic-level properties elicited faster and more accurate responses than high- and low-salient features at both presentation times. This advantage persisted even when the objects were divided into categories (e.g., animals, vegetables, vehicles, tools), and when objects contained high-salient visual features. However, contrasts between categories show that animals, fruits, and vegetables tend to be categorized at the superordinate level, while vehicles tend to be categorized at the basic level. Also, for a restricted class of objects, high-salient features representing diagnostic color information (yellow for the picture of a banana) facilitated congruency judgments to the same extent as that of superordinate and basic-level labels. We suggest that early access to object concepts yields superordinate and basic-level information, with features only yielding effects at a later stage of processing, unless they represent diagnostic color information. We discuss these results advancing a unified theory of conceptual representation, integrating key postulates of atomism and feature-based theories.
Collapse
Affiliation(s)
- Caitlyn Antal
- Department of Psychology, McGill University
- Department of Psychology, Concordia University
| | | |
Collapse
|
3
|
He J, Mingolla E, Eskew RT. Psychophysics of neon color spreading: Chromatic and temporal factors are not limiting. Vision Res 2024; 223:108460. [PMID: 39094263 DOI: 10.1016/j.visres.2024.108460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Neon color spreading (NCS) is an illusory color phenomenon that provides a dramatic example of surface completion and filling-in. Numerous studies have varied both spatial and temporal aspects of the neon-generating stimulus to explore variations in the strength of the effect. Here, we take a novel, parametric, low-level psychophysical approach to studying NCS in two experiments. In Experiment 1, we test the ability of both cone-isolating and equiluminant stimuli to generate neon color spreading for both increments and decrements in cone modulations. As expected, sensitivity was low to S(hort-wavelength) cone stimuli due to their poor spatial resolution, but sensitivity was similar for the other color directions. We show that when these differences in detection sensitivity are accounted for, the particular cone type, and the polarity (increment or decrement), make little difference in generating neon color spreading, with NCS visible at about twice detection threshold level in all cases. In Experiment 2, we use L-cone flicker modulations (reddish and greenish excursions around grey) to study sensitivity to NCS as a function of temporal frequency from 0.5 to 8 Hz. After accounting for detectability, the temporal contrast sensitivity functions for NCS are approximately constant or even increase over the studied frequency range. Therefore there is no evidence in this study that the processes underlying NCS are slower than the low-level processes of simple flicker detection. These results point to relatively fast mechanisms, not slow diffusion processes, as the substrate for NCS.
Collapse
Affiliation(s)
- Jingyi He
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA
| | - Ennio Mingolla
- Communication Sciences and Disorders, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Rhea T Eskew
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| |
Collapse
|
4
|
Zhang LA, Li P, Callaway EM. High-Resolution Laminar Identification in Macaque Primary Visual Cortex Using Neuropixels Probes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576944. [PMID: 38328229 PMCID: PMC10849622 DOI: 10.1101/2024.01.23.576944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Laminar electrode arrays allow simultaneous recording of activity of many cortical neurons and assignment to layers using current source density (CSD) analyses. Electrode arrays with 100-micron contact spacing have been used to estimate borders between layer 4 versus superficial or deep layers, but in macaque primary visual cortex (V1) there are far more layers, such as 4A which is only 50-100 microns thick. Neuropixels electrode arrays have 20-micron spacing, and thus could potentially discern thinner layers and more precisely identify laminar borders. Here we show that laminar distributions of CSDs lack consistency and the spatial resolution required for thin layers and accurate layer boundaries. To take full advantage of high density Neuropixels arrays, we have developed approaches based on higher resolution electrical signals and analyses, including spike waveforms and spatial spread, unit density, high-frequency action potential (AP) power spectrum, temporal power change, and coherence spectrum, that afford far higher resolution of laminar distinctions, including the ability to precisely detect the borders of even the thinnest layers of V1.
Collapse
Affiliation(s)
- Li A. Zhang
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Peichao Li
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | | |
Collapse
|
5
|
Wong AL, Eyssalenne AN, Carter L, Therrien AS. Different Sensory Information Is Used for State Estimation when Stationary or Moving. eNeuro 2024; 11:ENEURO.0357-23.2024. [PMID: 39147580 PMCID: PMC11376429 DOI: 10.1523/eneuro.0357-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 07/19/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
The accurate estimation of limb state is necessary for movement planning and execution. While state estimation requires both feedforward and feedback information, we focus here on the latter. Prior literature has shown that integrating visual and proprioceptive feedback improves estimates of static limb position. However, differences in visual and proprioceptive feedback delays suggest that multisensory integration could be disadvantageous when the limb is moving. We formalized this hypothesis by modeling feedback-based state estimation using the long-standing maximum likelihood estimation model of multisensory integration, which we updated to account for sensory delays. Our model predicted that the benefit of multisensory integration was largely lost when the limb was passively moving. We tested this hypothesis in a series of experiments in human subjects that compared the degree of interference created by discrepant visual or proprioceptive feedback when estimating limb position either statically at the end of the movement or dynamically at movement midpoint. In the static case, we observed significant interference: discrepant feedback in one modality systematically biased sensory estimates based on the other modality. However, no interference was seen in the dynamic case: participants could ignore sensory feedback from one modality and accurately reproduce the motion indicated by the other modality. Together, these findings suggest that the sensory feedback used to compute a state estimate differs depending on whether the limb is stationary or moving. While the former may tend toward multimodal integration, the latter is more likely to be based on feedback from a single sensory modality.
Collapse
Affiliation(s)
- Aaron L Wong
- Moss Rehabilitation Research Institute, Thomas Jefferson University, Elkins Park, Pennsylvania 19027
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Alyssa N Eyssalenne
- Moss Rehabilitation Research Institute, Thomas Jefferson University, Elkins Park, Pennsylvania 19027
| | - Luke Carter
- Moss Rehabilitation Research Institute, Thomas Jefferson University, Elkins Park, Pennsylvania 19027
| | - Amanda S Therrien
- Moss Rehabilitation Research Institute, Thomas Jefferson University, Elkins Park, Pennsylvania 19027
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
6
|
Wong AL, Eyssalenne AN, Carter L, Therrien AS. Different sensory information is used for state estimation when stationary or moving. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.01.555979. [PMID: 37732193 PMCID: PMC10508725 DOI: 10.1101/2023.09.01.555979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The accurate estimation of limb state is necessary for movement planning and execution. While state estimation requires both feedforward and feedback information, we focus here on the latter. Prior literature has shown that integrating visual and proprioceptive feedback improves estimates of static limb position. However, differences in visual and proprioceptive feedback delays suggest that multisensory integration could be disadvantageous when the limb is moving. We formalized this hypothesis by modeling feedback-based state estimation using the longstanding maximum likelihood estimation model of multisensory integration, which we updated to account for sensory delays. Our model predicted that the benefit of multisensory integration was largely lost when the limb was passively moving. We tested this hypothesis in a series of experiments in human subjects that compared the degree of interference created by discrepant visual or proprioceptive feedback when estimating limb position either statically at the end of the movement or dynamically at movement midpoint. In the static case, we observed significant interference: discrepant feedback in one modality systematically biased sensory estimates based on the other modality. However, no interference was seen in the dynamic case: participants could ignore sensory feedback from one modality and accurately reproduce the motion indicated by the other modality. Together, these findings suggest that the sensory feedback used to compute a state estimate differs depending on whether the limb is stationary or moving. While the former may tend toward multimodal integration, the latter is more likely to be based on feedback from a single sensory modality.
Collapse
Affiliation(s)
- Aaron L Wong
- Moss Rehabilitation Research Institute, Thomas Jefferson University, Elkins Park, PA, USA
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alyssa N Eyssalenne
- Moss Rehabilitation Research Institute, Thomas Jefferson University, Elkins Park, PA, USA
| | - Luke Carter
- Moss Rehabilitation Research Institute, Thomas Jefferson University, Elkins Park, PA, USA
| | - Amanda S Therrien
- Moss Rehabilitation Research Institute, Thomas Jefferson University, Elkins Park, PA, USA
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
7
|
Kim I, Kupers ER, Lerma-Usabiaga G, Grill-Spector K. Characterizing Spatiotemporal Population Receptive Fields in Human Visual Cortex with fMRI. J Neurosci 2024; 44:e0803232023. [PMID: 37963768 PMCID: PMC10866195 DOI: 10.1523/jneurosci.0803-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
The use of fMRI and computational modeling has advanced understanding of spatial characteristics of population receptive fields (pRFs) in human visual cortex. However, we know relatively little about the spatiotemporal characteristics of pRFs because neurons' temporal properties are one to two orders of magnitude faster than fMRI BOLD responses. Here, we developed an image-computable framework to estimate spatiotemporal pRFs from fMRI data. First, we developed a simulation software that predicts fMRI responses to a time-varying visual input given a spatiotemporal pRF model and solves the model parameters. The simulator revealed that ground-truth spatiotemporal parameters can be accurately recovered at the millisecond resolution from synthesized fMRI responses. Then, using fMRI and a novel stimulus paradigm, we mapped spatiotemporal pRFs in individual voxels across human visual cortex in 10 participants (both females and males). We find that a compressive spatiotemporal (CST) pRF model better explains fMRI responses than a conventional spatial pRF model across visual areas spanning the dorsal, lateral, and ventral streams. Further, we find three organizational principles of spatiotemporal pRFs: (1) from early to later areas within a visual stream, spatial and temporal windows of pRFs progressively increase in size and show greater compressive nonlinearities, (2) later visual areas show diverging spatial and temporal windows across streams, and (3) within early visual areas (V1-V3), both spatial and temporal windows systematically increase with eccentricity. Together, this computational framework and empirical results open exciting new possibilities for modeling and measuring fine-grained spatiotemporal dynamics of neural responses using fMRI.
Collapse
Affiliation(s)
- Insub Kim
- Department of Psychology, Stanford University, Stanford, CA, 94305
| | - Eline R Kupers
- Department of Psychology, Stanford University, Stanford, CA, 94305
| | - Garikoitz Lerma-Usabiaga
- BCBL. Basque Center on Cognition, Brain and Language, 20009 San Sebastian, Spain
- IKERBASQUE. Basque Foundation for Science, 48009 Bilbao, Spain
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305
| |
Collapse
|
8
|
Wang X, Nandy AS, Jadi MP. Laminar compartmentalization of attention modulation in area V4 aligns with the demands of visual processing hierarchy in the cortex. Sci Rep 2023; 13:19558. [PMID: 37945642 PMCID: PMC10636153 DOI: 10.1038/s41598-023-46722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023] Open
Abstract
Attention selectively enhances neural responses to low contrast stimuli in visual area V4, a critical hub that sends projections both up and down the visual hierarchy. Veridical encoding of contrast information is a key computation in early visual areas, while later stages encoding higher level features benefit from improved sensitivity to low contrast. How area V4 meets these distinct information processing demands in the attentive state is unknown. We found that attentional modulation in V4 is cortical layer and cell-class specific. Putative excitatory neurons in the superficial layers show enhanced boosting of low contrast information, while those of deep layers exhibit contrast-independent scaling. Computational modeling suggested the extent of spatial integration of inhibitory neurons as the mechanism behind such laminar differences. Considering that superficial neurons are known to project to higher areas and deep layers to early visual areas, our findings suggest that the interactions between attention and contrast in V4 are compartmentalized, in alignment with the demands of the visual processing hierarchy.
Collapse
Affiliation(s)
- Xiang Wang
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06511, USA
| | - Anirvan S Nandy
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06511, USA
- Department of Neuroscience, Yale University, New Haven, CT, 06511, USA
| | - Monika P Jadi
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06511, USA.
- Department of Psychiatry, Yale University, New Haven, CT, 06511, USA.
- Department of Neuroscience, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
9
|
Uejima T, Mancinelli E, Niebur E, Etienne-Cummings R. The influence of stereopsis on visual saliency in a proto-object based model of selective attention. Vision Res 2023; 212:108304. [PMID: 37542763 PMCID: PMC10592191 DOI: 10.1016/j.visres.2023.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023]
Abstract
Some animals including humans use stereoscopic vision which reconstructs spatial information about the environment from the disparity between images captured by eyes in two separate adjacent locations. Like other sensory information, such stereoscopic information is expected to influence attentional selection. We develop a biologically plausible model of binocular vision to study its effect on bottom-up visual attention, i.e., visual saliency. In our model, the scene is organized in terms of proto-objects on which attention acts, rather than on unbound sets of elementary features. We show that taking into account the stereoscopic information improves the performance of the model in the prediction of human eye movements with statistically significant differences.
Collapse
Affiliation(s)
- Takeshi Uejima
- The Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA.
| | - Elena Mancinelli
- The Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Ernst Niebur
- The Solomon Snyder Department of Neuroscience and the Zanvyl Krieger Mind/Brain Institute, The Johns Hopkins University, Baltimore, MD, USA
| | - Ralph Etienne-Cummings
- The Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
10
|
Singer Y, Taylor L, Willmore BDB, King AJ, Harper NS. Hierarchical temporal prediction captures motion processing along the visual pathway. eLife 2023; 12:e52599. [PMID: 37844199 PMCID: PMC10629830 DOI: 10.7554/elife.52599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Visual neurons respond selectively to features that become increasingly complex from the eyes to the cortex. Retinal neurons prefer flashing spots of light, primary visual cortical (V1) neurons prefer moving bars, and those in higher cortical areas favor complex features like moving textures. Previously, we showed that V1 simple cell tuning can be accounted for by a basic model implementing temporal prediction - representing features that predict future sensory input from past input (Singer et al., 2018). Here, we show that hierarchical application of temporal prediction can capture how tuning properties change across at least two levels of the visual system. This suggests that the brain does not efficiently represent all incoming information; instead, it selectively represents sensory inputs that help in predicting the future. When applied hierarchically, temporal prediction extracts time-varying features that depend on increasingly high-level statistics of the sensory input.
Collapse
Affiliation(s)
- Yosef Singer
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Luke Taylor
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Ben DB Willmore
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Nicol S Harper
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
11
|
Kehoe DH, Fallah M. Oculomotor feature discrimination is cortically mediated. Front Syst Neurosci 2023; 17:1251933. [PMID: 37899790 PMCID: PMC10600481 DOI: 10.3389/fnsys.2023.1251933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Eye movements are often directed toward stimuli with specific features. Decades of neurophysiological research has determined that this behavior is subserved by a feature-reweighting of the neural activation encoding potential eye movements. Despite the considerable body of research examining feature-based target selection, no comprehensive theoretical account of the feature-reweighting mechanism has yet been proposed. Given that such a theory is fundamental to our understanding of the nature of oculomotor processing, we propose an oculomotor feature-reweighting mechanism here. We first summarize the considerable anatomical and functional evidence suggesting that oculomotor substrates that encode potential eye movements rely on the visual cortices for feature information. Next, we highlight the results from our recent behavioral experiments demonstrating that feature information manifests in the oculomotor system in order of featural complexity, regardless of whether the feature information is task-relevant. Based on the available evidence, we propose an oculomotor feature-reweighting mechanism whereby (1) visual information is projected into the oculomotor system only after a visual representation manifests in the highest stage of the cortical visual processing hierarchy necessary to represent the relevant features and (2) these dynamically recruited cortical module(s) then perform feature discrimination via shifting neural feature representations, while also maintaining parity between the feature representations in cortical and oculomotor substrates by dynamically reweighting oculomotor vectors. Finally, we discuss how our behavioral experiments may extend to other areas in vision science and its possible clinical applications.
Collapse
Affiliation(s)
- Devin H. Kehoe
- Department of Psychology, York University, Toronto, ON, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
- VISTA: Vision Science to Applications, York University, Toronto, ON, Canada
- Canadian Action and Perception Network, Canada
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Mazyar Fallah
- Department of Psychology, York University, Toronto, ON, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
- Canadian Action and Perception Network, Canada
- College of Biological Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
12
|
Kim I, Kupers ER, Lerma-Usabiaga G, Grill-Spector K. Characterizing spatiotemporal population receptive fields in human visual cortex with fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539164. [PMID: 37205541 PMCID: PMC10187260 DOI: 10.1101/2023.05.02.539164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The use of fMRI and computational modeling has advanced understanding of spatial characteristics of population receptive fields (pRFs) in human visual cortex. However, we know relatively little about the spatiotemporal characteristics of pRFs because neurons' temporal properties are one to two orders of magnitude faster than fMRI BOLD responses. Here, we developed an image-computable framework to estimate spatiotemporal pRFs from fMRI data. First, we developed a simulation software that predicts fMRI responses to a time varying visual input given a spatiotemporal pRF model and solves the model parameters. The simulator revealed that ground-truth spatiotemporal parameters can be accurately recovered at the millisecond resolution from synthesized fMRI responses. Then, using fMRI and a novel stimulus paradigm, we mapped spatiotemporal pRFs in individual voxels across human visual cortex in 10 participants. We find that a compressive spatiotemporal (CST) pRF model better explains fMRI responses than a conventional spatial pRF model across visual areas spanning the dorsal, lateral, and ventral streams. Further, we find three organizational principles of spatiotemporal pRFs: (i) from early to later areas within a visual stream, spatial and temporal integration windows of pRFs progressively increase in size and show greater compressive nonlinearities, (ii) later visual areas show diverging spatial and temporal integration windows across streams, and (iii) within early visual areas (V1-V3), both spatial and temporal integration windows systematically increase with eccentricity. Together, this computational framework and empirical results open exciting new possibilities for modeling and measuring fine-grained spatiotemporal dynamics of neural responses in the human brain using fMRI.
Collapse
Affiliation(s)
- Insub Kim
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Eline R. Kupers
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Garikoitz Lerma-Usabiaga
- BCBL. Basque Center on Cognition, Brain and Language, San Sebastian, Spain
- IKERBASQUE. Basque foundation for science, Bilbao, Spain
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
13
|
Schuurmans JP, Bennett MA, Petras K, Goffaux V. Backward masking reveals coarse-to-fine dynamics in human V1. Neuroimage 2023; 274:120139. [PMID: 37137434 DOI: 10.1016/j.neuroimage.2023.120139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
Natural images exhibit luminance variations aligned across a broad spectrum of spatial frequencies (SFs). It has been proposed that, at early stages of processing, the coarse signals carried by the low SF (LSF) of the visual input are sent rapidly from primary visual cortex (V1) to ventral, dorsal and frontal regions to form a coarse representation of the input, which is later sent back to V1 to guide the processing of fine-grained high SFs (i.e., HSF). We used functional resonance imaging (fMRI) to investigate the role of human V1 in the coarse-to-fine integration of visual input. We disrupted the processing of the coarse and fine content of full-spectrum human face stimuli via backward masking of selective SF ranges (LSFs: <1.75cpd and HSFs: >1.75cpd) at specific times (50, 83, 100 or 150ms). In line with coarse-to-fine proposals, we found that (1) the selective masking of stimulus LSF disrupted V1 activity in the earliest time window, and progressively decreased in influence, while (2) an opposite trend was observed for the masking of stimulus' HSF. This pattern of activity was found in V1, as well as in ventral (i.e. the Fusiform Face area, FFA), dorsal and orbitofrontal regions. We additionally presented subjects with contrast negated stimuli. While contrast negation significantly reduced response amplitudes in the FFA, as well as coupling between FFA and V1, coarse-to-fine dynamics were not affected by this manipulation. The fact that V1 response dynamics to strictly identical stimulus sets differed depending on the masked scale adds to growing evidence that V1 role goes beyond the early and quasi-passive transmission of visual information to the rest of the brain. It instead indicates that V1 may yield a 'spatially registered common forum' or 'blackboard' that integrates top-down inferences with incoming visual signals through its recurrent interaction with high-level regions located in the inferotemporal, dorsal and frontal regions.
Collapse
Affiliation(s)
- Jolien P Schuurmans
- Psychological Sciences Research Institute (IPSY), UC Louvain, Louvain-la-Neuve, Belgium.
| | - Matthew A Bennett
- Psychological Sciences Research Institute (IPSY), UC Louvain, Louvain-la-Neuve, Belgium; Institute of Neuroscience (IONS), UC Louvain, Louvain-la-Neuve, Belgium
| | - Kirsten Petras
- Integrative Neuroscience and Cognition Center, CNRS, Université Paris Cité, Paris, France
| | - Valérie Goffaux
- Psychological Sciences Research Institute (IPSY), UC Louvain, Louvain-la-Neuve, Belgium; Institute of Neuroscience (IONS), UC Louvain, Louvain-la-Neuve, Belgium; Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
14
|
Impact of glaucoma on the spatial frequency processing of scenes in central vision. Vis Neurosci 2023; 40:E001. [PMID: 36752177 PMCID: PMC9970733 DOI: 10.1017/s0952523822000086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Glaucoma is an eye disease characterized by a progressive vision loss usually starting in peripheral vision. However, a deficit for scene categorization is observed even in the preserved central vision of patients with glaucoma. We assessed the processing and integration of spatial frequencies in the central vision of patients with glaucoma during scene categorization, considering the severity of the disease, in comparison to age-matched controls. In the first session, participants had to categorize scenes filtered in low-spatial frequencies (LSFs) and high-spatial frequencies (HSFs) as a natural or an artificial scene. Results showed that the processing of spatial frequencies was impaired only for patients with severe glaucoma, in particular for HFS scenes. In the light of proactive models of visual perception, we investigated how LSF could guide the processing of HSF in a second session. We presented hybrid scenes (combining LSF and HSF from two scenes belonging to the same or different semantic category). Participants had to categorize the scene filtered in HSF while ignoring the scene filtered in LSF. Surprisingly, results showed that the semantic influence of LSF on HSF was greater for patients with early glaucoma than controls, and then disappeared for the severe cases. This study shows that a progressive destruction of retinal ganglion cells affects the spatial frequency processing in central vision. This deficit may, however, be compensated by increased reliance on predictive mechanisms at early stages of the disease which would however decline in more severe cases.
Collapse
|
15
|
Bartsch F, Cumming BG, Butts DA. Model-based characterization of the selectivity of neurons in primary visual cortex. J Neurophysiol 2022; 128:350-363. [PMID: 35766377 PMCID: PMC9359659 DOI: 10.1152/jn.00416.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 06/13/2022] [Accepted: 06/25/2022] [Indexed: 11/22/2022] Open
Abstract
Statistical models are increasingly being used to understand the complexity of stimulus selectivity in primary visual cortex (V1) in the context of complex time-varying stimuli, replacing averaging responses to simple parametric stimuli. Although such models often can more accurately reflect the computations performed by V1 neurons in more natural visual environments, they do not by themselves provide insight into V1 neural selectivity to basic stimulus features such as receptive field size, spatial frequency tuning, and phase invariance. Here, we present a battery of analyses that can be directly applied to encoding models to link complex encoding models to more interpretable aspects of stimulus selectivity. We apply this battery to nonlinear models of V1 neurons recorded in awake macaque during random bar stimuli. In linking model properties to more classical measurements, we demonstrate several novel aspects of V1 selectivity not available to simpler experimental measurements. For example, this approach reveals that individual spatiotemporal elements of the V1 models often have a smaller spatial scale than the neuron as a whole, resulting in nontrivial tuning to spatial frequencies. In addition, we propose measures of nonlinear integration that suggest that classical classifications of V1 neurons into simple versus complex cells will be spatial-frequency dependent. In total, rather than obfuscate classical characterizations of V1 neurons, model-based characterizations offer a means to more fully understand their selectivity, and link their classical tuning properties to their roles in more complex, natural, visual processing.NEW & NOTEWORTHY Visual neurons are increasingly being studied with more complex, natural visual stimuli, and increasingly complex models are necessary to characterize their response properties. Here, we describe a battery of analyses that relate these more complex models to classical characterizations. Using such model-based characterizations of V1 neurons furthermore yields several new insights into V1 processing not possible to capture in more classical means to measure their visual selectivity.
Collapse
Affiliation(s)
- Felix Bartsch
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland
| | - Bruce G Cumming
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, Maryland
| | - Daniel A Butts
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland
| |
Collapse
|
16
|
Adaptive erasure of spurious sequences in sensory cortical circuits. Neuron 2022; 110:1857-1868.e5. [PMID: 35358415 PMCID: PMC9616807 DOI: 10.1016/j.neuron.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 11/12/2021] [Accepted: 03/07/2022] [Indexed: 12/02/2022]
Abstract
Sequential activity reflecting previously experienced temporal sequences is considered a hallmark of learning across cortical areas. However, it is unknown how cortical circuits avoid the converse problem: producing spurious sequences that are not reflecting sequences in their inputs. We develop methods to quantify and study sequentiality in neural responses. We show that recurrent circuit responses generally include spurious sequences, which are specifically prevented in circuits that obey two widely known features of cortical microcircuit organization: Dale’s law and Hebbian connectivity. In particular, spike-timing-dependent plasticity in excitation-inhibition networks leads to an adaptive erasure of spurious sequences. We tested our theory in multielectrode recordings from the visual cortex of awake ferrets. Although responses to natural stimuli were largely non-sequential, responses to artificial stimuli initially included spurious sequences, which diminished over extended exposure. These results reveal an unexpected role for Hebbian experience-dependent plasticity and Dale’s law in sensory cortical circuits. Recurrent circuits generate spurious sequences without sequential inputs A principled measure of total sequentiality in population responses is developed Theory predicts that Hebbian plasticity should abolish spurious sequences Spurious sequences in the visual cortex diminish with experience
Collapse
|
17
|
Bellet J, Gay M, Dwarakanath A, Jarraya B, van Kerkoerle T, Dehaene S, Panagiotaropoulos TI. Decoding rapidly presented visual stimuli from prefrontal ensembles without report nor post-perceptual processing. Neurosci Conscious 2022; 2022:niac005. [PMID: 35223085 PMCID: PMC8868130 DOI: 10.1093/nc/niac005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 12/09/2021] [Accepted: 01/27/2022] [Indexed: 11/14/2022] Open
Abstract
The role of the primate prefrontal cortex (PFC) in conscious perception is debated. The global neuronal workspace theory of consciousness predicts that PFC neurons should contain a detailed code of the current conscious contents. Previous research showed that PFC is indeed activated in paradigms of conscious visual perception, including no-report paradigms where no voluntary behavioral report of the percept is given, thus avoiding a conflation of signals related to visual consciousness with signals related to the report. Still, it has been argued that prefrontal modulation could reflect post-perceptual processes that may be present even in the absence of report, such as thinking about the perceived stimulus, therefore reflecting a consequence rather than a direct correlate of conscious experience. Here, we investigate these issues by recording neuronal ensemble activity from the macaque ventrolateral PFC during briefly presented visual stimuli, either in isolated trials in which stimuli were clearly perceived or in sequences of rapid serial visual presentation (RSVP) in which perception and post-perceptual processing were challenged. We report that the identity of each stimulus could be decoded from PFC population activity even in the RSVP condition. The first visual signals could be detected at 60 ms after stimulus onset and information was maximal at 150 ms. However, in the RSVP condition, 200 ms after the onset of a stimulus, the decoding accuracy quickly dropped to chance level and the next stimulus started to be decodable. Interestingly, decoding in the ventrolateral PFC was stronger compared to posterior parietal cortex for both isolated and RSVP stimuli. These results indicate that neuronal populations in the macaque PFC reliably encode visual stimuli even under conditions that have been shown to challenge conscious perception and/or substantially reduce the probability of post-perceptual processing in humans. We discuss whether the observed activation reflects conscious access, phenomenal consciousness, or merely a preconscious bottom-up wave.
Collapse
Affiliation(s)
- Joachim Bellet
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| | - Marion Gay
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| | - Abhilash Dwarakanath
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| | - Timo van Kerkoerle
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| | - Theofanis I Panagiotaropoulos
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| |
Collapse
|
18
|
Shinn M, Lee D, Murray JD, Seo H. Transient neuronal suppression for exploitation of new sensory evidence. Nat Commun 2022; 13:23. [PMID: 35013222 PMCID: PMC8748884 DOI: 10.1038/s41467-021-27697-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
In noisy but stationary environments, decisions should be based on the temporal integration of sequentially sampled evidence. This strategy has been supported by many behavioral studies and is qualitatively consistent with neural activity in multiple brain areas. By contrast, decision-making in the face of non-stationary sensory evidence remains poorly understood. Here, we trained monkeys to identify and respond via saccade to the dominant color of a dynamically refreshed bicolor patch that becomes informative after a variable delay. Animals’ behavioral responses were briefly suppressed after evidence changes, and many neurons in the frontal eye field displayed a corresponding dip in activity at this time, similar to that frequently observed after stimulus onset but sensitive to stimulus strength. Generalized drift-diffusion models revealed consistency of behavior and neural activity with brief suppression of motor output, but not with pausing or resetting of evidence accumulation. These results suggest that momentary arrest of motor preparation is important for dynamic perceptual decision making. While evidence is constantly changing during real-world decisions, little is known about how the brain deals with such changes. Here, the authors show that the brain strategically suppresses motor output via the frontal eye fields in response to stimulus changes.
Collapse
Affiliation(s)
- Maxwell Shinn
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06520, USA.,Department of Psychiatry, Yale University, New Haven, CT, 06520, USA
| | - Daeyeol Lee
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA.,Kavli Discovery Neuroscience Institute, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - John D Murray
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06520, USA. .,Department of Psychiatry, Yale University, New Haven, CT, 06520, USA. .,Department of Physics, Yale University, New Haven, CT, 06520, USA. .,Department of Neuroscience, Yale University, New Haven, CT, 06520, USA.
| | - Hyojung Seo
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06520, USA. .,Department of Psychiatry, Yale University, New Haven, CT, 06520, USA. .,Department of Neuroscience, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
19
|
Gieselmann MA, Thiele A. Stimulus dependence of directed information exchange between cortical layers in macaque V1. eLife 2022; 11:62949. [PMID: 35274614 PMCID: PMC8916775 DOI: 10.7554/elife.62949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/08/2022] [Indexed: 11/15/2022] Open
Abstract
Perception and cognition require the integration of feedforward sensory information with feedback signals. Using different sized stimuli, we isolate spectral signatures of feedforward and feedback signals, and their effect on communication between layers in primary visual cortex of male macaque monkeys. Small stimuli elicited gamma frequency oscillations predominantly in the superficial layers. These Granger-causally originated in upper layer 4 and lower supragranular layers. Unexpectedly, large stimuli generated strong narrow band gamma oscillatory activity across cortical layers. They Granger-causally arose in layer 5, were conveyed through layer six to superficial layers, and violated existing models of feedback spectral signatures. Equally surprising, with large stimuli, alpha band oscillatory activity arose predominantly in granular and supragranular layers and communicated in a feedforward direction. Thus, oscillations in specific frequency bands are dynamically modulated to serve feedback and feedforward communication and are not restricted to specific cortical layers in V1.
Collapse
Affiliation(s)
| | - Alexander Thiele
- Biosciences Institute, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| |
Collapse
|
20
|
Petras K, Ten Oever S, Dalal SS, Goffaux V. Information redundancy across spatial scales modulates early visual cortical processing. Neuroimage 2021; 244:118613. [PMID: 34563683 PMCID: PMC8591375 DOI: 10.1016/j.neuroimage.2021.118613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 01/23/2023] Open
Abstract
Visual images contain redundant information across spatial scales where low spatial frequency contrast is informative towards the location and likely content of high spatial frequency detail. Previous research suggests that the visual system makes use of those redundancies to facilitate efficient processing. In this framework, a fast, initial analysis of low-spatial frequency (LSF) information guides the slower and later processing of high spatial frequency (HSF) detail. Here, we used multivariate classification as well as time-frequency analysis of MEG responses to the viewing of intact and phase scrambled images of human faces to demonstrate that the availability of redundant LSF information, as found in broadband intact images, correlates with a reduction in HSF representational dominance in both early and higher-level visual areas as well as a reduction of gamma-band power in early visual cortex. Our results indicate that the cross spatial frequency information redundancy that can be found in all natural images might be a driving factor in the efficient integration of fine image details.
Collapse
Affiliation(s)
- Kirsten Petras
- Psychological Sciences Research Institute (IPSY), UC Louvain, Belgium; Department of Cognitive Neuroscience, Maastricht University, the Netherlands.
| | - Sanne Ten Oever
- Department of Cognitive Neuroscience, Maastricht University, the Netherlands; Max Planck Institute for Psycholinguistics, the Netherlands; Donders Institute for Cognitive Neuroimaging, Radboud University, the Netherlands
| | - Sarang S Dalal
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| | - Valerie Goffaux
- Psychological Sciences Research Institute (IPSY), UC Louvain, Belgium; Institute of Neuroscience (IONS), UC Louvain, Belgium; Department of Cognitive Neuroscience, Maastricht University, the Netherlands
| |
Collapse
|
21
|
Franken TP, Reynolds JH. Columnar processing of border ownership in primate visual cortex. eLife 2021; 10:72573. [PMID: 34845986 PMCID: PMC8631947 DOI: 10.7554/elife.72573] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/28/2021] [Indexed: 11/26/2022] Open
Abstract
To understand a visual scene, the brain segregates figures from background by assigning borders to foreground objects. Neurons in primate visual cortex encode which object owns a border (border ownership), but the underlying circuitry is not understood. Here, we used multielectrode probes to record from border ownership-selective units in different layers in macaque visual area V4 to study the laminar organization and timing of border ownership selectivity. We find that border ownership selectivity occurs first in deep layer units, in contrast to spike latency for small stimuli in the classical receptive field. Units on the same penetration typically share the preferred side of border ownership, also across layers, similar to orientation preference. Units are often border ownership-selective for a range of border orientations, where the preferred sides of border ownership are systematically organized in visual space. Together our data reveal a columnar organization of border ownership in V4 where the earliest border ownership signals are not simply inherited from upstream areas, but computed by neurons in deep layers, and may thus be part of signals fed back to upstream cortical areas or the oculomotor system early after stimulus onset. The finding that preferred border ownership is clustered and can cover a wide range of spatially contiguous locations suggests that the asymmetric context integrated by these neurons is provided in a systematically clustered manner, possibly through corticocortical feedback and horizontal connections. To understand a visual scene, the brain needs to identify objects and distinguish them from background. A border marks the transition from object to background, but to differentiate which side of the border belongs to the object and which to background, the brain must integrate information across space. An early signature of this computation is that brain cells signal which side of a border is ‘owned’ by an object, also known as border ownership. But how the brain computes border ownership remains unknown. The optic nerve is a cable-like group of nerve cells that transmits information from the eye to the brain’s visual processing areas and into the visual cortex. This flow of information is often described as traveling in a feedforward direction, away from the eyes to progressively more specialized areas in the visual cortex. However, there are also numerous feedback connections in the brain, running backward from more specialized to less specialized cortical areas. To better understand the role of these feedforward and feedback circuits in the visual processing of object borders, Franken and Reynolds made use of their stereotyped projection patterns across the cortex layers. Feedforward connections terminate in the middle layers of a cortical area, whereas feedback connections terminate in upper and lower layers. Since time is required for information to traverse the cortical layers, dissecting the timing of border ownership signals may reveal if border ownership is computed in a feedforward or feedback manner. To find out more, electrodes were used to record neural activity in the upper, middle and lower layers of the visual cortex of two rhesus monkeys as they were presented with a set of abstract scenes composed of simple shapes on a background. This revealed that cells signaling border ownership in deep layers of the cortex did so before the signals appeared in the middle layer. This suggests that feedback rather than feedforward is required to compute border ownership. Moreover, Franken and Reynolds found evidence that cells that prefer the same side of border ownership are clustered in columns, showing how these neural circuits are organized within the visual cortex. In summary, Franken and Reynolds found that the circuits of the primate brain that compute border ownership occur as columns, in which cells in deep layers signal border ownership first, suggesting that border ownership relies on feedback from more specialized areas. A better understanding of how feedback in the brain works to process visual information helps us appreciate what happens when these systems are impaired.
Collapse
Affiliation(s)
- Tom P Franken
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - John H Reynolds
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| |
Collapse
|
22
|
Duan Y, Thatte J, Yaklovleva A, Norcia AM. Disparity in Context: Understanding how monocular image content interacts with disparity processing in human visual cortex. Neuroimage 2021; 237:118139. [PMID: 33964460 PMCID: PMC10786599 DOI: 10.1016/j.neuroimage.2021.118139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/24/2022] Open
Abstract
Horizontal disparities between the two eyes' retinal images are the primary cue for depth. Commonly used random ot tereograms (RDS) intentionally camouflage the disparity cue, breaking the correlations between monocular image structure and the depth map that are present in natural images. Because of the nonlinear nature of visual processing, it is unlikely that simple computational rules derived from RDS will be sufficient to explain binocular vision in natural environments. In order to understand the interplay between natural scene structure and disparity encoding, we used a depth-image-based-rendering technique and a library of natural 3D stereo pairs to synthesize two novel stereogram types in which monocular scene content was manipulated independent of scene depth information. The half-images of the novel stereograms comprised either random-dots or scrambled natural scenes, each with the same depth maps as the corresponding natural scene stereograms. Using these stereograms in a simultaneous Event-Related Potential and behavioral discrimination task, we identified multiple disparity-contingent encoding stages between 100 ~ 500 msec. The first disparity sensitive evoked potential was observed at ~100 msec after an earlier evoked potential (between ~50-100 msec) that was sensitive to the structure of the monocular half-images but blind to disparity. Starting at ~150 msec, disparity responses were stereogram-specific and predictive of perceptual depth. Complex features associated with natural scene content are thus at least partially coded prior to disparity information, but these features and possibly others associated with natural scene content interact with disparity information only after an intermediate, 2D scene-independent disparity processing stage.
Collapse
Affiliation(s)
- Yiran Duan
- Wu Tsai Neurosciences Institute, 290 Jane Stanford Way, Stanford, CA 94305
| | - Jayant Thatte
- Department of Electrical Engineering, David Packard Building, Stanford University, 350 Jane Stanford Way, Stanford, CA 94305
| | | | - Anthony M Norcia
- Wu Tsai Neurosciences Institute, 290 Jane Stanford Way, Stanford, CA 94305.
| |
Collapse
|
23
|
Orima T, Motoyoshi I. Analysis and Synthesis of Natural Texture Perception From Visual Evoked Potentials. Front Neurosci 2021; 15:698940. [PMID: 34381330 PMCID: PMC8350323 DOI: 10.3389/fnins.2021.698940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
The primate visual system analyzes statistical information in natural images and uses it for the immediate perception of scenes, objects, and surface materials. To investigate the dynamical encoding of image statistics in the human brain, we measured visual evoked potentials (VEPs) for 166 natural textures and their synthetic versions, and performed a reverse-correlation analysis of the VEPs and representative texture statistics of the image. The analysis revealed occipital VEP components strongly correlated with particular texture statistics. VEPs correlated with low-level statistics, such as subband SDs, emerged rapidly from 100 to 250 ms in a spatial frequency dependent manner. VEPs correlated with higher-order statistics, such as subband kurtosis and cross-band correlations, were observed at slightly later times. Moreover, these robust correlations enabled us to inversely estimate texture statistics from VEP signals via linear regression and to reconstruct texture images that appear similar to those synthesized with the original statistics. Additionally, we found significant differences in VEPs at 200-300 ms between some natural textures and their Portilla-Simoncelli (PS) synthesized versions, even though they shared almost identical texture statistics. This differential VEP was related to the perceptual "unnaturalness" of PS-synthesized textures. These results suggest that the visual cortex rapidly encodes image statistics hidden in natural textures specifically enough to predict the visual appearance of a texture, while it also represents high-level information beyond image statistics, and that electroencephalography can be used to decode these cortical signals.
Collapse
Affiliation(s)
- Taiki Orima
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Isamu Motoyoshi
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Brito KVP, Matias FS. Neuronal heterogeneity modulates phase synchronization between unidirectionally coupled populations with excitation-inhibition balance. Phys Rev E 2021; 103:032415. [PMID: 33862693 DOI: 10.1103/physreve.103.032415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/02/2021] [Indexed: 11/07/2022]
Abstract
Several experiments and models have highlighted the importance of neuronal heterogeneity in brain dynamics and function. However, how such a cell-to-cell diversity can affect cortical computation, synchronization, and neuronal communication is still under debate. Previous studies have focused on the effect of neuronal heterogeneity in one neuronal population. Here we are specifically interested in the effect of neuronal variability on the phase relations between two populations, which can be related to different cortical communication hypotheses. It has been recently shown that two spiking neuron populations unidirectionally connected in a sender-receiver configuration can exhibit anticipated synchronization (AS), which is characterized by a negative phase lag. This phenomenon has been reported in electrophysiological data of nonhuman primates and human EEG during a visual discrimination cognitive task. In experiments, the unidirectional coupling could be accessed by Granger causality and can be accompanied by either positive or negative phase difference between cortical areas. Here we propose a model of two coupled populations in which the neuronal heterogeneity can determine the dynamical relation between the sender and the receiver and can reproduce phase relations reported in experiments. Depending on the distribution of parameters characterizing the neuronal firing patterns, the system can exhibit both AS and the usual delayed synchronization regime (DS, with positive phase) as well as a zero-lag synchronization regime and phase bistability between AS and DS. Furthermore, we show that our network can present diversity in their phase relations maintaining the excitation-inhibition balance.
Collapse
Affiliation(s)
- Katiele V P Brito
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil
| | - Fernanda S Matias
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil
| |
Collapse
|
25
|
Peyrin C, Roux-Sibilon A, Trouilloud A, Khazaz S, Joly M, Pichat C, Boucart M, Krainik A, Kauffmann L. Semantic and Physical Properties of Peripheral Vision Are Used for Scene Categorization in Central Vision. J Cogn Neurosci 2021; 33:799-813. [PMID: 33571079 DOI: 10.1162/jocn_a_01689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Theories of visual recognition postulate that our ability to understand our visual environment at a glance is based on the extraction of the gist of the visual scene, a first global and rudimentary visual representation. Gist perception would be based on the rapid analysis of low spatial frequencies in the visual signal and would allow a coarse categorization of the scene. We aimed to study whether the low spatial resolution information available in peripheral vision could modulate the processing of visual information presented in central vision. We combined behavioral measures (Experiments 1 and 2) and fMRI measures (Experiment 2). Participants categorized a scene presented in central vision (artificial vs. natural categories) while ignoring another scene, either semantically congruent or incongruent, presented in peripheral vision. The two scenes could either share the same physical properties (similar amplitude spectrum and spatial configuration) or not. Categorization of the central scene was impaired by a semantically incongruent peripheral scene, in particular when the two scenes were physically similar. This semantic interference effect was associated with increased activation of the inferior frontal gyrus. When the two scenes were semantically congruent, the dissimilarity of their physical properties impaired the categorization of the central scene. This effect was associated with increased activation in occipito-temporal areas. In line with the hypothesis of predictive mechanisms involved in visual recognition, results suggest that semantic and physical properties of the information coming from peripheral vision would be automatically used to generate predictions that guide the processing of signal in central vision.
Collapse
|
26
|
Neural Selectivity for Visual Motion in Macaque Area V3A. eNeuro 2021; 8:ENEURO.0383-20.2020. [PMID: 33303620 PMCID: PMC7814481 DOI: 10.1523/eneuro.0383-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/18/2020] [Indexed: 11/21/2022] Open
Abstract
The processing of visual motion is conducted by dedicated pathways in the primate brain. These pathways originate with populations of direction-selective neurons in the primary visual cortex, which projects to dorsal structures like the middle temporal (MT) and medial superior temporal (MST) areas. Anatomical and imaging studies have suggested that area V3A might also be specialized for motion processing, but there have been very few studies of single-neuron direction selectivity in this area. We have therefore performed electrophysiological recordings from V3A neurons in two macaque monkeys (one male and one female) and measured responses to a large battery of motion stimuli that includes translation motion, as well as more complex optic flow patterns. For comparison, we simultaneously recorded the responses of MT neurons to the same stimuli. Surprisingly, we find that overall levels of direction selectivity are similar in V3A and MT and moreover that the population of V3A neurons exhibits somewhat greater selectivity for optic flow patterns. These results suggest that V3A should be considered as part of the motion processing machinery of the visual cortex, in both human and non-human primates.
Collapse
|
27
|
The neural mechanisms underlying directional and apparent circular motion assessed with repetitive transcranial magnetic stimulation (rTMS). Neuropsychologia 2020; 149:107656. [DOI: 10.1016/j.neuropsychologia.2020.107656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/17/2020] [Accepted: 10/12/2020] [Indexed: 01/10/2023]
|
28
|
Beul SF, Hilgetag CC. Systematic modelling of the development of laminar projection origins in the cerebral cortex: Interactions of spatio-temporal patterns of neurogenesis and cellular heterogeneity. PLoS Comput Biol 2020; 16:e1007991. [PMID: 33048930 PMCID: PMC7553356 DOI: 10.1371/journal.pcbi.1007991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/27/2020] [Indexed: 11/18/2022] Open
Abstract
The architectonic type principle conceptualizes structural connections between brain areas in terms of the relative architectonic differentiation of connected areas. It has previously been shown that spatio-temporal interactions between the time and place of neurogenesis could underlie multiple features of empirical mammalian connectomes, such as projection existence and the distribution of projection strengths. However, so far no mechanistic explanation for the emergence of typically observed laminar patterns of projection origins and terminations has been tested. Here, we expand an in silico model of the developing cortical sheet to explore which factors could potentially constrain the development of laminar projection patterns. We show that manipulations which rely solely on spatio-temporal interactions, namely the relative density of laminar compartments, a delay in the neurogenesis of infragranular layers relative to layer 1, and a delay in the neurogenesis of supragranular layers relative to infragranular layers, do not result in the striking correlation between supragranular contribution to projections and the relative differentiation of areas that is typically observed in the mammalian cortex. In contrast, we find that if we introduce systematic variation in cell-intrinsic properties, coupling them with architectonic differentiation, the resulting laminar projection patterns closely mirror the empirically observed patterns. We also find that the spatio-temporal interactions posited to occur during neurogenesis are necessary for the formation of the characteristic laminar patterns. Hence, our results indicate that the specification of the laminar patterns of projection origins may result from systematic variation in a number of cell-intrinsic properties, superimposed on the previously identified spatio-temporal interactions which are sufficient for the emergence of the architectonic type principle on the level of inter-areal connectivity in silico.
Collapse
Affiliation(s)
- Sarah F Beul
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
29
|
Machado JN, Matias FS. Phase bistability between anticipated and delayed synchronization in neuronal populations. Phys Rev E 2020; 102:032412. [PMID: 33075861 DOI: 10.1103/physreve.102.032412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Two dynamical systems unidirectionally coupled in a sender-receiver configuration can synchronize with a nonzero phase lag. In particular, the system can exhibit anticipated synchronization (AS), which is characterized by a negative phase lag, if the receiver also receives a delayed negative self-feedback. Recently, AS was shown to occur between cortical-like neuronal populations in which the self-feedback is mediated by inhibitory synapses. In this biologically plausible scenario, a transition from the usual delayed synchronization (with positive phase lag) to AS can be mediated by the inhibitory conductances in the receiver population. Here we show that depending on the relation between excitatory and inhibitory synaptic conductances the system can also exhibit phase bistability between anticipated and delayed synchronization. Furthermore, we show that the amount of noise at the receiver and the synaptic conductances can mediate the transition from stable phase locking to a bistable regime and eventually to a phase drift. We suggest that our spiking neuronal populations model could be potentially useful to study phase bistability in cortical regions related to bistable perception.
Collapse
Affiliation(s)
- Júlio Nunes Machado
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil
| | | |
Collapse
|
30
|
Desflurane Anesthesia Alters Cortical Layer-specific Hierarchical Interactions in Rat Cerebral Cortex. Anesthesiology 2020; 132:1080-1090. [PMID: 32101967 DOI: 10.1097/aln.0000000000003179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neurocognitive investigations suggest that conscious sensory perception depends on recurrent neuronal interactions among sensory, parietal, and frontal cortical regions, which are suppressed by general anesthetics. The purpose of this work was to investigate if local interactions in sensory cortex are also altered by anesthetics. The authors hypothesized that desflurane would reduce recurrent neuronal interactions in cortical layer-specific manner consistent with the anatomical disposition of feedforward and feedback pathways. METHODS Single-unit neuronal activity was measured in freely moving adult male rats (268 units; 10 animals) using microelectrode arrays chronically implanted in primary and secondary visual cortex. Layer-specific directional interactions were estimated by mutual information and transfer entropy of multineuron spike patterns within and between cortical layers three and five. The effect of incrementally increasing and decreasing steady-state concentrations of desflurane (0 to 8% to 0%) was tested for statistically significant quadratic trend across the successive anesthetic states. RESULTS Desflurane produced robust, state-dependent reduction (P = 0.001) of neuronal interactions between primary and secondary visual areas and between layers three and five, as indicated by mutual information (37 and 41% decrease at 8% desflurane from wakeful baseline at [mean ± SD] 0.52 ± 0.51 and 0.53 ± 0.51 a.u., respectively) and transfer entropy (77 and 78% decrease at 8% desflurane from wakeful baseline at 1.86 ± 1.56 a.u. and 1.87 ± 1.67 a.u., respectively). In addition, a preferential suppression of feedback between secondary and primary visual cortex was suggested by the reduction of directional index of transfer entropy overall (P = 0.001; 89% decrease at 8% desflurane from 0.11 ± 0.18 a.u. at baseline) and specifically, in layer five (P = 0.001; 108% decrease at 8% desflurane from 0.12 ± 0.19 a.u. at baseline). CONCLUSIONS Desflurane anesthesia reduces neuronal interactions in visual cortex with a preferential effect on feedback. The findings suggest that neuronal disconnection occurs locally, among hierarchical sensory regions, which may contribute to global functional disconnection underlying anesthetic-induced unconsciousness.
Collapse
|
31
|
Henry CA, Jazayeri M, Shapley RM, Hawken MJ. Distinct spatiotemporal mechanisms underlie extra-classical receptive field modulation in macaque V1 microcircuits. eLife 2020; 9:54264. [PMID: 32458798 PMCID: PMC7253173 DOI: 10.7554/elife.54264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/11/2020] [Indexed: 01/23/2023] Open
Abstract
Complex scene perception depends upon the interaction between signals from the classical receptive field (CRF) and the extra-classical receptive field (eCRF) in primary visual cortex (V1) neurons. Although much is known about V1 eCRF properties, we do not yet know how the underlying mechanisms map onto the cortical microcircuit. We probed the spatio-temporal dynamics of eCRF modulation using a reverse correlation paradigm, and found three principal eCRF mechanisms: tuned-facilitation, untuned-suppression, and tuned-suppression. Each mechanism had a distinct timing and spatial profile. Laminar analysis showed that the timing, orientation-tuning, and strength of eCRF mechanisms had distinct signatures within magnocellular and parvocellular processing streams in the V1 microcircuit. The existence of multiple eCRF mechanisms provides new insights into how V1 responds to spatial context. Modeling revealed that the differences in timing and scale of these mechanisms predicted distinct patterns of net modulation, reconciling many previous disparate physiological and psychophysical findings.
Collapse
Affiliation(s)
- Christopher A Henry
- Center for Neural Science, New York University, New York, United States.,Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
| | - Mehrdad Jazayeri
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Robert M Shapley
- Center for Neural Science, New York University, New York, United States
| | - Michael J Hawken
- Center for Neural Science, New York University, New York, United States
| |
Collapse
|
32
|
Vanni S, Hokkanen H, Werner F, Angelucci A. Anatomy and Physiology of Macaque Visual Cortical Areas V1, V2, and V5/MT: Bases for Biologically Realistic Models. Cereb Cortex 2020; 30:3483-3517. [PMID: 31897474 PMCID: PMC7233004 DOI: 10.1093/cercor/bhz322] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
The cerebral cortex of primates encompasses multiple anatomically and physiologically distinct areas processing visual information. Areas V1, V2, and V5/MT are conserved across mammals and are central for visual behavior. To facilitate the generation of biologically accurate computational models of primate early visual processing, here we provide an overview of over 350 published studies of these three areas in the genus Macaca, whose visual system provides the closest model for human vision. The literature reports 14 anatomical connection types from the lateral geniculate nucleus of the thalamus to V1 having distinct layers of origin or termination, and 194 connection types between V1, V2, and V5, forming multiple parallel and interacting visual processing streams. Moreover, within V1, there are reports of 286 and 120 types of intrinsic excitatory and inhibitory connections, respectively. Physiologically, tuning of neuronal responses to 11 types of visual stimulus parameters has been consistently reported. Overall, the optimal spatial frequency (SF) of constituent neurons decreases with cortical hierarchy. Moreover, V5 neurons are distinct from neurons in other areas for their higher direction selectivity, higher contrast sensitivity, higher temporal frequency tuning, and wider SF bandwidth. We also discuss currently unavailable data that could be useful for biologically accurate models.
Collapse
Affiliation(s)
- Simo Vanni
- HUS Neurocenter, Department of Neurology, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Neurosciences, University of Helsinki, 00100 Helsinki, Finland
| | - Henri Hokkanen
- HUS Neurocenter, Department of Neurology, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Neurosciences, University of Helsinki, 00100 Helsinki, Finland
| | - Francesca Werner
- HUS Neurocenter, Department of Neurology, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Neurosciences, University of Helsinki, 00100 Helsinki, Finland
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alessandra Angelucci
- Department of Ophthalmology and Visual Sciences, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
33
|
Sharafeldin A, Mock VL, Meisenhelter S, Hembrook-Short JR, Briggs F. Changes in Local Network Activity Approximated by Reverse Spike-Triggered Local Field Potentials Predict the Focus of Attention. Cereb Cortex Commun 2020; 1:tgaa014. [PMID: 32864614 PMCID: PMC7446294 DOI: 10.1093/texcom/tgaa014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022] Open
Abstract
The effects of visual spatial attention on neuronal firing rates have been well characterized for neurons throughout the visual processing hierarchy. Interestingly, the mechanisms by which attention generates more or fewer spikes in response to a visual stimulus remain unknown. One possibility is that attention boosts the likelihood that synaptic inputs to a neuron result in spikes. We performed a novel analysis to measure local field potentials (LFPs) just prior to spikes, or reverse spike-triggered LFP “wavelets,” for neurons recorded in primary visual cortex (V1) of monkeys performing a contrast change detection task requiring covert shifts in visual spatial attention. We used dimensionality reduction to define LFP wavelet shapes with single numerical values, and we found that LFP wavelet shape changes correlated with changes in neuronal firing rate. We then tested whether a simple classifier could predict monkeys’ focus of attention from LFP wavelet shape. LFP wavelet shapes sampled in discrete windows were predictive of the locus of attention for some neuronal types. These findings suggest that LFP wavelets are a useful proxy for local network activity influencing spike generation, and changes in LFP wavelet shape are predictive of the focus of attention.
Collapse
Affiliation(s)
- Abdelrahman Sharafeldin
- Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Vanessa L Mock
- Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY 14642, USA.,Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, NY 14642, USA.,Program in Experimental and Molecular Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Stephen Meisenhelter
- Program in Experimental and Molecular Medicine, Dartmouth College, Hanover, NH 03755, USA
| | | | - Farran Briggs
- Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY 14642, USA.,Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, NY 14642, USA.,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA.,Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
34
|
Hu J, Ma H, Zhu S, Li P, Xu H, Fang Y, Chen M, Han C, Fang C, Cai X, Yan K, Lu HD. Visual Motion Processing in Macaque V2. Cell Rep 2020; 25:157-167.e5. [PMID: 30282025 DOI: 10.1016/j.celrep.2018.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 07/05/2018] [Accepted: 09/06/2018] [Indexed: 11/26/2022] Open
Abstract
In the primate visual system, direction-selective (DS) neurons are critical for visual motion perception. While DS neurons in the dorsal visual pathway have been well characterized, the response properties of DS neurons in other major visual areas are largely unexplored. Recent optical imaging studies in monkey visual cortex area 2 (V2) revealed clusters of DS neurons. This imaging method facilitates targeted recordings from these neurons. Using optical imaging and single-cell recording, we characterized detailed response properties of DS neurons in macaque V2. Compared with DS neurons in the dorsal areas (e.g., middle temporal area [MT]), V2 DS neurons have a smaller receptive field and a stronger antagonistic surround. They do not code speed or plaid motion but are sensitive to motion contrast. Our results suggest that V2 DS neurons play an important role in figure-ground segregation. The clusters of V2 DS neurons are likely specialized functional systems for detecting motion contrast.
Collapse
Affiliation(s)
- Jiaming Hu
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Heng Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Shude Zhu
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Peichao Li
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Haoran Xu
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yang Fang
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Ming Chen
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chao Han
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chen Fang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xingya Cai
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Kun Yan
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Haidong D Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
35
|
Nguyen KT, Liang WK, Muggleton NG, Huang NE, Juan CH. Human visual steady-state responses to amplitude-modulated flicker: Latency measurement. J Vis 2019; 19:14. [PMID: 31845974 DOI: 10.1167/19.14.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The response latency of steady-state visually evoked potentials (SSVEPs) is a sensitive measurement for investigating visual functioning of the human brain, specifically in visual development and for clinical evaluation. This latency can be measured from the slope of phase versus frequency of responses by using multiple frequencies of stimuli. In an attempt to provide an alternative measurement of this latency, this study utilized an envelope response of SSVEPs elicited by amplitude-modulated visual stimulation and then compared with the envelope of the generating signal, which was recorded simultaneously with the electroencephalography recordings. The advantage of this measurement is that it successfully estimates the response latency based on the physiological envelope in the entire waveform. Results showed the response latency at the occipital lobe (Oz channel) was approximately 104.55 ms for binocular stimulation, 97.14 ms for the dominant eye, and 104.75 ms for the nondominant eye with no significant difference between these stimulations. Importantly, the response latency at frontal channels (125.84 ms) was significantly longer than that at occipital channels (104.11 ms) during binocular stimulation. Together with strong activation of the source envelope at occipital cortex, these findings support the idea of a feedforward process, with the visual stimuli propagating originally from occipital cortex to anterior cortex. In sum, these findings offer a novel method for future studies in measuring visual response latencies and also potentially shed a new light on understanding of how long collective neural activities take to travel in the human brain.
Collapse
Affiliation(s)
- Kien Trong Nguyen
- Institute of Cognitive Neuroscience, National Central University, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, Taiwan.,Brain Research Center, National Central University, Taiwan
| | - Neil G Muggleton
- Institute of Cognitive Neuroscience, National Central University, Taiwan.,Brain Research Center, National Central University, Taiwan.,Institute of Cognitive Neuroscience, University College London, London, UK.,Department of Psychology, Goldsmiths, University of London, London, UK
| | - Norden E Huang
- Brain Research Center, National Central University, Taiwan.,Data Analysis and Application Laboratory, The First Institute of Oceanography, Qingdao, China.,Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taiwan.,Brain Research Center, National Central University, Taiwan
| |
Collapse
|
36
|
Laminar Differences in Responses to Naturalistic Texture in Macaque V1 and V2. J Neurosci 2019; 39:9748-9756. [PMID: 31666355 DOI: 10.1523/jneurosci.1743-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 11/21/2022] Open
Abstract
Most single units recorded from macaque secondary visual cortex (V2) respond with higher firing rates to synthetic texture images containing "naturalistic" higher-order statistics than to spectrally matched "noise" images lacking these statistics. In contrast, few single units in V1 show this property. We explored how the strength and dynamics of response vary across the different layers of visual cortex by recording multiunit (defined as high-frequency power in the local field potential) and gamma-band activity evoked by brief presentations of naturalistic and noise images in V1 and V2 of anesthetized macaque monkeys of both sexes. As previously reported, recordings in V2 showed consistently stronger responses to naturalistic texture than to spectrally matched noise. In contrast to single-unit recordings, V1 multiunit activity showed a preference for images with naturalistic statistics, and in gamma-band activity this preference was comparable across V1 and V2. Sensitivity to naturalistic image structure was strongest in the supragranular and infragranular layers of V1, but weak in granular layers, suggesting that it might reflect feedback from V2. Response timing was consistent with this idea. Visual responses appeared first in V1, followed by V2. Sensitivity to naturalistic texture emerged first in V2, followed by the supragranular and infragranular layers of V1, and finally in the granular layers of V1. Our results demonstrate laminar differences in the encoding of higher-order statistics of natural texture, and suggest that this sensitivity first arises in V2 and is fed back to modulate activity in V1.SIGNIFICANCE STATEMENT The circuit mechanisms responsible for visual representations of intermediate complexity are largely unknown. We used a well validated set of synthetic texture stimuli to probe the temporal and laminar profile of sensitivity to the higher-order statistical structure of natural images. We found that this sensitivity emerges first and most strongly in V2 but soon after in V1. However, sensitivity in V1 is higher in the laminae (extragranular) and recording modalities (local field potential) most likely affected by V2 connections, suggesting a feedback origin. Our results show how sensitivity to naturalistic image structure emerges across time and circuitry in the early visual cortex.
Collapse
|
37
|
Roelfsema PR, Holtmaat A. Control of synaptic plasticity in deep cortical networks. Nat Rev Neurosci 2019; 19:166-180. [PMID: 29449713 DOI: 10.1038/nrn.2018.6] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Humans and many other animals have an enormous capacity to learn about sensory stimuli and to master new skills. However, many of the mechanisms that enable us to learn remain to be understood. One of the greatest challenges of systems neuroscience is to explain how synaptic connections change to support maximally adaptive behaviour. Here, we provide an overview of factors that determine the change in the strength of synapses, with a focus on synaptic plasticity in sensory cortices. We review the influence of neuromodulators and feedback connections in synaptic plasticity and suggest a specific framework in which these factors can interact to improve the functioning of the entire network.
Collapse
Affiliation(s)
- Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands.,Psychiatry Department, Academic Medical Center, Amsterdam, Netherlands
| | - Anthony Holtmaat
- Department of Basic Neurosciences, Geneva Neuroscience Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
38
|
Dalla Porta L, Matias FS, Dos Santos AJ, Alonso A, Carelli PV, Copelli M, Mirasso CR. Exploring the Phase-Locking Mechanisms Yielding Delayed and Anticipated Synchronization in Neuronal Circuits. Front Syst Neurosci 2019; 13:41. [PMID: 31496943 PMCID: PMC6712169 DOI: 10.3389/fnsys.2019.00041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/05/2019] [Indexed: 11/24/2022] Open
Abstract
Synchronization is one of the brain mechanisms allowing the coordination of neuronal activity required in many cognitive tasks. Anticipated Synchronization (AS) is a specific type of out-of-phase synchronization that occurs when two systems are unidirectionally coupled and, consequently, the information is transmitted from the sender to the receiver, but the receiver leads the sender in time. It has been shown that the primate cortex could operate in a regime of AS as part of normal neurocognitive function. However it is still unclear what is the mechanism that gives rise to anticipated synchronization in neuronal motifs. Here, we investigate the synchronization properties of cortical motifs on multiple scales and show that the internal dynamics of the receiver, which is related to its free running frequency in the uncoupled situation, is the main ingredient for AS to occur. For biologically plausible parameters, including excitation/inhibition balance, we found that the phase difference between the sender and the receiver decreases when the free running frequency of the receiver increases. As a consequence, the system switches from the usual delayed synchronization (DS) regime to an AS regime. We show that at three different scales, neuronal microcircuits, spiking neuronal populations and neural mass models, both the inhibitory loop and the external current acting on the receiver mediate the DS-AS transition for the sender-receiver configuration by changing the free running frequency of the receiver. Therefore, we propose that a faster internal dynamics of the receiver system is the main mechanism underlying anticipated synchronization in brain circuits.
Collapse
Affiliation(s)
- Leonardo Dalla Porta
- System Neuroscience Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Fernanda S Matias
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Brazil
| | | | - Ana Alonso
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC), Palma, Spain
| | - Pedro V Carelli
- Departamento de Física, Universidade Federal de Pernambuco, Recife, Brazil
| | - Mauro Copelli
- Departamento de Física, Universidade Federal de Pernambuco, Recife, Brazil
| | - Claudio R Mirasso
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC), Palma, Spain
| |
Collapse
|
39
|
Jeantet C, Laprevote V, Schwan R, Schwitzer T, Maillard L, Lighezzolo-Alnot J, Caharel S. Time course of spatial frequency integration in face perception: An ERP study. Int J Psychophysiol 2019; 143:105-115. [PMID: 31276696 DOI: 10.1016/j.ijpsycho.2019.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Face perception is based on the processing and integration of multiple spatial frequency (SF) ranges. However, the temporal dynamics of SF integration to form an early face representation in the human brain is still a matter of debate. To address this issue, we recorded event-related potentials (ERPs) during the presentation of spatial frequency-manipulated facial images. Twenty-six participants performed a gender discrimination task on non-filtered, low-, high-, and band-pass filtered face images, corresponding, respectively, to the full range, spatial frequencies up to 8 cycles/image, above 32 cycles/image, and from 8 to 16 cycles/image. Behaviorally, the task related-performance was more accurate and faster for non-filtered (NF) and mid-range SF (MSF) than for low SF (LSF) and high SF (HSF) stimuli. At both behavioral and electrophysiological levels, response to MSF contained in faces did not differ from the responses to full spectrum non-filtered (NF) facial images. In ERPs, LSF facial images evoked the largest P1 amplitude while HSF facial images evoked the largest N170 amplitude compared with the other three conditions. Since LSFs and HSFs would transmit global and local information respectively, our observations lend further support to the "coarse-to-fine" processing theory of faces. Furthermore, they offer original evidence of the effectiveness and adequacy of the mid-range spatial frequency in face perception. Possible theoretical interpretations of our findings are discussed.
Collapse
Affiliation(s)
- Coline Jeantet
- Université de Lorraine, Laboratoire Lorrain de Psychologie et Neurosciences (2LPN - EA 7489), Nancy F-54000, France; Université de Lorraine, Laboratoire InterPsy (EA 4432), Nancy F-54000, France; Centre Psychothérapique de Nancy, Pôle Hospitalo-universitaire de Psychiatrie d'Adultes du Grand Nancy, Laxou F-54520, France
| | - Vincent Laprevote
- Centre Psychothérapique de Nancy, Pôle Hospitalo-universitaire de Psychiatrie d'Adultes du Grand Nancy, Laxou F-54520, France; Institut National de la Santé et de la Recherche Médicale U1114, Pôle de Psychiatrie, Fédération de Médecine Translationnelle de Strasbourg, Centre Hospitalier Régional Universitaire de Strasbourg, Université de Strasbourg, Strasbourg, France; Université de Lorraine, Faculté de Médecine, Vandoeuvre-lès-Nancy, F-54500 France
| | - Raymund Schwan
- Centre Psychothérapique de Nancy, Pôle Hospitalo-universitaire de Psychiatrie d'Adultes du Grand Nancy, Laxou F-54520, France; Institut National de la Santé et de la Recherche Médicale U1114, Pôle de Psychiatrie, Fédération de Médecine Translationnelle de Strasbourg, Centre Hospitalier Régional Universitaire de Strasbourg, Université de Strasbourg, Strasbourg, France; CHRU Nancy, Maison des Addictions, Nancy F-54000, France; Université de Lorraine, Faculté de Médecine, Vandoeuvre-lès-Nancy, F-54500 France
| | - Thomas Schwitzer
- Centre Psychothérapique de Nancy, Pôle Hospitalo-universitaire de Psychiatrie d'Adultes du Grand Nancy, Laxou F-54520, France; Institut National de la Santé et de la Recherche Médicale U1114, Pôle de Psychiatrie, Fédération de Médecine Translationnelle de Strasbourg, Centre Hospitalier Régional Universitaire de Strasbourg, Université de Strasbourg, Strasbourg, France; Université de Lorraine, Faculté de Médecine, Vandoeuvre-lès-Nancy, F-54500 France
| | - Louis Maillard
- Université de Lorraine, CNRS, CRAN - UMR 7039, Nancy F-54000, France; CHRU Nancy, Service de Neurologie, Nancy F-54000, France
| | | | - Stéphanie Caharel
- Université de Lorraine, Laboratoire Lorrain de Psychologie et Neurosciences (2LPN - EA 7489), Nancy F-54000, France; Institut Universitaire de France, Paris F-75000, France.
| |
Collapse
|
40
|
The current status of the magnocellular theory of developmental dyslexia. Neuropsychologia 2019; 130:66-77. [DOI: 10.1016/j.neuropsychologia.2018.03.022] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 01/28/2023]
|
41
|
Zhang Q, Li S. The roles of spatial frequency in category‐level visual search of real‐world scenes. Psych J 2019; 9:44-55. [DOI: 10.1002/pchj.294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/20/2019] [Accepted: 04/21/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Qi Zhang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental HealthPeking University Beijing China
- PKU‐IDG/McGovern Institute for Brain ResearchPeking University Beijing China
- Key Laboratory of Machine Perception (Ministry of Education)Peking University Beijing China
| | - Sheng Li
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental HealthPeking University Beijing China
- PKU‐IDG/McGovern Institute for Brain ResearchPeking University Beijing China
- Key Laboratory of Machine Perception (Ministry of Education)Peking University Beijing China
| |
Collapse
|
42
|
Pinto MA, Rosso OA, Matias FS. Inhibitory autapse mediates anticipated synchronization between coupled neurons. Phys Rev E 2019; 99:062411. [PMID: 31330650 DOI: 10.1103/physreve.99.062411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Indexed: 06/10/2023]
Abstract
Two identical autonomous dynamical systems unidirectionally coupled in a sender-receiver configuration can exhibit anticipated synchronization (AS) if the receiver neuron also receives a delayed negative self-feedback. Recently, AS was shown to occur in a three-neuron motif with standard chemical synapses where the delayed inhibition was provided by an interneuron. Here, we show that a two-neuron model in the presence of an inhibitory autapse, which is a massive self-innervation present in the cortical architecture, may present AS. The GABAergic autapse regulates the internal dynamics of the receiver neuron and acts as the negative delayed self-feedback required by dynamical systems in order to exhibit AS. In this biologically plausible scenario, a smooth transition from the usual delayed synchronization (DS) to AS typically occurs when the inhibitory conductance is increased. The phenomenon is shown to be robust when model parameters are varied within a physiological range. For extremely large values of the inhibitory autapse the system undergoes to a phase-drift regime in which the receiver is faster than the sender. Furthermore, we show that the inhibitory autapse promotes a faster internal dynamics of the free-running Receiver when the two neurons are uncoupled, which could be the mechanism underlying anticipated synchronization and the DS-AS transition.
Collapse
Affiliation(s)
- Marcel A Pinto
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil
| | - Osvaldo A Rosso
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil
- Departamento de Informática en Salud, Hospital Italiano de Buenos Aires and CONICET, C1199ABB, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernanda S Matias
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil
| |
Collapse
|
43
|
Beul SF, Hilgetag CC. Neuron density fundamentally relates to architecture and connectivity of the primate cerebral cortex. Neuroimage 2019; 189:777-792. [PMID: 30677500 DOI: 10.1016/j.neuroimage.2019.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/05/2019] [Indexed: 12/16/2022] Open
Abstract
Studies of structural brain connectivity have revealed many intriguing features of complex cortical networks. To advance integrative theories of cortical organization, an understanding is required of how connectivity interrelates with other aspects of brain structure. Recent studies have suggested that interareal connectivity may be related to a variety of macroscopic as well as microscopic architectonic features of cortical areas. However, it is unclear how these features are inter-dependent and which of them most strongly and fundamentally relate to structural corticocortical connectivity. Here, we systematically investigated the relation of a range of microscopic and macroscopic architectonic features of cortical organization, namely layer III pyramidal cell soma cross section, dendritic synapse count, dendritic synapse density and dendritic tree size as well as area neuron density, to multiple properties of cortical connectivity, using a comprehensive, up-to-date structural connectome of the primate brain. Importantly, relationships were investigated by multi-variate analyses to account for the interrelations of features. Of all considered factors, the classical architectonic parameter of neuron density most strongly and consistently related to essential features of cortical connectivity (existence and laminar patterns of projections, area degree), and in conjoint analyses largely abolished effects of cellular morphological features. These results confirm neuron density as a central architectonic indicator of the primate cerebral cortex that is closely related to essential aspects of brain connectivity and is also highly indicative of further features of the architectonic organization of cortical areas, such as the considered cellular morphological measures. Our findings integrate several aspects of cortical micro- and macroscopic organization, with implications for cortical development and function.
Collapse
Affiliation(s)
- Sarah F Beul
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Department of Health Sciences, Boston University, 02215, Boston, MA, USA.
| |
Collapse
|
44
|
Regev TI, Winawer J, Gerber EM, Knight RT, Deouell LY. Human posterior parietal cortex responds to visual stimuli as early as peristriate occipital cortex. Eur J Neurosci 2018; 48:3567-3582. [PMID: 30240547 PMCID: PMC6482330 DOI: 10.1111/ejn.14164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 08/24/2018] [Accepted: 09/07/2018] [Indexed: 11/30/2022]
Abstract
Much of what is known about the timing of visual processing in the brain is inferred from intracranial studies in monkeys, with human data limited to mainly noninvasive methods with lower spatial resolution. Here, we estimated visual onset latencies from electrocorticographic (ECoG) recordings in a patient who was implanted with 112 subdural electrodes, distributed across the posterior cortex of the right hemisphere, for presurgical evaluation of intractable epilepsy. Functional MRI prior to surgery was used to determine boundaries of visual areas. The patient was presented with images of objects from several categories. Event-related potentials (ERPs) were calculated across all categories excluding targets, and statistically reliable onset latencies were determined, using a bootstrapping procedure over the single trial baseline activity in individual electrodes. The distribution of onset latencies broadly reflected the known hierarchy of visual areas, with the earliest cortical responses in primary visual cortex, and higher areas showing later responses. A clear exception to this pattern was a robust, statistically reliable and spatially localized, very early response, on the bank of the posterior intraparietal sulcus (IPS). The response in the IPS started nearly simultaneously with responses detected in peristriate visual areas, around 60 ms poststimulus onset. Our results support the notion of early visual processing in the posterior parietal lobe, not respecting traditional hierarchies, and give direct evidence for onset times of visual responses across the human cortex.
Collapse
Affiliation(s)
- Tamar I. Regev
- Edmond and Lily Safra Center for Brain Science, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, New York, USA
| | - Edden M. Gerber
- Edmond and Lily Safra Center for Brain Science, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Leon Y. Deouell
- Edmond and Lily Safra Center for Brain Science, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Psychology, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
45
|
Peres R, Soares JGM, Lima B, Fiorani M, Chiorri M, Florentino MM, Gattass R. Neuronal response properties across cytochrome oxidase stripes in primate V2. J Comp Neurol 2018; 527:651-667. [PMID: 30113069 DOI: 10.1002/cne.24518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/18/2018] [Accepted: 07/10/2018] [Indexed: 11/08/2022]
Abstract
Cytochrome oxidase histochemistry reveals large-scale cortical modules in area V2 of primates known as thick, thin, and interstripes. Anatomical, electrophysiological, and tracing studies suggest that V2 cytochrome oxidase stripes participate in functionally distinct streams of visual information processing. However, there is controversy whether the different V2 compartments indeed correlate with specialized neuronal response properties. We used multiple-electrode arrays (16 × 2, 8 × 4 and 4 × 4 matrices) to simultaneously record the spiking activity (N = 190 single units) across distinct V2 stripes in anesthetized and paralyzed capuchin monkeys (N = 3 animals, 6 hemispheres). Visual stimulation consisted of moving bars and full-field gratings with different contrasts, orientations, directions of motion, spatial frequencies, velocities, and color contrasts. Interstripe neurons exhibited the strongest orientation and direction selectivities compared to the thick and thin stripes, with relatively stronger coding for orientation. Additionally, they responded best to higher spatial frequencies and to lower stimulus velocities. Thin stripes showed the highest proportion (80%) of neurons selective to color contrast (compared to 47% and 21% for thick and interstripes, respectively). The great majority of the color selective cells (86%) were also orientation selective. Additionally, thin stripe neurons continued to increase their firing rate for stimulus contrasts above 50%, while thick and interstripe neurons already exhibited some degree of response saturation at this point. Thick stripes best coded for lower spatial frequencies and higher stimulus velocities. In conclusion, V2 CytOx stripes exhibit a mixed degree of segregation and integration of information processing, shedding light into the early mechanisms of vision.
Collapse
Affiliation(s)
- Rafael Peres
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Juliana G M Soares
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Bruss Lima
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Mario Fiorani
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Marco Chiorri
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Maria M Florentino
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Ricardo Gattass
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
46
|
Jeantet C, Caharel S, Schwan R, Lighezzolo-Alnot J, Laprevote V. Factors influencing spatial frequency extraction in faces: A review. Neurosci Biobehav Rev 2018. [DOI: 10.1016/j.neubiorev.2018.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
47
|
Dupuis-Roy N, Faghel-Soubeyrand S, Gosselin F. Time course of the use of chromatic and achromatic facial information for sex categorization. Vision Res 2018; 157:36-43. [PMID: 30201473 DOI: 10.1016/j.visres.2018.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/29/2018] [Accepted: 08/29/2018] [Indexed: 11/27/2022]
Abstract
The most useful facial features for sex categorization are the eyes, the eyebrows, and the mouth. Dupuis-Roy et al. reported a large positive correlation between the use of the mouth region and rapid correct answers [Journal of Vision 9 (2009) 1-8]. Given the chromatic information in this region, they hypothesized that the extraction of chromatic and achromatic cues may have different time courses. Here, we tested this hypothesis directly: 110 participants categorized the sex of 300 face images whose chromatic and achromatic content was partially revealed through time (200 ms) and space using randomly located spatio-temporal Gaussian apertures (i.e. the Bubbles technique). This also allowed us to directly compare, for the first time, the relative importance of chromatic and achromatic facial cues for sex categorization. Results showed that face-sex categorization relies mostly on achromatic (luminance) information concentrated in the eye and eyebrow regions, especially the left eye and eyebrow. Additional analyses indicated that chromatic information located in the mouth/philtrum region was used earlier-peaking as early as 35 ms after stimulus onset-than achromatic information in the eye regions-peaking between 165 and 176 ms after stimulus onset-as was speculated by Dupuis-Roy et al. A non-linear analysis failed to support Yip and Sinha's proposal that processing of chromatic variations can improve subsequent processing of achromatic spatial cues, possibly via surface segmentation [Perception 31 (2002) 995-1003]. Instead, we argue that the brain prioritizes chromatic information to compensate for the sluggishness of chromatic processing in early visual areas, and allow chromatic and achromatic information to reach higher-level visual areas simultaneously.
Collapse
Affiliation(s)
- N Dupuis-Roy
- Département de psychologie, Université de Montréal, Canada
| | | | - F Gosselin
- Département de psychologie, Université de Montréal, Canada.
| |
Collapse
|
48
|
Ju N, Jiang R, Macknik SL, Martinez-Conde S, Tang S. Long-term all-optical interrogation of cortical neurons in awake-behaving nonhuman primates. PLoS Biol 2018; 16:e2005839. [PMID: 30089111 PMCID: PMC6101413 DOI: 10.1371/journal.pbio.2005839] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/20/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023] Open
Abstract
Whereas optogenetic techniques have proven successful in their ability to manipulate neuronal populations-with high spatial and temporal fidelity-in species ranging from insects to rodents, significant obstacles remain in their application to nonhuman primates (NHPs). Robust optogenetics-activated behavior and long-term monitoring of target neurons have been challenging in NHPs. Here, we present a method for all-optical interrogation (AOI), integrating optical stimulation and simultaneous two-photon (2P) imaging of neuronal populations in the primary visual cortex (V1) of awake rhesus macaques. A red-shifted channel-rhodopsin transgene (ChR1/VChR1 [C1V1]) and genetically encoded calcium indicators (genetically encoded calmodulin protein [GCaMP]5 or GCaMP6s) were delivered by adeno-associated viruses (AAVs) and subsequently expressed in V1 neuronal populations for months. We achieved optogenetic stimulation using both single-photon (1P) activation of neuronal populations and 2P activation of single cells, while simultaneously recording 2P calcium imaging in awake NHPs. Optogenetic manipulations of V1 neuronal populations produced reliable artificial visual percepts. Together, our advances show the feasibility of precise and stable AOI of cortical neurons in awake NHPs, which may lead to broad applications in high-level cognition and preclinical testing studies.
Collapse
Affiliation(s)
- Niansheng Ju
- Peking University School of Life Sciences, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- IDG/McGovern Institute for Brain Research at Peking University, Beijing, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China
| | - Rundong Jiang
- Peking University School of Life Sciences, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- IDG/McGovern Institute for Brain Research at Peking University, Beijing, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China
| | - Stephen L. Macknik
- State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
| | - Susana Martinez-Conde
- State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
| | - Shiming Tang
- Peking University School of Life Sciences, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- IDG/McGovern Institute for Brain Research at Peking University, Beijing, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China
| |
Collapse
|
49
|
Extrafoveally applied flashing light affects contrast thresholds of achromatic and S-cone isolating, but not L-M cone modulated stimuli. Neurosci Lett 2018; 678:99-103. [PMID: 29751069 DOI: 10.1016/j.neulet.2018.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/17/2018] [Accepted: 05/07/2018] [Indexed: 11/23/2022]
Abstract
Flashing light stimulation is often used to investigate the visual system. However, the magnitude of the effect of this stimulus on the various subcortical pathways is not well investigated. The signals of conscious vision are conveyed by the magnocellular, parvocellular and koniocellular pathways. Parvocellular and koniocellular pathways (or more precisely, the L-M opponent and S-cone isolating channels) can be accessed by isoluminant red-green (L-M) and S-cone isolating stimuli, respectively. The main goal of the present study was to explore how costimulation with strong white extrafoveal light flashes alters the perception of stimuli specific to these pathways. Eleven healthy volunteers with negative neurological and ophthalmological history were enrolled for the study. Isoluminance of L-M and S-cone isolating sine-wave gratings was set individually, using the minimum motion procedure. The contrast thresholds for these stimuli as well as for achromatic gratings were determined by an adaptive staircase procedure where subjects had to indicate the orientation (horizontal, oblique or vertical) of the gratings. Thresholds were then determined again while a strong white peripheral light flash was presented 50 ms before each trial. Peripheral light flashes significantly (p < 0.05) increased the contrast thresholds of the achromatic and S-cone isolating stimuli. The threshold elevation was especially marked in case of the achromatic stimuli. However, the contrast threshold for the L-M stimuli was not significantly influenced by the light flashes. We conclude that extrafoveally applied light flashes influence predominantly the perception of achromatic stimuli.
Collapse
|
50
|
Bakshi A, Ghosh K. A parsimonious model of brightness induction. BIOLOGICAL CYBERNETICS 2018; 112:237-251. [PMID: 29354875 DOI: 10.1007/s00422-018-0747-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
We present a parsimonious model of brightness induction which can account for various brightness illusions of both brightness-contrast and brightness-assimilation types. Our model is based on a difference of difference-of-Gaussian filter and a two-pass model of attentive vision based on the parallel channels in the central visual pathway. It overcomes some of the problems that could not be addressed by the well-known oriented difference of Gaussian model like those associated with Mach band and checkerboard illusions. This model attempts to provide insight to the mechanism of attention in brightness perception through the two major complimentary visual channels, viz. the magnocellular and the parvocellular.
Collapse
Affiliation(s)
- Ashish Bakshi
- Machine Intelligence Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700108, India.
| | - Kuntal Ghosh
- Machine Intelligence Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700108, India
- Center for Soft Computing Research, Indian Statistical Institute, 203 B T Road, Kolkata, 700108, India
| |
Collapse
|