1
|
Castillo García M, Urdapilleta E. A dynamical adaptation model of visual spatiotemporal processing in cones and horizontal cells. Math Biosci 2023; 366:109104. [PMID: 37918478 DOI: 10.1016/j.mbs.2023.109104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
In this work, we introduce a phenomenological model for the cone-horizontal cell assembly, including spatial integration and formation of receptive field-like structures. The model extends our previous dynamical adaptation description with gain control accounting for processes in single cones, valid in severe nonlinear regimes. Here, a spatially extended feedback mechanism is introduced from horizontal cells to cones to account for experimental evidence, contributing thus to the development of a center-surround receptive field in cones and downstream bipolar cells. Feedback gain is defined on different spatial scales by weighting spatial filters: a short scale accounting for cone input to the feedback mechanism and a large scale driven by the syncytium characteristics of horizontal cells. A third spatial scale improves the description, mimicking neighboring cone-cone coupling. This overall spatial integration couples to temporal signal processing, thus obtaining a spatiotemporal model of outer retina responses capable of reproducing nonlinear features in both dimensions (space and time). The model was tested and validated using measurements on horizontal cells from different studies, with excellent performance. By its phenomenological nature, signal processing properties are inferred from model parameters. The model can be used in arrays of processing units with more complex incoming patterns of visual stimuli.
Collapse
Affiliation(s)
- Miguel Castillo García
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. E. Bustillo 9500, R8402AGP San Carlos de Bariloche, Río Negro, Argentina
| | - Eugenio Urdapilleta
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. E. Bustillo 9500, R8402AGP San Carlos de Bariloche, Río Negro, Argentina.
| |
Collapse
|
2
|
Abtout A, Reingruber J. Analysis of dim-light responses in rod and cone photoreceptors with altered calcium kinetics. J Math Biol 2023; 87:69. [PMID: 37823947 PMCID: PMC10570263 DOI: 10.1007/s00285-023-02005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Rod and cone photoreceptors in the retina of vertebrates are the primary sensory neurons underlying vision. They convert light into an electrical current using a signal transduction pathway that depends on Ca[Formula: see text] feedback. It is known that manipulating the Ca[Formula: see text] kinetics affects the response shape and the photoreceptor sensitivity, but a precise quantification of these effects remains unclear. We have approached this task in mouse retina by combining numerical simulations with mathematical analysis. We consider a parsimonious phototransduction model that incorporates negative Ca[Formula: see text] feedback onto the synthesis of cyclic GMP, and fast buffering reactions to alter the Ca[Formula: see text] kinetics. We derive analytic results for the photoreceptor functioning in sufficiently dim light conditions depending on the photoreceptor type. We exploit these results to obtain conceptual and quantitative insight into how response waveform and amplitude depend on the underlying biophysical processes and the Ca[Formula: see text] feedback. With a low amount of buffering, the Ca[Formula: see text] concentration changes in proportion to the current, and responses to flashes of light are monophasic. With more buffering, the change in the Ca[Formula: see text] concentration becomes delayed with respect to the current, which gives rise to a damped oscillation and a biphasic waveform. This shows that biphasic responses are not necessarily a manifestation of slow buffering reactions. We obtain analytic approximations for the peak flash amplitude as a function of the light intensity, which shows how the photoreceptor sensitivity depends on the biophysical parameters. Finally, we study how changing the extracellular Ca[Formula: see text] concentration affects the response.
Collapse
Affiliation(s)
- Annia Abtout
- Institute of Biology, Ecole Normale Supérieure, Paris, France
| | - Jürgen Reingruber
- Institute of Biology, Ecole Normale Supérieure, Paris, France.
- INSERM, U1024, Paris, France.
| |
Collapse
|
3
|
Muangkram Y, Himeno Y, Amano A. Clarifying the composition of the ATP consumption factors required for maintaining ion homeostasis in mouse rod photoreceptors. Sci Rep 2023; 13:14161. [PMID: 37644037 PMCID: PMC10465610 DOI: 10.1038/s41598-023-40663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
To date, no effective treatment has been established for photoreceptor loss due to energy imbalances, but numerous therapeutic approaches have reported some success in slowing photoreceptor degeneration by downregulating energy demand. However, the detailed mechanisms remain unclear. This study aimed to clarify the composition of ATP consumption factors in photoreceptors in darkness and in light. We introduced mathematical formulas for ionic current activities combined with a phototransduction model to form a new mathematical model for estimating the energy expenditure of each ionic current. The proposed model included various ionic currents identified in mouse rods using a gene expression database incorporating an available electrophysiological recording of each specific gene. ATP was mainly consumed by Na+/K+-ATPase and plasma membrane Ca2+-ATPase pumps to remove excess Na+ and Ca2+. The rod consumed 7 [Formula: see text] 107 molecules of ATP s-1, where 65% was used to remove ions from the cyclic nucleotide-gated channel and 20% from the hyperpolarization-activated current in darkness. Increased light intensity raised the energy requirements of the complex phototransduction cascade mechanisms. Nevertheless, the overall energy consumption was less than that in darkness due to the significant reduction in ATPase activities, where the hyperpolarization-activated current proportion increased to 83%. A better understanding of energy demand/supply may provide an effective tool for investigating retinal pathophysiological changes and analyzing novel therapeutic treatments related to the energy consumption of photoreceptors.
Collapse
Affiliation(s)
- Yuttamol Muangkram
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga, Japan.
| | - Yukiko Himeno
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Akira Amano
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
4
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
5
|
Mathematical analysis of phototransduction reaction parameters in rods and cones. Sci Rep 2022; 12:19529. [PMID: 36376413 PMCID: PMC9663442 DOI: 10.1038/s41598-022-23069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Retinal photoreceptor cells, rods and cones, convert photons of light into chemical and electrical signals as the first step of the visual transduction cascade. Although the chemical processes in the phototransduction system are very similar to each other in these photoreceptors, the light sensitivity and time resolution of the photoresponse in rods are functionally different than those in the photoresponses of cones. To systematically investigate how photoresponses are divergently regulated in rods and cones, we have developed a detailed mathematical model on the basis of the Hamer model. The current model successfully reconstructed light intensity-, ATP- and GTP-dependent changes in concentrations of phosphorylated visual pigments (VPs), activated transducins (Tr*s) and phosphodiesterases (PDEs) in rods and cones. In comparison to rods, the lower light sensitivity of cones was attributed not only to the lower affinity of activated VPs for Trs but also to the faster desensitization of the VPs. The assumption of an intermediate inactive state, MIIi, in the thermal decay of activated VPs was essential for inducing faster inactivation of VPs in rods, and possibly also in cones.
Collapse
|
6
|
Li RC, Molday LL, Lin CC, Ren X, Fleischmann A, Molday RS, Yau KW. Low signaling efficiency from receptor to effector in olfactory transduction: A quantified ligand-triggered GPCR pathway. Proc Natl Acad Sci U S A 2022; 119:e2121225119. [PMID: 35914143 PMCID: PMC9371729 DOI: 10.1073/pnas.2121225119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/11/2022] [Indexed: 02/03/2023] Open
Abstract
G protein-coupled receptor (GPCR) signaling is ubiquitous. As an archetype of this signaling motif, rod phototransduction has provided many fundamental, quantitative details, including a dogma that one active GPCR molecule activates a substantial number of downstream G protein/enzyme effector complexes. However, rod phototransduction is light-activated, whereas GPCR pathways are predominantly ligand-activated. Here, we report a detailed study of the ligand-triggered GPCR pathway in mammalian olfactory transduction, finding that an odorant-receptor molecule when (one-time) complexed with its most effective odorants produces on average much less than one downstream effector. Further experiments gave a nominal success probability of tentatively ∼10-4 (more conservatively, ∼10-2 to ∼10-5). This picture is potentially more generally representative of GPCR signaling than is rod phototransduction, constituting a paradigm shift.
Collapse
Affiliation(s)
- Rong-Chang Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Laurie L. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Chih-Chun Lin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Neuroscience Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Xiaozhi Ren
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
7
|
Abstract
Time is largely a hidden variable in vision. It is the condition for seeing interesting things such as spatial forms and patterns, colours and movements in the external world, and yet is not meant to be noticed in itself. Temporal aspects of visual processing have received comparatively little attention in research. Temporal properties have been made explicit mainly in measurements of resolution and integration in simple tasks such as detection of spatially homogeneous flicker or light pulses of varying duration. Only through a mechanistic understanding of their basis in retinal photoreceptors and circuits can such measures guide modelling of natural vision in different species and illuminate functional and evolutionary trade-offs. Temporal vision research would benefit from bridging traditions that speak different languages. Towards that goal, I here review studies from the fields of human psychophysics, retinal physiology and neuroethology, with a focus on fundamental constraints set by early vision. Summary: Simple measures of temporal vision such as the critical flicker frequency can be useful for modelling natural vision only if their relationship to photoreceptor responses and retinal processing is understood.
Collapse
Affiliation(s)
- Kristian Donner
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
8
|
A hybrid stochastic/deterministic model of single photon response and light adaptation in mouse rods. Comput Struct Biotechnol J 2021; 19:3720-3734. [PMID: 34285774 PMCID: PMC8258797 DOI: 10.1016/j.csbj.2021.06.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/02/2022] Open
Abstract
A hybrid stochastic/deterministic model of mouse rod phototransduction is presented. Rod photocurrent to photovoltage conversion in darkness is accurately characterized. Photoresponses to dim and bright stimuli and in various mutants are well reproduced. Recently debated molecular mechanisms of the phototransduction cascade are examined.
The phototransduction cascade is paradigmatic for signaling pathways initiated by G protein-coupled receptors and is characterized by a fine regulation of photoreceptor sensitivity and electrical response to a broad range of light stimuli. Here, we present a biochemically comprehensive model of phototransduction in mouse rods based on a hybrid stochastic and deterministic mathematical framework, and a quantitatively accurate description of the rod impedance in the dark. The latter, combined with novel patch clamp recordings from rod outer segments, enables the interconversion of dim flash responses between photovoltage and photocurrent and thus direct comparison with the simulations. The model reproduces the salient features of the experimental photoresponses at very dim and bright stimuli, for both normal photoreceptors and those with genetically modified cascade components. Our modelling approach recapitulates a number of recent findings in vertebrate phototransduction. First, our results are in line with the recently established requirement of dimeric activation of PDE6 by transducin and further show that such conditions can be fulfilled at the expense of a significant excess of G protein activated by rhodopsin. Secondly, simulations suggest a crucial role of the recoverin-mediated Ca2+-feedback on rhodopsin kinase in accelerating the shutoff, when light flashes are delivered in the presence of a light background. Finally, stochastic simulations suggest that transient complexes between dark rhodopsin and transducin formed prior to light stimulation increase the reproducibility of single photon responses. Current limitations of the model are likely associated with the yet unknown mechanisms governing the shutoff of the cascade.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine-5′-triphosphate
- Arr, arrestin
- BG, background illumination
- CNG, cyclic nucleotide-gated (channel)
- CSM, completely substituted mutant of rhodopsin
- CV, coefficient of variation
- DM, deterministic model
- Dynamic modeling
- E, effector of the phototransduction cascade, activated PDE
- FFT, fast Fourier-transform
- GC, guanylate cyclase
- GCAPs, guanylate cyclase-activating proteins
- GDP, guanosine-5′-diphosphate
- GPCR, G protein-coupled receptor
- GTP, guanosine-5′-triphosphate
- Gt, G protein/transducin
- Gα, α-subunit of the G protein
- Gβγ, β- and γ-subunit of the G protein
- HSDM, hybrid stochastic/deterministic model
- Light adaptation
- MPR, multiple photon response
- PDE, phosphodiesterase 6
- Ph, photons
- Phototransduction
- R, rhodopsin
- RGS, regulator of G protein signaling
- RK, rhodopsin kinase
- ROS, rod outer segment
- Rec, recoverin
- Rn, activated rhodopsin that has been phosphorylated n times
- SD, standard deviation
- SPR, single photon response
- Stochastic simulation
- Systems biology
- TTP, time to peak
- cGMP, cyclic guanosine monophosphate
- ΔJ, photocurrent
- ΔU, photovoltage
Collapse
|
9
|
Abtout A, Fain G, Reingruber J. Analysis of waveform and amplitude of mouse rod and cone flash responses. J Physiol 2021; 599:3295-3312. [PMID: 33977528 DOI: 10.1113/jp281225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Most vertebrate eyes have rod and cone photoreceptors, which use a signal transduction pathway consisting of many biological processes to transform light into an electrical response. We dissect and quantify the contribution of each of these processes to the photoreceptor light response by using a novel method of analysis that provides an analytical solution for the entire time course of the dim-flash light response. We find that the shape of the light response is exclusively controlled by deactivation parameters. Activation parameters scale this shape and alter the response amplitude. We show that the rising phase of the response depends on Ca2+ feedback, and we identify the deactivation parameters that control the recovery phase of the response. We devise new methods to extract values for deactivation and activation parameters from a separate analysis of response shape and response amplitude. ABSTRACT Vertebrate eyes have rod and cone photoreceptors, which use a complex transduction pathway comprising many biological processes to transform the absorption of light into an electrical response. A fundamental question in sensory transduction is how these processes contribute to the response. To study this question, we use a well-accepted phototransduction model, which we analyse with a novel method based on the log transform of the current. We derive an analytical solution that describes the entire time course of the photoreceptor response to dim flashes of light. We use this solution to dissect and quantify the contribution of each process to the response. We find that the entire dim-flash response is proportional to the flash intensity. By normalizing responses to unit amplitude, we define a waveform that is independent of the light intensity and characterizes the invariant shape of dim-flash responses. We show that this waveform is exclusively determined by deactivation rates; activation rates only scale the waveform and affect the amplitude. This analysis corrects a previous assumption that the rising phase is determined entirely by activation rates. We further show that the rising phase depends on Ca2+ feedback to the cyclase, contrary to current belief. We identify the deactivation rates that control the recovery phase of the response, and we devise new methods to extract activation and deactivation rates from an analysis of response shape and response amplitude. In summary, we provide a comprehensive understanding of how the various transduction processes produce the cellular response.
Collapse
Affiliation(s)
- Annia Abtout
- Institut de Biologie de l'École Normale Supérieure, Paris, France
| | - Gordon Fain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA.,Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, California, USA
| | | |
Collapse
|
10
|
Light responses of mammalian cones. Pflugers Arch 2021; 473:1555-1568. [PMID: 33742309 DOI: 10.1007/s00424-021-02551-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022]
Abstract
Cone photoreceptors provide the foundation of most of human visual experience, but because they are smaller and less numerous than rods in most mammalian retinas, much less is known about their physiology. We describe new techniques and approaches which are helping to provide a better understanding of cone function. We focus on several outstanding issues, including the identification of the features of the phototransduction cascade that are responsible for the more rapid kinetics and decreased sensitivity of the cone response, the roles of inner-segment voltage-gated and Ca2+-activated channels, the means by which cones remain responsive even in the brightest illumination, mechanisms of cone visual pigment regeneration in constant light, and energy consumption of cones in comparison to that of rods.
Collapse
|
11
|
Reingruber J, Ingram NT, Griffis KG, Fain GL. A kinetic analysis of mouse rod and cone photoreceptor responses. J Physiol 2020; 598:3747-3763. [PMID: 32557629 PMCID: PMC7484371 DOI: 10.1113/jp279524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Most vertebrate eyes have rods for dim-light vision and cones for brighter light and higher temporal sensitivity. Rods evolved from cone-like precursors through expression of different transduction genes or the same genes at different expression levels, but we do not know which molecular differences were most important. We approached this problem by analysing rod and cone responses with the same model but with different values for model parameters. We showed that, in addition to outer-segment volume, the most important differences between rods and cones are: (1) decreased transduction gain, reflecting smaller amplification in the G-protein cascade; (2) a faster rate of turnover of the second messenger cGMP in darkness; and (3) an accelerated rate of decay of the effector enzyme phosphodiesterase and perhaps also of activated visual pigment. We believe our analysis has identified the principal alterations during evolution responsible for the duplex retina. ABSTRACT Most vertebrates have rod and cone photoreceptors, which differ in their sensitivity and response kinetics. We know that rods evolved from cone-like precursors through the expression of different transduction genes or the same genes at different levels, but we do not know which molecular differences were most important. We have approached this problem in mouse retina by analysing the kinetic differences between rod flash responses and recent voltage-clamp recordings of cone flash responses, using a model incorporating the principal features of photoreceptor transduction. We apply a novel method of analysis using the log-transform of the current, and we ask which of the model's dynamic parameters need be changed to transform the flash response of a rod into that of a cone. The most important changes are a decrease in the gain of the response, reflecting a reduction in amplification of the transduction cascade; an increase in the rate of turnover of cGMP in darkness; and an increase in the rate of decay of activated phosphodiesterase, with perhaps also an increase in the rate of decay of light-activated visual pigment. Although we cannot exclude other differences, and in particular alterations in the Ca2+ economy of the photoreceptors, we believe that we have identified the kinetic parameters principally responsible for the differences in the flash responses of the two kinds of photoreceptors, which were likely during evolution to have resulted in the duplex retina.
Collapse
Affiliation(s)
- Jürgen Reingruber
- Institut de Biologie de l’École Normale Supérieure, 46 rue d’Ulm, 75005 Paris, France
| | - Norianne T. Ingram
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095–7239, USA
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA 90095–7000, USA
| | - Khris G. Griffis
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA 90095–7000, USA
| | - Gordon L. Fain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095–7239, USA
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA 90095–7000, USA
| |
Collapse
|
12
|
Lamb TD, Kraft TW. A quantitative account of mammalian rod phototransduction with PDE6 dimeric activation: responses to bright flashes. Open Biol 2020; 10:190241. [PMID: 31910741 PMCID: PMC7014685 DOI: 10.1098/rsob.190241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We develop an improved quantitative model of mammalian rod phototransduction, and we apply it to the prediction of responses to bright flashes of light. We take account of the recently characterized dimeric nature of PDE6 activation, where the configuration of primary importance has two transducin molecules bound. We simulate the stochastic nature of the activation and shut-off reactions to generate the predicted kinetics of the active molecular species on the disc membrane surfaces, and then we integrate the differential equations for the downstream cytoplasmic reactions to obtain the predicted electrical responses. The simulated responses recover the qualitative form of bright-flash response families recorded from mammalian rod photoreceptors. Furthermore, they provide an accurate description of the relationship between the time spent in saturation and flash intensity, predicting the transition between first and second ‘dominant time constants’ to occur at an intensity around 5000 isomerizations per flash, when the rate of transducin activation is taken to be 1250 transducins s−1 per activated rhodopsin. This rate is consistent with estimates from light-scattering experiments, but is around fourfold higher than has typically been assumed in other studies. We conclude that our model and parameters provide a compelling description of rod photoreceptor bright-flash responses.
Collapse
Affiliation(s)
- Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Timothy W Kraft
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
Determination of basal phosphodiesterase activity in mouse rod photoreceptors with cGMP clamp. Sci Rep 2019; 9:1183. [PMID: 30718640 PMCID: PMC6362171 DOI: 10.1038/s41598-018-37661-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
Light regulates cGMP concentration in the photoreceptor cytoplasm by activating phosphodiesterase (PDE) molecules through a G-protein signalling cascade. Spontaneous PDE activity is present in rod outer segments even in darkness. This basal PDE activity (βdark) has not been determined in wild type mammalian photoreceptor cells although it plays a key role in setting the sensitivity and recovery kinetics of rod responses. We present a novel method for determination of βdark using local electroretinography (LERG) from isolated mouse retinas. The method is based on the ability of PDE inhibitors to decrease βdark, which can be counterbalanced by increasing PDE activity with light. This procedure clamps cytoplasmic cGMP to its dark value. βdark can be calculated based on the amount of light needed for the "cGMP clamp" and information extracted from the registered rod photoresponses. Here we apply this method to determine βdark values for the first time in the mammalian rods and obtain the following estimates for different mouse models: 3.9 s-1 for wild type, 4.5 s-1 for guanylate cyclase activating proteins (GCAPs) knockout, and 4.4 s-1 for GCAPs and recoverin double knockout mice. Our results suggest that depletion of GCAPs or recoverin do not affect βdark.
Collapse
|
14
|
Martinecz A, Niitsuma M. Fractional integral-like processing in retinal cones reduces noise and improves adaptation. PLoS One 2018; 13:e0205099. [PMID: 30286168 PMCID: PMC6171915 DOI: 10.1371/journal.pone.0205099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 08/21/2018] [Indexed: 11/17/2022] Open
Abstract
In the human retina, rod and cone cells detect incoming light with a molecule called rhodopsin. After rhodopsin molecules are activated (by photon impact), these molecules activate the rest of the signalling process for a brief period of time until they are deactivated by a multistage process. First, active rhodopsin is phosphorylated multiple times. Following this, they are further inhibited by the binding of molecules called arrestins. Finally, they decay into opsins. The time required for each of these stages becomes progressively longer, and each stage further reduces the activity of rhodopsin. However, while this deactivation process itself is well researched, the roles of the above stages in signal (and image) processing are poorly understood. In this paper, we will show that the activity of rhodopsin molecules during the deactivation process can be described as the fractional integration of an incoming signal. Furthermore, we show how this affects an image; specifically, the effect of fractional integration in video and signal processing and how it reduces noise and the improves adaptability under different lighting conditions. Our experimental results provide a better understanding of vertebrate and human vision, and why the rods and cones of the retina differ from the light detectors in cameras.
Collapse
Affiliation(s)
- Antal Martinecz
- Department of Precision Mechanics, Chuo University, Tokyo, Japan
| | - Mihoko Niitsuma
- Department of Precision Mechanics, Chuo University, Tokyo, Japan
| |
Collapse
|
15
|
Wang T, Reingruber J, Woodruff ML, Majumder A, Camarena A, Artemyev NO, Fain GL, Chen J. The PDE6 mutation in the rd10 retinal degeneration mouse model causes protein mislocalization and instability and promotes cell death through increased ion influx. J Biol Chem 2018; 293:15332-15346. [PMID: 30126843 DOI: 10.1074/jbc.ra118.004459] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/13/2018] [Indexed: 12/20/2022] Open
Abstract
The retinal degeneration model rd10 contains a missense mutation of the catalytic PDE6 β subunit, which hydrolyzes cGMP in response to light. This model produces cell death more slowly than others caused by PDE6 loss of function, making it of particular interest for studying potential therapeutics. We used morphology, biochemistry, and single-cell physiology to examine the mechanism of rd10 degeneration. Our results show that the mutation produces no alteration of Pde6b RNA but does dramatically decrease maximal and basal PDE6 activity, apparently caused by a decrease in protein stability and transport. The enzymatic properties of the remaining mutant PDE6 appear to be nearly normal. We demonstrate that an increase in free cGMP, which would result from decreased PDE6 activity and serve to increase opening of the cGMP-gated channels and calcium influx, is an underlying cause of cell death: degeneration of rd10/Cngb1 -/- double mutants is slower than the parent rd10 line. Paradoxically, degeneration in rd10/Cngb1 -/- is also slower than in Cngb1 -/- This rescue is correlated with a lowering of cGMP content in Cngb1 -/- retinas and suggests that it may be caused by mislocalization of active PDE6. Single-cell recordings from rd10 rods show that the rates of rise and decay of the response are significantly slower; simulations indicate that these changes are primarily the result of the decrease in PDE6 concentration and rod collecting area. Together, these results provide insights into the complex mechanisms that underlie rd10-mediated retinal degeneration and a cautionary note for analysis of therapeutic interventions.
Collapse
Affiliation(s)
- Tian Wang
- From the Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-2821
| | - Jürgen Reingruber
- the Institut de Biologie, Group of Computational Biology and Applied Mathematics, École Normale Supérieure, 75005 Paris, France
| | - Michael L Woodruff
- the Department of Integrative Biology and Physiology, UCLA, Los Angeles, California 90095-1606
| | - Anurima Majumder
- the Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, and
| | - Andres Camarena
- From the Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-2821
| | - Nikolai O Artemyev
- the Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, and
| | - Gordon L Fain
- the Department of Integrative Biology and Physiology, UCLA, Los Angeles, California 90095-1606.,the Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-7000
| | - Jeannie Chen
- From the Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-2821,
| |
Collapse
|
16
|
Dephosphorylation by protein phosphatase 2A regulates visual pigment regeneration and the dark adaptation of mammalian photoreceptors. Proc Natl Acad Sci U S A 2017; 114:E9675-E9684. [PMID: 29078372 DOI: 10.1073/pnas.1712405114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Resetting of G-protein-coupled receptors (GPCRs) from their active state back to their biologically inert ground state is an integral part of GPCR signaling. This "on-off" GPCR cycle is regulated by reversible phosphorylation. Retinal rod and cone photoreceptors arguably represent the best-understood example of such GPCR signaling. Their visual pigments (opsins) are activated by light, transduce the signal, and are then inactivated by a GPCR kinase and arrestin. Although pigment inactivation by phosphorylation is well understood, the enzyme(s) responsible for pigment dephosphorylation and the functional significance of this reaction remain unknown. Here, we show that protein phosphatase 2A (PP2A) acts as opsin phosphatase in both rods and cones. Elimination of PP2A substantially slows pigment dephosphorylation, visual chromophore recycling, and ultimately photoreceptor dark adaptation. These findings demonstrate that visual pigment dephosphorylation regulates the dark adaptation of photoreceptors and provide insights into the role of this reaction in GPCR signaling.
Collapse
|
17
|
Rotov AY, Astakhova LA, Firsov ML, Govardovskii VI. Origins of the phototransduction delay as inferred from stochastic and deterministic simulation of the amplification cascade. Mol Vis 2017; 23:416-430. [PMID: 28744093 PMCID: PMC5509446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 06/05/2017] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To identify steps of the phototransduction cascade responsible for the delay of the photoresponse. METHODS Electrical responses of fish (Carassius) cones and Rana ridibunda frog rods and cones were recorded with a suction pipette technique and as an aspartate-isolated mass receptor potential from isolated perfused retinas. Special attention was paid to sufficiently high temporal resolution (1-ms flash, 700 Hz amplification bandpass). Stochastic simulation of the activation steps from photon absorption to the formation of catalytically active phosphodiesterase (PDE) was performed. In addition, a deterministic mathematical model was fit to the experimental responses. The model included a detailed description of the activation steps of the cascade that enabled identification of the role of individual transduction stages in shaping the initial part of the response. RESULTS We found that the apparent delay of the photoresponse gets shorter with increasing stimulus intensity and reaches an asymptotic value of approximately 3 ms in cones and greater than or equal to 10 ms in rods. The result seems paradoxical since it is suggested that the delay occurs in the chain of steps from photon absorption to the formation of active transducin (T*) which in cones is, on average, slower than in rods. Stochastic simulation shows that actually the steps from photon absorption to T* may not contribute perceptibly to the delay. Instead, the delay occurs at the stage that couples the cycle of repetitive activation of T by rhodopsin (R*) with the activation of PDE. These steps include formation of T* (= T α GTP) out of T αβγ GTP released from the activation cycle and the subsequent interaction of T* with PDE. This poses a problem. The duration of an average cycle of activation of T in rods is approximately 5 ms and is determined by the frequency of collisions between R* and T in the photoreceptor membrane. The frequency is roughly proportional to the surface packing density of T in the membrane. As the packing density of PDE is approximately 12 times lower than that of T, it could be expected that the rate of the T*-PDE interaction were an order of magnitude slower than that of R* and T. As modeling shows, this is the case in rods. However, the delay in cones is approximately 3 ms which could be achieved only at a T*-PDE interaction time of less than or equal to 5 ms. This means that either the frequency of the collisions of T* and PDE, or the efficiency of collisions, or both in cones are approximately ten times higher than in rods. This may be a challenge to the present model of the molecular organization of the photoreceptor membrane. CONCLUSIONS The delay of the photoresponse is mainly set by the rate of interaction of T* with PDE. In cones, the delay is shorter than in rods and, moreover, shorter than the duration of the cycle of repetitive activation of T by R*. This poses a problem for the present model of diffusion interaction of phototransduction proteins in the photoreceptor membrane.
Collapse
Affiliation(s)
- Alexander Yu Rotov
- Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Luba A. Astakhova
- Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Michael L. Firsov
- Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Victor I. Govardovskii
- Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
18
|
Phototransduction early steps model based on Beer-Lambert optical law. Vision Res 2017; 131:75-81. [PMID: 28062154 DOI: 10.1016/j.visres.2016.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 10/27/2016] [Accepted: 12/07/2016] [Indexed: 01/24/2023]
Abstract
The amount of available rhodopsin on the photoreceptor outer segment and its change over time is not considered in classic models of phototransduction. Thus, those models do not take into account the absorptance variation of the outer segment under different brightness conditions. The relationship between the light absorbed by a medium and its absorptance is well described by the Beer-Lambert law. This newly proposed model implements the absorptance variation phenomenon in a set of equations that admit photons per second as input and results in active rhodopsins per second as output. This study compares the classic model of phototransduction developed by Forti et al. (1989) to this new model by using different light stimuli to measure active rhodopsin and photocurrent. The results show a linear relationship between light stimulus and active rhodopsin in the Forti model and an exponential saturation in the new model. Further, photocurrent values have shown that the new model behaves equivalently to the experimental and theoretical data as published by Forti in dark-adapted rods, but fits significantly better under light-adapted conditions. The new model successfully introduced a physics optical law to the standard model of phototransduction adding a new processing layer that had not been mathematically implemented before. In addition, it describes the physiological concept of saturation and delivers outputs in concordance to input magnitudes.
Collapse
|
19
|
Combes RD, Shah AB. The use of in vivo, ex vivo, in vitro, computational models and volunteer studies in vision research and therapy, and their contribution to the Three Rs. Altern Lab Anim 2017; 44:187-238. [PMID: 27494623 DOI: 10.1177/026119291604400302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Much is known about mammalian vision, and considerable progress has been achieved in treating many vision disorders, especially those due to changes in the eye, by using various therapeutic methods, including stem cell and gene therapy. While cells and tissues from the main parts of the eye and the visual cortex (VC) can be maintained in culture, and many computer models exist, the current non-animal approaches are severely limiting in the study of visual perception and retinotopic imaging. Some of the early studies with cats and non-human primates (NHPs) are controversial for animal welfare reasons and are of questionable clinical relevance, particularly with respect to the treatment of amblyopia. More recently, the UK Home Office records have shown that attention is now more focused on rodents, especially the mouse. This is likely to be due to the perceived need for genetically-altered animals, rather than to knowledge of the similarities and differences of vision in cats, NHPs and rodents, and the fact that the same techniques can be used for all of the species. We discuss the advantages and limitations of animal and non-animal methods for vision research, and assess their relative contributions to basic knowledge and clinical practice, as well as outlining the opportunities they offer for implementing the principles of the Three Rs (Replacement, Reduction and Refinement).
Collapse
Affiliation(s)
| | - Atul B Shah
- Ophthalmic Surgeon, National Eye Registry Ltd, Leicester, UK
| |
Collapse
|
20
|
Lamb TD, Kraft TW. Quantitative modeling of the molecular steps underlying shut-off of rhodopsin activity in rod phototransduction. Mol Vis 2016; 22:674-96. [PMID: 27375353 PMCID: PMC4920504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/15/2016] [Indexed: 10/26/2022] Open
Abstract
PURPOSE To examine the predictions of alternative models for the stochastic shut-off of activated rhodopsin (R*) and their implications for the interpretation of experimentally recorded single-photon responses (SPRs) in mammalian rods. THEORY We analyze the transitions that an activated R* molecule undergoes as a result of successive phosphorylation steps and arrestin binding. We consider certain simplifying cases for the relative magnitudes of the reaction rate constants and derive the probability distributions for the time to arrestin binding. In addition to the conventional model in which R* catalytic activity declines in a graded manner with successive phosphorylations, we analyze two cases in which the activity is assumed to occur not via multiple small steps upon each phosphorylation but via a single large step. We refer to these latter two cases as the binary R* shut-off and three-state R* shut-off models. METHODS We simulate R*'s stochastic reactions numerically for the three models. In the simplifying cases for the ratio of rate constants in the binary and three-state models, we show that the probability distribution of the time to arrestin binding is accurately predicted. To simulate SPRs, we then integrate the differential equations for the downstream reactions using a standard model of the rod outer segment that includes longitudinal diffusion of cGMP and Ca(2+). RESULTS Our simulations of SPRs in the conventional model of graded shut-off of R* conform closely to the simulations in a recent study. However, the gain factor required to account for the observed mean SPR amplitude is higher than can be accounted for from biochemical experiments. In addition, a substantial minority of the simulated SPRs exhibit features that have not been reported in published experiments. Our simulations of SPRs using the model of binary R* shut-off appear to conform closely to experimental results for wild type (WT) mouse rods, and the required gain factor conforms to biochemical expectations. However, for the arrestin knockout (Arr(-/-)) phenotype, the predictions deviated from experimental findings and led us to invoke a low-activity state that R* enters before arrestin binding. Our simulations of this three-state R* shut-off model are very similar to those of the binary model in the WT case but are preferred because they appear to accurately predict the mean SPRs for four mutant phenotypes, Arr(+/-), Arr(-/-), GRK1(+/-), and GRK1(-/-), in addition to the WT phenotype. When we additionally treated the formation and shut-off of activated phosphodiesterase (E*) as stochastic, the simulated SPRs appeared even more similar to real SPRs, and there was very little change in the ensemble mean and standard deviation or in the amplitude distribution. CONCLUSIONS We conclude that the conventional model of graded reduction in R* activity through successive phosphorylation steps appears to be inconsistent with experimental results. Instead, we find that two variants of a model in which R* activity initially remains high and then declines abruptly after several phosphorylation steps appears capable of providing a better description of experimentally measured SPRs.
Collapse
Affiliation(s)
- Trevor D. Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research,
The Australian National University, Canberra, ACT, Australia
| | - Timothy W. Kraft
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
21
|
Koch KW, Dell'Orco D. Protein and Signaling Networks in Vertebrate Photoreceptor Cells. Front Mol Neurosci 2015; 8:67. [PMID: 26635520 PMCID: PMC4646965 DOI: 10.3389/fnmol.2015.00067] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/26/2015] [Indexed: 01/10/2023] Open
Abstract
Vertebrate photoreceptor cells are exquisite light detectors operating under very dim and bright illumination. The photoexcitation and adaptation machinery in photoreceptor cells consists of protein complexes that can form highly ordered supramolecular structures and control the homeostasis and mutual dependence of the secondary messengers cyclic guanosine monophosphate (cGMP) and Ca2+. The visual pigment in rod photoreceptors, the G protein-coupled receptor rhodopsin is organized in tracks of dimers thereby providing a signaling platform for the dynamic scaffolding of the G protein transducin. Illuminated rhodopsin is turned off by phosphorylation catalyzed by rhodopsin kinase (GRK1) under control of Ca2+-recoverin. The GRK1 protein complex partly assembles in lipid raft structures, where shutting off rhodopsin seems to be more effective. Re-synthesis of cGMP is another crucial step in the recovery of the photoresponse after illumination. It is catalyzed by membrane bound sensory guanylate cyclases (GCs) and is regulated by specific neuronal Ca2+-sensor proteins called guanylate cyclase-activating proteins (GCAPs). At least one GC (ROS-GC1) was shown to be part of a multiprotein complex having strong interactions with the cytoskeleton and being controlled in a multimodal Ca2+-dependent fashion. The final target of the cGMP signaling cascade is a cyclic nucleotide-gated (CNG) channel that is a hetero-oligomeric protein located in the plasma membrane and interacting with accessory proteins in highly organized microdomains. We summarize results and interpretations of findings related to the inhomogeneous organization of signaling units in photoreceptor outer segments.
Collapse
Affiliation(s)
- Karl-Wilhelm Koch
- Department of Neurosciences, Biochemistry Group, University of Oldenburg Oldenburg, Germany
| | - Daniele Dell'Orco
- Department of Neurological, Biomedical and Movement Sciences, Section of Biological Chemistry and Center for BioMedical Computing (CBMC), University of Verona Verona, Italy
| |
Collapse
|
22
|
Aquila M, Benedusi M, Fasoli A, Rispoli G. Characterization of Zebrafish Green Cone Photoresponse Recorded with Pressure-Polished Patch Pipettes, Yielding Efficient Intracellular Dialysis. PLoS One 2015; 10:e0141727. [PMID: 26513584 PMCID: PMC4626105 DOI: 10.1371/journal.pone.0141727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022] Open
Abstract
The phototransduction enzymatic cascade in cones is less understood than in rods, and the zebrafish is an ideal model with which to investigate vertebrate and human vision. Therefore, here, for the first time, the zebrafish green cone photoresponse is characterized also to obtain a firm basis for evaluating how it is modulated by exogenous molecules. To this aim, a powerful method was developed to obtain long-lasting recordings with low access resistance, employing pressure-polished patch pipettes. This method also enabled fast, efficient delivery of molecules via a perfusion system coupled with pulled quartz or plastic perfusion tubes, inserted very close to the enlarged pipette tip. Sub-saturating flashes elicited responses in different cells with similar rising phase kinetics but with very different recovery kinetics, suggesting the existence of physiologically distinct cones having different Ca2+ dynamics. Theoretical considerations demonstrate that the different recovery kinetics can be modelled by simulating changes in the Ca2+-buffering capacity of the outer segment. Importantly, the Ca2+-buffer action preserves the fast response rising phase, when the Ca2+-dependent negative feedback is activated by the light-induced decline in intracellular Ca2+.
Collapse
Affiliation(s)
- Marco Aquila
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mascia Benedusi
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Anna Fasoli
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giorgio Rispoli
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
- * E-mail:
| |
Collapse
|
23
|
Schöneberg J, Heck M, Hofmann KP, Noé F. Explicit spatiotemporal simulation of receptor-G protein coupling in rod cell disk membranes. Biophys J 2015; 107:1042-1053. [PMID: 25185540 DOI: 10.1016/j.bpj.2014.05.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 12/11/2022] Open
Abstract
Dim-light vision is mediated by retinal rod cells. Rhodopsin (R), a G-protein-coupled receptor, switches to its active form (R(∗)) in response to absorbing a single photon and activates multiple copies of the G-protein transducin (G) that trigger further downstream reactions of the phototransduction cascade. The classical assumption is that R and G are uniformly distributed and freely diffusing on disk membranes. Recent experimental findings have challenged this view by showing specific R architectures, including RG precomplexes, nonuniform R density, specific R arrangements, and immobile fractions of R. Here, we derive a physical model that describes the first steps of the photoactivation cascade in spatiotemporal detail and single-molecule resolution. The model was implemented in the ReaDDy software for particle-based reaction-diffusion simulations. Detailed kinetic in vitro experiments are used to parametrize the reaction rates and diffusion constants of R and G. Particle diffusion and G activation are then studied under different conditions of R-R interaction. It is found that the classical free-diffusion model is consistent with the available kinetic data. The existence of precomplexes between inactive R and G is only consistent with the data if these precomplexes are weak, with much larger dissociation rates than suggested elsewhere. Microarchitectures of R, such as dimer racks, would effectively immobilize R but have little impact on the diffusivity of G and on the overall amplification of the cascade at the level of the G protein.
Collapse
Affiliation(s)
- Johannes Schöneberg
- Department of Mathematics, Computer Science and Bioinformatics, Freie Universität Berlin, Berlin, Germany
| | - Martin Heck
- Institut für Medizinische Physik und Biophysik, Charité, Universitätsmedizin Berlin, Berlin, Germany.
| | - Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Noé
- Department of Mathematics, Computer Science and Bioinformatics, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
24
|
Activation and quenching of the phototransduction cascade in retinal cones as inferred from electrophysiology and mathematical modeling. Mol Vis 2015; 21:244-63. [PMID: 25866462 PMCID: PMC4392649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/05/2015] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To experimentally identify and quantify factors responsible for the lower sensitivity of retinal cones compared to rods. METHODS Electrical responses of frog rods and fish (Carassius) cones to short flashes of light were recorded using the suction pipette technique. A fast solution changer was used to apply a solution that fixed intracellular Ca2+ concentration at the prestimulus level, thereby disabling Ca2+ feedback, to the outer segment (OS). The results were analyzed with a specially designed mathematical model of phototransduction. The model included all basic processes of activation and quenching of the phototransduction cascade but omitted unnecessary mechanistic details of each step. RESULTS Judging from the response versus intensity curves, Carassius cones were two to three orders of magnitude less sensitive than frog rods. There was a large scatter in sensitivity among individual cones, with red-sensitive cones being on average approximately two times less sensitive than green-sensitive ones. The scatter was mostly due to different signal amplification, since the kinetic parameters of the responses among cones were far less variable than sensitivity. We argue that the generally accepted definition of the biochemical amplification in phototransduction cannot be used for comparing amplification in rods and cones, since it depends on an irrelevant factor, that is, the cell's volume. We also show that the routinely used simplified parabolic curve fitting to an initial phase of the response leads to a few-fold underestimate of the amplification. We suggest a new definition of the amplification that only includes molecular parameters of the cascade activation, and show how it can be derived from experimental data. We found that the mathematical model with unrestrained parameters can yield an excellent fit to experimental responses. However, the fits with wildly different sets of parameters can be virtually indistinguishable, and therefore cannot provide meaningful data on underlying mechanisms. Based on results of Ca2+-clamp experiments, we developed an approach to strongly constrain the values of many key parameters that set the time course and sensitivity of the photoresponse (such as the dark turnover rate of cGMP, rates of turnoffs of the photoactivated visual pigment and phosphodiesterase, and kinetics of Ca2+ feedback). We show that applying these constraints to our mathematical model enables accurate determination of the biochemical amplification in phototransduction. It appeared that, contrary to many suggestions, maximum biochemical amplification derived for "best" Carassius cones was as high as in frog rods. On the other hand, all turnoff and recovery reactions in cones proceeded approximately 10 times faster than in rods. CONCLUSIONS The main cause of the differing sensitivity of rods and cones is cones' ability to terminate their photoresponse faster.
Collapse
|
25
|
Invergo BM, Dell'Orco D, Montanucci L, Koch KW, Bertranpetit J. A comprehensive model of the phototransduction cascade in mouse rod cells. MOLECULAR BIOSYSTEMS 2014; 10:1481-9. [PMID: 24675755 DOI: 10.1039/c3mb70584f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vertebrate visual phototransduction is perhaps the most well-studied G-protein signaling pathway. A wealth of available biochemical and electrophysiological data has resulted in a rich history of mathematical modeling of the system. However, while the most comprehensive models have relied upon amphibian biochemical and electrophysiological data, modern research typically employs mammalian species, particularly mice, which exhibit significantly faster signaling dynamics. In this work, we present an adaptation of a previously published, comprehensive model of amphibian phototransduction that can produce quantitatively accurate simulations of the murine photoresponse. We demonstrate the ability of the model to predict responses to a wide range of stimuli and under a variety of mutant conditions. Finally, we employ the model to highlight a likely unknown mechanism related to the interaction between rhodopsin and rhodopsin kinase.
Collapse
Affiliation(s)
- Brandon M Invergo
- IBE - Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | | | | | | | | |
Collapse
|
26
|
Dell'Orco D, Sulmann S, Zägel P, Marino V, Koch KW. Impact of cone dystrophy-related mutations in GCAP1 on a kinetic model of phototransduction. Cell Mol Life Sci 2014; 71:3829-40. [PMID: 24566882 DOI: 10.1007/s00018-014-1593-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/11/2022]
Abstract
Cone dystrophy-related mutations in guanylate cyclase-activating protein 1 (GCAP1) are known to cause severe disturbance of their Ca(2+)-sensing properties affecting also their regulatory modes. However, crucial biochemical properties of mutant GCAP1 forms have not been fully elucidated and regulatory parameters of GCAP1 mutants have not been considered within the context of a comprehensive description of the phototransduction cascade kinetics. We investigated therefore the structure-function relationships of four dystrophy-relevant point mutations in GCAP1 harboring the following amino acid substitutions: E89K, D100E, L151F, and G159V. All mutations decrease the catalytic efficiency in regulating the target guanylate cyclase and decrease the affinity of Ca(2+)-binding in at least one, but in most cases two EF-hand Ca(2+)-binding sites. Although the wild type and mutants of GCAP1 displayed large differences in Ca(2+)-binding and regulation, circular dichroism (CD) spectroscopy revealed that all proteins preserved an intact secondary and tertiary structure with a significant rearrangement of the aromatic residues upon binding of Ca(2+). To gain insight into the dynamic changes of cyclic GMP levels in a photoreceptor cell, we incorporated parameters describing the regulation of target guanylate cyclase by GCAP1 mutants into a comprehensive kinetic model of phototransduction. Modeling led us to conclude that the contribution of GCAP1 to the dynamic synthesis of cyclic GMP in rod cells would depend on the expression level of the wild-type form. Although the synthesis rate controlled by GCAP1 remains at a constant level, in the case of high expression levels of cone-dystrophy GCAP1 mutants it would not contribute at all to shaping the cGMP rate, which becomes dynamically regulated solely by the other present Ca(2+)-sensor GCAP2.
Collapse
Affiliation(s)
- Daniele Dell'Orco
- Section of Biological Chemistry, Department of Life Sciences and Reproduction, University of Verona, 37134 Verona, Italy,
| | | | | | | | | |
Collapse
|
27
|
Blackwell KT. Approaches and tools for modeling signaling pathways and calcium dynamics in neurons. J Neurosci Methods 2013; 220:131-40. [PMID: 23743449 PMCID: PMC3830683 DOI: 10.1016/j.jneumeth.2013.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 01/25/2023]
Abstract
Signaling pathways are cascades of intracellular biochemical reactions that are activated by transmembrane receptors, and ultimately lead to transcription in the nucleus. In neurons, both calcium permeable synaptic and ionic channels as well as G protein coupled receptors initiate activation of signaling pathway molecules that interact with electrical activity at multiple spatial and time scales. At small temporal and spatial scales, calcium modifies the properties of ionic channels, whereas at larger temporal and spatial scales, various kinases and phosphatases modify the properties of ionic channels, producing phenomena such as synaptic plasticity and homeostatic plasticity. The elongated structure of neuronal dendrites and the organization of multi-protein complexes by anchoring proteins imply that the spatial dimension must be explicit. Therefore, modeling signaling pathways in neurons utilizes algorithms for both diffusion and reactions. The small size of spines coupled with small concentrations of some molecules implies that some reactions occur stochastically. The need for stochastic simulation of many reaction and diffusion events coupled with the multiple temporal and spatial scales makes modeling of signaling pathways a difficult problem. Several different software programs have achieved different aspects of these capabilities. This review explains some of the mathematical formulas used for modeling reactions and diffusion. In addition, it briefly presents the simulators used for modeling reaction-diffusion systems in neurons, together with scientific problems addressed.
Collapse
Affiliation(s)
- K T Blackwell
- George Mason University, The Krasnow Institute for Advanced Studies, MS 2A1, Fairfax, VA 22030-444, USA.
| |
Collapse
|
28
|
Clark DA, Benichou R, Meister M, Azeredo da Silveira R. Dynamical adaptation in photoreceptors. PLoS Comput Biol 2013; 9:e1003289. [PMID: 24244119 PMCID: PMC3828139 DOI: 10.1371/journal.pcbi.1003289] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 09/03/2013] [Indexed: 11/18/2022] Open
Abstract
Adaptation is at the heart of sensation and nowhere is it more salient than in early visual processing. Light adaptation in photoreceptors is doubly dynamical: it depends upon the temporal structure of the input and it affects the temporal structure of the response. We introduce a non-linear dynamical adaptation model of photoreceptors. It is simple enough that it can be solved exactly and simulated with ease; analytical and numerical approaches combined provide both intuition on the behavior of dynamical adaptation and quantitative results to be compared with data. Yet the model is rich enough to capture intricate phenomenology. First, we show that it reproduces the known phenomenology of light response and short-term adaptation. Second, we present new recordings and demonstrate that the model reproduces cone response with great precision. Third, we derive a number of predictions on the response of photoreceptors to sophisticated stimuli such as periodic inputs, various forms of flickering inputs, and natural inputs. In particular, we demonstrate that photoreceptors undergo rapid adaptation of response gain and time scale, over ∼ 300[Formula: see text] ms-i. e., over the time scale of the response itself-and we confirm this prediction with data. For natural inputs, this fast adaptation can modulate the response gain more than tenfold and is hence physiologically relevant.
Collapse
Affiliation(s)
- Damon A. Clark
- Department of Physics, Ecole Normale Supérieure, Paris, France
| | | | - Markus Meister
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Rava Azeredo da Silveira
- Department of Physics, Ecole Normale Supérieure, Paris, France
- Laboratoire de Physique Statistique, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Université Denis Diderot, Paris, France
| |
Collapse
|
29
|
Abstract
Amphibian and mammalian rods can both detect single photons of light even though they differ greatly in physical dimensions, mammalian rods being much smaller in diameter than amphibian rods. To understand the changes in physiology and biochemistry required by such large differences in outer segment geometry, we developed a computational approach, taking into account the spatial organization of the outer segment divided into compartments, together with molecular dynamics simulations of the signaling cascade. We generated simulations of the single-photon response together with intrinsic background fluctuations in toad and mouse rods. Combining this computational approach with electrophysiological data from mouse rods, we determined key biochemical parameters. On average around one phosphodiesterase (PDE) molecule is spontaneously active per mouse compartment, similar to the value for toad, which is unexpected due to the much smaller diameter in mouse. A larger number of spontaneously active PDEs decreases dark noise, thereby improving detection of single photons; it also increases cGMP turnover, which accelerates the decay of the light response. These constraints explain the higher PDE density in mammalian compared with amphibian rods that compensates for the much smaller diameter of mammalian disks. We further find that the rate of cGMP hydrolysis by light-activated PDE is diffusion limited, which is not the case for spontaneously activated PDE. As a consequence, in the small outer segment of a mouse rod only a few activated PDEs are sufficient to generate a signal that overcomes noise, which permits a shorter lifetime of activated rhodopsin and greater temporal resolution.
Collapse
|
30
|
Evolution of phototransduction, vertebrate photoreceptors and retina. Prog Retin Eye Res 2013; 36:52-119. [DOI: 10.1016/j.preteyeres.2013.06.001] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/02/2013] [Indexed: 01/12/2023]
|
31
|
Invergo BM, Montanucci L, Koch KW, Bertranpetit J, Dell'orco D. Exploring the rate-limiting steps in visual phototransduction recovery by bottom-up kinetic modeling. Cell Commun Signal 2013; 11:36. [PMID: 23693153 PMCID: PMC3732082 DOI: 10.1186/1478-811x-11-36] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/09/2013] [Indexed: 01/20/2023] Open
Abstract
Background Phototransduction in vertebrate photoreceptor cells represents a paradigm of signaling pathways mediated by G-protein-coupled receptors (GPCRs), which share common modules linking the initiation of the cascade to the final response of the cell. In this work, we focused on the recovery phase of the visual photoresponse, which is comprised of several interacting mechanisms. Results We employed current biochemical knowledge to investigate the response mechanisms of a comprehensive model of the visual phototransduction pathway. In particular, we have improved the model by implementing a more detailed representation of the recoverin (Rec)-mediated calcium feedback on rhodopsin kinase and including a dynamic arrestin (Arr) oligomerization mechanism. The model was successfully employed to investigate the rate limiting steps in the recovery of the rod photoreceptor cell after illumination. Simulation of experimental conditions in which the expression levels of rhodospin kinase (RK), of the regulator of the G-protein signaling (RGS), of Arr and of Rec were altered individually or in combination revealed severe kinetic constraints to the dynamics of the overall network. Conclusions Our simulations confirm that RGS-mediated effector shutdown is the rate-limiting step in the recovery of the photoreceptor and show that the dynamic formation and dissociation of Arr homodimers and homotetramers at different light intensities significantly affect the timing of rhodopsin shutdown. The transition of Arr from its oligomeric storage forms to its monomeric form serves to temper its availability in the functional state. Our results may explain the puzzling evidence that overexpressing RK does not influence the saturation time of rod cells at bright light stimuli. The approach presented here could be extended to the study of other GPCR signaling pathways.
Collapse
Affiliation(s)
- Brandon M Invergo
- Department of Life Sciences and Reproduction, Section of Biological Chemistry and Center for BioMedical Computing (CBMC), University of Verona, Strada le Grazie 8, 37134, Verona, Italy.
| | | | | | | | | |
Collapse
|
32
|
Common dynamical features of sensory adaptation in photoreceptors and olfactory sensory neurons. Sci Rep 2013; 3:1251. [PMID: 23409242 PMCID: PMC3570788 DOI: 10.1038/srep01251] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/07/2013] [Indexed: 01/25/2023] Open
Abstract
Sensory systems adapt, i.e., they adjust their sensitivity to external stimuli according to the ambient level. In this paper we show that single cell electrophysiological responses of vertebrate olfactory receptors and of photoreceptors to different input protocols exhibit several common features related to adaptation, and that these features can be used to investigate the dynamical structure of the feedback regulation responsible for the adaptation. In particular, we point out that two different forms of adaptation can be observed, in response to steps and to pairs of pulses. These two forms of adaptation appear to be in a dynamical trade-off: the more adaptation to a step is close to perfect, the slower is the recovery in adaptation to pulse pairs and viceversa. Neither of the two forms is explained by the dynamical models currently used to describe adaptation, such as the integral feedback model.
Collapse
|
33
|
Gross OP, Pugh EN, Burns ME. Calcium feedback to cGMP synthesis strongly attenuates single-photon responses driven by long rhodopsin lifetimes. Neuron 2012; 76:370-82. [PMID: 23083739 PMCID: PMC3594095 DOI: 10.1016/j.neuron.2012.07.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2012] [Indexed: 11/26/2022]
Abstract
Rod photoreceptors generate amplified, reproducible responses to single photons via a G protein signaling cascade. Surprisingly, genetic perturbations that dramatically alter the deactivation of the principal signal amplifier, the GPCR rhodopsin (R∗), do not much alter the amplitude of single-photon responses (SPRs). These same perturbations, when crossed into a line lacking calcium feedback regulation of cGMP synthesis, produced much larger alterations in SPR amplitudes. Analysis of SPRs from rods with and without feedback reveal that the consequences of trial-to-trial fluctuations in R∗ lifetime in normal rods are also dampened by feedback regulation of cGMP synthesis. Thus, calcium feedback trumps the mechanisms of R∗ deactivation in determining the SPR amplitude, attenuating responses arising from longer R∗ lifetimes to a greater extent than those arising from shorter ones. As a result, rod SPRs achieve a more stereotyped amplitude, a characteristic considered important for reliable transmission through the visual system.
Collapse
Affiliation(s)
- Owen P. Gross
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Edward N. Pugh
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95618, USA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA 95618, USA
| | - Marie E. Burns
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA 95618, USA
- Center for Neuroscience and Department of Ophthalmology & Vision Science, University of California, Davis, Davis, CA 95618, USA
| |
Collapse
|
34
|
Regulation of the methylation status of G protein-coupled receptor kinase 1 (rhodopsin kinase). Cell Signal 2012; 24:2259-67. [PMID: 22846544 DOI: 10.1016/j.cellsig.2012.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/09/2012] [Accepted: 07/24/2012] [Indexed: 01/03/2023]
Abstract
Rhodopsin kinase (GRK1) is a member of G protein-coupled receptor kinase family and a key enzyme in the quenching of photolysed rhodopsin activity and desensitisation of the rod photoreceptor neurons. Like some other rod proteins involved in phototransduction, GRK1 is posttranslationally modified at the C terminus by isoprenylation (farnesylation), endoproteolysis and α-carboxymethylation. In this study, we examined the potential mechanisms of regulation of GRK1 methylation status, which have remained unexplored so far. We found that considerable fraction of GRK1 is endogenously methylated. In isolated rod outer segments, its methylation is inhibited and demethylation stimulated by low-affinity nucleotide binding. This effect is not specific for ATP and was observed in the presence of a non-hydrolysable ATP analogue AMP-PNP, GTP and other nucleotides, and thus may involve a site distinct from the active site of the kinase. GRK1 demethylation is inhibited in the presence of Ca(2+) by recoverin. This inhibition requires recoverin myristoylation and the presence of the membranes, and may be due to changes in GRK1 availability for processing enzymes upon its redistribution to the membranes induced by recoverin/Ca(2+). We hypothesise that increased GRK1 methylation in dark-adapted rods due to elevated cytoplasmic Ca(2+) levels would further increase its association with the membranes and recoverin, providing a positive feedback to efficiently suppress spurious phosphorylation of non-activated rhodopsin molecules and thus maximise senstivity of the photoreceptor. This study provides the first evidence for dynamic regulation of GRK1 α-carboxymethylation, which might play a role in the regulation of light sensitivity and adaptation in the rod photoreceptors.
Collapse
|
35
|
Korenbrot JI. Speed, adaptation, and stability of the response to light in cone photoreceptors: the functional role of Ca-dependent modulation of ligand sensitivity in cGMP-gated ion channels. ACTA ACUST UNITED AC 2012; 139:31-56. [PMID: 22200947 PMCID: PMC3250101 DOI: 10.1085/jgp.201110654] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The response of cone photoreceptors to light is stable and reproducible because of the exceptional regulation of the cascade of enzymatic reactions that link visual pigment (VP) excitation to the gating of cyclic GMP (cGMP)-gated ion channels (cyclic nucleotide–gated [CNG]) in the outer segment plasma membrane. Regulation is achieved in part through negative feedback control of some of these reactions by cytoplasmic free Ca2+. As part of the control process, Ca2+ regulates the phosphorylation of excited VP, the activity of guanylate cyclase, and the ligand sensitivity of the CNG ion channels. We measured photocurrents elicited by stimuli in the form of flashes, steps, and flashes superimposed on steps in voltage-clamped single bass cones isolated from striped bass retina. We also developed a computational model that comprises all the known molecular events of cone phototransduction, including all Ca-dependent controls. Constrained by available experimental data in bass cones and cone transduction biochemistry, we achieved an excellent match between experimental photocurrents and those simulated by the model. We used the model to explore the physiological role of CNG ion channel modulation. Control of CNG channel activity by both cGMP and Ca2+ causes the time course of the light-dependent currents to be faster than if only cGMP controlled their activity. Channel modulation also plays a critical role in the regulation of the light sensitivity and light adaptation of the cone photoresponse. In the absence of ion channel modulation, cone photocurrents would be unstable, oscillating during and at the offset of light stimuli.
Collapse
Affiliation(s)
- Juan I Korenbrot
- Department of Physiology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
36
|
Korenbrot JI. Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models. Prog Retin Eye Res 2012; 31:442-66. [PMID: 22658984 DOI: 10.1016/j.preteyeres.2012.05.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 05/19/2012] [Accepted: 05/21/2012] [Indexed: 01/06/2023]
Abstract
The light responses of rod and cone photoreceptors in the vertebrate retina are quantitatively different, yet extremely stable and reproducible because of the extraordinary regulation of the cascade of enzymatic reactions that link photon absorption and visual pigment excitation to the gating of cGMP-gated ion channels in the outer segment plasma membrane. While the molecular scheme of the phototransduction pathway is essentially the same in rods and cones, the enzymes and protein regulators that constitute the pathway are distinct. These enzymes and regulators can differ in the quantitative features of their functions or in concentration if their functions are similar or both can be true. The molecular identity and distinct function of the molecules of the transduction cascade in rods and cones are summarized. The functional significance of these molecular differences is examined with a mathematical model of the signal-transducing enzymatic cascade. Constrained by available electrophysiological, biochemical and biophysical data, the model simulates photocurrents that match well the electrical photoresponses measured in both rods and cones. Using simulation computed with the mathematical model, the time course of light-dependent changes in enzymatic activities and second messenger concentrations in non-mammalian rods and cones are compared side by side.
Collapse
Affiliation(s)
- Juan I Korenbrot
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA 94920, USA.
| |
Collapse
|
37
|
Structural and functional protein network analyses predict novel signaling functions for rhodopsin. Mol Syst Biol 2011; 7:551. [PMID: 22108793 PMCID: PMC3261702 DOI: 10.1038/msb.2011.83] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 09/29/2011] [Indexed: 12/02/2022] Open
Abstract
Proteomic analyses, literature mining, and structural data were combined to generate an extensive signaling network linked to the visual G protein-coupled receptor rhodopsin. Network analysis suggests novel signaling routes to cytoskeleton dynamics and vesicular trafficking. Using a shotgun proteomic approach, we identified the protein inventory of the light sensing outer segment of the mammalian photoreceptor. These data, combined with literature mining, structural modeling, and computational analysis, offer a comprehensive view of signal transduction downstream of the visual G protein-coupled receptor rhodopsin. The network suggests novel signaling branches downstream of rhodopsin to cytoskeleton dynamics and vesicular trafficking. The network serves as a basis for elucidating physiological principles of photoreceptor function and suggests potential disease-associated proteins.
Photoreceptor cells are neurons capable of converting light into electrical signals. The rod outer segment (ROS) region of the photoreceptor cells is a cellular structure made of a stack of around 800 closed membrane disks loaded with rhodopsin (Liang et al, 2003; Nickell et al, 2007). In disc membranes, rhodopsin arranges itself into paracrystalline dimer arrays, enabling optimal association with the heterotrimeric G protein transducin as well as additional regulatory components (Ciarkowski et al, 2005). Disruption of these highly regulated structures and processes by germline mutations is the cause of severe blinding diseases such as retinitis pigmentosa, macular degeneration, or congenital stationary night blindness (Berger et al, 2010). Traditionally, signal transduction networks have been studied by combining biochemical and genetic experiments addressing the relations among a small number of components. More recently, large throughput experiments using different techniques like two hybrid or co-immunoprecipitation coupled to mass spectrometry have added a new level of complexity (Ito et al, 2001; Gavin et al, 2002, 2006; Ho et al, 2002; Rual et al, 2005; Stelzl et al, 2005). However, in these studies, space, time, and the fact that many interactions detected for a particular protein are not compatible, are not taken into consideration. Structural information can help discriminate between direct and indirect interactions and more importantly it can determine if two or more predicted partners of any given protein or complex can simultaneously bind a target or rather compete for the same interaction surface (Kim et al, 2006). In this work, we build a functional and dynamic interaction network centered on rhodopsin on a systems level, using six steps: In step 1, we experimentally identified the proteomic inventory of the porcine ROS, and we compared our data set with a recent proteomic study from bovine ROS (Kwok et al, 2008). The union of the two data sets was defined as the ‘initial experimental ROS proteome'. After removal of contaminants and applying filtering methods, a ‘core ROS proteome', consisting of 355 proteins, was defined. In step 2, proteins of the core ROS proteome were assigned to six functional modules: (1) vision, signaling, transporters, and channels; (2) outer segment structure and morphogenesis; (3) housekeeping; (4) cytoskeleton and polarity; (5) vesicles formation and trafficking, and (6) metabolism. In step 3, a protein-protein interaction network was constructed based on the literature mining. Since for most of the interactions experimental evidence was co-immunoprecipitation, or pull-down experiments, and in addition many of the edges in the network are supported by single experimental evidence, often derived from high-throughput approaches, we refer to this network, as ‘fuzzy ROS interactome'. Structural information was used to predict binary interactions, based on the finding that similar domain pairs are likely to interact in a similar way (‘nature repeats itself') (Aloy and Russell, 2002). To increase the confidence in the resulting network, edges supported by a single evidence not coming from yeast two-hybrid experiments were removed, exception being interactions where the evidence was the existence of a three-dimensional structure of the complex itself, or of a highly homologous complex. This curated static network (‘high-confidence ROS interactome') comprises 660 edges linking the majority of the nodes. By considering only edges supported by at least one evidence of direct binary interaction, we end up with a ‘high-confidence binary ROS interactome'. We next extended the published core pathway (Dell'Orco et al, 2009) using evidence from our high-confidence network. We find several new direct binary links to different cellular functional processes (Figure 4): the active rhodopsin interacts with Rac1 and the GTP form of Rho. There is also a connection between active rhodopsin and Arf4, as well as PDEδ with Rab13 and the GTP-bound form of Arl3 that links the vision cycle to vesicle trafficking and structure. We see a connection between PDEδ with prenyl-modified proteins, such as several small GTPases, as well as with rhodopsin kinase. Further, our network reveals several direct binary connections between Ca2+-regulated proteins and cytoskeleton proteins; these are CaMK2A with actinin, calmodulin with GAP43 and S1008, and PKC with 14-3-3 family members. In step 4, part of the network was experimentally validated using three different approaches to identify physical protein associations that would occur under physiological conditions: (i) Co-segregation/co-sedimentation experiments, (ii) immunoprecipitations combined with mass spectrometry and/or subsequent immunoblotting, and (iii) utilizing the glycosylated N-terminus of rhodopsin to isolate its associated protein partners by Concanavalin A affinity purification. In total, 60 co-purification and co-elution experiments supported interactions that were already in our literature network, and new evidence from 175 co-IP experiments in this work was added. Next, we aimed to provide additional independent experimental confirmation for two of the novel networks and functional links proposed based on the network analysis: (i) the proposed complex between Rac1/RhoA/CRMP-2/tubulin/and ROCK II in ROS was investigated by culturing retinal explants in the presence of an ROCK II-specific inhibitor (Figure 6). While morphology of the retinas treated with ROCK II inhibitor appeared normal, immunohistochemistry analyses revealed several alterations on the protein level. (ii) We supported the hypothesis that PDEδ could function as a GDI for Rac1 in ROS, by demonstrating that PDEδ and Rac1 co localize in ROS and that PDEδ could dissociate Rac1 from ROS membranes in vitro. In step 5, we use structural information to distinguish between mutually compatible (‘AND') or excluded (‘XOR') interactions. This enables breaking a network of nodes and edges into functional machines or sub-networks/modules. In the vision branch, both ‘AND' and ‘XOR' gates synergize. This may allow dynamic tuning of light and dark states. However, all connections from the vision module to other modules are ‘XOR' connections suggesting that competition, in connection with local protein concentration changes, could be important for transmitting signals from the core vision module. In the last step, we map and functionally characterize the known mutations that produce blindness. In summary, this represents the first comprehensive, dynamic, and integrative rhodopsin signaling network, which can be the basis for integrating and mapping newly discovered disease mutants, to guide protein or signaling branch-specific therapies. Orchestration of signaling, photoreceptor structural integrity, and maintenance needed for mammalian vision remain enigmatic. By integrating three proteomic data sets, literature mining, computational analyses, and structural information, we have generated a multiscale signal transduction network linked to the visual G protein-coupled receptor (GPCR) rhodopsin, the major protein component of rod outer segments. This network was complemented by domain decomposition of protein–protein interactions and then qualified for mutually exclusive or mutually compatible interactions and ternary complex formation using structural data. The resulting information not only offers a comprehensive view of signal transduction induced by this GPCR but also suggests novel signaling routes to cytoskeleton dynamics and vesicular trafficking, predicting an important level of regulation through small GTPases. Further, it demonstrates a specific disease susceptibility of the core visual pathway due to the uniqueness of its components present mainly in the eye. As a comprehensive multiscale network, it can serve as a basis to elucidate the physiological principles of photoreceptor function, identify potential disease-associated genes and proteins, and guide the development of therapies that target specific branches of the signaling pathway.
Collapse
|
38
|
Arden GB, Jyothi S, Hogg CH, Lee YF, Sivaprasad S. Regression of early diabetic macular oedema is associated with prevention of dark adaptation. Eye (Lond) 2011; 25:1546-54. [PMID: 22020171 DOI: 10.1038/eye.2011.264] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
HYPOTHESIS Dark-adapted rods consume oxygen at high rates and light adaptation decreases this oxygen burden and can have therapeutic effects on diabetic macular oedema (DMO). METHODS Patients with mild non-proliferative diabetic retinopathy (DR) and early, untreated non-sight-threatening DMO slept for 6 months wearing masks that illuminated the eyelid of one closed eye by 505 nm light. Exclusion criteria were any concomitant eye disease, DR >ETDRS grade 35, and other systemic diseases. PRIMARY OUTCOME change of OCT retinal thickness in the local region where oedema was present. RESULTS A total of 34 out of 40 patients completed the study. Mean baseline OCT macular cube thickness was equivalent for study and fellow eyes. But study eyes had a greater mean thickness in the central subfield zone 1 (282±53 μm) vs (256±19 μm) the fellow eyes. Twenty-eight study eyes showed intraretinal cysts compared with nine in the fellow eyes. At 6 months, only 19 study eyes had cysts while cysts were seen in 20 fellow eyes. After 6 months, the worst affected ETDRS zone and the central subfield zone 1 reduced in thickness in study eyes only by 12 μm (95% CI 20 to -7, P=0.01). The secondary outcomes of change in visual acuity, achromatic contrast sensitivity, and microperimetric thresholds improved significantly in study eyes and deteriorated in fellow eyes. CONCLUSIONS Sleeping in dim light that can keep rods light adapted may reverse the changes of DMO.
Collapse
Affiliation(s)
- G B Arden
- School of Community and Health Sciences, City University, London, UK.
| | | | | | | | | |
Collapse
|
39
|
Fain GL. Adaptation of mammalian photoreceptors to background light: putative role for direct modulation of phosphodiesterase. Mol Neurobiol 2011; 44:374-82. [PMID: 21922272 DOI: 10.1007/s12035-011-8205-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/04/2011] [Indexed: 11/26/2022]
Abstract
All sensory receptors adapt. As the mean level of light or sound or odor is altered, the sensitivity of the receptor is adjusted to permit the cell to function over as wide a range of ambient stimulation as possible. In a rod photoreceptor, adaptation to maintained background light produces a decrease (or "sag") in the response to the prolonged illumination, as well as an acceleration in response decay time and a Weber-Fechner-like decrease in sensitivity. Earlier work on salamander indicated that adaptation is controlled by the intracellular concentration of Ca(2+). Three Ca(2+)-dependent mechanisms were subsequently identified, namely, regulation of guanylyl cyclase, modulation of activated rhodopsin lifetime, and alteration of channel opening probability, with the contribution of the cyclase thought to be the most important. Later experiments on mouse that exploit the powerful techniques of molecular genetics have shown that cyclase does indeed play a significant role in mammalian rods, but that much of adaptation remains even when regulation of cyclase and both of the other proposed pathways have been genetically deleted. The identity of the missing mechanism or mechanisms is unclear, but recent speculation has focused on direct modulation of spontaneous and light-activated phosphodiesterase.
Collapse
Affiliation(s)
- Gordon L Fain
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095-7239, USA.
| |
Collapse
|
40
|
Quaroni L, Zlateva T, Normand E. Detection of Weak Absorption Changes from Molecular Events in Time-Resolved FT-IR Spectromicroscopy Measurements of Single Functional Cells. Anal Chem 2011; 83:7371-80. [DOI: 10.1021/ac201318z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Luca Quaroni
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
| | - Theodora Zlateva
- Department of Biochemistry and Cancer Research Center, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Elise Normand
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK, S7N 0X4, Canada
| |
Collapse
|
41
|
Abstract
A fundamental question of cell signaling biology is how faint external signals produce robust physiological responses. One universal mechanism relies on signal amplification via intracellular cascades mediated by heterotrimeric G-proteins. This high amplification system allows retinal rod photoreceptors to detect single photons of light. Although much is now known about the role of the α-subunit of the rod-specific G-protein transducin in phototransduction, the physiological function of the auxiliary βγ-complex in this process remains a mystery. Here, we show that elimination of the transducin γ-subunit drastically reduces signal amplification in intact mouse rods. The consequence is a striking decline in rod visual sensitivity and severe impairment of nocturnal vision. Our findings demonstrate that transducin βγ-complex controls signal amplification of the rod phototransduction cascade and is critical for the ability of rod photoreceptors to function in low light conditions.
Collapse
|
42
|
Abstract
Vertebrate photoreceptors are thought to adapt to light by a change in Ca(2+), which is postulated to mediate modulation of (1) excited rhodopsin (Rh*) by Ca(2+)-dependent binding of recoverin, (2) guanylyl cyclase activity via Ca(2+)-dependent GCAP proteins, and (3) cyclic nucleotide-gated channels by binding of Ca(2+)-calmodulin. Previous experiments genetically deleted recoverin and the GCAPs and showed that significant regulation of sensitivity survives removal of (1) and (2). We genetically deleted the channel Ca(2+)-calmodulin binding site in the mouse Mus musculus and found that removal of (3) alters response waveform, but removal of (3) or of (2) and (3) together still leaves much of adaptation intact. These experiments demonstrate that an important additional mechanism is required, which other experiments indicate may be regulation of phosphodiesterase 6 (PDE6). We therefore constructed a kinetic model in which light produces a Ca(2+)-mediated decrease in PDE6 decay rate, with the novel feature that both spontaneously activated and light-activated PDE6 are modulated. This model, together with Ca(2+)-dependent acceleration of guanylyl cyclase, can successfully account for changes in sensitivity and response waveform in background light.
Collapse
|
43
|
Systems biochemistry approaches to vertebrate phototransduction: towards a molecular understanding of disease. Biochem Soc Trans 2011; 38:1275-80. [PMID: 20863298 DOI: 10.1042/bst0381275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phototransduction in vertebrates represents a paradigm of signalling pathways, in particular those mediated by G-protein-coupled receptors. The variety of protein-protein, protein-ion and protein-nucleotide interactions makes up an intricate network which is finely regulated by activating-deactivating molecules and chemical modifications. The holistic systems properties of the network allow for typical adaptation mechanisms, which ultimately result in fine adjustments of sensitivity and electrical response of the photoreceptor cells to the broad range of light stimuli. In the present article, we discuss a novel bottom-up strategy to study the phototransduction cascade in rod cells starting from the underlying biochemistry. The resulting network model can be simulated and the predicted dynamic behaviour directly compared with data from electrophysiological experiments performed on a wide range of illumination conditions. The advantage of applying procedures typical of systems theory to a well-studied signalling pathway is also discussed. Finally, the potential application to the study of the molecular basis of retinal diseases is highlighted through a practical example, namely the simulation of conditions related to Leber congenital amaurosis.
Collapse
|
44
|
Houillon A, Bessière P, Droulez J. The probabilistic cell: implementation of a probabilistic inference by the biochemical mechanisms of phototransduction. Acta Biotheor 2010; 58:103-20. [PMID: 20665071 DOI: 10.1007/s10441-010-9104-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 06/28/2010] [Indexed: 11/28/2022]
Abstract
When we perceive the external world, our brain has to deal with the incompleteness and uncertainty associated with sensory inputs, memory and prior knowledge. In theoretical neuroscience probabilistic approaches have received a growing interest recently, as they account for the ability to reason with incomplete knowledge and to efficiently describe perceptive and behavioral tasks. How can the probability distributions that need to be estimated in these models be represented and processed in the brain, in particular at the single cell level? We consider the basic function carried out by photoreceptor cells which consists in detecting the presence or absence of light. We give a system-level understanding of the process of phototransduction based on a bayesian formalism: we show that the process of phototransduction is equivalent to a temporal probabilistic inference in a Hidden Markov Model (HMM), for estimating the presence or absence of light. Thus, the biochemical mechanisms of phototransduction underlie the estimation of the current state probability distribution of the presence of light. A classical descriptive model describes the interactions between the different molecular messengers, ions, enzymes and channel proteins occurring within the photoreceptor by a set of nonlinear coupled differential equations. In contrast, the probabilistic HMM model is described by a discrete recurrence equation. It appears that the binary HMM has a general solution in the case of constant input. This allows a detailed analysis of the dynamics of the system. The biochemical system and the HMM behave similarly under steady-state conditions. Consequently a formal equivalence can be found between the biochemical system and the HMM. Numerical simulations further extend the results to the dynamic case and to noisy input. All in all, we have derived a probabilistic model equivalent to a classical descriptive model of phototransduction, which has the additional advantage of assigning a function to phototransduction. The example of phototransduction shows how simple biochemical interactions underlie simple probabilistic inferences.
Collapse
Affiliation(s)
- Audrey Houillon
- Laboratoire de Physiologie de la Perception et de l'Action, CNRS/Collège de France, Paris, France.
| | | | | |
Collapse
|
45
|
Falkenburger BH, Jensen JB, Hille B. Kinetics of M1 muscarinic receptor and G protein signaling to phospholipase C in living cells. ACTA ACUST UNITED AC 2010; 135:81-97. [PMID: 20100890 PMCID: PMC2812500 DOI: 10.1085/jgp.200910344] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
G protein-coupled receptors (GPCRs) mediate responses to external stimuli in various cell types. Early events, such as the binding of ligand and G proteins to the receptor, nucleotide exchange (NX), and GTPase activity at the Galpha subunit, are common for many different GPCRs. For G(q)-coupled M(1) muscarinic (acetylcholine) receptors (M(1)Rs), we recently measured time courses of intermediate steps in the signaling cascade using Förster resonance energy transfer (FRET). The expression of FRET probes changes the density of signaling molecules. To provide a full quantitative description of M(1)R signaling that includes a simulation of kinetics in native (tsA201) cells, we now determine the density of FRET probes and construct a kinetic model of M(1)R signaling through G(q) to activation of phospholipase C (PLC). Downstream effects on the trace membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP(2)) and PIP(2)-dependent KCNQ2/3 current are considered in our companion paper in this issue (Falkenburger et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910345). By calibrating their fluorescence intensity, we found that we selected transfected cells for our experiments with approximately 3,000 fluorescently labeled receptors, G proteins, or PLC molecules per microm(2) of plasma membrane. Endogenous levels are much lower, 1-40 per microm(2). Our kinetic model reproduces the time courses and concentration-response relationships measured by FRET and explains observed delays. It predicts affinities and rate constants that align well with literature values. In native tsA201 cells, much of the delay between ligand binding and PLC activation reflects slow binding of G proteins to receptors. With M(1)R and Gbeta FRET probes overexpressed, 10% of receptors have G proteins bound at rest, rising to 73% in the presence of agonist. In agreement with previous work, the model suggests that binding of PLC to Galpha(q) greatly speeds up NX and GTPase activity, and that PLC is maintained in the active state by cycles of rapid GTP hydrolysis and NX on Galpha(q) subunits bound to PLC.
Collapse
Affiliation(s)
- Björn H Falkenburger
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
46
|
Murray AR, Fliesler SJ, Al-Ubaidi MR. Rhodopsin: the functional significance of asn-linked glycosylation and other post-translational modifications. Ophthalmic Genet 2010; 30:109-20. [PMID: 19941415 DOI: 10.1080/13816810902962405] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Rhodopsin, the G-protein coupled receptor in retinal rod photoreceptors, is a highly conserved protein that undergoes several types of post-translational modifications. These modifications are essential to maintain the protein's structure as well as its proper function in the visual transduction cycle. Rhodopsin is N-glycosylated at Asn-2 and Asn-15 in its extracellular N-terminal domain. Mutations within the glycosylation consensus sequences of rhodopsin cause autosomal dominant retinitis pigmentosa, a disease that leads to blindness. Several groups have studied the role of rhodopsin's N-linked glycan chains in protein structure and function using a variety of approaches. These include the generation of a transgenic mouse model, study of a naturally occurring mutant animal model, in vivo pharmacological inhibition of glycosylation, and in vitro analyses using transfected COS-1 cells. These studies have provided insights into the possible role of rhodopsin glycosylation, but have yielded conflicting results.
Collapse
Affiliation(s)
- Anne R Murray
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
47
|
McCullagh E, Farlow J, Fuller C, Girard J, Lipinski-Kruszka J, Lu D, Noriega T, Rollins G, Spitzer R, Todhunter M, El-Samad H. Not all quiet on the noise front. Nat Chem Biol 2009; 5:699-704. [PMID: 19763097 DOI: 10.1038/nchembio.222] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phenotypic diversity exists even within isogenic populations of cells. Such nongenetic individuality may have wide implications for our understanding of many biological processes. The field of study concerned with the investigation of nongenetic individuality, also known as the 'biology of noise', is ripe with exciting scientific opportunities and challenges.
Collapse
Affiliation(s)
- Emma McCullagh
- TETRAD Graduate Program, University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Estevez ME, Kolesnikov AV, Ala-Laurila P, Crouch RK, Govardovskii VI, Cornwall MC. The 9-methyl group of retinal is essential for rapid Meta II decay and phototransduction quenching in red cones. J Gen Physiol 2009; 134:137-50. [PMID: 19635855 PMCID: PMC2717693 DOI: 10.1085/jgp.200910232] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 07/13/2009] [Indexed: 11/21/2022] Open
Abstract
Cone photoreceptors of the vertebrate retina terminate their response to light much faster than rod photoreceptors. However, the molecular mechanisms underlying this rapid response termination in cones are poorly understood. The experiments presented here tested two related hypotheses: first, that the rapid decay rate of metarhodopsin (Meta) II in red-sensitive cones depends on interactions between the 9-methyl group of retinal and the opsin part of the pigment molecule, and second, that rapid Meta II decay is critical for rapid recovery from saturation of red-sensitive cones after exposure to bright light. Microspectrophotometric measurements of pigment photolysis, microfluorometric measurements of retinol production, and single-cell electrophysiological recordings of flash responses of salamander cones were performed to test these hypotheses. In all cases, cones were bleached and their visual pigment was regenerated with either 11-cis retinal or with 11-cis 9-demethyl retinal, an analogue of retinal lacking the 9-methyl group. Meta II decay was four to five times slower and subsequent retinol production was three to four times slower in red-sensitive cones lacking the 9-methyl group of retinal. This was accompanied by a significant slowing of the recovery from saturation in cones lacking the 9-methyl group after exposure to bright (>0.1% visual pigment photoactivated) but not dim light. A mathematical model of the turn-off process of phototransduction revealed that the slower recovery of photoresponse can be explained by slower Meta decay of 9-demethyl visual pigment. These results demonstrate that the 9-methyl group of retinal is required for steric chromophore-opsin interactions that favor both the rapid decay of Meta II and the rapid response recovery after exposure to bright light in red-sensitive cones.
Collapse
Affiliation(s)
- Maureen E Estevez
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Dell'Orco D, Schmidt H, Mariani S, Fanelli F. Network-level analysis of light adaptation in rod cells under normal and altered conditions. MOLECULAR BIOSYSTEMS 2009; 5:1232-46. [PMID: 19756313 DOI: 10.1039/b908123b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Photoreceptor cells finely adjust their sensitivity and electrical response according to changes in light stimuli as a direct consequence of the feedback and regulation mechanisms in the phototransduction cascade. In this study, we employed a systems biology approach to develop a dynamic model of vertebrate rod phototransduction that accounts for the details of the underlying biochemistry. Following a bottom-up strategy, we first reproduced the results of a robust model developed by Hamer et al. (Vis. Neurosci., 2005, 22(4), 417), and then added a number of additional cascade reactions including: (a) explicit reactions to simulate the interaction between the activated effector and the regulator of G-protein signalling (RGS); (b) a reaction for the reformation of the G-protein from separate subunits; (c) a reaction for rhodopsin (R) reconstitution from the association of the opsin apoprotein with the 11-cis-retinal chromophore; (d) reactions for the slow activation of the cascade by opsin. The extended network structure successfully reproduced a number of experimental conditions that were inaccessible to prior models. With a single set of parameters the model was able to predict qualitative and quantitative features of rod photoresponses to light stimuli ranging over five orders of magnitude, in normal and altered conditions, including genetic manipulations of the cascade components. In particular, the model reproduced the salient dynamic features of the rod from Rpe65(-/-) animals, a well established model for Leber congenital amaurosis and vitamin A deficiency. The results of this study suggest that a systems-level approach can help to unravel the adaptation mechanisms in normal and in disease-associated conditions on a molecular basis.
Collapse
Affiliation(s)
- Daniele Dell'Orco
- Department of Chemistry and Dulbecco Telethon Institute, University of Modena and Reggio Emilia Via Campi 183, 41100 Modena, Italy.
| | | | | | | |
Collapse
|
50
|
Reingruber J, Holcman D. Diffusion in narrow domains and application to phototransduction. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:030904. [PMID: 19391893 DOI: 10.1103/physreve.79.030904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 12/02/2008] [Indexed: 05/27/2023]
Abstract
The mean time for a Brownian particle to find a small target inside a narrow domain is a key parameter for many chemical reactions occurring in cellular microstructures. Although current estimations are given for a large class of domains, they cannot be used for narrow domains often encountered in cellular biology, such as the synaptic cleft, narrow compartments in the outer segment of vertebrate photoreceptors, or neuron-glia contact. We compute here the mean time for a Brownian particle to hit a small target placed on the surface of a narrow cylinder. We then use this result to estimate the rate constant of cyclic-GMP (cGMP) hydrolysis by the activated enzyme phosphodiesterase (PDE) in the narrow microdomains that build up the outer segment of a rod photoreceptor. By controlling the cGMP concentration, PDE activity is at the basis of the early photoresponse chemical reaction cascade. Our approach allows us to compute the cGMP rate constant as a function of biophysical parameters.
Collapse
Affiliation(s)
- Jürgen Reingruber
- Department of Computational Biology, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | |
Collapse
|