1
|
Mayol-Troncoso R, Gaspar PA, Verdugo R, Mariman JJ, Maldonado PE. Fixational eye movements and their associated evoked potentials during natural vision are altered in schizophrenia. Schizophr Res Cogn 2024; 38:100324. [PMID: 39238484 PMCID: PMC11375315 DOI: 10.1016/j.scog.2024.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 07/17/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
Background Visual exploration is abnormal in schizophrenia; however, few studies have investigated the physiological responses during selecting objectives in more ecological scenarios. This study aimed to demonstrate that people with schizophrenia have difficulties observing the prominent elements of an image due to a deficit mechanism of sensory modulation (active sensing) during natural vision. Methods An electroencephalogram recording with eye tracking data was collected on 18 healthy individuals and 18 people affected by schizophrenia while looking at natural images. These had a prominent color element and blinking produced by changes in image luminance. Results We found fewer fixations when all images were scanned, late focus on prominent image areas, decreased amplitude in the eye-fixation-related potential, and decreased intertrial coherence in the SCZ group. Conclusions The decrease in the visual attention response evoked by the prominence of visual stimuli in patients affected by schizophrenia is generated by a reduction in endogenous attention mechanisms to initiate and maintain visual exploration. Further work is required to explain the relationship of this decrease with clinical indicators.
Collapse
Affiliation(s)
- Rocío Mayol-Troncoso
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile
- Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Imhay, Chile
- Facultad de Psicología, Universidad Alberto Hurtado, Chile
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Laboratorio Psiquiatría Traslacional
| | - Pablo A Gaspar
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile
- Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Imhay, Chile
- Clínica Alemana, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Laboratorio Psiquiatría Traslacional
| | - Roberto Verdugo
- Biomedical Neuroscience Institute (BNI)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile
- Instituto Psiquiátrico Dr. José Horwitz Barak, Chile
| | - Juan J Mariman
- Department of Physical Therapy, Faculty of Arts and Physical Education, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Department of Physical Therapy, Faculty of Medicine, Universidad de Chile
- Nucleus of wellbeing and human development, education research center (CIE-UMCE), Universidad Metropolitana de Ciencias de la educación
| | - Pedro E Maldonado
- Biomedical Neuroscience Institute (BNI)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile
- Nacional Center for Artificial Intelligence (CENIA), Chile
| |
Collapse
|
2
|
Yang J, Liang N, Pitts BJ, Prakah-Asante K, Curry R, Yu D. An Eye-Fixation Related Electroencephalography Technique for Predicting Situation Awareness: Implications for Driver State Monitoring Systems. HUMAN FACTORS 2024; 66:2138-2153. [PMID: 37851849 DOI: 10.1177/00187208231204570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
OBJECTIVE This study developed a fixation-related electroencephalography band power (FRBP) approach for situation awareness (SA) assessment in automated driving. BACKGROUND Maintaining good SA in Level 3 automated vehicles is crucial to drivers' takeover performance when the automated system fails. A multimodal fusion approach that enables the analysis of the visual behavioral and cognitive processes of SA can facilitate real-time assessment of SA in future driver state monitoring systems. METHOD Thirty participants performed three simulated automated driving tasks. After each task, the Situation Awareness Global Assessment Technique (SAGAT) was deployed to capture their SA about key elements that could affect their takeover task performance. Participants eye movements and brain activities were recorded. Data on their brain activity after each eye fixation on the key elements were extracted and labeled according to the correctness of the SAGAT. Mixed-effects models were used to identify brain regions that were indicative of SA, and machine learning models for SA assessment were developed based on the identified brain regions. RESULTS Participants' alpha and theta oscillation at frontal and temporal areas are indicative of SA. In addition, the FRBP technique can be used to predict drivers' SA with an accuracy of 88% using a neural network model. CONCLUSION The FRBP technique, which incorporates eye movements and brain activities, can provide more comprehensive evaluation of SA. Findings highlight the potential of utilizing FRBP to monitor drivers' SA in real-time. APPLICATION The proposed framework can be expanded and applied to driver state monitoring systems to measure human SA in real-world driving.
Collapse
Affiliation(s)
- Jing Yang
- Purdue University, West Lafayette, IN, USA
| | - Nade Liang
- Purdue University, West Lafayette, IN, USA
| | | | | | | | - Denny Yu
- Purdue University, West Lafayette, IN, USA
| |
Collapse
|
3
|
Del Campo VL, Morán JFO, Cagigal VM, Martín JM, Pagador JB, Hornero R. The use of the eye-fixation-related potential to investigate visual perception in professional domains with high attentional demand: a literature review. Neurol Sci 2024; 45:1849-1860. [PMID: 38157102 DOI: 10.1007/s10072-023-07275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Visual attention is a cognitive skill related to visual perception and neural activity, and also moderated by expertise, in time-constrained professional domains (e.g., aviation, driving, sport, surgery). However, the contribution of both perceptual and neural processes on performance has been studied separately in the literature. DEVELOPMENT We defend an integration of visual and neural signals to offer a more complete picture of the visual attention displayed by professionals of different skill levels when performing free-viewing tasks. Specifically, we propose to zoom the analysis in data related to the quiet eye and P300 component jointly, as a novel signal processing approach to evaluate professionals' visual attention. CONCLUSION This review highlights the advantages of using portable eye trackers and electroencephalogram systems altogether, as a promising technique for a better understanding of early cognitive components related to attentional processes. Altogether, the eye-fixation-related potentials method may provide a better understanding of the cognitive mechanisms employed by the participants in natural settings, revealing what visual information is of interest for participants and distinguishing the neural bases of visual attention between targets and non-targets whenever they perceive a stimulus during free viewing experiments.
Collapse
Affiliation(s)
- Vicente Luis Del Campo
- Laboratorio de Aprendizaje y Control Motor, Facultad de Ciencias del Deporte, Universidad de Extremadura, Avda. de La Universidad, S/N, 10003, Cáceres, Spain.
| | | | - Víctor Martínez Cagigal
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, E.T.S.I. Telecomunicación, Paseo Belén 15, 47011, Valladolid, Spain
- Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Biomedicina (CIBER-BBN), E.T.S.I. Telecomunicación, Paseo Belén 15, 47011, Valladolid, Spain
| | - Jesús Morenas Martín
- Laboratorio de Aprendizaje y Control Motor, Facultad de Ciencias del Deporte, Universidad de Extremadura, Avda. de La Universidad, S/N, 10003, Cáceres, Spain
| | - J Blas Pagador
- Centro de Cirugía de Mínima Invasión Jesús Usón, Ctra. N-521, Km. 41,8, 10071, Cáceres, Spain
| | - Roberto Hornero
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, E.T.S.I. Telecomunicación, Paseo Belén 15, 47011, Valladolid, Spain
- Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Biomedicina (CIBER-BBN), E.T.S.I. Telecomunicación, Paseo Belén 15, 47011, Valladolid, Spain
| |
Collapse
|
4
|
Hollenstein N, Tröndle M, Plomecka M, Kiegeland S, Özyurt Y, Jäger LA, Langer N. The ZuCo benchmark on cross-subject reading task classification with EEG and eye-tracking data. Front Psychol 2023; 13:1028824. [PMID: 36710838 PMCID: PMC9878684 DOI: 10.3389/fpsyg.2022.1028824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
We present a new machine learning benchmark for reading task classification with the goal of advancing EEG and eye-tracking research at the intersection between computational language processing and cognitive neuroscience. The benchmark task consists of a cross-subject classification to distinguish between two reading paradigms: normal reading and task-specific reading. The data for the benchmark is based on the Zurich Cognitive Language Processing Corpus (ZuCo 2.0), which provides simultaneous eye-tracking and EEG signals from natural reading of English sentences. The training dataset is publicly available, and we present a newly recorded hidden testset. We provide multiple solid baseline methods for this task and discuss future improvements. We release our code and provide an easy-to-use interface to evaluate new approaches with an accompanying public leaderboard: www.zuco-benchmark.com.
Collapse
Affiliation(s)
- Nora Hollenstein
- Center for Language Technology, University of Copenhagen, Copenhagen, Denmark
| | - Marius Tröndle
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Martyna Plomecka
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | | | | | - Lena A. Jäger
- Department of Computational Linguistics, University of Zurich, Zurich, Switzerland
- Department of Computer Science, University of Potsdam, Potsdam, Germany
| | - Nicolas Langer
- Department of Psychology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Stankov AD, Touryan J, Gordon S, Ries AJ, Ki J, Parra LC. During natural viewing, neural processing of visual targets continues throughout saccades. J Vis 2021; 21:7. [PMID: 34491271 PMCID: PMC8431980 DOI: 10.1167/jov.21.10.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Relatively little is known about visual processing during free-viewing visual search in realistic dynamic environments. Free-viewing is characterized by frequent saccades. During saccades, visual processing is thought to be suppressed, yet we know that the presaccadic visual content can modulate postsaccadic processing. To better understand these processes in a realistic setting, we study here saccades and neural responses elicited by the appearance of visual targets in a realistic virtual environment. While subjects were being driven through a 3D virtual town, they were asked to discriminate between targets that appear on the road. Using a system identification approach, we separated overlapping and correlated activity evoked by visual targets, saccades, and button presses. We found that the presence of a target enhances early occipital as well as late frontocentral saccade-related responses. The earlier potential, shortly after 125 ms post-saccade onset, was enhanced for targets that appeared in the peripheral vision as compared to the central vision, suggesting that fast peripheral processing initiated before saccade onset. The later potential, at 195 ms post-saccade onset, was strongly modulated by the visibility of the target. Together these results suggest that, during natural viewing, neural processing of the presaccadic visual stimulus continues throughout the saccade, apparently unencumbered by saccadic suppression.
Collapse
Affiliation(s)
- Atanas D Stankov
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.,
| | - Jonathan Touryan
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, USA.,
| | | | - Anthony J Ries
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, USA.,
| | - Jason Ki
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.,
| | - Lucas C Parra
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.,
| |
Collapse
|
6
|
Zammarchi G, Frigau L, Mola F. Markov chain to analyze web usability of a university website using eye tracking data. Stat Anal Data Min 2021. [DOI: 10.1002/sam.11512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gianpaolo Zammarchi
- Department of Economics and Business Sciences University of Cagliari Cagliari Italy
| | - Luca Frigau
- Department of Economics and Business Sciences University of Cagliari Cagliari Italy
| | - Francesco Mola
- Department of Economics and Business Sciences University of Cagliari Cagliari Italy
| |
Collapse
|
7
|
Time-course change in attentional resource allocation during a spot-the-difference task: investigation using an eye fixation-related brain potential. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-01623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Wang Y, Clifford W, Markham C, Deegan C. Examination of Driver Visual and Cognitive Responses to Billboard Elicited Passive Distraction Using Eye-Fixation Related Potential. SENSORS 2021; 21:s21041471. [PMID: 33672488 PMCID: PMC7923428 DOI: 10.3390/s21041471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 11/23/2022]
Abstract
Distractions external to a vehicle contribute to visual attention diversion that may cause traffic accidents. As a low-cost and efficient advertising solution, billboards are widely installed on side of the road, especially the motorway. However, the effect of billboards on driver distraction, eye gaze, and cognition has not been fully investigated. This study utilises a customised driving simulator and synchronised electroencephalography (EEG) and eye tracking system to investigate the cognitive processes relating to the processing of driver visual information. A distinction is made between eye gaze fixations relating to stimuli that assist driving and others that may be a source of distraction. The study compares the driver’s cognitive responses to fixations on billboards with fixations on the vehicle dashboard. The measured eye-fixation related potential (EFRP) shows that the P1 components are similar; however, the subsequent N1 and P2 components differ. In addition, an EEG motor response is observed when the driver makes an adjustment of driving speed when prompted by speed limit signs. The experimental results demonstrate that the proposed measurement system is a valid tool in assessing driver cognition and suggests the cognitive level of engagement to the billboard is likely to be a precursor to driver distraction. The experimental results are compared with the human information processing model found in the literature.
Collapse
Affiliation(s)
- Yongxiang Wang
- School of Electrical and Electronic Engineering, City Campus, Technological University Dublin, D08 NF82 Dublin 8, Ireland;
- Correspondence:
| | - William Clifford
- Department of Computer Science, National University of Ireland, Maynooth, W23 F2H6 Kildare, Ireland; (W.C.); (C.M.)
| | - Charles Markham
- Department of Computer Science, National University of Ireland, Maynooth, W23 F2H6 Kildare, Ireland; (W.C.); (C.M.)
| | - Catherine Deegan
- School of Electrical and Electronic Engineering, City Campus, Technological University Dublin, D08 NF82 Dublin 8, Ireland;
| |
Collapse
|
9
|
Eye Fixation-Related Potentials during Visual Search on Acquaintance and Newly-Learned Faces. Brain Sci 2021; 11:brainsci11020218. [PMID: 33579017 PMCID: PMC7916779 DOI: 10.3390/brainsci11020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 11/24/2022] Open
Abstract
Searching familiar faces in the crowd may involve stimulus-driven attention by emotional significance, together with goal-directed attention due to task-relevant needs. The present study investigated the effect of familiarity on attentional processes by exploring eye fixation-related potentials (EFRPs) and eye gazes when humans searched for, among other distracting faces, either an acquaintance’s face or a newly-learned face. Task performance and gaze behavior were indistinguishable for identifying either faces. However, from the EFRP analysis, after a P300 component for successful search of target faces, we found greater deflections of right parietal late positive potentials in response to newly-learned faces than acquaintance’s faces, indicating more involvement of goal-directed attention in processing newly-learned faces. In addition, we found greater occipital negativity elicited by acquaintance’s faces, reflecting emotional responses to significant stimuli. These results may suggest that finding a familiar face in the crowd would involve lower goal-directed attention and elicit more emotional responses.
Collapse
|
10
|
Wunderlich A, Gramann K. Eye movement-related brain potentials during assisted navigation in real-world environments. Eur J Neurosci 2020; 54:8336-8354. [PMID: 33369773 DOI: 10.1111/ejn.15095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/30/2022]
Abstract
Conducting neuroscience research in the real-world remains challenging because of movement- and environment-related artifacts as well as missing control over stimulus presentation. The present study overcame these restrictions by mobile electroencephalography (EEG) and data-driven analysis approaches during a real-world navigation task. During assisted navigation through an unfamiliar city environment, participants received either standard or landmark-based auditory navigation instructions. EEG data were recorded continuously during navigation. Saccade- and blink-events as well as gait-related EEG activity were extracted from sensor level data. Brain activity associated with the navigation task was identified by subsequent source-based cleaning of non-brain activity and unfolding of overlapping event-related potentials. When navigators received landmark-based instructions compared to those receiving standard navigation instructions, the blink-related brain potentials during navigation revealed higher amplitudes at fronto-central leads in a time window starting at 300 ms after blinks, which was accompanied by improved spatial knowledge acquisition tested in follow-up spatial tasks. Replicating improved spatial knowledge acquisition from previous experiments, the present study revealed eye movement-related brain potentials to point to the involvement of higher cognitive processes and increased processing of incoming information during periods of landmark-based instructions. The study revealed neuronal correlates underlying visuospatial information processing during assisted navigation in the real-world providing a new analysis approach for neuroscientific research in freely moving participants in uncontrollable real-world environments.
Collapse
Affiliation(s)
- Anna Wunderlich
- Technische Universität Berlin, FG Biopsychologie und Neuroergonomie, Berlin, Germany
| | - Klaus Gramann
- Technische Universität Berlin, FG Biopsychologie und Neuroergonomie, Berlin, Germany.,School of Computer Science, University of Technology Sydney, Sydney, NSW, Australia.,Center for Advanced Neurological Engineering, University of California, San Diego, CA, USA
| |
Collapse
|
11
|
Pfeiffer C, Hollenstein N, Zhang C, Langer N. Neural dynamics of sentiment processing during naturalistic sentence reading. Neuroimage 2020; 218:116934. [PMID: 32416227 DOI: 10.1016/j.neuroimage.2020.116934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
When we read, our eyes move through the text in a series of fixations and high-velocity saccades to extract visual information. This process allows the brain to obtain meaning, e.g., about sentiment, or the emotional valence, expressed in the written text. How exactly the brain extracts the sentiment of single words during naturalistic reading is largely unknown. This is due to the challenges of naturalistic imaging, which has previously led researchers to employ highly controlled, timed word-by-word presentations of custom reading materials that lack ecological validity. Here, we aimed to assess the electrical neural correlates of word sentiment processing during naturalistic reading of English sentences. We used a publicly available dataset of simultaneous electroencephalography (EEG), eye-tracking recordings, and word-level semantic annotations from 7129 words in 400 sentences (Zurich Cognitive Language Processing Corpus; Hollenstein et al., 2018). We computed fixation-related potentials (FRPs), which are evoked electrical responses time-locked to the onset of fixations. A general linear mixed model analysis of FRPs cleaned from visual- and motor-evoked activity showed a topographical difference between the positive and negative sentiment condition in the 224-304 ms interval after fixation onset in left-central and right-posterior electrode clusters. An additional analysis that included word-, phrase-, and sentence-level sentiment predictors showed the same FRP differences for the word-level sentiment, but no additional FRP differences for phrase- and sentence-level sentiment. Furthermore, decoding analysis that classified word sentiment (positive or negative) from sentiment-matched 40-trial average FRPs showed a 0.60 average accuracy (95% confidence interval: [0.58, 0.61]). Control analyses ruled out that these results were based on differences in eye movements or linguistic features other than word sentiment. Our results extend previous research by showing that the emotional valence of lexico-semantic stimuli evoke a fast electrical neural response upon word fixation during naturalistic reading. These results provide an important step to identify the neural processes of lexico-semantic processing in ecologically valid conditions and can serve to improve computer algorithms for natural language processing.
Collapse
Affiliation(s)
- Christian Pfeiffer
- Methods of Plasticity Research Laboratory, Department of Psychology, University of Zurich, Switzerland; University Research Priority Program (URPP) Dynamics of Healthy Aging, Zurich, Switzerland.
| | | | - Ce Zhang
- Department of Computer Science, ETH, Zurich, Switzerland
| | - Nicolas Langer
- Methods of Plasticity Research Laboratory, Department of Psychology, University of Zurich, Switzerland; University Research Priority Program (URPP) Dynamics of Healthy Aging, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| |
Collapse
|
12
|
Coco MI, Nuthmann A, Dimigen O. Fixation-related Brain Potentials during Semantic Integration of Object–Scene Information. J Cogn Neurosci 2020; 32:571-589. [DOI: 10.1162/jocn_a_01504] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Abstract
In vision science, a particularly controversial topic is whether and how quickly the semantic information about objects is available outside foveal vision. Here, we aimed at contributing to this debate by coregistering eye movements and EEG while participants viewed photographs of indoor scenes that contained a semantically consistent or inconsistent target object. Linear deconvolution modeling was used to analyze the ERPs evoked by scene onset as well as the fixation-related potentials (FRPs) elicited by the fixation on the target object (t) and by the preceding fixation (t − 1). Object–scene consistency did not influence the probability of immediate target fixation or the ERP evoked by scene onset, which suggests that object–scene semantics was not accessed immediately. However, during the subsequent scene exploration, inconsistent objects were prioritized over consistent objects in extrafoveal vision (i.e., looked at earlier) and were more effortful to process in foveal vision (i.e., looked at longer). In FRPs, we demonstrate a fixation-related N300/N400 effect, whereby inconsistent objects elicit a larger frontocentral negativity than consistent objects. In line with the behavioral findings, this effect was already seen in FRPs aligned to the pretarget fixation t − 1 and persisted throughout fixation t, indicating that the extraction of object semantics can already begin in extrafoveal vision. Taken together, the results emphasize the usefulness of combined EEG/eye movement recordings for understanding the mechanisms of object–scene integration during natural viewing.
Collapse
Affiliation(s)
- Moreno I. Coco
- The University of East London
- CICPSI, Faculdade de Psicologia, Universidade de Lisboa
| | | | | |
Collapse
|
13
|
de Lissa P, McArthur G, Hawelka S, Palermo R, Mahajan Y, Degno F, Hutzler F. Peripheral preview abolishes N170 face-sensitivity at fixation: Using fixation-related potentials to investigate dynamic face processing. VISUAL COGNITION 2019. [DOI: 10.1080/13506285.2019.1676855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Peter de Lissa
- iBMLab, Department of Psychology, University of Fribourg, Fribourg, Switzerland
- Department of Cognitive Science, Macquarie University, Sydney, Australia
| | - Genevieve McArthur
- Department of Cognitive Science, Macquarie University, Sydney, Australia
| | - Stefan Hawelka
- Centre for Cognitive Neuroscience, Salzburg University, Salzburg, Austria
| | - Romina Palermo
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - Yatin Mahajan
- The MARCS Institute, University of Western Sydney, Australia
| | - Federica Degno
- School of Psychology, University of Central Lancashire, Preston, UK
| | - Florian Hutzler
- Centre for Cognitive Neuroscience, Salzburg University, Salzburg, Austria
| |
Collapse
|
14
|
Abstract
Stimuli can be recognised based on information from only one or two eye fixations. With only one fixation, item recognition is typically above chance level and performance generally saturates by the second fixation. Thus, the first two eye fixations play an important role for recognition memory performance. However, little is known about the involved processes. Therefore, two experiments were conducted to investigate hypotheses regarding the role of the first two eye fixations for specific recognition memory processes, that is, familiarity and recollection. In addition, we looked in detail at the unique contributions of (a) longer input duration and (b) additional information provided by a second fixation for familiarity- and recollection-based recognition, using a gaze-contingent stimulus presentation technique. The experiments showed that recollection- but not familiarity-based recognition increased with two compared to only one fixation, and that the second fixation boosted recollection both due to longer availability of the input and additional stimulus information gathered.
Collapse
Affiliation(s)
- Charlotte Schwedes
- a Department of Psychology , University of Saarland , Saarbrücken , Germany
| | - Dirk Wentura
- a Department of Psychology , University of Saarland , Saarbrücken , Germany
| |
Collapse
|
15
|
Nikolaev AR, Meghanathan RN, van Leeuwen C. Refixation control in free viewing: a specialized mechanism divulged by eye-movement-related brain activity. J Neurophysiol 2018; 120:2311-2324. [PMID: 30110230 PMCID: PMC6295528 DOI: 10.1152/jn.00121.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/28/2018] [Accepted: 08/10/2018] [Indexed: 12/27/2022] Open
Abstract
In free viewing, the eyes return to previously visited locations rather frequently, even though the attentional and memory-related processes controlling eye-movement show a strong antirefixation bias. To overcome this bias, a special refixation triggering mechanism may have to be recruited. We probed the neural evidence for such a mechanism by combining eye tracking with EEG recording. A distinctive signal associated with refixation planning was observed in the EEG during the presaccadic interval: the presaccadic potential was reduced in amplitude before a refixation compared with normal fixations. The result offers direct evidence for a special refixation mechanism that operates in the saccade planning stage of eye movement control. Once the eyes have landed on the revisited location, acquisition of visual information proceeds indistinguishably from ordinary fixations. NEW & NOTEWORTHY A substantial proportion of eye fixations in human natural viewing behavior are revisits of recently visited locations, i.e., refixations. Our recently developed methods enabled us to study refixations in a free viewing visual search task, using combined eye movement and EEG recording. We identified in the EEG a distinctive refixation-related signal, signifying a control mechanism specific to refixations as opposed to ordinary eye fixations.
Collapse
Affiliation(s)
- Andrey R Nikolaev
- Laboratory for Perceptual Dynamics, Brain and Cognition Research Unit, KU Leuven - University of Leuven , Leuven , Belgium
| | - Radha Nila Meghanathan
- Laboratory for Perceptual Dynamics, Brain and Cognition Research Unit, KU Leuven - University of Leuven , Leuven , Belgium
| | - Cees van Leeuwen
- Laboratory for Perceptual Dynamics, Brain and Cognition Research Unit, KU Leuven - University of Leuven , Leuven , Belgium
| |
Collapse
|
16
|
Soto V, Tyson-Carr J, Kokmotou K, Roberts H, Cook S, Fallon N, Giesbrecht T, Stancak A. Brain Responses to Emotional Faces in Natural Settings: A Wireless Mobile EEG Recording Study. Front Psychol 2018; 9:2003. [PMID: 30410458 PMCID: PMC6209651 DOI: 10.3389/fpsyg.2018.02003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/28/2018] [Indexed: 11/25/2022] Open
Abstract
The detection of a human face in a visual field and correct reading of emotional expression of faces are important elements in everyday social interactions, decision making and emotional responses. Although brain correlates of face processing have been established in previous fMRI and electroencephalography (EEG)/MEG studies, little is known about how the brain representation of faces and emotional expressions of faces in freely moving humans. The present study aimed to detect brain electrical potentials that occur during the viewing of human faces in natural settings. 64-channel wireless EEG and eye-tracking data were recorded in 19 participants while they moved in a mock art gallery and stopped at times to evaluate pictures hung on the walls. Positive, negative and neutral valence pictures of objects and human faces were displayed. The time instants in which pictures first occurred in the visual field were identified in eye-tracking data and used to reconstruct the triggers in continuous EEG data after synchronizing the time axes of the EEG and eye-tracking device. EEG data showed a clear face-related event-related potential (ERP) in the latency interval ranging from 165 to 210 ms (N170); this component was not seen whilst participants were viewing non-living objects. The face ERP component was stronger during viewing disgusted compared to neutral faces. Source dipole analysis revealed an equivalent current dipole in the right fusiform gyrus (BA37) accounting for N170 potential. Our study demonstrates for the first time the possibility of recording brain responses to human faces and emotional expressions in natural settings. This finding opens new possibilities for clinical, developmental, social, forensic, or marketing research in which information about face processing is of importance.
Collapse
Affiliation(s)
- Vicente Soto
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - John Tyson-Carr
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Katerina Kokmotou
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
- Institute for Risk and Uncertainty, University of Liverpool, Liverpool, United Kingdom
| | - Hannah Roberts
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Stephanie Cook
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nicholas Fallon
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Timo Giesbrecht
- Unilever Research & Development Port Sunlight Laboratory, Merseyside, United Kingdom
| | - Andrej Stancak
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
- Institute for Risk and Uncertainty, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
17
|
Target probability modulates fixation-related potentials in visual search. Biol Psychol 2018; 138:199-210. [PMID: 30253233 DOI: 10.1016/j.biopsycho.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 01/06/2023]
Abstract
This study investigated the influence of target probability on the neural response to target detection in free viewing visual search. Participants were asked to indicate the number of targets (one or two) among distractors in a visual search task while EEG and eye movements were co-registered. Target probability was manipulated by varying the set size of the displays between 10, 22, and 30 items. Fixation-related potentials time-locked to first target fixations revealed a pronounced P300 at the centro-parietal cortex with larger amplitudes for set sizes 22 and 30 than for set size 10. With increasing set size, more distractor fixations preceded the detection of the target, resulting in a decreased target probability and, consequently, a larger P300. For distractors, no increase of P300 amplitude with set size was observed. The findings suggest that set size specifically affects target but not distractor processing in overt serial visual search.
Collapse
|
18
|
Van Humbeeck N, Meghanathan RN, Wagemans J, van Leeuwen C, Nikolaev AR. Presaccadic EEG activity predicts visual saliency in free-viewing contour integration. Psychophysiology 2018; 55:e13267. [PMID: 30069911 DOI: 10.1111/psyp.13267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/26/2018] [Accepted: 06/11/2018] [Indexed: 11/28/2022]
Abstract
While viewing a scene, the eyes are attracted to salient stimuli. We set out to identify the brain signals controlling this process. In a contour integration task, in which participants searched for a collinear contour in a field of randomly oriented Gabor elements, a previously established model was applied to calculate a visual saliency value for each fixation location. We studied brain activity related to the modeled saliency values, using coregistered eye tracking and EEG. To disentangle EEG signals reflecting salience in free viewing from overlapping EEG responses to sequential eye movements, we adopted generalized additive mixed modeling (GAMM) to single epochs of saccade-related EEG. We found that, when saliency at the next fixation location was high, amplitude of the presaccadic EEG activity was low. Since presaccadic activity reflects covert attention to the saccade target, our results indicate that larger attentional effort is needed for selecting less salient saccade targets than more salient ones. This effect was prominent in contour-present conditions (half of the trials), but ambiguous in the contour-absent condition. Presaccadic EEG activity may thus be indicative of bottom-up factors in saccade guidance. The results underscore the utility of GAMM for EEG-eye movement coregistration research.
Collapse
Affiliation(s)
| | | | - Johan Wagemans
- Brain & Cognition Research Unit, KU Leuven-University of Leuven, Leuven, Belgium
| | - Cees van Leeuwen
- Brain & Cognition Research Unit, KU Leuven-University of Leuven, Leuven, Belgium
| | - Andrey R Nikolaev
- Brain & Cognition Research Unit, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Blankertz B, Acqualagna L, Dähne S, Haufe S, Schultze-Kraft M, Sturm I, Ušćumlic M, Wenzel MA, Curio G, Müller KR. The Berlin Brain-Computer Interface: Progress Beyond Communication and Control. Front Neurosci 2016; 10:530. [PMID: 27917107 PMCID: PMC5116473 DOI: 10.3389/fnins.2016.00530] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022] Open
Abstract
The combined effect of fundamental results about neurocognitive processes and advancements in decoding mental states from ongoing brain signals has brought forth a whole range of potential neurotechnological applications. In this article, we review our developments in this area and put them into perspective. These examples cover a wide range of maturity levels with respect to their applicability. While we assume we are still a long way away from integrating Brain-Computer Interface (BCI) technology in general interaction with computers, or from implementing neurotechnological measures in safety-critical workplaces, results have already now been obtained involving a BCI as research tool. In this article, we discuss the reasons why, in some of the prospective application domains, considerable effort is still required to make the systems ready to deal with the full complexity of the real world.
Collapse
Affiliation(s)
- Benjamin Blankertz
- Neurotechnology Group, Technische Universität BerlinBerlin, Germany
- Bernstein Focus: NeurotechnologyBerlin, Germany
| | - Laura Acqualagna
- Neurotechnology Group, Technische Universität BerlinBerlin, Germany
| | - Sven Dähne
- Machine Learning Group, Technische Universität BerlinBerlin, Germany
| | - Stefan Haufe
- Bernstein Focus: NeurotechnologyBerlin, Germany
- Machine Learning Group, Technische Universität BerlinBerlin, Germany
| | - Matthias Schultze-Kraft
- Neurotechnology Group, Technische Universität BerlinBerlin, Germany
- Bernstein Focus: NeurotechnologyBerlin, Germany
| | - Irene Sturm
- Neurotechnology Group, Technische Universität BerlinBerlin, Germany
| | - Marija Ušćumlic
- Neurotechnology Group, Technische Universität BerlinBerlin, Germany
| | - Markus A. Wenzel
- Neurotechnology Group, Technische Universität BerlinBerlin, Germany
| | - Gabriel Curio
- Bernstein Focus: NeurotechnologyBerlin, Germany
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité - University Medicine BerlinBerlin, Germany
| | - Klaus-Robert Müller
- Bernstein Focus: NeurotechnologyBerlin, Germany
- Machine Learning Group, Technische Universität BerlinBerlin, Germany
- Department of Brain and Cognitive Engineering, Korea UniversitySeoul, South Korea
| |
Collapse
|
20
|
Combining EEG and eye movement recording in free viewing: Pitfalls and possibilities. Brain Cogn 2016; 107:55-83. [DOI: 10.1016/j.bandc.2016.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 11/19/2022]
|
21
|
Wenzel MA, Golenia JE, Blankertz B. Classification of Eye Fixation Related Potentials for Variable Stimulus Saliency. Front Neurosci 2016; 10:23. [PMID: 26912993 PMCID: PMC4753317 DOI: 10.3389/fnins.2016.00023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/19/2016] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Electroencephalography (EEG) and eye tracking can possibly provide information about which items displayed on the screen are relevant for a person. Exploiting this implicit information promises to enhance various software applications. The specific problem addressed by the present study is that items shown in real applications are typically diverse. Accordingly, the saliency of information, which allows to discriminate between relevant and irrelevant items, varies. As a consequence, recognition can happen in foveal or in peripheral vision, i.e., either before or after the saccade to the item. Accordingly, neural processes related to recognition are expected to occur with a variable latency with respect to the eye movements. The aim was to investigate if relevance estimation based on EEG and eye tracking data is possible despite of the aforementioned variability. APPROACH Sixteen subjects performed a search task where the target saliency was varied while the EEG was recorded and the unrestrained eye movements were tracked. Based on the acquired data, it was estimated which of the items displayed were targets and which were distractors in the search task. RESULTS Target prediction was possible also when the stimulus saliencies were mixed. Information contained in EEG and eye tracking data was found to be complementary and neural signals were captured despite of the unrestricted eye movements. The classification algorithm was able to cope with the experimentally induced variable timing of neural activity related to target recognition. SIGNIFICANCE It was demonstrated how EEG and eye tracking data can provide implicit information about the relevance of items on the screen for potential use in online applications.
Collapse
Affiliation(s)
- Markus A Wenzel
- Neurotechnology Group, Technische Universität Berlin Berlin, Germany
| | - Jan-Eike Golenia
- Neurotechnology Group, Technische Universität Berlin Berlin, Germany
| | | |
Collapse
|
22
|
Ušćumlić M, Blankertz B. Active visual search in non-stationary scenes: coping with temporal variability and uncertainty. J Neural Eng 2016; 13:016015. [PMID: 26726921 DOI: 10.1088/1741-2560/13/1/016015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE State-of-the-art experiments for studying neural processes underlying visual cognition often constrain sensory inputs (e.g., static images) and our behavior (e.g., fixed eye-gaze, long eye fixations), isolating or simplifying the interaction of neural processes. Motivated by the non-stationarity of our natural visual environment, we investigated the electroencephalography (EEG) correlates of visual recognition while participants overtly performed visual search in non-stationary scenes. We hypothesized that visual effects (such as those typically used in human-computer interfaces) may increase temporal uncertainty (with reference to fixation onset) of cognition-related EEG activity in an active search task and therefore require novel techniques for single-trial detection. APPROACH We addressed fixation-related EEG activity in an active search task with respect to stimulus-appearance styles and dynamics. Alongside popping-up stimuli, our experimental study embraces two composite appearance styles based on fading-in, enlarging, and motion effects. Additionally, we explored whether the knowledge obtained in the pop-up experimental setting can be exploited to boost the EEG-based intention-decoding performance when facing transitional changes of visual content. MAIN RESULTS The results confirmed our initial hypothesis that the dynamic of visual content can increase temporal uncertainty of the cognition-related EEG activity in active search with respect to fixation onset. This temporal uncertainty challenges the pivotal aim to keep the decoding performance constant irrespective of visual effects. Importantly, the proposed approach for EEG decoding based on knowledge transfer between the different experimental settings gave a promising performance. SIGNIFICANCE Our study demonstrates that the non-stationarity of visual scenes is an important factor in the evolution of cognitive processes, as well as in the dynamic of ocular behavior (i.e., dwell time and fixation duration) in an active search task. In addition, our method to improve single-trial detection performance in this adverse scenario is an important step in making brain-computer interfacing technology available for human-computer interaction applications.
Collapse
Affiliation(s)
- Marija Ušćumlić
- Neurotechnology group, Technische Universität Berlin, Berlin, Germany
| | | |
Collapse
|
23
|
|
24
|
Simola J, Le Fevre K, Torniainen J, Baccino T. Affective processing in natural scene viewing: Valence and arousal interactions in eye-fixation-related potentials. Neuroimage 2015; 106:21-33. [DOI: 10.1016/j.neuroimage.2014.11.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 11/03/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022] Open
|
25
|
Functional selectivity in the human occipitotemporal cortex during natural vision: Evidence from combined intracranial EEG and eye-tracking. Neuroimage 2014; 95:276-86. [DOI: 10.1016/j.neuroimage.2014.03.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/12/2014] [Accepted: 03/10/2014] [Indexed: 11/20/2022] Open
|
26
|
Körner C, Braunstein V, Stangl M, Schlögl A, Neuper C, Ischebeck A. Sequential effects in continued visual search: using fixation-related potentials to compare distractor processing before and after target detection. Psychophysiology 2014; 51:385-95. [PMID: 24512467 PMCID: PMC4283708 DOI: 10.1111/psyp.12062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 04/08/2013] [Indexed: 11/29/2022]
Abstract
To search for a target in a complex environment is an everyday behavior that ends with finding the target. When we search for two identical targets, however, we must continue the search after finding the first target and memorize its location. We used fixation-related potentials to investigate the neural correlates of different stages of the search, that is, before and after finding the first target. Having found the first target influenced subsequent distractor processing. Compared to distractor fixations before the first target fixation, a negative shift was observed for three subsequent distractor fixations. These results suggest that processing a target in continued search modulates the brain's response, either transiently by reflecting temporary working memory processes or permanently by reflecting working memory retention.
Collapse
|
27
|
Henderson JM, Luke SG, Schmidt J, Richards JE. Co-registration of eye movements and event-related potentials in connected-text paragraph reading. Front Syst Neurosci 2013; 7:28. [PMID: 23847477 PMCID: PMC3706749 DOI: 10.3389/fnsys.2013.00028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 06/14/2013] [Indexed: 11/13/2022] Open
Abstract
Eyetracking during reading has provided a critical source of on-line behavioral data informing basic theory in language processing. Similarly, event-related potentials (ERPs) have provided an important on-line measure of the neural correlates of language processing. Recently there has been strong interest in co-registering eyetracking and ERPs from simultaneous recording to capitalize on the strengths of both techniques, but a challenge has been devising approaches for controlling artifacts produced by eye movements in the EEG waveform. In this paper we describe our approach to correcting for eye movements in EEG and demonstrate its applicability to reading. The method is based on independent components analysis, and uses three criteria for identifying components tied to saccades: (1) component loadings on the surface of the head are consistent with eye movements; (2) source analysis localizes component activity to the eyes, and (3) the temporal activation of the component occurred at the time of the eye movement and differed for right and left eye movements. We demonstrate this method's applicability to reading by comparing ERPs time-locked to fixation onset in two reading conditions. In the text-reading condition, participants read paragraphs of text. In the pseudo-reading control condition, participants moved their eyes through spatially similar pseudo-text that preserved word locations, word shapes, and paragraph spatial structure, but eliminated meaning. The corrected EEG, time-locked to fixation onsets, showed effects of reading condition in early ERP components. The results indicate that co-registration of eyetracking and EEG in connected-text paragraph reading is possible, and has the potential to become an important tool for investigating the cognitive and neural bases of on-line language processing in reading.
Collapse
Affiliation(s)
- John M. Henderson
- Department of Psychology, Institute for Mind and Brain, University of South CarolinaColumbia, SC, USA
| | | | | | | |
Collapse
|
28
|
Richlan F, Gagl B, Schuster S, Hawelka S, Humenberger J, Hutzler F. A new high-speed visual stimulation method for gaze-contingent eye movement and brain activity studies. Front Syst Neurosci 2013; 7:24. [PMID: 23847475 PMCID: PMC3696721 DOI: 10.3389/fnsys.2013.00024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/05/2013] [Indexed: 11/13/2022] Open
Abstract
Approaches using eye movements as markers of ongoing brain activity to investigate perceptual and cognitive processes were able to implement highly sophisticated paradigms driven by eye movement recordings. Crucially, these paradigms involve display changes that have to occur during the time of saccadic blindness, when the subject is unaware of the change. Therefore, a combination of high-speed eye tracking and high-speed visual stimulation is required in these paradigms. For combined eye movement and brain activity studies (e.g., fMRI, EEG, MEG), fast and exact timing of display changes is especially important, because of the high susceptibility of the brain to visual stimulation. Eye tracking systems already achieve sampling rates up to 2000 Hz, but recent LCD technologies for computer screens reduced the temporal resolution to mostly 60 Hz, which is too slow for gaze-contingent display changes. We developed a high-speed video projection system, which is capable of reliably delivering display changes within the time frame of < 5 ms. This could not be achieved even with the fastest cathode ray tube (CRT) monitors available (< 16 ms). The present video projection system facilitates the realization of cutting-edge eye movement research requiring reliable high-speed visual stimulation (e.g., gaze-contingent display changes, short-time presentation, masked priming). Moreover, this system can be used for fast visual presentation in order to assess brain activity using various methods, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). The latter technique was previously excluded from high-speed visual stimulation, because it is not possible to operate conventional CRT monitors in the strong magnetic field of an MRI scanner. Therefore, the present video projection system offers new possibilities for studying eye movement-related brain activity using a combination of eye tracking and fMRI.
Collapse
Affiliation(s)
- Fabio Richlan
- Centre for Neurocognitive Research and Department of Psychology, University of Salzburg Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
29
|
Fischer T, Graupner ST, Velichkovsky BM, Pannasch S. Attentional dynamics during free picture viewing: Evidence from oculomotor behavior and electrocortical activity. Front Syst Neurosci 2013; 7:17. [PMID: 23759704 PMCID: PMC3671178 DOI: 10.3389/fnsys.2013.00017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/06/2013] [Indexed: 11/13/2022] Open
Abstract
Most empirical evidence on attentional control is based on brief presentations of rather abstract stimuli. Results revealed indications for a dynamic interplay between bottom-up and top-down attentional mechanisms. Here we used a more naturalistic task to examine temporal signatures of attentional mechanisms on fine and coarse time scales. Subjects had to inspect digitized copies of 60 paintings, each shown for 40 s. We simultaneously measured oculomotor behavior and electrophysiological correlates of brain activity to compare early and late intervals (1) of inspection time of each picture (picture viewing) and (2) of the full experiment (time on task). For picture viewing, we found an increase in fixation duration and a decrease of saccadic amplitude while these parameters did not change with time on task. Furthermore, early in picture viewing we observed higher spatial and temporal similarity of gaze behavior. Analyzing electrical brain activity revealed changes in three components (C1, N1 and P2) of the eye fixation-related potential (EFRP); during picture viewing; no variation was obtained for the power in the frontal beta- and in the theta activity. Time on task analyses demonstrated no effects on the EFRP amplitudes but an increase of power in the frontal theta and beta band activity. Thus, behavioral and electrophysiological measures similarly show characteristic changes during picture viewing, indicating a shifting balance of its underlying (bottom-up and top-down) attentional mechanisms. Time on task also modulated top-down attention but probably represents a different attentional mechanism.
Collapse
Affiliation(s)
- Thomas Fischer
- Engineering Psychology and Applied Cognitive Research, Department of Psychology, Technische Universitaet Dresden Germany
| | | | | | | |
Collapse
|
30
|
Healy G, Smeaton AF. Eye fixation related potentials in a target search task. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:4203-6. [PMID: 22255266 DOI: 10.1109/iembs.2011.6091043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Typically BCI (Brain Computer Interfaces) are found in rehabilitative or restorative applications, often allowing users a medium of communication that is otherwise unavailable through conventional means. Recently, however, there is growing interest in using BCI to assist users in searching for images. A class of neural signals often leveraged in common BCI paradigms are ERPs (Event Related Potentials), which are present in the EEG (Electroencephalograph) signals from users in response to various sensory events. One such ERP is the P300, and is typically elicited in an oddball experiment where a subject's attention is orientated towards a deviant stimulus among a stream of presented images. It has been shown that these types of neural responses can be used to drive an image search or labeling task, where we can rank images by examining the presence of such ERP signals in response to the display of images. To date, systems like these have been demonstrated when presenting sequences of images containing targets at up to 10 Hz, however, the target images in these tasks do not necessitate any kind of eye movement for their detection because the targets in the images are quite salient. In this paper we analyse the presence of discriminating EEG signals when they are offset to the time of eye fixations in a visual search task where detection of target images does require eye fixations.
Collapse
Affiliation(s)
- Graham Healy
- CLARITY, Centre for Sensor Web Technologies, School of Computing, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | |
Collapse
|
31
|
Follet B, Le Meur O, Baccino T. New insights into ambient and focal visual fixations using an automatic classification algorithm. Iperception 2011; 2:592-610. [PMID: 23145248 PMCID: PMC3485802 DOI: 10.1068/i0414] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 09/16/2011] [Indexed: 10/26/2022] Open
Abstract
Overt visual attention is the act of directing the eyes toward a given area. These eye movements are characterised by saccades and fixations. A debate currently surrounds the role of visual fixations. Do they all have the same role in the free viewing of natural scenes? Recent studies suggest that at least two types of visual fixations exist: focal and ambient. The former is believed to be used to inspect local areas accurately, whereas the latter is used to obtain the context of the scene. We investigated the use of an automated system to cluster visual fixations in two groups using four types of natural scene images. We found new evidence to support a focal-ambient dichotomy. Our data indicate that the determining factor is the saccade amplitude. The dependence on the low-level visual features and the time course of these two kinds of visual fixations were examined. Our results demonstrate that there is an interplay between both fixation populations and that focal fixations are more dependent on low-level visual features than are ambient fixations.
Collapse
Affiliation(s)
- Brice Follet
- Technicolor, 1 avenue Belle Fontaine, 35510 Cesson-Sévigné, France; e-mail:
| | | | | |
Collapse
|