1
|
Han DM, Baek JH, Choi DG, Jeon MS, Eyun SI, Jeon CO. Comparative pangenome analysis of Aspergillus flavus and Aspergillus oryzae reveals their phylogenetic, genomic, and metabolic homogeneity. Food Microbiol 2024; 119:104435. [PMID: 38225047 DOI: 10.1016/j.fm.2023.104435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 01/17/2024]
Abstract
Aspergillus flavus and Aspergillus oryzae are closely related fungal species with contrasting roles in food safety and fermentation. To comprehensively investigate their phylogenetic, genomic, and metabolic characteristics, we conducted an extensive comparative pangenome analysis using complete, dereplicated genome sets for both species. Phylogenetic analyses, employing both the entirety of the identified single-copy orthologous genes and six housekeeping genes commonly used for fungal classification, did not reveal clear differentiation between A. flavus and A. oryzae genomes. Upon analyzing the aflatoxin biosynthesis gene clusters within the genomes, we observed that non-aflatoxin-producing strains were dispersed throughout the phylogenetic tree, encompassing both A. flavus and A. oryzae strains. This suggests that aflatoxin production is not a distinguishing trait between the two species. Furthermore, A. oryzae and A. flavus strains displayed remarkably similar genomic attributes, including genome sizes, gene contents, and G + C contents, as well as metabolic features and pathways. The profiles of CAZyme genes and secondary metabolite biosynthesis gene clusters within the genomes of both species further highlight their similarity. Collectively, these findings challenge the conventional differentiation of A. flavus and A. oryzae as distinct species and highlight their phylogenetic, genomic, and metabolic homogeneity, potentially indicating that they may indeed belong to the same species.
Collapse
Affiliation(s)
- Dong Min Han
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dae Gyu Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Min-Seung Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
2
|
Abastabar M, Shabanzadeh S, Valadan R, Mayahi S, Haghani I, Khojasteh S, Nargesi S, Seyedmousavi S, Hedayati MT. Development of RFLP method for rapid differentiation of Aspergillus flavus and Aspergillus oryzae, two species with high importance in clinical and food microbiology. J Mycol Med 2022; 32:101274. [DOI: 10.1016/j.mycmed.2022.101274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 01/11/2023]
|
3
|
Hedayati MT, Taghizadeh-Armaki M, Zarrinfar H, Hoseinnejad A, Ansari S, Abastabar M, Er H, Özhak B, Öğünç D, Ilkit M, Seyedmousavi S. Discrimination of Aspergillus flavus from Aspergillus oryzae by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry. Mycoses 2019; 62:1182-1188. [PMID: 31556203 DOI: 10.1111/myc.13010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Aspergillus flavus is a major cause of severe non-invasive fungal infections in the Middle Eastern countries. However, it is difficult to distinguish A flavus from A oryzae. OBJECTIVES To assess the potential of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) in discriminating between A flavus and A oryzae and compare it with β-tubulin gene sequencing. METHODS We used the Bruker Daltonik MALDI-TOF MS system to analyse 200 clinical and environmental A flavus isolates and one A pseudonomius and one A alliaceus (Aspergillus section Flavi) isolate a priori identified as such by sequencing of the β-tubulin gene. RESULTS All 200 A flavus isolates were identified at the genus level and 176 (88%) at the species levels by MALDI-TOF MS based on the spectral log-scores (≥2.0 and 1.7-1.99, respectively); among them, only 18 (10.2%) were confirmed as A flavus, whereas 35 (19.9%) were identified as A oryzae and 123 (69.9%) as A flavus/A oryzae. Aspergillus pseudonomius and A alliaceus were misidentified as A flavus and A parasiticus with log-score values of 1.39 and 1.09, respectively. CONCLUSIONS The results indicate that the commercially available Bruker Daltonik MALDI-TOF MS score database cannot separate A flavus and A oryzae species. We also showed that establishment of an in-house library is a useful tool to discriminate closely related Aspergillus species, including A flavus and A oryzae.
Collapse
Affiliation(s)
- Mohammad T Hedayati
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mojtaba Taghizadeh-Armaki
- Department of Medical Parasitology and Mycology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akbar Hoseinnejad
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saham Ansari
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Halil Er
- Department of Microbiology, Faculty of Medicine, University of Akdeniz, Antalya, Turkey
| | - Betil Özhak
- Department of Microbiology, Faculty of Medicine, University of Akdeniz, Antalya, Turkey
| | - Dilara Öğünç
- Department of Microbiology, Faculty of Medicine, University of Akdeniz, Antalya, Turkey
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Seyedmojtaba Seyedmousavi
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Center of Expertise in Microbiology, Infection Biology and Antimicrobial Pharmacology, Tehran, Iran.,Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Chang P. Genome‐wide nucleotide variation distinguishesAspergillus flavusfromAspergillus oryzaeand helps to reveal origins of atoxigenicA. flavusbiocontrol strains. J Appl Microbiol 2019; 127:1511-1520. [DOI: 10.1111/jam.14419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 11/30/2022]
Affiliation(s)
- P.‐K. Chang
- Southern Regional Research Center Agricultural Research Service U. S. Department of Agriculture New Orleans LA USA
| |
Collapse
|
5
|
A Polyphasic Approach Aids Early Detection of Potentially Toxigenic Aspergilli in Soil. Microorganisms 2019; 7:microorganisms7090300. [PMID: 31470555 PMCID: PMC6781248 DOI: 10.3390/microorganisms7090300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 11/16/2022] Open
Abstract
Key chili and maize growing areas of Pakistan were selected for a focused baseline study of the levels of Aspergillus spp. Investigations were undertaken using a combination of molecular and culture-based techniques. Samples investigated included soil samples, one-year-old corn cobs, and fresh chili from selected locations. Aspergillus strains obtained from corn cobs were screened using coconut milk agar, resulting in one strain that was positive for aflatoxin production. Whole genome sequencing (WGS) with low coverage techniques were employed to screen the isolates for differences in the ribosomal RNA gene cluster and mitochondrial genome, with the aflatoxigenic strain proving to have a distinctive profile. Finally, strains were subjected to matrix-assisted laser-desorption and ionization time-of-flight mass spectrometry (MALDI-ToF-MS) in order to obtain a proteomic ‘fingerprint’ which was used to distinguish the aflatoxigenic strain from the other isolates. The next generation sequencing (NGS) study was broadened to incorporate metabarcoding with ITS rRNA for determining the microbial biodiversity of the soil samples and presumptive screening for the presence of aflatoxigenic strains. Using information gleaned from the WGS results, a putative aflatoxigenic operational taxonomic unit (OTU) was observed in four of the 15 soil samples screened by metabarcoding. This method may have beneficial applications in early detection and surveillance programs in agricultural soils and commodities.
Collapse
|
6
|
Rudramurthy SM, Paul RA, Chakrabarti A, Mouton JW, Meis JF. Invasive Aspergillosis by Aspergillus flavus: Epidemiology, Diagnosis, Antifungal Resistance, and Management. J Fungi (Basel) 2019; 5:jof5030055. [PMID: 31266196 PMCID: PMC6787648 DOI: 10.3390/jof5030055] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Aspergillus flavus is the second most common etiological agent of invasive aspergillosis (IA) after A. fumigatus. However, most literature describes IA in relation to A. fumigatus or together with other Aspergillus species. Certain differences exist in IA caused by A. flavus and A. fumigatus and studies on A. flavus infections are increasing. Hence, we performed a comprehensive updated review on IA due to A. flavus. A. flavus is the cause of a broad spectrum of human diseases predominantly in Asia, the Middle East, and Africa possibly due to its ability to survive better in hot and arid climatic conditions compared to other Aspergillus spp. Worldwide, ~10% of cases of bronchopulmonary aspergillosis are caused by A. flavus. Outbreaks have usually been associated with construction activities as invasive pulmonary aspergillosis in immunocompromised patients and cutaneous, subcutaneous, and mucosal forms in immunocompetent individuals. Multilocus microsatellite typing is well standardized to differentiate A. flavus isolates into different clades. A. flavus is intrinsically resistant to polyenes. In contrast to A. fumigatus, triazole resistance infrequently occurs in A. flavus and is associated with mutations in the cyp51C gene. Overexpression of efflux pumps in non-wildtype strains lacking mutations in the cyp51 gene can also lead to high voriconazole minimum inhibitory concentrations. Voriconazole remains the drug of choice for treatment, and amphotericin B should be avoided. Primary therapy with echinocandins is not the first choice but the combination with voriconazole or as monotherapy may be used when the azoles and amphotericin B are contraindicated.
Collapse
Affiliation(s)
- Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Research, Chandigarh 160012, India.
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015GD Rotterdam, The Netherlands.
| | - Raees A Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Research, Chandigarh 160012, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Research, Chandigarh 160012, India
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015GD Rotterdam, The Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ) and Center of Expertise, 6532SZ Nijmegen, The Netherlands
- Center of Expertise in Mycology Radboudumc/CWZ, 6532SZ Nijmegen, The Netherlands
| |
Collapse
|
7
|
Rico-Munoz E, Samson RA, Houbraken J. Mould spoilage of foods and beverages: Using the right methodology. Food Microbiol 2018; 81:51-62. [PMID: 30910088 DOI: 10.1016/j.fm.2018.03.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/16/2018] [Accepted: 03/29/2018] [Indexed: 11/19/2022]
Abstract
Fungal spoilage of products manufactured by the food and beverage industry imposes significant annual global revenue losses. Mould spoilage can also be a food safety issue due to the production of mycotoxins by these moulds. To prevent mould spoilage, it is essential that the associated mycobiota be adequately isolated and accurately identified. The main fungal groups associated with spoilage are the xerophilic, heat-resistant, preservative-resistant, anaerobic and psychrophilic fungi. To assess mould spoilage, the appropriate methodology and media must be used. While classic mycological detection methods can detect a broad range of fungi using well validated protocols, they are time consuming and results can take days or even weeks. New molecular detection methods are faster but require good DNA isolation techniques, expensive equipment and may detect viable and non-viable fungi that probably will not spoil a specific product. Although there is no complete and easy method for the detection of fungi in food it is important to be aware of the limitation of the methodology. More research is needed on the development of methods of detection and identification that are both faster and highly sensitive.
Collapse
Affiliation(s)
- Emilia Rico-Munoz
- BCN Research Laboratories, Inc., 2491 Stock Creek Blvd., Rockford, TN 37853, USA.
| | - Robert A Samson
- Westerdijk Fungal Biodiversity Institute, Dept. Applied and Industrial Mycology, Uppsalalaan 8, Utrecht, CT 3584, The Netherlands
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Dept. Applied and Industrial Mycology, Uppsalalaan 8, Utrecht, CT 3584, The Netherlands
| |
Collapse
|
8
|
Restrepo CM, Llanes A, Lleonart R. Use of AFLP for the study of eukaryotic pathogens affecting humans. INFECTION GENETICS AND EVOLUTION 2017; 63:360-369. [PMID: 28935612 DOI: 10.1016/j.meegid.2017.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 12/29/2022]
Abstract
Amplified fragment length polymorphism (AFLP) is a genotyping technique based on PCR amplification of specific restriction fragments from a particular genome. The methodology has been extensively used in plant biology to solve a variety of scientific questions, including taxonomy, molecular epidemiology, systematics, population genetics, among many others. The AFLP share advantages and disadvantages with other types of molecular markers, being particularly useful in organisms with no previous DNA sequence knowledge. In eukaryotic pathogens, the technique has not been extensively used, although it has the potential to solve many important issues as it allows the simultaneous examination of hundreds or even thousands of polymorphic sites in the genome of the organism. Here we describe the main applications published on the use of AFLP in eukaryotic pathogens, with emphasis in species of the groups fungi, protozoa and helminths, and discuss the role of this methodology in the context of new techniques derived from the advances of the next generation sequencing.
Collapse
Affiliation(s)
- Carlos M Restrepo
- Center for Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 219, Ciudad del Saber, Apartado 0843-01103, Ciudad de Panamá, Panama.; Department of Biotechnology, Acharya Nagarjuna University, Guntur, India..
| | - Alejandro Llanes
- Center for Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 219, Ciudad del Saber, Apartado 0843-01103, Ciudad de Panamá, Panama.; Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Ricardo Lleonart
- Center for Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 219, Ciudad del Saber, Apartado 0843-01103, Ciudad de Panamá, Panama..
| |
Collapse
|
9
|
Singh D, Radhakrishnan T, Kumar V, Bagwan NB, Basu MS, Dobaria JR, Mishra GP, Chanda SV. Molecular characterisation of Aspergillus flavus isolates from peanut fields in India using AFLP. Braz J Microbiol 2015; 46:673-82. [PMID: 26413047 PMCID: PMC4568877 DOI: 10.1590/s1517-838246320131115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 11/12/2014] [Indexed: 11/22/2022] Open
Abstract
Aflatoxin contamination of peanut, due to infection by Aspergillus flavus, is a major problem of rain-fed agriculture in India. In the present study, molecular characterisation of 187 Aspergillus flavus isolates, which were sampled from the peanut fields of Gujarat state in India, was performed using AFLP markers. On a pooled cluster analysis, the markers could successfully discriminate among the 'A', 'B' and 'G' group A. flavus isolates. PCoA analysis also showed equivalent results to the cluster analysis. Most of the isolates from one district could be clustered together, which indicated genetic similarity among the isolates. Further, a lot of genetic variability was observed within a district and within a group. The results of AMOVA test revealed that the variance within a population (84%) was more than that between two populations (16%). The isolates, when tested by indirect competitive ELISA, showed about 68.5% of them to be atoxigenic. Composite analysis between the aflatoxin production and AFLP data was found to be ineffective in separating the isolate types by aflatoxigenicity. Certain unique fragments, with respect to individual isolates, were also identified that may be used for development of SCAR marker to aid in rapid and precise identification of isolates.
Collapse
Affiliation(s)
| | | | - Vinod Kumar
- Directorate of Groundnut Research, Gujarat, India
| | - N B Bagwan
- Directorate of Groundnut Research, Gujarat, India
| | - M S Basu
- Directorate of Groundnut Research, Gujarat, India
| | - J R Dobaria
- Directorate of Groundnut Research, Gujarat, India
| | | | - S V Chanda
- Department of Biosciences, Saurashtra University, Gujarat, India
| |
Collapse
|
10
|
Midorikawa GEO, de Sousa MDLM, Freitas Silva O, Dias JDSA, Kanzaki LIB, Hanada RE, Mesquita RMLC, Gonçalves RC, Alvares VS, Bittencourt DMC, Miller RNG. Characterization of Aspergillus species on Brazil nut from the Brazilian Amazonian region and development of a PCR assay for identification at the genus level. BMC Microbiol 2014; 14:138. [PMID: 24885088 PMCID: PMC4051963 DOI: 10.1186/1471-2180-14-138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/23/2014] [Indexed: 01/29/2023] Open
Abstract
Background Brazil nut is a protein-rich extractivist tree crop in the Amazon region. Fungal contamination of shells and kernel material frequently includes the presence of aflatoxigenic Aspergillus species from the section Flavi. Aflatoxins are polyketide secondary metabolites, which are hepatotoxic carcinogens in mammals. The objectives of this study were to identify Aspergillus species occurring on Brazil nut grown in different states in the Brazilian Amazon region and develop a specific PCR method for collective identification of member species of the genus Aspergillus. Results Polyphasic identification of 137 Aspergillus strains isolated from Brazil nut shell material from cooperatives across the Brazilian Amazon states of Acre, Amapá and Amazonas revealed five species, with Aspergillus section Flavi species A. nomius and A. flavus the most abundant. PCR primers ASP_GEN_MTSSU_F1 and ASP_GEN_MTSSU_R1 were designed for the genus Aspergillus, targeting a portion of the mitochondrial small subunit ribosomal RNA gene. Primer specificity was validated through both electronic PCR against target gene sequences at Genbank and in PCR reactions against DNA from Aspergillus species and other fungal genera common on Brazil nut. Collective differentiation of the observed section Flavi species A. flavus, A. nomius and A. tamarii from other Aspergillus species was possible on the basis of RFLP polymorphism. Conclusions Given the abundance of Aspergillus section Flavi species A. nomius and A. flavus observed on Brazil nut, and associated risk of mycotoxin accumulation, simple identification methods for such mycotoxigenic species are of importance for Hazard Analysis Critical Control Point system implementation. The assay for the genus Aspergillus represents progress towards specific PCR identification and detection of mycotoxigenic species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Robert N G Miller
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, CEP 70,910-900 Brasília D,F,, Brazil.
| |
Collapse
|
11
|
Priyanka S, Uppalapati S, Kingston J, Murali H, Batra H. Development of ISSR-derived SCAR marker-targeted PCR for identification of Aspergillus
section Flavi
members. Lett Appl Microbiol 2014; 58:414-22. [DOI: 10.1111/lam.12207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/21/2013] [Accepted: 11/29/2013] [Indexed: 12/01/2022]
Affiliation(s)
- S.R. Priyanka
- Defence Food Research Laboratory; Siddarthnagar Mysore Karnataka India
| | - S.R. Uppalapati
- Defence Food Research Laboratory; Siddarthnagar Mysore Karnataka India
| | - J.J. Kingston
- Defence Food Research Laboratory; Siddarthnagar Mysore Karnataka India
| | - H.S. Murali
- Defence Food Research Laboratory; Siddarthnagar Mysore Karnataka India
| | - H.V. Batra
- Defence Food Research Laboratory; Siddarthnagar Mysore Karnataka India
| |
Collapse
|
12
|
Zhang CS, Xing FG, Selvaraj JN, Yang QL, Zhou L, Zhao YJ, Liu Y. The effectiveness of ISSR profiling for studying genetic diversity of Aspergillus flavus from peanut-cropped soils in China. BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2013.03.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Refojo N, Duarte-Escalante E, Dignani MC, Hevia AI, Abrantes RA, Davel G, Canteros C, Frías de León MG, Acosta-Altamirano G, Zúñiga G, Reyes-Montes MDR. [Genotyping of clinical isolates of Aspergillus flavus and its relationship with environmental isolates of an oncohematological center]. Rev Iberoam Micol 2012; 30:25-30. [PMID: 23036749 DOI: 10.1016/j.riam.2012.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 08/09/2012] [Accepted: 09/10/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND During 4 months, and while conducting an environmental sampling of air, 2 cases of aspergillosis by Aspergillus flavus (A. flavus) were diagnosed at an oncohematological center in Buenos Aires, Argentina. AIMS The aim of this study was to know the variability and the genetic relationship between the clinical and environmental isolates, obtained in the oncohematological center. METHODS Two genotyping techniques of different discriminatory power (RAPD and AFLP) were used. A genetic similarity matrix was calculated using Jaccard method and was the basis for the construction of a dendrogram by UPGMA. The level of genetic variability was assessed by measuring the percentage of polymorphic loci, number of effective allele, expected heterocygozity and association index test (I(A)). RESULTS The dendrogram reveals that the A. flavus isolates recovered from the patients were not genetically related to those gotten from the rooms occupied by the patients. The environmental isolates had higher values of genetic diversity than the clinical isolates. The I(A) estimated for all the isolates suggest that recombination events occurred. CONCLUSIONS Patients 1 and 2 were not infected with isolates from the nosocomial environment. Clinical and environmental isolates of A. flavus showed high genetic variability among them.
Collapse
Affiliation(s)
- Nicolás Refojo
- Departamento de Micología, INEI ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang DY, Hadj-Henni L, Thierry S, Arné P, Chermette R, Botterel F, Hadrich I, Makni F, Ayadi A, Ranque S, Huang WY, Guillot J. Simple and highly discriminatory VNTR-based multiplex PCR for tracing sources of Aspergillus flavus isolates. PLoS One 2012; 7:e44204. [PMID: 23028503 PMCID: PMC3444452 DOI: 10.1371/journal.pone.0044204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/30/2012] [Indexed: 11/26/2022] Open
Abstract
Aspergillus flavus is second only to A. fumigatus in causing invasive aspergillosis and it is the major agent responsible for fungal sinusitis, keratitis and endophthalmitis in many countries in the Middle East, Africa and Southeast Asia. Despite the growing challenge due to A. flavus, data on the molecular epidemiology of this fungus remain scarce. The objective of the present study was to develop a new typing method based on the detection of VNTR (Variable number tandem repeat) markers. Eight VNTR markers located on 6 different chromosomes (1, 2, 3, 5, 7 and 8) of A. flavus were selected, combined by pairs for multiplex amplifications and tested on 30 unrelated isolates and six reference strains. The Simpson index for individual markers ranged from 0.398 to 0.818. A combined loci index calculated with all the markers yielded an index of 0.998. The MLVA (Multiple Locus VNTR Analysis) technique proved to be specific and reproducible. In a second time, a total of 55 isolates from Chinese avian farms and from a Tunisian hospital have been evaluated. One major cluster of genotypes could be defined by using the graphing algorithm termed Minimum Spanning Tree. This cluster comprised most of the isolates collected in an avian farm in southern China. The MLVA technique should be considered as an excellent and cost-effective typing method that could be used in many laboratories without the need for sophisticated equipment.
Collapse
Affiliation(s)
- Dong Ying Wang
- Parasitology Department, College of Animal Science and Technology, Guangxi University, Nanning, China
- ANSES, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
| | - Leila Hadj-Henni
- ANSES, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
| | - Simon Thierry
- ANSES, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
| | - Pascal Arné
- ENVA, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
| | - René Chermette
- ENVA, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
| | | | - Inès Hadrich
- Laboratoire de Biologie Moléculaire Parasitaire et Fongique, Faculté de Médecine de Sfax, Sfax, Tunisia
| | - Fattouma Makni
- Laboratoire de Biologie Moléculaire Parasitaire et Fongique, Faculté de Médecine de Sfax, Sfax, Tunisia
| | - Ali Ayadi
- Laboratoire de Biologie Moléculaire Parasitaire et Fongique, Faculté de Médecine de Sfax, Sfax, Tunisia
| | - Stéphane Ranque
- Aix-Marseille Université, UMR MD3, Marseille, France
- APHM, Timone, Laboratoire de Parasitologie-Mycologie, Marseille, France
| | - Wei Yi Huang
- Parasitology Department, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jacques Guillot
- ENVA, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
- * E-mail:
| |
Collapse
|
15
|
Wang X, Wadl PA, Wood-Jones A, Windham G, Trigiano RN, Scruggs M, Pilgrim C, Baird R. Characterization of expressed sequence tag-derived simple sequence repeat markers for Aspergillus flavus: emphasis on variability of isolates from the southern United States. Mycopathologia 2012; 174:371-82. [PMID: 22911544 DOI: 10.1007/s11046-012-9573-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/03/2012] [Indexed: 12/01/2022]
Abstract
Simple sequence repeat (SSR) markers were developed from Aspergillus flavus expressed sequence tag (EST) database to conduct an analysis of genetic relationships of Aspergillus isolates from numerous host species and geographical regions, but primarily from the United States. Twenty-nine primers were designed from 362 tri-nucleotide EST-SSR sequences. Eighteen polymorphic loci were used to genotype 96 Aspergillus species isolates. The number of alleles detected per locus ranged from 2 to 24 with a mean of 8.2 alleles. Haploid diversity ranged from 0.28 to 0.91. Genetic distance matrix was used to perform principal coordinates analysis (PCA) and to generate dendrograms using unweighted pair group method with arithmetic mean (UPGMA). Two principal coordinates explained more than 75 % of the total variation among the isolates. One clade was identified for A. flavus isolates (n = 87) with the other Aspergillus species (n = 7) using PCA, but five distinct clusters were present when the others taxa were excluded from the analysis. Six groups were noted when the EST-SSR data were compared using UPGMA. However, the latter PCA or UPGMA comparison resulted in no direct associations with host species, geographical region or aflatoxin production. Furthermore, there was no direct correlation to visible morphological features such as sclerotial types. The isolates from Mississippi Delta region, which contained the largest percentage of isolates, did not show any unusual clustering except for isolates K32, K55, and 199. Further studies of these three isolates are warranted to evaluate their pathogenicity, aflatoxin production potential, additional gene sequences (e.g., RPB2), and morphological comparisons.
Collapse
Affiliation(s)
- Xinwang Wang
- Texas AgriLife Research and Extension Center, Department of Horticultural Sciences, Texas A&M University, Dallas, TX 75252, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Reis GM, Rocha LDO, Atayde DD, Batatinha MM, Corrêa B. Molecular characterization by amplified fragment length polymorphism and aflatoxin production of Aspergillus flavus isolated from freshly harvested peanut in Brazil. WORLD MYCOTOXIN J 2012. [DOI: 10.3920/wmj2011.1350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Brazil contributes substantially to the global peanut production, and the state of São Paulo is the largest producer in the country. Peanut crops can be contaminated by Aspergillus flavus strains producing aflatoxins, which are highly toxic and carcinogenic. Thus, the production of high-quality peanuts is crucial both for the commercial peanut industry and as a matter of public health. In this study, we used amplified fragment length polymorphism analysis (AFLP) to investigate the genetic variability among A. flavus strains isolated from fresh peanuts harvested in four different regions in the state of São Paulo, and to determine whether the molecular genetic profiles correlated with aflatoxin production or sclerotia formation. AFLP analysis generated 78 fragments ranging from 27 to 365 base pairs in length. Thirteen percent were not polymorphic. Genotyping identified twelve groups of A. flavus. On the basis of the polymorphisms identified, similarity between the isolates ranged from 37% to 100%. Of all isolates collected, 91.7% produced aflatoxins and 83.9% produced small sclerotia. Statistical analysis failed to suggest any relationship between the presence of sclerotia and mean levels of aflatoxins B1 and B2. Furthermore, a dendrogram based on AFLP data revealed substantial genetic variability among the A. flavus strains, but showed no correlation between dendrogram groups separated by molecular genetic features and production of aflatoxins B1 or B2 or the formation of sclerotia.
Collapse
Affiliation(s)
- G. Martins Reis
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes 1374, lab. 249, Cidade Universitária, 05508-000 São Paulo, Brazil
| | - L. de Oliveira Rocha
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes 1374, lab. 249, Cidade Universitária, 05508-000 São Paulo, Brazil
| | - D. Diniz Atayde
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes 1374, lab. 249, Cidade Universitária, 05508-000 São Paulo, Brazil
| | - M.J. Moreira Batatinha
- Department of Pathology, School of Veterinary Medicine, Federal University of Bahia, Salvador, Av. Ademar de Barros, n. 500, 40110-170 Ondina, Ba, Brazil
| | - B. Corrêa
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes 1374, lab. 249, Cidade Universitária, 05508-000 São Paulo, Brazil
| |
Collapse
|
17
|
Presence and functionality of mating type genes in the supposedly asexual filamentous fungus Aspergillus oryzae. Appl Environ Microbiol 2012; 78:2819-29. [PMID: 22327593 DOI: 10.1128/aem.07034-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The potential for sexual reproduction in Aspergillus oryzae was assessed by investigating the presence and functionality of MAT genes. Previous genome studies had identified a MAT1-1 gene in the reference strain RIB40. We now report the existence of a complementary MAT1-2 gene and the sequencing of an idiomorphic region from A. oryzae strain AO6. This allowed the development of a PCR diagnostic assay, which detected isolates of the MAT1-1 and MAT1-2 genotypes among 180 strains assayed, including industrial tane-koji isolates. Strains used for sake and miso production showed a near-1:1 ratio of the MAT1-1 and MAT1-2 mating types, whereas strains used for soy sauce production showed a significant bias toward the MAT1-2 mating type. MAT1-1 and MAT1-2 isogenic strains were then created by genetic manipulation of the resident idiomorph, and gene expression was compared by DNA microarray and quantitative real-time PCR (qRT-PCR) methodologies under conditions in which MAT genes were expressed. Thirty-three genes were found to be upregulated more than 10-fold in either the MAT1-1 host strain or the MAT1-2 gene replacement strain relative to each other, showing that both the MAT1-1 and MAT1-2 genes functionally regulate gene expression in A. oryzae in a mating type-dependent manner, the first such report for a supposedly asexual fungus. MAT1-1 expression specifically upregulated an α-pheromone precursor gene, but the functions of most of the genes affected were unknown. The results are consistent with a heterothallic breeding system in A. oryzae, and prospects for the discovery of a sexual cycle are discussed.
Collapse
|
18
|
Dyer PS, O'Gorman CM. Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. FEMS Microbiol Rev 2011; 36:165-92. [PMID: 22091779 DOI: 10.1111/j.1574-6976.2011.00308.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/04/2011] [Indexed: 11/30/2022] Open
Abstract
Major insights into sexual development and cryptic sexuality within filamentous fungi have been gained from investigations using Aspergillus species. Here, an overview is first given into sexual morphogenesis in the aspergilli, describing the different types of sexual structures formed and how their production is influenced by a variety of environmental and nutritional factors. It is argued that the formation of cleistothecia and accessory tissues, such as Hülle cells and sclerotia, should be viewed as two independent but co-ordinated developmental pathways. Next, a comprehensive survey of over 75 genes associated with sexual reproduction in the aspergilli is presented, including genes relating to mating and the development of cleistothecia, sclerotia and ascospores. Most of these genes have been identified from studies involving the homothallic Aspergillus nidulans, but an increasing number of studies have now in addition characterized 'sex-related' genes from the heterothallic species Aspergillus fumigatus and Aspergillus flavus. A schematic developmental genetic network is proposed showing the inter-relatedness between these genes. Finally, the discovery of sexual reproduction in certain Aspergillus species that were formerly considered to be strictly asexual is reviewed, and the importance of these findings for cryptic sexuality in the aspergilli as a whole is discussed.
Collapse
Affiliation(s)
- Paul S Dyer
- School of Biology, University of Nottingham, Nottingham, UK.
| | | |
Collapse
|
19
|
Nakamura H, Narihiro T, Tsuruoka N, Mochimaru H, Matsumoto R, Tanabe Y, Hagiya K, Ikeba K, Maruyama A, Hanada S. Evaluation of the aflatoxin biosynthetic genes for identification of the Aspergillus section Flavi. Microbes Environ 2011; 26:367-9. [PMID: 21791886 DOI: 10.1264/jsme2.me11201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Several fungi in the Aspergillus section Flavi have been widely used for fermentative food production, while some related species in the section are known to produce mycotoxin(s) that causes mycotic diseases. Common evolutionary markers, such as rRNA gene sequences and their internal transcribed spacers, cannot differentiate these non-aflatoxin-producing species from aflatoxin producers. Multilocus sequence analysis (MLSA) based on four aflatoxin biosynthetic genes encoding aflR, aflT, norA, and vbs, which are more variable nucleotide sequences than rRNA genes, can distinguish safe koji molds, A. oryzae and A. sojae, from aflatoxin-producing strains, A. flavus, A. toxicarius and A. parasiticus.
Collapse
Affiliation(s)
- Hitomi Nakamura
- International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
A review molecular typing methods for Aspergillus flavus isolates. Mycopathologia 2011; 172:83-93. [PMID: 21369748 DOI: 10.1007/s11046-011-9406-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
Aspergillus flavus is the second most important Aspergillus species causing human infections. The importance of this fungus increases in regions with a dry and hot climate. Small phylogenetic studies in Aspergillus flavus indicate that the morphological species contains several genetically isolated species. Different genotyping methods have been developed and employed in order to better understand the genetic and epidemiological relationships between environmental and clinical isolates. Understanding pathogen distribution and relatedness is essential for determining the epidemiology of nosocomial infections and aiding in the design of rational pathogen control methods. Typing techniques can also give us a deeper understanding of the colonization pattern in patients. Most of these studies focused on Aspergillus fumigatus because it is medically the most isolated species. To date, there has not been any publication exclusively reviewing the molecular typing techniques for Aspergillus flavus in the literature. This article reviews all these different available methods for this organism.
Collapse
|
21
|
Rudramurthy SM, de Valk HA, Chakrabarti A, Meis JFGM, Klaassen CHW. High resolution genotyping of clinical Aspergillus flavus isolates from India using microsatellites. PLoS One 2011; 6:e16086. [PMID: 21264229 PMCID: PMC3022034 DOI: 10.1371/journal.pone.0016086] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/06/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Worldwide, Aspergillus flavus is the second leading cause of allergic, invasive and colonizing fungal diseases in humans. However, it is the most common species causing fungal rhinosinusitis and eye infections in tropical countries. Despite the growing challenges due to A. flavus, the molecular epidemiology of this fungus has not been well studied. We evaluated the use of microsatellites for high resolution genotyping of A. flavus from India and a possible connection between clinical presentation and genotype of the involved isolate. METHODOLOGY/PRINCIPAL FINDINGS A panel of nine microsatellite markers were selected from the genome of A. flavus NRRL 3357. These markers were used to type 162 clinical isolates of A. flavus. All nine markers proved to be polymorphic displaying up to 33 alleles per marker. Thirteen isolates proved to be a mixture of different genotypes. Among the 149 pure isolates, 124 different genotypes could be recognized. The discriminatory power (D) for the individual markers ranged from 0.657 to 0.954. The D value of the panel of nine markers combined was 0.997. The multiplex multicolor approach was instrumental in rapid typing of a large number of isolates. There was no correlation between genotype and the clinical presentation of the infection. CONCLUSIONS/SIGNIFICANCE There is a large genotypic diversity in clinical A. flavus isolates from India. The presence of more than one genotype in clinical samples illustrates the possibility that persons may be colonized by multiple genotypes and that any isolate from a clinical specimen is not necessarily the one actually causing infection. Microsatellites are excellent typing targets for discriminating between A. flavus isolates from various origins.
Collapse
Affiliation(s)
- Shivaprakash M. Rudramurthy
- Mycology Division, Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Hanneke A. de Valk
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Arunaloke Chakrabarti
- Mycology Division, Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jacques F. G. M. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Corné H. W. Klaassen
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
22
|
|
23
|
Chiotta M, Reynoso M, Torres A, Combina M, Chulze S. Molecular characterization and toxigenic profile of Aspergillus section Nigri populations isolated from the main grape-growing regions in Argentina. J Appl Microbiol 2010; 110:445-54. [DOI: 10.1111/j.1365-2672.2010.04898.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Godet M, Munaut F. Molecular strategy for identification inAspergillus sectionFlavi. FEMS Microbiol Lett 2010; 304:157-68. [DOI: 10.1111/j.1574-6968.2009.01890.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
Yin Y, Lou T, Yan L, Michailides TJ, Ma Z. Molecular characterization of toxigenic and atoxigenic Aspergillus flavus isolates, collected from peanut fields in China. J Appl Microbiol 2009; 107:1857-65. [PMID: 19457031 DOI: 10.1111/j.1365-2672.2009.04356.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The objectives of this study were to assess the genetic relationships between toxigenic and atoxigenic isolates of Aspergillus flavus collected from peanut fields in China, and to analyse deletions within the aflatoxin biosynthetic gene cluster for the atoxigenic isolates. METHODS AND RESULTS Analysis of random-amplified polymorphic DNA and microsatellite-primed PCR data showed that the toxigenic and atoxigenic isolates of A. flavus were not clustered based on their regions and their ability of aflatoxin and sclerotial production. These results were further supported by DNA sequence of ITS, pksA and omtA genes. PCR assays showed that 24 of 35 isolates containing no detectable aflatoxins had the entire aflatoxin gene cluster. Eleven atoxigenic isolates had five different deletion patterns in the cluster. CONCLUSIONS Toxigenic and atoxigenic isolates of A. flavus are genetically similar, but some atoxigenic isolates having deletions within the aflatoxin gene cluster can be identified readily by PCR assays. SIGNIFICANCE AND IMPACT OF THE STUDY Because the extensive deletions within the aflatoxin gene cluster are not rare in the atoxigenic isolates, analysis of deletion within the cluster would be an effective method for the rapid screening of atoxigenic isolates for developing biocontrol agents.
Collapse
Affiliation(s)
- Y Yin
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
26
|
Cryptic species in the Terfezia boudieri complex. Antonie Van Leeuwenhoek 2009; 95:351-62. [DOI: 10.1007/s10482-009-9321-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Accepted: 02/26/2009] [Indexed: 11/26/2022]
|
27
|
Gibbons JG, Rokas A. Comparative and functional characterization of intragenic tandem repeats in 10 Aspergillus genomes. Mol Biol Evol 2008; 26:591-602. [PMID: 19056904 DOI: 10.1093/molbev/msn277] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Intragenic tandem repeats (ITRs) are consecutive repeats of three or more nucleotides found in coding regions. ITRs are the underlying cause of several human genetic diseases and have been associated with phenotypic variation, including pathogenesis, in several clades of the tree of life. We have examined the evolution and functional role of ITRs in 10 genomes spanning the fungal genus Aspergillus, a clade of relevance to medicine, agriculture, and industry. We identified several hundred ITRs in each of the species examined. ITR content varied extensively between species, with an average 79% of ITRs unique to a given species. For the fraction of conserved ITR regions, sequence comparisons within species and between close relatives revealed that they were highly variable. ITR-containing proteins were evolutionarily less conserved, compositionally distinct, and overrepresented for domains associated with cell-surface localization and function relative to the rest of the proteome. Furthermore, ITRs were preferentially found in proteins involved in transcription, cellular communication, and cell-type differentiation but were underrepresented in proteins involved in metabolism and energy. Importantly, although ITRs were evolutionarily labile, their functional associations appeared. To be remarkably conserved across eukaryotes. Fungal ITRs likely participate in a variety of developmental processes and cell-surface-associated functions, suggesting that their contribution to fungal lifestyle and evolution may be more general than previously assumed.
Collapse
Affiliation(s)
- John G Gibbons
- Department of Biological Sciences, Vanderbilt University, Nashville, USA
| | | |
Collapse
|
28
|
Abstract
Aspergillus species are widely distributed fungi that release large amounts of airborne conidia, which are dispersed in the environment. Several Aspergillus species have been described as human pathogens. Molecular techniques have been developed to investigate the epidemiological relation between environmental and clinical isolates. Several typing methods have been described for Aspergillus species, most of them with reference to Aspergillus fumigatus. Here, we summarise all the different available molecular typing techniques for Aspergillus. The performance of these techniques is evaluated with respect to their practical feasibility, and their interpretation and discriminatory power assessed. For A. fumigatus isolates, a large extent of genetic variability is demonstrated and therefore fingerprinting techniques with high discriminatory power and high reproducibility are required for this species. Afut1-restriction fragment length polymorphism and microsatellite typing showed the highest discriminatory power. In addition, the microsatellites show excellent reproducibility. Other typing techniques are still useful for smaller epidemiological problems and for less well-equipped laboratories.
Collapse
Affiliation(s)
- H A de Valk
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
29
|
Barros GG, Chiotta ML, Reynoso MM, Torres AM, Chulze SN. Molecular characterization of Aspergillus section Flavi isolates collected from peanut fields in Argentina using AFLPs. J Appl Microbiol 2008; 103:900-9. [PMID: 17897192 DOI: 10.1111/j.1365-2672.2007.03312.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The objectives of this study were: (i) to evaluate genetic relatedness among Aspergillus section Flavi strains isolated from soil and peanut seeds in Argentina; (ii) to determine if AFLP molecular markers could be useful to identify isolates up to species level, and to correlate these markers with the isolates' toxigenic potentials and/or vegetative compatibility group (VCG) affiliations. METHODS AND RESULTS Amplified fragment length polymorphism (AFLPs) analysis was applied to compare 82 isolates of Aspergillus section Flavi. Cluster analysis showed a clear separation of A. flavus and A. parasiticus, and comparison of fingerprints revealed several specific markers for each group of isolates. AFLP analysis indicates that no genotypical differences can be established between aflatoxigenic and nonaflatoxigenic producers in both species analysed. In addition, candidate AFLP markers associated with a particular VCG were not found. CONCLUSIONS There was a concordance between morphological identification and separation up to species level using molecular markers. The findings of specific bands for A. flavus and A. parasiticus may be useful for the design of specific PCR primers in order to differentiate these species and detect them in food. SIGNIFICANCE AND IMPACT OF THE STUDY The present study provides new data on molecular characterization of Aspergillus section Flavi in Argentina.
Collapse
Affiliation(s)
- G G Barros
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas Físico Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.
| | | | | | | | | |
Collapse
|
30
|
Jørgensen TR. Identification and toxigenic potential of the industrially important fungi, Aspergillus oryzae and Aspergillus sojae. J Food Prot 2007; 70:2916-34. [PMID: 18095455 DOI: 10.4315/0362-028x-70.12.2916] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mold strains belonging to the species Aspergillus oryzae and Aspergillus sojae are highly valued as koji molds in the traditional preparation of fermented foods, such as miso, sake, and shoyu, and as protein production hosts in modern industrial processes. A. oryzae and A. sojae are relatives of the wild molds Aspergillus flavus and Aspergillus parasiticus. All four species are classified to the A. flavus group. Strains of the A. flavus group are characterized by a high degree of morphological similarity. Koji mold species are generally perceived of as being nontoxigenic, whereas wild molds are associated with the carcinogenic aflatoxins. Thus, reliable identification of individual strains is very important for application purposes. This review considers the pheno- and genotypic markers used in the classification of A. flavus group strains and specifically in the identification of A. oryzae and A. sojae strains. Separation of A. oryzae and A. sojae from A. flavus and A. parasiticus, respectively, is inconsistent, and both morphologic and molecular evidence support conspecificity. The high degree of identity is reflected by the divergent identification of reference cultures maintained in culture collections. As close relatives of aflatoxin-producing wild molds, koji molds possess an aflatoxin gene homolog cluster. Some strains identified as A. oryzae and A. sojae have been implicated in aflatoxin production. Identification of a strain as A. oryzae or A. sojae is no guarantee of its inability to produce aflatoxins or other toxic metabolites. Toxigenic potential must be determined specifically for individual strains. The species taxa, A. oryzae and A. sojae, are currently conserved by societal issues.
Collapse
Affiliation(s)
- Thomas R Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
31
|
The weak-acid preservative sorbic acid is decarboxylated and detoxified by a phenylacrylic acid decarboxylase, PadA1, in the spoilage mold Aspergillus niger. Appl Environ Microbiol 2007; 74:550-2. [PMID: 18039817 DOI: 10.1128/aem.02105-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to sorbic and cinnamic acids is mediated by a phenylacrylic acid decarboxylase (PadA1) in Aspergillus niger. A. niger DeltapadA1 mutants are unable to decarboxylate sorbic and cinnamic acids, and the MIC of sorbic acid required to inhibit spore germination was reduced by approximately 50% in DeltapadA1 mutants.
Collapse
|
32
|
Sonjak S, Frisvad JC, Gunde-Cimerman N. Genetic variation among Penicillium crustosum isolates from arctic and other ecological niches. MICROBIAL ECOLOGY 2007; 54:298-305. [PMID: 17345131 DOI: 10.1007/s00248-006-9202-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 11/22/2006] [Accepted: 12/17/2006] [Indexed: 05/14/2023]
Abstract
Penicillium crustosum is an important and panglobal contaminant of lipid- and protein-rich foods and feeds. Although it is infrequent in extremely cold environments, we isolated a high number of P. crustosum strains from Arctic coastal, but particularly, subglacial environments in Svalbard, Norway. P. crustosum is extremely consistent in its phenotypic properties, including morphology, physiology, and secondary metabolite production. However, some Arctic isolates differed from other Arctic and non-Arctic strains in their weak growth on creatine and in the production of the secondary metabolite andrastin A. In this study, we characterized genetic variability of P. crustosum strains originating from different Arctic and non-Arctic environments using amplified fragment length polymorphism (AFLP) and, in addition, M13 minisatellite fingerprinting and partial beta-tubulin gene sequencing. Most of the Arctic strains (85%) showed a relatively low variability and polymorphism level. They produced nine different AFLP genotypes grouped into two clusters in accordance with glacier origin and creatine utilization. The rest of the Arctic isolates and isolates from various non-Arctic environments displayed a much greater degree of genetic variability. It seems that in stressful glacial environment low microbial genetic variation is represented by only a few adapted genotypes that were not recovered from nonpolar environments.
Collapse
Affiliation(s)
- Silva Sonjak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|
33
|
Chang PK, Matsushima K, Takahashi T, Yu J, Abe K, Bhatnagar D, Yuan GF, Koyama Y, Cleveland TE. Understanding nonaflatoxigenicity of Aspergillus sojae: a windfall of aflatoxin biosynthesis research. Appl Microbiol Biotechnol 2007; 76:977-84. [PMID: 17665189 DOI: 10.1007/s00253-007-1116-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 07/07/2007] [Indexed: 10/23/2022]
Abstract
Aspergillus section Flavi includes aflatoxin-producing and nonproducing fungi. Aspergillus sojae is unable to produce aflatoxins and is generally recognized as safe for food fermentation. However, because of its taxonomical relatedness to aflatoxin-producing Aspergillus parasiticus and A. flavus, it is necessary to decipher the underlying mechanisms for its inability to produce aflatoxins. This review addresses the relationship between A. sojae and A. parasiticus and the advances that have been made in aflatoxin biosynthesis research, especially with regard to gene structure, genome organization, and gene regulation in A. parasiticus and A. flavus and how this has been used to assure the safety of A. sojae as an organism for food fermentation. The lack of aflatoxin-producing ability of A. sojae results primarily from an early termination point mutation in the pathway-specific aflR regulatory gene, which causes the truncation of the transcriptional activation domain of AflR and the abolishment of interaction between AflR and the AflJ co-activator. Both are required for gene expression. In addition, a defect in the polyketide synthase gene also contributes to its nonaflatoxigenicity.
Collapse
Affiliation(s)
- Perng-Kuang Chang
- Food and Feed Safety Research Unit, Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rokas A, Payne G, Fedorova ND, Baker SE, Machida M, Yu J, Georgianna DR, Dean RA, Bhatnagar D, Cleveland TE, Wortman JR, Maiti R, Joardar V, Amedeo P, Denning DW, Nierman WC. What can comparative genomics tell us about species concepts in the genus Aspergillus? Stud Mycol 2007; 59:11-7. [PMID: 18490942 PMCID: PMC2275189 DOI: 10.3114/sim.2007.59.02] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Understanding the nature of species" boundaries is a fundamental question in evolutionary biology. The availability of genomes from several species of the genus Aspergillus allows us for the first time to examine the demarcation of fungal species at the whole-genome level. Here, we examine four case studies, two of which involve intraspecific comparisons, whereas the other two deal with interspecific genomic comparisons between closely related species. These four comparisons reveal significant variation in the nature of species boundaries across Aspergillus. For example, comparisons between A. fumigatus and Neosartorya fischeri (the teleomorph of A. fischerianus) and between A. oryzae and A. flavus suggest that measures of sequence similarity and species-specific genes are significantly higher for the A. fumigatus - N. fischeri pair. Importantly, the values obtained from the comparison between A. oryzae and A. flavus are remarkably similar to those obtained from an intra-specific comparison of A. fumigatus strains, giving support to the proposal that A. oryzae represents a distinct ecotype of A. flavus and not a distinct species. We argue that genomic data can aid Aspergillus taxonomy by serving as a source of novel and unprecedented amounts of comparative data, as a resource for the development of additional diagnostic tools, and finally as a knowledge database about the biological differences between strains and species.
Collapse
Affiliation(s)
- A Rokas
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, U.S.A
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Montiel MD, Lee HA, Archer DB. Evidence of RIP (repeat-induced point mutation) in transposase sequences of Aspergillus oryzae. Fungal Genet Biol 2006; 43:439-45. [PMID: 16531081 DOI: 10.1016/j.fgb.2006.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 01/06/2006] [Accepted: 01/26/2006] [Indexed: 11/20/2022]
Abstract
A DNA methyl-binding column was used to isolate genomic fragments enriched for DNA-methylation from Aspergillus parasiticus. One of the isolated sequences presented 67% identity at the protein level with the transposase from the transposable element Tan1 of Aspergillus niger var. awamori, and was found to be present in at least 20 copies in the Aspergillus oryzae database. Analysis of four copies showed evidence of C:G to T:A transitions in at least 98.2% of the mutations found over a 1,032-1,180 bp region spanning a large part of the transposase sequence. Using copy specific primers three sequences were amplified from a different strain of A. oryzae and a similar pattern of C:G to T:A transitions was found. These transitions are similar to those observed in RIP, in Neurospora crassa, where cytosine-methylation is believed to be involved. Using methylation-sensitive Southern blotting, no evidence of methylation was found in the transposase sequences in these two A. oryzae strains as well as one A. parasiticus and one Aspergillus flavus strain.
Collapse
Affiliation(s)
- Maria D Montiel
- Institute of Genetics, School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | |
Collapse
|
36
|
Perrone G, Mulè G, Susca A, Battilani P, Pietri A, Logrieco A. Ochratoxin A production and amplified fragment length polymorphism analysis of Aspergillus carbonarius, Aspergillus tubingensis, and Aspergillus niger strains isolated from grapes in Italy. Appl Environ Microbiol 2006; 72:680-5. [PMID: 16391107 PMCID: PMC1352186 DOI: 10.1128/aem.72.1.680-685.2006] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ochratoxin A is a potent nephrotoxin and a possible human carcinogen that can contaminate various agricultural products, including grapes and wine. The capabilities of species other than Aspergillus carbonarius within Aspergillus section Nigri to produce ochratoxin A from grapes are uncertain, since strain identification is based primarily on morphological traits. We used amplified fragment length polymorphisms (AFLPs) and genomic DNA sequences (rRNA, calmodulin, and beta-tubulin genes) to identify 77 black aspergilli isolated from grape berries collected in a 2-year survey in 16 vineyards throughout Italy. Four main clusters were distinguished, and they shared an AFLP similarity of <25%. Twenty-two of 23 strains of A. carbonarius produced ochratoxin A (6 to 7,500 microg/liter), 5 of 20 strains of A. tubingensis produced ochratoxin A (4 to 130 microg/liter), 3 of 15 strains of A. niger produced ochratoxin A (250 to 360 microg/liter), and none of the 19 strains of Aspergillus "uniseriate" produced ochratoxin A above the level of detection (4 microg/liter). These findings indicate that A. tubingensis is able to produce ochratoxin and that, together with A. carbonarius and A. niger, it may be responsible for the ochratoxin contamination of wine in Italy.
Collapse
Affiliation(s)
- Giancarlo Perrone
- Institute of Sciences of Food Production, ISPA-CNR, Via G. Amendola, 122/O, I-70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Chaturvedi S, Dyavaiah M, Larsen RA, Chaturvedi V. Cryptococcus gattii in AIDS patients, southern California. Emerg Infect Dis 2006; 11:1686-92. [PMID: 16318719 PMCID: PMC3367345 DOI: 10.3201/eid1111.040875] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A molecular analysis of pheromone genes showed a notable prevalence of Cryptococcus gattii isolates from AIDS patients in southern California. Cryptococcus isolates from AIDS patients in southern California were characterized by molecular analyses. Pheromone MFα1 and MFa1 gene fragments were polymerase chain reaction–amplified with fluorescently labeled primers and analyzed by capillary electrophoresis (CE) on DNA analyzer. CE–fragment-length analyses (CE-FLAs) and CE–single-strand conformation polymorphisms (CE-SSCPs) were used to determine Cryptococcus gattii (Cg), C. neoformans (Cn) varieties neoformans (CnVN) and grubii (CnVG), mating types, and hybrids. Corroborative tests carried out in parallel included growth on specialized media and serotyping with a commercial kit. All 276 clinical strains tested as haploid MATα by CE-FLA. CE-SSCP analyses of MFα1 showed 219 (79.3%) CnVG, 23 (8.3%) CnVN, and 34 (12.3%) Cg isolates. CE-FLA and CE-SSCP are promising tools for high-throughput screening of Cryptococcus isolates. The high prevalence of Cg was noteworthy, in view of its sporadic reports from AIDS patients in North America and its recent emergence as a primary pathogen on Vancouver Island, Canada.
Collapse
Affiliation(s)
- Sudha Chaturvedi
- Wadsworth Center, Albany, New York, USA
- State University of New York, Albany, Albany, New York, USA
| | | | - Robert A. Larsen
- University of Southern California, Los Angeles, California, USA
- Los Angeles County Hospital, Los Angeles, California, USA
| | - Vishnu Chaturvedi
- Wadsworth Center, Albany, New York, USA
- State University of New York, Albany, Albany, New York, USA
| |
Collapse
|
38
|
Baird RE, Trigiano RN, Windham G, Williams P, Kelley R, Abbas HK, Moulton JK, Scruggs ML. Comparison of Aflatoxigenic and Nonaflatoxigenic Isolates of Aspergillus flavus using DNA Amplification Fingerprinting Techniques. Mycopathologia 2006; 161:93-9. [PMID: 16463092 DOI: 10.1007/s11046-005-0121-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 10/25/2005] [Indexed: 11/28/2022]
Abstract
Aspergillus flavus is a filamentous fungus that produces mycotoxins in many food and feed crops, such as maize (Zea mays L.). Isolates were analyzed for toxin production by nucleic acid profiles in an attempt to differentiate aflatoxigenic from nonaflatoxigenic isolates. A total of 41 aflatoxigenic and 34 nonalfatoxigenic isolates were included in the study. The isolates were evaluated initially using DNA amplification fingerprinting (DAF) without clear resolution of the groups. A weak association of aflatoxigenic isolates was observed, as evidenced by their clustering in 18 of 81 trees recovered from maximum parsimony analysis of binary characters derived from arbitrary signatures from amplification profiles (ASAP) data; nonaflatoxigenic isolates exhibited a pattern of paraphyletic laddering. Up to five markers unambiguously supported the aflatoxigenic isolate grouping, but the presence of alternative conflicting topologies in equally parsimonious trees precluded the observation of meaningful statistical support. With additional markers for genome of A. flavus, this method could be used to resolve toxigenic from nontoxigenic strains. This additional work could resolve aflatoxigenic isolates of A. flavus present on maize plants using ASAP, which would reduce labor intense costs and potentially lead to faster determination of resistant cultivars in breeding efforts.
Collapse
Affiliation(s)
- R E Baird
- Entomology and Plant Pathology Department, Mississippi State University, Box 9655, Mississippi State, MS, 39762, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Chang PK, Ehrlich KC, Hua SST. Cladal relatedness among Aspergillus oryzae isolates and Aspergillus flavus S and L morphotype isolates. Int J Food Microbiol 2006; 108:172-7. [PMID: 16430983 DOI: 10.1016/j.ijfoodmicro.2005.11.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 10/17/2005] [Accepted: 11/23/2005] [Indexed: 11/22/2022]
Abstract
Aspergillus flavus is the main etiological agent for aflatoxin contamination of crops. Its close relative, A. oryzae, does not produce aflatoxins and has been widely used to produce fermented foods. We compared the phylogeny of A. oryzae isolates and L- and S-type sclerotial isolates of A. flavus using single nucleotide polymorphisms in the omtA gene in the aflatoxin biosynthesis gene cluster and deletions in and distal to the norB-cypA intergenic region as phylogenetic signals. Aflatoxin-producing ability and sclerotial size also were weighted in the analysis. Like A. flavus, the A. oryzae isolates form a polyphyletic assemblage. A. oryzae isolates in one clade strikingly resemble an A. flavus subgroup of atoxigenic L-type isolates. All toxigenic S-type isolates closely resemble another subgroup of atoxigenic L-type isolates. Because atoxigenic S-type isolates are extremely rare, we hypothesize that loss of aflatoxin production in S-type isolates may occur concomitantly with a change to L-type sclerotia. All toxigenic L-type isolates, unlike A. oryzae, have a 1.0 kb deletion in the norB-cypA region. Although A. oryzae isolates, like S-type, have a 1.5 kb deletion in the norB-cypA region, none were cladally related to S-type A. flavus isolates. Our results show that A. flavus populations are genetically diverse. A. oryzae isolates may descend from certain atoxigenic L-type A. flavus isolates.
Collapse
Affiliation(s)
- Perng-Kuang Chang
- Southern Regional Research Center, U. S. Department of Agriculture, New Orleans, Louisiana 70124, USA.
| | | | | |
Collapse
|
40
|
|
41
|
Abstract
AFLP markers provide a potential source of phylogenetic information for molecular systematic studies. However, there are properties of restriction fragment data that limit phylogenetic interpretation of AFLPs. These are (a) possible nonindependence of fragments, (b) problems of homology assignment of fragments, (c) asymmetry in the probability of losing and gaining fragments, and (d) problems in distinguishing heterozygote from homozygote bands. In the present study, AFLP data sets of Lactuca s.l. were examined for the presence of phylogenetic signal. An indication of this signal was provided by carrying out tree length distribution skewness (g1) tests, permutation tail probability (PTP) tests, and relative apparent synapomorphy analysis (RASA). A measure of the support for internal branches in the optimal parsimony tree (MPT) was made using bootstrap, jackknife, and decay analysis. Finally, the extent of congruence in MPTs for AFLP and internal transcribed spacer (ITS)-1 data sets for the same taxa was made using the partition homogeneity test (PHT) and the Templeton test. These analytical studies suggested the presence of phylogenetic signal in the AFLP data sets, although some incongruence was found between AFLP and ITS MPTs. An extensive literature survey undertaken indicated that authors report a general congruence of AFLP and ITS tree topologies across a wide range of taxonomic groups, suggesting that the present results and conclusions have a general bearing. In these earlier studies and those for Lactuca s.l., AFLP markers have been found to be informative at somewhat lower taxonomic levels than ITS sequences. Tentative estimates are suggested for the levels of ITS sequence divergence over which AFLP profiles are likely to be phylogenetically informative.
Collapse
Affiliation(s)
- Wim J M Koopman
- Biosystematics Group, Nationaal Herbarium Nederland-, Wageningen University branch, Wageningen University, Generaal Foulkesweg 37, 6703BL, Wageningen, The Netherlands.
| |
Collapse
|
42
|
Paterson RRM, Venâncio A, Lima N. Solutions to Penicillium taxonomy crucial to mycotoxin research and health. Res Microbiol 2004; 155:507-13. [PMID: 15313249 DOI: 10.1016/j.resmic.2004.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 04/02/2004] [Indexed: 11/25/2022]
Abstract
The stability of taxonomy within Penicillium is reviewed with respect to mycotoxin production. Identification remains difficult despite the availability of modern methods. Proficiency testing is rare and conventional identifications do not inform reliably as to whether mycotoxins were detected/produced. A solution which consists of identifying a Penicillium strain as terverticillate and then undertaking mycotoxin analysis is described.
Collapse
Affiliation(s)
- R Russell M Paterson
- Micoteca da Universidade do Minho, Centro de Engenharia Biológica, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | |
Collapse
|