1
|
Fungal Communities in Leaves and Roots of Healthy-Looking and Diseased Ulmusglabra. Microorganisms 2022; 10:microorganisms10112228. [PMID: 36363820 PMCID: PMC9697362 DOI: 10.3390/microorganisms10112228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to investigate fungal communities associated with leaves and roots of healthy-looking and declining U. glabra trees. The study was expected to demonstrate whether and how the diversity and composition of fungal communities change in these functional tissues following the infection by Dutch elm disease-causing fungi. The study sites included six U. glabra sites in Lithuania, where leaves and roots were sampled. DNA was isolated from individual samples, amplified using ITS2 rRNA as a marker, and subjected to high-throughput sequencing. The sequence analysis showed the presence of 32,699 high-quality reads, which following clustering, were found to represent 520 non-singleton fungal taxa. In leaves, the fungal species richness was significantly higher in healthy-looking trees than in diseased ones (p < 0.05). In roots, a similar comparison showed that the difference was insignificant (p > 0.05). The most common fungi in all samples of roots were Trichocladium griseum (32.9%), Penicillium restrictum (21.2%), and Unidentified sp. 5238_7 (12.6%). The most common fungi in all samples of leaves were Trichomerium sp. 5238_8 (12.30%), Aureobasidium pullulans (12.03%), Cladosporium sp. 5238_5 (11.73%), and Vishniacozyma carnescens (9.86%). The results showed that the detected richness of fungal taxa was higher in samples collected from healthy-looking trees than from diseased ones, thereby highlighting the negative impact of the Dutch elm disease on the overall fungal diversity.
Collapse
|
2
|
Brasier C, Franceschini S, Forster J, Kirk S. Enhanced Outcrossing, Directional Selection and Transgressive Segregation Drive Evolution of Novel Phenotypes in Hybrid Swarms of the Dutch Elm Disease Pathogen Ophiostoma novo-ulmi. J Fungi (Basel) 2021; 7:jof7060452. [PMID: 34204036 PMCID: PMC8228177 DOI: 10.3390/jof7060452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
In the 1970s, clones of the two subspecies of Ophiostoma novo-ulmi, subsp. americana (SSAM) and subsp. novo-ulmi (SSNU) began to overlap in Europe, resulting in hybrid swarms. By 1983-1986, hybrids with high, SSAM-like growth and pathogenic fitness comprised ~75% of popula-tions at Limburg, Netherlands and Orvieto, Italy. We resampled these populations in 2008 to examine trends in hybrid fitness traits. Since preliminary sampling in 1979-1980, MAT-1 locus frequency had increased from ~0% to ~32% at Orvieto and 5% to ~43% at Limburg, and vegeta-tive incompatibility type frequency had changed from near clonal to extremely diverse at both sites. This represents an enormous increase in outcrossing and recombination potential, due in part to selective acquisition (under virus pressure) of MAT-1 and vic loci from the resident O. ulmi and in part to SSAM × SSNU hybridisation. Overt virus infection in the 2008 samples was low (~4%), diagnostic SSAM and SSNU cu and col1 loci were recombinant, and no isolates exhib-ited a parental SSAM or SSNU colony pattern. At both sites, mean growth rate and mean patho-genicity to 3-5 m clonal elm were high SSAM-like, indicating sustained directional selection for these characters, though at Orvieto growth rate was slower. The once frequent SSNU-specific up-mut colony dimorphism was largely eliminated at both sites. Perithecia formed by Limburg isolates were mainly an extreme, long-necked SSNU-like form, consistent with transgressive segregation resulting from mismatch of SSAM and SSNU developmental loci. Orvieto isolates produced more parental-like perithecia, suggesting the extreme phenotypes may have been se-lected against. The novel phenotypes in the swarms are remodelling O. novo-ulmi in Europe. Locally adapted genotypes may emerge.
Collapse
|
3
|
Chen W, Chai H, Yang W, Zhang X, Chen Y, Zhao Y. Characterization of Non-coding Regions in B Mating Loci of Agrocybe salicacola Groups: Target Sites for B Mating Type Identification. Curr Microbiol 2017; 74:772-778. [PMID: 28393263 DOI: 10.1007/s00284-017-1247-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/05/2017] [Indexed: 01/29/2023]
Abstract
Agrocybe salicacola is a delicious and cultivable mushroom. It is important to understand this species' inherent characteristics, especially to elucidate the constitution and segregation of mating genes. In this study, two compatible B mating loci in strain YAASM0711 of A. salicacola were cloned from the monokaryons, and sequence and phylogeny analyses showed two conserved genes encoding pheromone receptors maybe lost mating activity, which determined by comparing with those of other mushrooms. In the conserved regions of mating loci, partial insertion/deletion fragments made non-coding regions posses polymorphisms, and monokaryotic strains of different mating types were distinguished from each other according to the amplification profile of variable regions, which suggested mating loci were integrally assigned to offspring strains during mitosis in A. salicacola. As our known, it is the first to develop molecular markers for B mating-type identification using variable non-coding fragments of mating loci in basidiomycetes.
Collapse
Affiliation(s)
- Weimin Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, Yunnan, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, 650223, Yunnan, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, Yunnan, China
| | - Hongmei Chai
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, Yunnan, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, 650223, Yunnan, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, Yunnan, China
| | - Weixian Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, Yunnan, China
- College of Life Science, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Xiaolei Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, Yunnan, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, 650223, Yunnan, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, Yunnan, China
| | - Yuhui Chen
- College of Life Science, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - YongChang Zhao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, Yunnan, China.
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, 650223, Yunnan, China.
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, Yunnan, China.
| |
Collapse
|
4
|
Wuest CE, Harrington TC, Fraedrich SW, Yun HY, Lu SS. Genetic Variation in Native Populations of the Laurel Wilt Pathogen, Raffaelea lauricola, in Taiwan and Japan and the Introduced Population in the United States. PLANT DISEASE 2017; 101:619-628. [PMID: 30677356 DOI: 10.1094/pdis-10-16-1517-re] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Laurel wilt is a vascular wilt disease caused by Raffaelea lauricola, a mycangial symbiont of an ambrosia beetle, Xyleborus glabratus. The fungus and vector are native to Asia but were apparently introduced to the Savannah, GA, area 15 or more years ago. Laurel wilt has caused widespread mortality on redbay (Persea borbonia) and other members of the Lauraceae in the southeastern United States, and the pathogen and vector have spread as far as Texas. Although believed to be a single introduction, there has been no extensive study on genetic variation of R. lauricola populations that would suggest a genetic bottleneck in the United States. Ten isolates of R. lauricola from Japan, 55 from Taiwan, and 125 from the United States were analyzed with microsatellite and 28S rDNA markers, and with primers developed for two mating-type genes. The new primers identified isolates as either MAT1 or MAT2 mating types in roughly equal proportions in Taiwan and Japan, where there was also high genetic diversity within populations based on all the markers, suggesting that these populations may have cryptic sex. Aside from a local population near Savannah and a single isolate in Alabama that had unique microsatellite alleles, the U.S. population was genetically uniform and included only the MAT2 mating type, supporting the single introduction hypothesis. This study suggests the importance of preventing a second introduction of R. lauricola to the United States, which could introduce the opposite mating type and allow for genetic recombination.
Collapse
Affiliation(s)
- Caroline E Wuest
- Department of Plant Pathology, Iowa State University, Ames 50011
| | | | | | - Hye-Young Yun
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea 08826
| | - Sheng-Shan Lu
- Division of Forest Protection, Taiwan Forestry Research Institute, Taipei 10066, Taiwan
| |
Collapse
|
5
|
Mating type markers reveal high levels of heterothallism in Leptographium sensu lato. Fungal Biol 2016; 120:538-546. [PMID: 27020155 DOI: 10.1016/j.funbio.2016.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/23/2015] [Accepted: 01/03/2016] [Indexed: 01/16/2023]
Abstract
Species of Leptographium sensu lato are sap-stain fungi vectored by bark beetles and some species cause or are associated with tree diseases. Sexual states have been reported for more than 30 species in this group and these have been treated in the sexual genus Grosmannia. No sexual state is known for at least 59 additional species and these reside in the genus Leptographium. The discovery of sexual states for species of Leptographium relies mainly on the presence of fruiting bodies on host tissue at the time of isolation and/or intensive laboratory mating studies, which commonly have low levels of success. We developed mating-type markers to study sexual compatibility of species in Leptographium sensu lato. Using these markers, it was possible to identify mating types for 42 species and to determine thallism in many species for the first time. Surprisingly, the results showed that heterothallic and putatively heterothallic species are abundant (39 out of 42 species) in Leptographium sensu lato, and only three species were confirmed to be homothallic. The mating type markers developed in this study will be useful for future studies concerning mating type and sexual compatibility of species in this genus.
Collapse
|
6
|
The rise of Ramularia from the Mycosphaerella labyrinth. Fungal Biol 2015; 119:823-43. [PMID: 26321731 DOI: 10.1016/j.funbio.2015.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/23/2015] [Accepted: 06/08/2015] [Indexed: 11/20/2022]
Abstract
In this study we aimed to resolve the Ramularia endophylla species-complex by applying a polyphasic approach involving morphology and multi-gene phylogeny. Eleven partial genes were targeted for amplification and sequencing for a total of 81 isolates representing R. endophylla s. lat. and 32 isolates representing 11 Ramularia species that were previously linked to a Mycosphaerella sexual morph in literature. A Bayesian phylogenetic analysis, as well as a parsimony analysis, was performed on a combined five-locus dataset and the resulting trees showed significant support for three species within the complex, including the previously described R. endophylla and R. vizellae, and one novel species, Ramularia unterseheri. A parsimony analysis was also separately performed with mating-type gene sequences (MAT1-1-1 and MAT1-2-1) and the resulting tree topologies were in accordance with that of the multigene analysis. A bibliographic review of the proposed links between Ramularia spp. and their purported Mycosphaerella sexual morphs is also presented, confirming six connections in Ramularia. In spite of more than 10 000 species having been described in Mycosphaerella, the majority is shown to belong to other genera, suggesting that the taxa identified as Mycosphaerella in much of the plant pathology literature needs to be revisited.
Collapse
|
7
|
Comeau AM, Dufour J, Bouvet GF, Jacobi V, Nigg M, Henrissat B, Laroche J, Levesque RC, Bernier L. Functional annotation of the Ophiostoma novo-ulmi genome: insights into the phytopathogenicity of the fungal agent of Dutch elm disease. Genome Biol Evol 2014; 7:410-30. [PMID: 25539722 PMCID: PMC4350166 DOI: 10.1093/gbe/evu281] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 12/18/2022] Open
Abstract
The ascomycete fungus Ophiostoma novo-ulmi is responsible for the pandemic of Dutch elm disease that has been ravaging Europe and North America for 50 years. We proceeded to annotate the genome of the O. novo-ulmi strain H327 that was sequenced in 2012. The 31.784-Mb nuclear genome (50.1% GC) is organized into 8 chromosomes containing a total of 8,640 protein-coding genes that we validated with RNA sequencing analysis. Approximately 53% of these genes have their closest match to Grosmannia clavigera kw1407, followed by 36% in other close Sordariomycetes, 5% in other Pezizomycotina, and surprisingly few (5%) orphans. A relatively small portion (∼3.4%) of the genome is occupied by repeat sequences; however, the mechanism of repeat-induced point mutation appears active in this genome. Approximately 76% of the proteins could be assigned functions using Gene Ontology analysis; we identified 311 carbohydrate-active enzymes, 48 cytochrome P450s, and 1,731 proteins potentially involved in pathogen-host interaction, along with 7 clusters of fungal secondary metabolites. Complementary mating-type locus sequencing, mating tests, and culturing in the presence of elm terpenes were conducted. Our analysis identified a specific genetic arsenal impacting the sexual and vegetative growth, phytopathogenicity, and signaling/plant-defense-degradation relationship between O. novo-ulmi and its elm host and insect vectors.
Collapse
Affiliation(s)
- André M Comeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada Centre d'Étude de la Forêt (CEF), Université Laval, Québec, Québec, Canada Present address: Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Josée Dufour
- Centre d'Étude de la Forêt (CEF), Université Laval, Québec, Québec, Canada
| | - Guillaume F Bouvet
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Volker Jacobi
- Centre d'Étude de la Forêt (CEF), Université Laval, Québec, Québec, Canada
| | - Martha Nigg
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada Centre d'Étude de la Forêt (CEF), Université Laval, Québec, Québec, Canada
| | - Bernard Henrissat
- Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, France Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jérôme Laroche
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Roger C Levesque
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Louis Bernier
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada Centre d'Étude de la Forêt (CEF), Université Laval, Québec, Québec, Canada
| |
Collapse
|
8
|
Asexual propagation of a virulent clone complex in a human and feline outbreak of sporotrichosis. EUKARYOTIC CELL 2014; 14:158-69. [PMID: 25480940 DOI: 10.1128/ec.00153-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sporotrichosis is one of the most frequent subcutaneous fungal infections in humans and animals caused by members of the plant-associated, dimorphic genus Sporothrix. Three of the four medically important Sporothrix species found in Brazil have been considered asexual as no sexual stage has ever been reported in Sporothrix schenckii, Sporothrix brasiliensis, or Sporothrix globosa. We have identified the mating type (MAT) loci in the S. schenckii (strain 1099-18/ATCC MYA-4821) and S. brasiliensis (strain 5110/ATCC MYA-4823) genomes by using comparative genomic approaches to determine the mating type ratio in these pathogen populations. Our analysis revealed the presence of a MAT1-1 locus in S. schenckii while a MAT1-2 locus was found in S. brasiliensis representing genomic synteny to other Sordariomycetes. Furthermore, the components of the mitogen-activated protein kinase (MAPK)-pheromone pathway, pheromone processing enzymes, and meiotic regulators have also been identified in the two pathogens, suggesting the potential for sexual reproduction. The ratio of MAT1-1 to MAT1-2 was not significantly different from 1:1 for all three Sporothrix species, but the population of S. brasiliensis in the outbreaks originated from a single mating type. We also explored the population genetic structure of these pathogens using sequence data of two loci to improve our knowledge of the pattern of geographic distribution, genetic variation, and virulence phenotypes. Population genetics data showed significant population differentiation and clonality with a low level of haplotype diversity in S. brasiliensis isolates from different regions of sporotrichosis outbreaks in Brazil. In contrast, S. schenckii isolates demonstrated a high degree of genetic variability without significant geographic differentiation, indicating the presence of recombination. This study demonstrated that two species causing the same disease have contrasting reproductive strategies and genetic variability patterns.
Collapse
|
9
|
Kano R, Anzawa K, Mochizuki T, Nishimoto K, Hiruma M, Kamata H, Hasegawa A. Sporothrix schenckii(sensu strictS. globosa) mating type 1-2 (MAT1-2) gene. J Dermatol 2013; 40:726-30. [DOI: 10.1111/1346-8138.12226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/26/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Rui Kano
- Department of Pathobiology; Nihon University School of Veterinary Medicine; Fujisawa; Japan
| | - Kazushi Anzawa
- Department of Dermatology; Kanazawa Medical University; Uchinada; Japan
| | - Takashi Mochizuki
- Department of Dermatology; Kanazawa Medical University; Uchinada; Japan
| | | | - Masataro Hiruma
- Department of Dermatology and Allergology; Juntendo University Nerima Hospital; Hachioji; Japan
| | - Hiroshi Kamata
- Department of Pathobiology; Nihon University School of Veterinary Medicine; Fujisawa; Japan
| | | |
Collapse
|
10
|
Duong TA, de Beer ZW, Wingfield BD, Wingfield MJ. Characterization of the mating-type genes in Leptographium procerum and Leptographium profanum. Fungal Biol 2013; 117:411-21. [PMID: 23809651 DOI: 10.1016/j.funbio.2013.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 11/20/2022]
Abstract
Leptographium procerum and the closely related species Leptographium profanum, are ascomycetes associated with root-infesting beetles on pines and hardwood trees, respectively. Both species occur in North America where they are apparently native. L. procerum has also been found in Europe, China New Zealand, and South Africa where it has most probably been introduced. As is true for many other Leptographium species, sexual states have never been observed in L. procerum or L. profanum. The objectives of this study were to clone and characterize the mating type loci of these fungi, and to develop markers to determine the mating types of individual isolates. To achieve this, a partial sequence of MAT1-2-1 was amplified using degenerate primers targeting the high mobility group (HMG) sequence. A complete MAT1-2 idiomorph of L. profanum was subsequently obtained by screening a genomic library using the HMG sequence as a probe. Long range PCR was used to amplify the complete MAT1-1 idiomorph of L. profanum and both the MAT1-1 and MAT1-2 idiomorphs of L. procerum. Characterization of the MAT idiomorphs suggests that the MAT genes are fully functional and that individuals of both these species are self-sterile in nature with a heterothallic mating system. Mating type markers were developed and tested on a population of L. procerum isolates from the USA, the assumed center of origin for this species. The results suggest that cryptic sexual reproduction is occurring or has recently taken place within this population.
Collapse
Affiliation(s)
- Tuan A Duong
- Department of Genetics, Forestry and Agricultural Biotechnology Institute-FABI, University of Pretoria, Pretoria 0002, South Africa.
| | | | | | | |
Collapse
|
11
|
Sequencing and annotation of the Ophiostoma ulmi genome. BMC Genomics 2013; 14:162. [PMID: 23496816 PMCID: PMC3618308 DOI: 10.1186/1471-2164-14-162] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/28/2013] [Indexed: 02/02/2023] Open
Abstract
Background The ascomycete fungus Ophiostoma ulmi was responsible for the initial pandemic of the massively destructive Dutch elm disease in Europe and North America in early 1910. Dutch elm disease has ravaged the elm tree population globally and is a major threat to the remaining elm population. O. ulmi is also associated with valuable biomaterials applications. It was recently discovered that proteins from O. ulmi can be used for efficient transformation of amylose in the production of bioplastics. Results We have sequenced the 31.5 Mb genome of O.ulmi using Illumina next generation sequencing. Applying both de novo and comparative genome annotation methods, we predict a total of 8639 gene models. The quality of the predicted genes was validated using a variety of data sources consisting of EST data, mRNA-seq data and orthologs from related fungal species. Sequence-based computational methods were used to identify candidate virulence-related genes. Metabolic pathways were reconstructed and highlight specific enzymes that may play a role in virulence. Conclusions This genome sequence will be a useful resource for further research aimed at understanding the molecular mechanisms of pathogenicity by O. ulmi. It will also facilitate the identification of enzymes necessary for industrial biotransformation applications.
Collapse
|
12
|
Tsui CKM, DiGuistini S, Wang Y, Feau N, Dhillon B, Bohlmann J, Hamelin RC. Unequal recombination and evolution of the mating-type (MAT) loci in the pathogenic fungus Grosmannia clavigera and relatives. G3 (BETHESDA, MD.) 2013; 3:465-80. [PMID: 23450093 PMCID: PMC3583454 DOI: 10.1534/g3.112.004986] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/02/2012] [Indexed: 12/31/2022]
Abstract
Sexual reproduction in fungi is regulated by the mating-type (MAT) locus where recombination is suppressed. We investigated the evolution of MAT loci in eight fungal species belonging to Grosmannia and Ophiostoma (Sordariomycetes, Ascomycota) that include conifer pathogens and beetle symbionts. The MAT1-2 idiomorph/allele was identified from the assembled and annotated Grosmannia clavigera genome, and the MAT locus is flanked by genes coding for cytoskeleton protein (SLA) and DNA lyase. The synteny of these genes is conserved and consistent with other members in Ascomycota. Using sequences from SLA and flanking regions, we characterized the MAT1-1 idiomorph from other isolates of G. clavigera and performed dotplot analysis between the two idiomorphs. Unexpectedly, the MAT1-2 idiomorph contains a truncated MAT1-1-1 gene upstream of the MAT1-2-1 gene that bears the high-mobility-group domain. The nucleotide and amino acid sequence of the truncated MAT1-1-1 gene is similar to its homologous copy in the MAT1-1 idiomorph in the opposite mating-type isolate, except that positive selection is acting on the truncated gene and the alpha(α)-box that encodes the transcription factor has been deleted. The MAT idiomorphs sharing identical gene organization were present in seven additional species in the Ophiostomatales, suggesting that the presence of truncated MAT1-1-1 gene is a general pattern in this order. We propose that an ancient unequal recombination event resulted in the ancestral MAT1-1-1 gene integrated into the MAT1-2 idiomorph and surviving as the truncated MAT1-1-1 genes. The α-box domain of MAT1-1-1 gene, located at the same MAT locus adjacent to the MAT1-2-1 gene, could have been removed by deletion after recombination due to mating signal interference. Our data confirmed a 1:1 MAT/sex ratio in two pathogen populations, and showed that all members of the Ophiostomatales studied here including those that were previously deemed asexual have the potential to reproduce sexually. This ability can potentially increase genetic variability and can enhance fitness in new, ecological niches.
Collapse
Affiliation(s)
- Clement K-M Tsui
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | | | | | | | | | | | | |
Collapse
|
13
|
Wilken PM, Steenkamp ET, Hall TA, de Beer ZW, Wingfield MJ, Wingfield BD. Both mating types in the heterothallic fungus Ophiostoma quercus contain MAT1-1 and MAT1-2 genes. Fungal Biol 2012; 116:427-37. [DOI: 10.1016/j.funbio.2012.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 01/02/2012] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
|
14
|
Jacobi V, Dufour J, Bouvet GF, Aoun M, Bernier L. Identification of transcripts up-regulated in asexual and sexual fruiting bodies of the Dutch elm disease pathogen Ophiostoma novo-ulmi. Can J Microbiol 2010; 56:697-705. [PMID: 20725133 DOI: 10.1139/w10-053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Suppression subtractive hybridization cDNA libraries were prepared from asexual synnemata (S-lib) and sexual perithecia (P-lib) fruiting bodies of the Dutch elm disease pathogen Ophiostoma novo-ulmi subsp. novo-ulmi isolate H327 (mating-type MAT1-1) consisting of 630 and 401 cDNA clones, respectively. Both libraries were differentially screened in duplicate with forward and reverse subtracted probes. Up-regulated S-lib transcripts included those with homologies to phosphoenolpyruvate carboxykinase and aquaporin. Up-regulated P-lib transcripts included those with homologies to aspartyl proteinase, DNA lyase 2, and part of a mating-type (MAT) protein containing a DNA-binding domain of the high-mobility group (HMG) type. Phylogenetic analyses of HMG domains present within the putative O. novo-ulmi MAT protein and within MAT1-1-3 and MAT1-2-1 proteins of other ascomycete fungi identified the O. novo-ulmi protein as a homologue of the MAT1-1-3 protein, which represents part of the so far uncharacterized O. novo-ulmi MAT1-1 idiomorph. Reverse transcription - quantitative real-time PCR indicated up-regulation of the MAT1-1-3 homologue in O. novo-ulmi perithecia and synnemata. The present work identifies, for the first time, proteins involved in the formation of asexual and sexual fruiting bodies in O. novo-ulmi and should be of interest to researchers concerned with reproduction, mating type, and sexuality of filamentous ascomycete fungi.
Collapse
Affiliation(s)
- Volker Jacobi
- Centre d'étude de la forêt (CEF) and Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Pavillon Charles-Eugène Marchand, 1030, avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| | | | | | | | | |
Collapse
|
15
|
Plourde KV, Jacobi V, Bernier L. Use of insertional mutagenesis to tag putative parasitic fitness genes in the Dutch elm disease fungus Ophiostoma novo-ulmi subsp. novo-ulmi. Can J Microbiol 2008; 54:797-802. [PMID: 18772944 DOI: 10.1139/w08-068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used insertional mutagenesis to produce genetically tagged mutants of the Dutch elm disease fungus Ophiostoma novo-ulmi subsp. novo-ulmi. We first optimized transformation of O. novo-ulmi protoplasts by the restriction enzyme mediated integration method. A concentration of 80 U of HindIII with 108 fungal protoplasts and 5 microg of plasmid DNA was the most efficient for generating a high number of O. novo-ulmi mutants carrying a single insertion in their genome. Mycelium- and yeast-like growth kinetics of 24 O. novo-ulmi mutants were evaluated in vitro. Flanking sequences were successfully recovered in 8% of the transformants analyzed. Some mutant phenotypes appeared to result from gene disruption events, whereas others likely involved modifications of noncoding regions. Several nuclear loci that control vegetative growth and could potentially impact parasitic fitness were successfully tagged.
Collapse
Affiliation(s)
- Karine V Plourde
- Centre d'Etude de la Forêt, Faculté de Foresterie et de Géomatique, Université Laval, Québec, QCG1V0A6, Canada.
| | | | | |
Collapse
|
16
|
Sethuraman J, Okoli CV, Majer A, Corkery TLC, Hausner G. The sporadic occurrence of a group I intron-like element in the mtDNA rnl gene of Ophiostoma novo-ulmi subsp. americana. ACTA ACUST UNITED AC 2007; 112:564-82. [PMID: 18406119 DOI: 10.1016/j.mycres.2007.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 07/20/2007] [Accepted: 11/29/2007] [Indexed: 11/16/2022]
Abstract
The presence of group I intron-like elements within the U7 region of the mtDNA large ribosomal subunit RNA gene (rnl) was investigated in strains of Ophiostoma novo-ulmi subsp. americana from Canada, Europe and Eurasia, and in selected strains of O. ips, O. minus, O. piceae, O. ulmi, and O. himal-ulmi. This insertion is of interest as it has been linked previously to the generation of plasmid-like mtDNA elements in diseased strains of O. novo-ulmi. Among 197 O. novo-ulmi subsp. americana strains tested, 61 contained a 1.6kb insertion within the rnl-U7 region and DNA sequence analysis suggests the presence of a group I intron (IA1 type) that encodes a potential double motif LAGLIDADG homing endonuclease-like gene (HEG). Phylogenetic analysis of rnl-U7 intron encoded HEG-like elements supports the view that double motif HEGs originated from a duplication event of a single-motif HEG followed by a fusion event that combined the two copies into one open reading frame (ORF). The data also show that rnl-U7 intron encoded ORFs belong to a clade that includes ORFs inserted into different types of group I introns, e.g. IB, ID, IC3, IA1, present within a variety of different mtDNA genes, such as the small ribosomal subunit RNA gene (rns), apo-cytochrome b gene (cob), NADH dehydrogenase subunit 5 (nad5), cytochrome oxidase subunit 1 gene (coxI), and ATPase subunit 9 gene (atp9). We also compared the occurrence of the rnl-U7 intron in our collection of 227 strains with the presence of the rnl-U11 group I intron and concluded that the U7 intron appears to be an optional element and the U11 intron is probably essential among the strains tested.
Collapse
Affiliation(s)
- Jyothi Sethuraman
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | | | | | |
Collapse
|
17
|
Groenewald M, Barnes I, Bradshaw RE, Brown AV, Dale A, Groenewald JZ, Lewis KJ, Wingfield BD, Wingfield MJ, Crous PW. Characterization and distribution of mating type genes in the dothistroma needle blight pathogens. PHYTOPATHOLOGY 2007; 97:825-834. [PMID: 18943931 DOI: 10.1094/phyto-97-7-0825] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Dothistroma septosporum and D. pini are the two causal agents of Dothistroma needle blight of Pinus spp. in natural forests and plantations. Degenerate primers amplified portions of mating type genes (MAT1-1-1 and MAT1-2) and chromosome walking was applied to obtain the full-length genes in both species. The mating-type-specific primers designed in this study could distinguish between the morphologically similar D. pini and D. septosporum and between the different mating types of these species. Screening of isolates from global collections of D. septosporum showed that only MAT2 isolates are present in Australian and New Zealand collections, where only the asexual form of the fungus has been found. In contrast, both mating types of D. septosporum were present in collections from Canada and Europe, where the sexual state is known. Intriguingly, collections from South Africa and the United Kingdom, where the sexual state of the fungus is unknown, included both mating types. In D. pini, for which no teleomorph is known, both mating types were present in collections from the United States. These results provided new insights into the biology and global distribution of two of the world's most important pine pathogens and should facilitate management of the diseases caused by these fungi.
Collapse
|
18
|
Kanematsu S, Adachi Y, Ito T. Mating-type loci of heterothallic Diaporthe spp.: homologous genes are present in opposite mating-types. Curr Genet 2007; 52:11-22. [PMID: 17476509 DOI: 10.1007/s00294-007-0132-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 04/09/2007] [Accepted: 04/11/2007] [Indexed: 10/23/2022]
Abstract
Sexual reproduction of fungi is governed by genes located on the mating-type (MAT) locus. To analyze the MAT locus of the genus Diaporthe (anamorph: Phomopsis), a large genera within the ascomycetous class Sordariomycetes, we cloned and sequenced loci MAT1-1 and MAT1-2 from two heterothallic Diaporthe species, designated as Diaporthe W- and G-types (four isolates in total). The mating-type loci structures of Diaporthe W- and G-types were similar; MAT1-1 isolates had a MAT locus containing three genes, MAT1-1-1, MAT1-1-2 and MAT1-1-3, as was the case with other Sordariomycetes, and in contrast to other Sordariomycetes, MAT1-2 isolates had genes homologous to MAT1-1-2 and MAT1-1-3, in addition to MAT1-2-1. Expression analysis by RT-PCR revealed that all the mating-type genes of Diaporthe W-type were transcriptionally active during vegetative growth. The structure of MAT loci of Diaporthe W- and G-types is distinct from that in other heterothallic filamentous ascomycetes, which have dissimilar gene structure in opposite mating-type loci. This unique structure is informative to discussing the evolutionary history and function of mating-type genes of Sordariomycete fungi.
Collapse
Affiliation(s)
- Satoko Kanematsu
- Apple Research Station, National Institute of Fruit Tree Science, NARO, Shimokuriyagawa, Morioka 020-0123, Japan.
| | | | | |
Collapse
|
19
|
Hawksworth DL. Pandora's mycological box: molecular sequences vs. morphology in understanding fungal relationships and biodiversity. Rev Iberoam Micol 2007; 23:127-33. [PMID: 17196017 DOI: 10.1016/s1130-1406(06)70031-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Fundamental reappraisals of diverse traditional ideas in mycology have become necessary as a result of molecular insights. These different insights are discussed in relation to: the positions of microsporidia, slime moulds and oomycetes; the basal position of lichen fungi in the evolution of ascomycetes forming fruit bodies; remodelling of orders and families; changed generic concepts; the issue of whether permitting a dual nomenclature for the different states of pleomorphic fungi should be continued; and the recognition of additional cryptic species within a "species". The molecular data has necessitated a reassessment of the systematic importance of many types of characters. Also, the techniques open exciting horizons and undreamed of abilities through being able to identify non-sporing fungi in ecological samples and plant material, and revealing unexpected levels of diversity in hitherto little-explored habitats. Major advances in understanding how fungi operate through total genomic approaches can be anticipated as more are completely sequenced. The Pandora's box of molecular surprises is to be seen as one of blessings and not one of miseries and evils.
Collapse
Affiliation(s)
- David L Hawksworth
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Spain.
| |
Collapse
|
20
|
Paoletti M, Buck KW, Brasier CM. Selective acquisition of novel mating type and vegetative incompatibility genes via interspecies gene transfer in the globally invading eukaryote Ophiostoma novo-ulmi. Mol Ecol 2006; 15:249-62. [PMID: 16367844 DOI: 10.1111/j.1365-294x.2005.02728.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Dutch elm disease fungus Ophiostoma novo-ulmi, which has destroyed billions of elm trees worldwide, originally invaded Europe as a series of clonal populations with a single mating type (MAT-2) and a single vegetative incompatibility (vic) type. The populations then rapidly became diverse with the appearance of the MAT-1 type and many vegetative incompatibility types. Here, we have investigated the mechanism using isolates from sites in Portugal at which the rapid evolution of O. novo-ulmi populations from clonality to heterogeneity was well established. We show by genetic mapping of vic and MAT loci with AFLP markers and by sequence analysis of MAT loci that this diversification was due to selective acquisition by O. novo-ulmi of the MAT-1 and vic loci from another species, Ophiostoma ulmi. A global survey showed that interspecies transfer of the MAT-1 locus occurred on many occasions as O. novo-ulmi spread across the world. We discuss the possibility that fixation of the MAT-1 and vic loci occurred in response to spread of deleterious viruses in the originally clonal populations. The process demonstrates the potential of interspecies gene transfer for facilitating rapid adaptation of invasive organisms to a new environment.
Collapse
Affiliation(s)
- Mathieu Paoletti
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | | | | |
Collapse
|
21
|
Chérif M, Chilvers MI, Akamatsu H, Peever TL, Kaiser WJ. Cloning of the mating type locus from Ascochyta lentis (teleomorph: Didymella lentis) and development of a multiplex PCR mating assay for Ascochyta species. Curr Genet 2006; 50:203-15. [PMID: 16847660 DOI: 10.1007/s00294-006-0085-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/13/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
The mating type (MAT) locus of the lentil pathogen, Ascochyta lentis, was cloned and characterized using thermal asymmetric interlaced and inverse PCR with primers designed to the HMG-box of Ascochyta rabiei. A multiplex PCR assay for mating type was developed based on MAT idiomorph and flanking sequences. Primers were designed to specifically amplify MAT from several Ascochyta spp. including A. pisi, A. fabae and A. viciae-villosae in addition to A. lentis. Four hundred and fifty and 700 bp fragments were amplified from MAT1-1 and MAT1-2 isolates, respectively, and fragment size correlated perfectly with laboratory crosses using mating type tester strains. MAT-specific PCR allowed rapid scoring of mating type in crude DNA extracts from geographically diverse population samples of A. viciae-villosae from California and Washington State, USA. This co-dominant MAT-specific PCR assay will be a valuable tool for studying the population structure, biology and epidemiology of these fungi.
Collapse
Affiliation(s)
- Mohamed Chérif
- Laboratoire de Phytopathologie, Institut National Agronomique de Tunisie, Cité Mahrajéne, Tunis, Tunisia
| | | | | | | | | |
Collapse
|
22
|
Groenewald M, Groenewald JZ, Harrington TC, Abeln ECA, Crous PW. Mating type gene analysis in apparently asexual Cercospora species is suggestive of cryptic sex. Fungal Genet Biol 2006; 43:813-25. [PMID: 16839791 DOI: 10.1016/j.fgb.2006.05.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 05/26/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
The genus Cercospora consists of numerous important, apparently asexual plant pathogens. We designed degenerate primers from homologous sequences in related species to amplify part of the C. apii, C. apiicola, C. beticola, C. zeae-maydis and C. zeina mating type genes. Chromosome walking was used to determine the full length mating type genes of these species. Primers were developed to amplify and sequence homologous portions of the mating type genes of additional species. Phylogenetic analyses of these sequences revealed little variation among members of the C. apii complex, whereas C. zeae-maydis and C. zeina were found to be dissimilar. The presence of both mating types in approximately even proportions in C. beticola, C. zeae-maydis and C. zeina populations, in contrast to single mating types in C. apii (MAT1) and C. apiicola (MAT2), suggests that a sexual cycle may be active in some of these species.
Collapse
Affiliation(s)
- Marizeth Groenewald
- Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, The Netherlands; Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|