1
|
Kwoji ID, Aiyegoro OA, Okpeku M, Adeleke MA. Elucidating the Mechanisms of Cell-to-Cell Crosstalk in Probiotics Co-culture: A Proteomics Study of Limosilactobacillus reuteri ZJ625 and Ligilactobacillus salivarius ZJ614. Probiotics Antimicrob Proteins 2024; 16:1817-1835. [PMID: 37581751 PMCID: PMC11445297 DOI: 10.1007/s12602-023-10133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Limosilactobacillus reuteri ZJ625 and Ligilactobacillus salivarius ZJ614 are potential probiotic bacteria with improved benefits when administered to the host as a multi-strain preparation. To elucidate the mechanisms of cell-to-cell crosstalk between these two strains, we studied their intracellular and extracellular proteomes in co-culture by liquid-chromatography mass-spectrometry (LC-MS) using Dionex Nano-RSLC and fusion mass spectrometer. The experiment consisted of five biological replicates, and samples were collected during the mid-exponential growth phase. The quantitative proteomic profiles revealed several differentially expressed proteins (DEPs), which are down- or up-regulated between and within groups for both the intracellular and extracellular proteomes. These DEPs include proteins synthesising autoinducer-2, a sensor compound for cell-to-cell bacterial crosstalk during quorum sensing in mixed culture. Other important DEPs identified include enolase, phosphoglycerate kinase, and l-lactate dehydrogenase, which play roles in carbohydrate metabolism. Proteins associated with transcription, ATP production and transport across the membrane, DNA repair, and those with the potential to bind to the host epithelium were also identified. The post-translational modifications associated with the proteins include oxidation, deamidation, and ammonia loss. Importantly, this study revealed a significant expression of S-ribosylhomocysteine lyase (luxS) involved in synthesising autoinducer-2 that plays important roles in quorum sensing, aiding bacterial cell-to-cell crosstalk in co-cultures. The proteome of L. salivarius ZJ614 was most affected when co-cultured with L. reuteri ZJ625. In contrast, omitting some medium components from the defined medium exerted more effects on L. reuteri ZJ625 than L. salivarius ZJ614.
Collapse
Affiliation(s)
- Iliya Dauda Kwoji
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Olayinka Ayobami Aiyegoro
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, Northwest, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
| |
Collapse
|
2
|
Stocco G, Cipolat-Gotet C, Biffani S, Ablondi M, Negro A, Summer A, Kyriakaki P, Mavrommatis A, Tsiplakou E. Stage of lactation, parity, breed, milk composition and minerals affect the non-enzymatic antioxidant activity of sheep milk. J Dairy Sci 2024:S0022-0302(24)01175-5. [PMID: 39343212 DOI: 10.3168/jds.2024-25311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/18/2024] [Indexed: 10/01/2024]
Abstract
The aims of this study were to i) characterize sheep milk for non-enzymatic antioxidant activity via 2 different assays, namely the ferric reducing antioxidant power (FRAP) and the 2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), and ii) investigate the effect of milk composition and animal-related parameters on these 2 assays by using Generalized Additive Mixed Model (GAMM) approach. A total of 740 ewes belonging to Massese and Comisana breeds were sampled once during the morning milking across 11 sampling sessions. All milk samples were analyzed for fat, protein, casein, and lactose, somatic cell score (SCS) and minerals (Ca, Mg, Na and Cl). The FRAP and DPPH assays were tested to measure the non-enzymatic antioxidant activity of milk, expressed as μM eq. ascorbic acid/mL of milk and % of inhibition, respectively. The GAMM model included the effect of parity and breed as parametric terms, and the effect of days in milk (DIM), milk yield and the interactions protein × fat, casein × SCS, Ca × Mg and Na × Cl as smooth terms. The sampling day was included in the model as random effect. Results revealed that the non-enzymatic antioxidant capacity of sheep milk, expressed as FRAP, was affected by DIM, potentially because of changes in milk composition over time. Conversely, parity and breed of ewes affected DPPH, suggesting that age- and breed-specific factors are related to specific components in milk acting as hydrogen donors. Milk fat and high casein percentages were found to significantly affect FRAP, while protein content was crucial for high DPPH levels. Additionally, Ca and Mg emerged as important non-enzymatic antioxidants for both FRAP and DPPH, highlighting their important role in antioxidant activity of sheep milk. On the other side, combinations of Na and Cl were particularly influential for FRAP, revealing the complex relationship between these minerals and non-enzymatic antioxidant activity of milk. These findings offer valuable insights into the factors affecting the antioxidative properties of sheep milk, highlighting the need for further exploration of other non-enzymatic antioxidants and their contribution to the total antioxidant activity.
Collapse
Affiliation(s)
- Giorgia Stocco
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | | | - Stefano Biffani
- Institute of Agricultural Biology and Biotechnology, National Research Council, 20133 Milano, Italy.
| | - Michela Ablondi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Alessio Negro
- Ufficio Studi, Associazione Nazionale della Pastorizia, 00187 Rome, Italy
| | - Andrea Summer
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Panagiota Kyriakaki
- Department of Animal Science, Agricultural University of Athens, 118 55 Athens, Greece
| | | | - Eleni Tsiplakou
- Department of Animal Science, Agricultural University of Athens, 118 55 Athens, Greece
| |
Collapse
|
3
|
Saygili D, Karagozlu C. Protein-added kefir: biochemical changes in in vitro digestion stages. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39320162 DOI: 10.1002/jsfa.13921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/16/2024] [Accepted: 08/25/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND While yogurt is the leading fermented milk product, kefir is at the top of the beverage scale. Milk proteins, on the other hand, show specific functions that positively affect healthy nutrition due to the bioactive components, that they provide the necessary amino acids for growth and development. RESULTS In our study, kefir, a functional product enriched with whey proteins, casein and skimmed milk powder, which are the natural components of milk, was produced. Added-protein kefir samples were applied the in vitro digestion protocol, static method. In order to observe different protein behaviors, samples were taken pre-digestion, at 120th minute and at 240th minute of digestion protocol. ACE and Antioxidant capacity determination analyzes were carried out. While ACE inhibition values were in the range of 78.63-90.30% pre-digestion, they changed in the range of 86.97-96.38% after gastrointestinal digestion. It was determined that the ACE inhibition values of the control sample remained at the lowest level at all stages of digestion and that the difference between all of samples was significant (P < 0.05). Antioxidant activity value ranging from 0.3615-0.5512 meq Ascorbic acid/μg before digestion was determined as 1.3796-1.9313 meq Ascorbic acid/μg after gastrointestinal digestion (P < 0.05). CONCLUSION Kefir samples containing whey protein stand out with their high potential in terms of both antioxidant activity capacity and ACE inhibition activity at all stages of digestion. Considering their therapeutic effects in fermented products, it is thought that whey proteins among milk proteins will be important alternative sources to enrich the protein content in kefir production. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Derya Saygili
- Culinary Program, Izmir Kavram Vocational School, Konak-Izmir, Turkey
| | - Cem Karagozlu
- Department of Dairy Technology, Faculty of Agriculture, Ege University, Bornova-Izmir, Turkey
| |
Collapse
|
4
|
Todorovic S, Akpinar A, Assunção R, Bär C, Bavaro SL, Berkel Kasikci M, Domínguez-Soberanes J, Capozzi V, Cotter PD, Doo EH, Gündüz Ergün B, Guzel M, Harsa HS, Hastaoglu E, Humblot C, Hyseni B, Hosoglu MI, Issa A, Karakaş-Budak B, Karakaya S, Kesenkas H, Keyvan E, Künili IE, Kütt ML, Laranjo M, Louis S, Mantzouridou FT, Matalas A, Mayo B, Mojsova S, Mukherjee A, Nikolaou A, Ortakci F, Paveljšek D, Perrone G, Pertziger E, Santa D, Sar T, Savary-Auzeloux I, Schwab C, Starowicz M, Stojanović M, Syrpas M, Tamang JP, Yerlikaya O, Yilmaz B, Malagon-Rojas J, Salminen S, Frias J, Chassard C, Vergères G. Health benefits and risks of fermented foods-the PIMENTO initiative. Front Nutr 2024; 11:1458536. [PMID: 39309142 PMCID: PMC11414650 DOI: 10.3389/fnut.2024.1458536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
Worldwide, fermented foods (FF) are recognized as healthy and safe. Despite the rapid increase of research papers, there is a lack of systematic evaluation of the health benefits and risks of FF. The COST Action CA20128 "Promoting innovation of fermented foods" (PIMENTO) aims to provide a comprehensive assessment on the available evidence by compiling a set of 16 reviews. Seven reviews will cover clinical and biological endpoints associated with major health indicators across several organ systems, including the cardiovascular, gastrointestinal, neurological, immune, and skeletal systems. Nine reviews will address broader biological questions associated with FF including bioactive compounds and vitamin production, nutrient bioavailability and bioaccessibility, the role of FF in healthy diets and personalized nutrition, food safety, regulatory practices, and finally, the health properties of novel and ethnic FF. For each outcome assessed in the reviews, an innovative approach will be adopted based on EFSA's published guidance for health claim submissions. In particular, each review will be composed of three parts: (1) a systematic review of available human studies; (2) a non-systematic review of the mechanism of action related to the clinical endpoints measured by the human studies identified in part 1; and (3) a non-systematic review of the characterization of the FF investigated in the human studies identified in part 1. The evidence and research gaps derived from the reviews will be summarized and published in the form of a strategic road map that will pave the way for future research on FF.
Collapse
Affiliation(s)
- Smilja Todorovic
- Institute for Biological Research Sinisa Stankovic, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Asli Akpinar
- Department of Food Engineering, Manisa Celal Bayar University Faculty of Engineering and Natural Science, Manisa, Türkiye
| | - Ricardo Assunção
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, Almada, Portugal
| | - Cornelia Bär
- Competence Division Method Development and Analytics, Agroscope, Berne, Switzerland
| | - Simona L. Bavaro
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy
| | - Muzeyyen Berkel Kasikci
- Department of Food Engineering, Manisa Celal Bayar University Faculty of Engineering and Natural Science, Manisa, Türkiye
- STLO, INRAE, Institut Agro-Rennes Angers, Rennes, France
| | | | | | - Paul D. Cotter
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | - Eun-Hee Doo
- School of Living and Environmental Engineering, Dongyang Mirae University, Seoul, Republic of Korea
| | - Burcu Gündüz Ergün
- Biotechnology Research Center, Field Crops Central Research Institute, Ankara, Türkiye
| | - Mustafa Guzel
- Department of Food Engineering, Hitit University, Corum, Türkiye
| | - Hayriye S. Harsa
- Department of Food Engineering, Izmir Institute of Technology, Izmir, Türkiye
| | | | - Christèle Humblot
- French National Research Institute for Sustainable Development (IRD), Montpellier, France
| | - Bahtir Hyseni
- Faculty of Food Technology, University “Isa Boletini”, Mitrovica, Republic of Kosovo
| | - Muge I. Hosoglu
- Biotechnology Institute, Gebze Technical University, Kocaeli, Türkiye
| | - Aline Issa
- Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh, Lebanon
| | - Barçın Karakaş-Budak
- Department of Food Engineering, Akdeniz University Faculty of Engineering, Antalya, Türkiye
| | - Sibel Karakaya
- Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Türkiye
| | - Harun Kesenkas
- Department of Dairy Technology, Faculty of Agriculture, Ege University, Izmir, Türkiye
| | - Erhan Keyvan
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Türkiye
| | - Ibrahim E. Künili
- Department of Fishing and Fish Processing Technology, Faculty of Marine Sciences and Technology, Canakkale Onsekiz Mart University, Canakkale, Türkiye
| | | | - Marta Laranjo
- MED-Mediterranean Institute for Agriculture, Environment and Development-CHANGE-Global Change and Sustainability Institute and Departamento de Medicina Veterinária-Escola de Ciências e Tecnologia (ECT), Universidade de Évora, Évora, Portugal
| | - Sandrine Louis
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Fani T. Mantzouridou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonia Matalas
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Spain
| | - Sandra Mojsova
- Department of Food Safety and Veterinary Public Health, Food Institute, Faculty of Veterinary Medicine, Skopje, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Arghya Mukherjee
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | - Anastasios Nikolaou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Fatih Ortakci
- Food Engineering Department, Istanbul Technical University, Istanbul, Türkiye
| | - Diana Paveljšek
- Institute of Dairy Science and Probiotics, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Giancarlo Perrone
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Bari, Italy
| | - Eugenia Pertziger
- Research Division Microbial Food Systems, Agroscope, Berne, Switzerland
- Department of Epidemiology and Health Systems, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Dushica Santa
- Faculty of Agricultural Sciences and Food, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | | - Clarissa Schwab
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Małgorzata Starowicz
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | | | - Michail Syrpas
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | - Jyoti P. Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| | - Oktay Yerlikaya
- Department of Dairy Technology, Faculty of Agriculture, Ege University, Izmir, Türkiye
| | - Birsen Yilmaz
- Department of Biological Sciences, Tata Institute of Fundamental Research, Hyderabad, India
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çukurova University, Adana, Türkiye
| | | | - Seppo Salminen
- Functional foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| | - Juana Frias
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Christophe Chassard
- Human Nutrition Unit, INRAE, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Guy Vergères
- Research Division Microbial Food Systems, Agroscope, Berne, Switzerland
| |
Collapse
|
5
|
Li Y, Wan S, Liu J, Huang Y, Jiang L. Causal relationship between dietary intake and IgA nephropathy: a Mendelian randomization study. Front Nutr 2024; 11:1400907. [PMID: 39285865 PMCID: PMC11403370 DOI: 10.3389/fnut.2024.1400907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Objective Previous studies have reported that dietary intake is associated with immunoglobulin A nephropathy (IgAN). However, the causal relationship remains unknown. Based on publicly available genome-wide association study (GWAS) data, we conducted a two-sample Mendelian randomization (MR) analysis to assess the causal association between 26 dietary exposures and IgAN. Methods Five methods, including inverse variance weighting (IVW), MR-Egger regression, weighted median, simple mode, and weighted mode, were applied in the MR analysis. To identify the presence of horizontal pleiotropy, we used the MR-Egger intercept test and MR pleiotropy residual sum and outlier (MR-PRESSO) global test. Cochran's Q statistics were used to assess instrument heterogeneity. We conducted sensitivity analysis using the leave-one-out method. Results Finally, the results indicated alcohol intake frequency (odds ratio [OR] (95% confidence interval [CI]) = 1.267 (1.100-1.460), p = 0.0010295) was a risk factor of IgAN, while cheese intake (OR (95% CI) = 0.626 (0.492-0.798), p = 0.0001559), cereal intake (OR (95% CI) = 0.652 (0.439-0.967), p = 0.0334126), and sushi intake (OR (95% CI) = 0.145 (0.021-0.997), p = 0.0497) were protective factors of IgAN. No causal relationship was found between IgAN and the rest of the dietary exposures. Conclusion Our study provided genetic evidence that alcohol intake frequency was associated with an increased risk of IgAN, while cheese, cereal, and sushi intake were associated with a decreased risk of IgAN. Further investigation is required to confirm these results.
Collapse
Affiliation(s)
- Yaping Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Shengli Wan
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jing Liu
- Department of Urology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Longyang Jiang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Bezerra DAFVA, Souza KMS, Sales DC, Araújo EOM, Urbano SA, Cipolat-Gotet C, Anaya K, Ribeiro CVDM, Porto ALF, Rangel AHN. Effect of ripening time on the content of bioactive peptides and fatty acids profile of Artisanal Coalho cheese. PLoS One 2024; 19:e0306552. [PMID: 38976689 PMCID: PMC11230568 DOI: 10.1371/journal.pone.0306552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
The present study aimed to investigate the influence of ripening on the physicochemical, microbiological aspects, and fatty acid profile of Artisanal Coalho Cheeses and to detect if there are peptides with bioactive potential in their composition. Artisanal Coalho Cheese samples were kindly provided by a dairy farm located in Brazil in the Rio Grande do Norte state. A completely randomized design was adopted, with four maturation periods (0, 30, 45, and 60 days). Physicochemical traits (pH, total solids, moisture, non-fat solids, fat in total solids, protein, ash, fatty acid profile) and microbiological characterization (Salmonella sp, Listeria monocytogenes, total and thermotolerant coliforms, Staphylococcus aureus) were analyzed on cheese samples. Additionally, assays were performed for antioxidant and antihypertensive bioactivity through ACE and antimicrobial inhibition of the peptides extracted from the samples. There was a linear increase in total solids and ash content and a decrease in moisture content with increasing maturation time. The matured cheese samples had a lower pH than fresh Artisanal Coalho Cheese. Twenty-seven fatty acids were identified in the cheeses: 15 saturated, 07 monounsaturated, and 05 polyunsaturated, with a linear reduction of essential fatty acids (n6 and n3) during maturation. The microbiological quality of the cheeses was satisfactory, with an absence of undesirable bacteria in 92% of the cheese samples. Water-soluble peptide fractions from all periods tested showed antioxidant and antihypertensive potential with ACE control, and the maturation process potentiated these capacities, with a decline in these activities observed at 60 days. The antimicrobial activity against Gram-positive and Gram-negative bacteria increased with maturation, reaching better results until 60 days. The maturation process on wooden planks in the periods of 30, 45, and 60 days allows the production of Artisanal Coalho Cheese of an innovative character, safe to consumers from the microbiological point of view, with differentiated physicochemical and functional characteristics and good quality of lipid fraction compared to fresh cheese, enabling the addition of value to the dairy chain.
Collapse
Affiliation(s)
- Débora A F V A Bezerra
- Academic Unit Specialized in Agricultural, Federal University of Rio Grande do Norte (UFRN), Macaiba, Rio Grande do Norte, Brazil
| | - Karoline M S Souza
- Biosciences Center, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Danielle C Sales
- Academic Unit Specialized in Agricultural, Federal University of Rio Grande do Norte (UFRN), Macaiba, Rio Grande do Norte, Brazil
| | - Emmanuella O M Araújo
- Academic Unit Specialized in Agricultural, Federal University of Rio Grande do Norte (UFRN), Macaiba, Rio Grande do Norte, Brazil
| | - Stela A Urbano
- Academic Unit Specialized in Agricultural, Federal University of Rio Grande do Norte (UFRN), Macaiba, Rio Grande do Norte, Brazil
| | | | - Katya Anaya
- Faculty of Health Sciences of Trairi, Federal University of Rio Grande do Norte (UFRN), Santa Cruz, Rio Grande do Norte, Brazil
| | - Cláudio V D M Ribeiro
- School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Ana Lúcia F Porto
- Morfology and Animal Fisiology Departament, Rural Federal University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Adriano H N Rangel
- Academic Unit Specialized in Agricultural, Federal University of Rio Grande do Norte (UFRN), Macaiba, Rio Grande do Norte, Brazil
| |
Collapse
|
7
|
Ayed L, M’hir S, Nuzzolese D, Di Cagno R, Filannino P. Harnessing the Health and Techno-Functional Potential of Lactic Acid Bacteria: A Comprehensive Review. Foods 2024; 13:1538. [PMID: 38790838 PMCID: PMC11120132 DOI: 10.3390/foods13101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
This review examines the techno-functional properties of lactic acid bacteria (LABs) in the food industry, focusing on their potential health benefits. We discuss current findings related to the techno-functionality of LAB, which includes acidification, proteolytic and lipolytic features, and a variety of other biochemical activities. These activities include the production of antimicrobial compounds and the synthesis of exopolysaccharides that improve food safety and consumer sensory experience. LABs are also known for their antioxidant abilities, which help reduce oxidative reactions in foods and improve their functional properties. In addition, LABs' role as probiotics is known for their promising effects on gut health, immune system modulation, cholesterol control, and general wellbeing. Despite these advantages, several challenges hinder the effective production and use of probiotic LABs, such as maintaining strain viability during storage and transport as well as ensuring their efficacy in the gastrointestinal tract. Our review identifies these critical barriers and suggests avenues for future research.
Collapse
Affiliation(s)
- Lamia Ayed
- Laboratory of Microbial Ecology and Technology (LETMI), LR05ES08, National Institute of Applied Sciences and Technology (INSAT), University of Carthage, BP 676, Tunis 1080, Tunisia;
| | - Sana M’hir
- Laboratory of Microbial Ecology and Technology (LETMI), LR05ES08, National Institute of Applied Sciences and Technology (INSAT), University of Carthage, BP 676, Tunis 1080, Tunisia;
- Department of Animal Biotechnology, Higher Institute of Biotechnology of Beja, University of Jendouba, BP 382, Beja 9000, Tunisia
| | - Domenico Nuzzolese
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (D.N.); (P.F.)
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, 39100 Bolzano, Italy;
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (D.N.); (P.F.)
| |
Collapse
|
8
|
Zhu L, Ying N, Hao L, Fu A, Ding Q, Cao F, Ren D, Han Q, Li S. Probiotic yogurt regulates gut microbiota homeostasis and alleviates hepatic steatosis and liver injury induced by high-fat diet in golden hamsters. Food Sci Nutr 2024; 12:2488-2501. [PMID: 38628190 PMCID: PMC11016441 DOI: 10.1002/fsn3.3930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 04/19/2024] Open
Abstract
This study aimed to investigate the beneficial effects of probiotic yogurt on lipid metabolism and gut microbiota in metabolic-related fatty liver disease (MAFLD) golden hamsters fed on a high-fat diet (HFD). The results demonstrated that probiotic yogurt significantly reversed the adverse effects caused by HFD, such as body and liver weight gain, liver steatosis and damage, sterol deposition, and oxidative stress after 8 weeks of intervention. qRT-PCR analysis showed that golden hamsters fed HFD had upregulated genes related to adipogenesis, increased free fatty acid infiltration, and downregulated genes related to lipolysis and very low-density lipoprotein secretion. Probiotic yogurt supplements significantly inhibited HFD-induced changes in the expression of lipid metabolism-related genes. Furthermore, 16S rRNA gene sequencing of the intestinal content microbiota suggested that probiotic yogurt changed the diversity and composition of the gut microbiota in HFD-fed hamsters. Probiotic yogurt decreased the ratio of the phyla Firmicutes/Bacteroidetes, the relative abundance of the LPS-producing genus Desulfovibrio, and bacteria involved in lipid metabolism, whereas it increased the relative abundance of short-chain fatty acids producing bacteria in HFD-fed hamsters. Predictive functional analysis of the microbial community showed that probiotic yogurt-modified genes involved in LPS biosynthesis and lipid metabolism. In summary, these findings support the possibility that probiotic yogurt significantly improves HFD-induced metabolic disorders through modulating intestinal microflora and lipid metabolism and effectively regulating the occurrence and development of MAFLD. Therefore, probiotic yogurt supplementation may serve as an effective nutrition strategy for the treatment of patients with MAFLD clinically.
Collapse
Affiliation(s)
- Linwensi Zhu
- The First Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
| | - Na Ying
- School of Life ScienceZhejiang Chinese Medical UniversityZhejiangChina
| | - Liuyi Hao
- School of Public HealthZhejiang Chinese Medical UniversityHangzhouChina
| | - Ai Fu
- School of Life ScienceZhejiang Chinese Medical UniversityZhejiangChina
| | - Qinchao Ding
- Institute of Dairy Science, College of Animal ScienceZhejiang UniversityZhejiangChina
| | - Feiwei Cao
- School of Public HealthZhejiang Chinese Medical UniversityHangzhouChina
| | - Daxi Ren
- Institute of Dairy Science, College of Animal ScienceZhejiang UniversityZhejiangChina
| | - Qiang Han
- School of Public HealthZhejiang Chinese Medical UniversityHangzhouChina
- Academy of Chinese Medical ScienceZhejiang Chinese Medical UniversityZhejiangChina
| | - Songtao Li
- School of Public HealthZhejiang Chinese Medical UniversityHangzhouChina
- Academy of Chinese Medical ScienceZhejiang Chinese Medical UniversityZhejiangChina
| |
Collapse
|
9
|
Dalaka E, Stefos GC, Politis I, Theodorou G. Effect of Milk Origin and Seasonality of Yogurt Acid Whey on Antioxidant Activity before and after In Vitro Gastrointestinal Digestion. Antioxidants (Basel) 2023; 12:2130. [PMID: 38136249 PMCID: PMC10740864 DOI: 10.3390/antiox12122130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Yogurt acid whey (YAW) is a by-product of Greek strained yogurt production. The disposal of YAW constitutes an environmental problem, and given the increasing demand of Greek yogurt worldwide, its handling is a challenge. However, whey-derived peptides, resulting from microbial fermentation as well as those resulting from further hydrolysis during the digestion process, have been linked to enhanced biological activities. In this study, the antioxidant capacity of 33 samples of YAW obtained from Greek dairy companies of bovine, ovine or caprine origin was investigated using both cell-free and cell-based assays. The YAW samples, their in vitro digestion products (YAW-Ds) and a fraction of the digests (less than 3 kDa; YAW-D-P3) were assessed using four biochemical assays, namely ORAC, ABTS, FRAP and P-FRAP. Our data revealed a higher antioxidant capacity for digested samples compared with undigested samples, with all four methods. ORAC values after in vitro digestion were higher for the ovine samples compared to their bovine (YAW-D and YAW-D-P3) and caprine (YAW-D-P3) counterparts. Furthermore, the YAW-D-P3 fraction derived from samples collected in the summer months exhibited higher ORAC values when compared to the respective fraction from the winter months' samples. The cellular antioxidant activity of ovine YAW-D-P3 was improved in H2O2-treated HT29 cells compared to the control H2O2-treated cells. However, YAW-D-P3 could not trigger either the pathways involving the transcription factors NF-κB or NFE2L2 or the gene expression of SOD1, CAT and HMOX1 in LPS-challenged THP-1-derived macrophages. These results suggest that YAW, and particularly YAW from ovine origin, could be used as a natural source for its antioxidant potential in human and animal nutrition.
Collapse
Affiliation(s)
| | | | | | - Georgios Theodorou
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (E.D.); (I.P.)
| |
Collapse
|
10
|
Di Trana A, Sabia E, Di Rosa AR, Addis M, Bellati M, Russo V, Dedola AS, Chiofalo V, Claps S, Di Gregorio P, Braghieri A. Caciocavallo Podolico Cheese, a Traditional Agri-Food Product of the Region of Basilicata, Italy: Comparison of the Cheese's Nutritional, Health and Organoleptic Properties at 6 and 12 Months of Ripening, and Its Digital Communication. Foods 2023; 12:4339. [PMID: 38231870 DOI: 10.3390/foods12234339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Traditional agri-food products (TAPs) are closely linked to the peculiarities of the territory of origin and are strategic tools for preserving culture and traditions; nutritional and organoleptic peculiarities also differentiate these products on the market. One such product is Caciocavallo Podolico Lucano (CPL), a stretched curd cheese made exclusively from raw milk from Podolian cows, reared under extensive conditions. The objective of this study was to characterise CPL and evaluate the effects of ripening (6 vs. 12 months) on the quality and organoleptic properties, using the technological "artificial senses" platform, of CPL produced and sold in the region of Basilicata, Italy. Additionally, this study represents the first analysis of cheese-related digital communication and trends online. The study found no significant differences between 6-month- and 12-month-ripened cheese, except for a slight increase in cholesterol levels in the latter. CPL aged for 6 and 12 months is naturally lactose-free, rich in bioactive components, and high in vitamin A and antioxidants and has a low PUFA-n6/n3 ratio. The "artificial sensory profile" was able to discriminate the organoleptic fingerprints of 6-month- and 12-month-ripened cheese. The application of a socio-semiotic methodology enabled us to identify the best drivers to create effective communication for this product. The researchers recommend focusing on creating a certification mark linked to the territory for future protection.
Collapse
Affiliation(s)
- Adriana Di Trana
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| | - Emilio Sabia
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| | - Ambra Rita Di Rosa
- Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | | | - Mara Bellati
- Behavior and Brain Lab IULM, Center of Research on Neuromarketing, IULM University, 20143 Milano, Italy
| | - Vincenzo Russo
- Department of Business, Law, Economics and Consumer Behaviour "Carlo A. Ricciardi", IULM University, 20143 Milano, Italy
| | | | - Vincenzo Chiofalo
- Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | - Salvatore Claps
- CREA Research Centre for Animal Production and Aquaculture, 85051 Bella, Italy
| | - Paola Di Gregorio
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| | - Ada Braghieri
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
11
|
Skaperda Z, Tekos F, Vardakas P, Nechalioti PM, Kourti M, Patouna A, Makri S, Gkasdrogka M, Kouretas D. Development of a Holistic In Vitro Cell-Free Approach to Determine the Redox Bioactivity of Agricultural Products. Int J Mol Sci 2023; 24:16447. [PMID: 38003634 PMCID: PMC10671064 DOI: 10.3390/ijms242216447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, there has been a strong consumer demand for food products that provide nutritional benefits to human health. Therefore, the assessment of the biological activity is considered as an important parameter for the promotion of high-quality food products. Herein, we introduce a novel methodology comprising a complete set of in vitro cell-free screening techniques for the evaluation of the bioactivity of various food products on the basis of their antioxidant capacity. These assays examine the free radical scavenging activities, the reducing properties, and the protective ability against oxidative damage to biomolecules. The adoption of the proposed battery of antioxidant assays is anticipated to contribute to the holistic characterization of the bioactivity of the food product under examination. Consumer motivations and expectations with respect to nutritious food products with bio-functional properties drive the global food market toward food certification. Therefore, the development and application of scientific methodologies that examine the quality characteristics of food products could increase consumers' trust and promote their beneficial properties for human health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; (Z.S.); (F.T.); (P.V.); (M.K.); (A.P.); (S.M.); (M.G.)
| |
Collapse
|
12
|
Sørensen HM, Rochfort KD, Maye S, MacLeod G, Loscher C, Brabazon D, Freeland B. Bioactive Ingredients from Dairy-Based Lactic Acid Bacterial Fermentations for Functional Food Production and Their Health Effects. Nutrients 2023; 15:4754. [PMID: 38004148 PMCID: PMC10675170 DOI: 10.3390/nu15224754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Lactic acid bacteria are traditionally applied in a variety of fermented food products, and they have the ability to produce a wide range of bioactive ingredients during fermentation, including vitamins, bacteriocins, bioactive peptides, and bioactive compounds. The bioactivity and health benefits associated with these ingredients have garnered interest in applications in the functional dairy market and have relevance both as components produced in situ and as functional additives. This review provides a brief description of the regulations regarding the functional food market in the European Union, as well as an overview of some of the functional dairy products currently available in the Irish and European markets. A better understanding of the production of these ingredients excreted by lactic acid bacteria can further drive the development and innovation of the continuously growing functional food market.
Collapse
Affiliation(s)
- Helena Mylise Sørensen
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Keith D. Rochfort
- School of Nursing, Psychotherapy and Community Health, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Susan Maye
- Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, P67 DD36 Mitchelstown, Ireland; (S.M.); (G.M.)
| | - George MacLeod
- Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, P67 DD36 Mitchelstown, Ireland; (S.M.); (G.M.)
| | - Christine Loscher
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
| | - Dermot Brabazon
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Brian Freeland
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, D09 DX63 Dublin, Ireland;
| |
Collapse
|
13
|
Radzki W, Skrzypczak K, Sołowiej B, Jabłońska-Ryś E, Gustaw W. Properties of Yogurts Enriched with Crude Polysaccharides Extracted from Pleurotus ostreatus Cultivated Mushroom. Foods 2023; 12:4033. [PMID: 37959152 PMCID: PMC10648270 DOI: 10.3390/foods12214033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Increasingly, consumers are looking for products with specific nutritional and health-promoting properties. The answer of the producers for this demand is fortified food. The raw material that can be used to enrich food is, among others, mushrooms. Crude water soluble polysaccharides (cWSP) were isolated from fruiting bodies of Pleurotus ostreatus (oyster) mushroom. Chemical analysis showed that they consisted mainly of carbohydrates (~61%), protein (~9%) and phenolics (~0.8%). The isolated cWSP were used to obtain enriched cow milk set yogurts. cWSP were added at the concentration of 0.1%, 0.2%, 0.3%, 0.4% and 0.5%, and milk containing no cWSP was prepared as the control. All of the variants were fermented via applying two commercially available culture starters. The addition of cWSP led to a drop in pH in the case of one starter culture. Also, the decline in total soluble solids (TSS) content was higher where cWSP was used for the enrichment. Texture profile analysis (TPA) revealed that parameters of hardness and gumminess increased along with the concentration of cWSP (reaching values approximately 7-8 times higher, compared to the control). A significant increase in syneresis level (proportional to cWSP concentration and ranging from ~10% to ~50%) was also observed after the fermentation. Fortifying milk with cWSP led to a slight increase in antioxidant capacity in FRAP assay (up to ~12%) and ABTS assay (up to ~23%). The results demonstrate that using cWSP to enrich set-type yogurts is fairly limited.
Collapse
Affiliation(s)
- Wojciech Radzki
- Department of Fruits, Vegetables and Mushrooms Technology, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (K.S.); (E.J.-R.); (W.G.)
| | - Katarzyna Skrzypczak
- Department of Fruits, Vegetables and Mushrooms Technology, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (K.S.); (E.J.-R.); (W.G.)
| | - Bartosz Sołowiej
- Department of Dairy Technology and Functional Foods, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| | - Ewa Jabłońska-Ryś
- Department of Fruits, Vegetables and Mushrooms Technology, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (K.S.); (E.J.-R.); (W.G.)
| | - Waldemar Gustaw
- Department of Fruits, Vegetables and Mushrooms Technology, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (K.S.); (E.J.-R.); (W.G.)
| |
Collapse
|
14
|
Paraskeuas VV, Papadomichelakis G, Brouklogiannis IP, Anagnostopoulos EC, Pappas AC, Simitzis P, Theodorou G, Politis I, Mountzouris KC. Dietary Inclusion Level Effects of Yoghurt Acid Whey Powder on Performance, Digestibility of Nutrients and Meat Quality of Broilers. Animals (Basel) 2023; 13:3096. [PMID: 37835702 PMCID: PMC10571590 DOI: 10.3390/ani13193096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
In recent years, the increasing demand for Greek strained yoghurt produced massive amounts of acid whey, which constitutes a major environmental pollutant. Whether yoghurt acid whey can be included in poultry diets is not known. The purpose of this study was to evaluate the effects of four dietary levels of yoghurt acid whey powder (YAWP) on the growth performance, nutrient digestibility, meat quality traits and oxidative stability. A total of 300 male 1-day-old Ross 308 broilers were assigned into four groups with five replicates of 15 broilers each: control-fed basal diet with no YAWP addition (WO) or basal diet supplemented with YAWP at 25 g/kg of diet (WA), 50 g/kg of diet (WB), or 100 g/kg of diet (WC). At the starter period, body weight and body weight gain were reduced after WB and WC treatments compared to the WO treatment. Breast meat oxidative stability was improved during refrigerated storage for 1 and 3 d in all YAWP treatments compared to control, while the WA treatment showed an improved oxidative stability after 6 and 9 d. The results suggest that YAWP inclusion at 25 g/kg of diet did not impair performance and extended the meat shelf life by reducing lipid oxidation rates.
Collapse
Affiliation(s)
- Vasileios V. Paraskeuas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (V.V.P.); (G.P.); (I.P.B.); (E.C.A.); (A.C.P.)
| | - Georgios Papadomichelakis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (V.V.P.); (G.P.); (I.P.B.); (E.C.A.); (A.C.P.)
| | - Ioannis P. Brouklogiannis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (V.V.P.); (G.P.); (I.P.B.); (E.C.A.); (A.C.P.)
| | - Evangelos C. Anagnostopoulos
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (V.V.P.); (G.P.); (I.P.B.); (E.C.A.); (A.C.P.)
| | - Athanasios C. Pappas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (V.V.P.); (G.P.); (I.P.B.); (E.C.A.); (A.C.P.)
| | - Panagiotis Simitzis
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.S.); (G.T.); (I.P.)
| | - Georgios Theodorou
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.S.); (G.T.); (I.P.)
| | - Ioannis Politis
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.S.); (G.T.); (I.P.)
| | - Konstantinos C. Mountzouris
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (V.V.P.); (G.P.); (I.P.B.); (E.C.A.); (A.C.P.)
| |
Collapse
|
15
|
Busetta G, Garofalo G, Barbera M, Di Trana A, Claps S, Lovallo C, Franciosi E, Gaglio R, Settanni L. Metagenomic, microbiological, chemical and sensory profiling of Caciocavallo Podolico Lucano cheese. Food Res Int 2023; 169:112926. [PMID: 37254352 DOI: 10.1016/j.foodres.2023.112926] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
In this study, Caciocavallo Podolico Lucano (CPL) cheese was deeply characterized for its bacterial community, chemical composition and sensory aspects. The entire cheese making process (from milk collection to ripened cheese) was performed by strictly applying the traditional protocol for CPL production in four dairy factories (A-D) representative of the production area. The vat made of wood represents the main transformation tool for CPL cheese production and the biofilms hosted onto the internal surfaces of all vats analyzed in this study were dominated by lactic acid bacteria. Total mesophilic microorganisms present in bulk milk (4.7-5.0 log CFU/ml) increased consistently after contact with the wooden vat surfaces (5.4-6.4 log CFU/ml). The application of Illumina sequencing technology identified barely 18 taxonomic groups among processed samples; streptococci and lactobacilli constituted the major groups of the wooden vat biofilms [94.74-99.70 % of relative abundance (RA)], while lactobacilli dominated almost entirely (94.19-100 % of total RA) the bacterial community of ripened cheeses. Except coagulase positive staphylococci, undesirable bacteria were undetectable. Among chemical parameters, significant variations were registered for unsaturated, monounsaturated, polyunsaturated fatty acids and antioxidant properties (significantly lower for CPL cheeses produced in factory B). The cheeses from factories A, C and D were characterized by a higher lactic acid and persistence smell attributes than factory B. This work indicated that the strict application of CPL cheese making protocol harmonized the main microbiological, physicochemical and sensory parameters of the final cheeses produced in the four factories investigated.
Collapse
Affiliation(s)
- Gabriele Busetta
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Giuliana Garofalo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Marcella Barbera
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Adriana Di Trana
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali (SAFE), University of Basilicata, Viale dell'Ateneo Lucano, 10, Potenza 85100, Italy
| | - Salvatore Claps
- CREA Research, Centre for Animal Production and Aquaculture, S.S. 7 Via Appia, Bella Muro, PZ 85051, Italy
| | - Carmela Lovallo
- CREA Research, Centre for Animal Production and Aquaculture, S.S. 7 Via Appia, Bella Muro, PZ 85051, Italy
| | - Elena Franciosi
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| |
Collapse
|
16
|
Ali MS, Lee EB, Hsu WH, Suk K, Sayem SAJ, Ullah HMA, Lee SJ, Park SC. Probiotics and Postbiotics as an Alternative to Antibiotics: An Emphasis on Pigs. Pathogens 2023; 12:874. [PMID: 37513721 PMCID: PMC10383198 DOI: 10.3390/pathogens12070874] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Probiotics are being used as feed/food supplements as an alternative to antibiotics. It has been demonstrated that probiotics provide several health benefits, including preventing diarrhea, irritable bowel syndrome, and immunomodulation. Alongside probiotic bacteria-fermented foods, the different structural components, such as lipoteichoic acids, teichoic acids, peptidoglycans, and surface-layer proteins, offer several advantages. Probiotics can produce different antimicrobial components, enzymes, peptides, vitamins, and exopolysaccharides. Besides live probiotics, there has been growing interest in consuming inactivated probiotics in farm animals, including pigs. Several reports have shown that live and killed probiotics can boost immunity, modulate intestinal microbiota, improve feed efficiency and growth performance, and decrease the incidence of diarrhea, positioning them as an interesting strategy as a potential feed supplement for pigs. Therefore, effective selection and approach to the use of probiotics might provide essential features of using probiotics as an important functional feed for pigs. This review aimed to systematically investigate the potential effects of lactic acid bacteria in their live and inactivated forms on pigs.
Collapse
Affiliation(s)
- Md Sekendar Ali
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Walter H Hsu
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50014, USA
| | - Kyoungho Suk
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Syed Al Jawad Sayem
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - H M Arif Ullah
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Seung-Jin Lee
- Development and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
17
|
Busetta G, Gaglio R, Mangione G, Garofalo G, Franciosi E, Gannuscio R, Caccamo M, Todaro M, Di Gerlando R, Settanni L, Licitra G. Effect of commission implementing regulation (EU) 2020/1319 on the bacterial composition of PDO Provola dei Nebrodi cheese. Int J Food Microbiol 2023; 394:110188. [PMID: 36989928 DOI: 10.1016/j.ijfoodmicro.2023.110188] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/07/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
In this study, PDO Provola dei Nebrodi cheese was deeply characterized for its bacterial community and chemical composition. Four dairy factories (A-D) were monitored from milk to ripened cheese. Wooden vat biofilms were dominated by thermophilic rod LAB (4.6-6.5 log CFU/cm2). Bulk milk showed consistent levels of total mesophilic microorganisms (TMM) (5.0-6.0 log CFU/mL) and, after curdling, a general increase was recorded. The identification of the dominant LAB in wooden vat biofilms and ripened cheeses showed that the majority of wooden vat LAB were lactococci and Streptococcus thermophilus, while cheese LAB mainly belonged to Lacticaseibacillus paracasei and Enterococcus. Illumina sequencing identified 22 taxonomic groups; streptococci, lactococci, lactobacilli and other LAB constituted the majority of the total relative abundance % of the wooden vat (69.01-97.58 %) and cheese (81.57-99.87 %) bacterial communities. Regarding chemical composition, the effect of dairy factories was significant only for protein content. Inside cheese color was lighter and yellower than surface. Differences in fatty acids regarded only myristic acid and total amount of monounsaturated fatty acids. The sensory evaluation indicated some differences among cheeses produced in the four dairies regarding color, homogeneity of structure, overall intensity, salty, spicy, and hardness. The integrated approach applied in this study showed that PDO Provola dei Nebrodi cheese characteristics are quite stable among the dairy factories analyzed and this has to be unavoidably imputed to the application of the same cheese making protocol among different dairies.
Collapse
|
18
|
Khakhariya R, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Padhi S, Rai AK, Liu Z, Hati S. Production and Characterization of ACE Inhibitory and Anti-Diabetic Peptides from Buffalo and Camel Milk Fermented with Lactobacillus and Yeast: A Comparative Analysis with In Vitro, In Silico, and Molecular Interaction Study. Foods 2023; 12:2006. [PMID: 37238823 PMCID: PMC10216992 DOI: 10.3390/foods12102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The investigation aimed at assessing a comparative study on the production and characterization of ACE inhibitory, anti-diabetic, and anti-inflammatory activities, along with the production of ACE inhibitory and anti-diabetic peptides through the fermentation of buffalo and camel milk by Limosilactobacillus fermentum (KGL4) and Saccharomyces cerevisiae (WBS2A). The angiotensin-converting enzyme (ACE) inhibitory and anti-diabetic properties were evaluated at particular time intervals (12, 24, 36, and 48 h) at 37 °C, and we discovered maximum activity at 37 °C after 48 h of incubation. The maximum ACE inhibitory, lipase inhibitory activities, alpha-glucosidase inhibitory, and alpha-amylase inhibitory activities were found in the fermented camel milk (77.96 ± 2.61, 73.85 ± 1.19, 85.37 ± 2.15, and 70.86 ± 1.02), as compared to the fermented buffalo milk (FBM) (75.25 ± 1.72, 61.79 ± 2.14, 80.09 ± 0.51, and 67.29 ± 1.75). Proteolytic activity was measured with different inoculation rates (1.5%, 2.0%, and 2.5%) and incubation times (12, 24, 36, and 48 h) to optimize the growth conditions. Maximum proteolysis was found at a 2.5% inoculation rate and at a 48 h incubation period in both fermented buffalo (9.14 ± 0.06) and camel milk (9.10 ± 0.17). SDS-PAGE and 2D gel electrophoresis were conducted for protein purification. The camel and buffalo milk that had not been fermented revealed protein bands ranging from 10 to 100 kDa and 10 to 75 kDa, respectively, whereas all the fermented samples showed bands ranging from 10 to 75 kDa. There were no visible protein bands in the permeates on SDS-PAGE. When fermented buffalo and camel milk were electrophoresed in 2D gel, 15 and 20 protein spots were detected, respectively. The protein spots in the 2D gel electrophoresis ranged in size from 20 to 75 kDa. To distinguish between different peptide fractions, water-soluble extract (WSE) fractions of ultrafiltration (3 and 10 kDa retentate and permeate) of fermented camel and buffalo milk were employed in RP-HPLC (reversed-phase high-performance liquid chromatography). The impact of fermented buffalo and camel milk on inflammation induced by LPS (lipopolysaccharide) was also investigated in the RAW 264.7 cell line. Novel peptide sequences with ACE inhibitory and anti-diabetic properties were also analyzed on the anti-hypertensive database (AHTDB) and bioactive peptide (BIOPEP) database. We found the sequences SCQAQPTTMTR, EMPFPK, TTMPLW, HPHPHLSFMAIPPK, FFNDKIAK, ALPMHIR, IPAVFK, LDQWLCEK, and AVPYPQR from the fermented buffalo milk and the sequences TDVMPQWW, EKTFLLYSCPHR, SSHPYLEQLY, IDSGLYLGSNYITAIR, and FDEFLSQSCAPGSDPR from the fermented camel milk.
Collapse
Affiliation(s)
- Ruchita Khakhariya
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand 388110, Gujarat, India;
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, Tura Campus, North-Eastern Hill University, Chasingre 794002, Meghalaya, India;
| | - Amar A. Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand 388110, Gujarat, India;
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad 121001, Haryana, India;
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Sector 81, SAS Nagar 140306, Punjab, India; (M.B.); (K.K.K.)
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Sector 81, SAS Nagar 140306, Punjab, India; (M.B.); (K.K.K.)
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Sector 81, SAS Nagar 140306, Punjab, India; (M.B.); (K.K.K.)
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong 737102, Sikkim, India; (S.P.); (A.K.R.)
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong 737102, Sikkim, India; (S.P.); (A.K.R.)
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand 388110, Gujarat, India;
- Department of Dairy Microbiology, Kamdhenu University, Anand 388110, Gujarat, India
| |
Collapse
|
19
|
Mkadem W, Indio V, Belguith K, Oussaief O, Savini F, Giacometti F, El Hatmi H, Serraino A, De Cesare A, Boudhrioua N. Influence of Fermentation Container Type on Chemical and Microbiological Parameters of Spontaneously Fermented Cow and Goat Milk. Foods 2023; 12:foods12091836. [PMID: 37174374 PMCID: PMC10177932 DOI: 10.3390/foods12091836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Fermented goat milk is an artisanal beverage with excellent nutritional properties. There are limited data on its physicochemical properties, fatty acids, phenolic acids, and on any insight on microbiota. The aim of this research was to conduct a pilot study to compare these parameters in raw cow and goat milk before and after spontaneous fermentation in a clay pot and glass container at 37 °C for 24 h. Both types of milk and fermentation containers significantly affected the pH, acidity, proximate composition, viscosity, and whiteness index of fermented milks. A total of 17 fatty acids were identified in fermented milks, where palmitic, stearic, and myristic were the main saturated acids, and oleic and linoleic acids were the main unsaturated ones. These profiles were primarily influenced by the type of raw milk used. Three to five phenolic acids were identified in fermented milks, where quinic acid was the major phenolic compound, and salviolinic acid was identified only in raw goat milk. Preliminary metataxonomic sequencing analysis showed that the genera Escherichia spp. and Streptococcus spp. were part of the microbiota of both fermented milks, with the first genus being the most abundant in fermented goat milk, and Streptococcus in cow's milk. Moreover, Escherichia abundance was negatively correlated with the abundance of many genera, including Lactobacillus. Overall, the results of this pilot study showed significant variations between the physicochemical properties, the fatty and phenolic acids, and the microbial communities of goat and cow fermented milk, showing the opportunity to further investigate the tested parameters in fermented goat milk to promote its production.
Collapse
Affiliation(s)
- Wafa Mkadem
- Laboratory of Physiopathology, Alimentation and Biomolecules (LR17ES03), Higher Institute of Biotechnology Sidi Thabet, University of Manouba, BP-66, Ariana 2020, Tunisia
| | - Valentina Indio
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy
| | - Khaoula Belguith
- Laboratory of Physiopathology, Alimentation and Biomolecules (LR17ES03), Higher Institute of Biotechnology Sidi Thabet, University of Manouba, BP-66, Ariana 2020, Tunisia
| | - Olfa Oussaief
- Livestock and Wildlife Laboratory, Arid Lands Institute of Medenine, University of Gabes, Medenine 4119, Tunisia
| | - Federica Savini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy
| | - Halima El Hatmi
- Livestock and Wildlife Laboratory, Arid Lands Institute of Medenine, University of Gabes, Medenine 4119, Tunisia
- Food Department, Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine 4119, Tunisia
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy
| | - Alessandra De Cesare
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy
| | - Nourhene Boudhrioua
- Laboratory of Physiopathology, Alimentation and Biomolecules (LR17ES03), Higher Institute of Biotechnology Sidi Thabet, University of Manouba, BP-66, Ariana 2020, Tunisia
| |
Collapse
|
20
|
Ge S, Zha L, Sobue T, Kitamura T, Iso H, Ishihara J, Kito K, Iwasaki M, Inoue M, Yamaji T, Tsugane S, Sawada N. Associations between dairy intake and mortality due to all-cause and cardiovascular disease: the Japan Public Health Center-based prospective study. Eur J Nutr 2023:10.1007/s00394-023-03116-w. [PMID: 36943492 DOI: 10.1007/s00394-023-03116-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/10/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Some studies have investigated the relation between dairy products and mortality, but with inconsistent results. OBJECTIVE We examined the association between the consumption of dairy products and the risk of all-cause, cancer-related, and cardiovascular disease (CVD)-related mortality. METHODS From the Japan Public Health Center-based Prospective (JPHC) study, 43,117 males and 50,193 females with no history of cancer or CVD finished the food frequency questionnaire (FFQ) and were included in the study. Intake of dairy products was assessed using the FFQ and adjusted for total energy by using the residual method. We used multivariate Cox proportional hazard models to calculate hazard ratios (HRs) and 95% confidence intervals (95% CIs) for mortality risk in males and females. RESULTS 14,211 deaths in males and 9547 deaths in females from all causes were identified during an average follow-up of 19.3 years. For males, total dairy consumption was nonlinearly and significantly associated with lower risk of mortality from all causes [the third quartile, HR = 0.87 (0.83, 0.91), the fourth quartile, HR = 0.89 (0.85, 0.94), P for nonlinearity < 0.001] and CVD [the third quartile, HR = 0.77 (0.70, 0.85), the fourth quartile, HR = 0.78 (0.70, 0.86), P for nonlinearity < 0.001]. Milk and fermented milk intake were inversely associated with all-cause and CVD-related mortality in males. Cheese consumption was inversely associated with CVD-related mortality among males. There was no association between total dairy intake and mortality risk among females. CONCLUSION For Japanese people, consumption of dairy products was associated with a decreased risk of mortality from all-cause and cardiovascular diseases among males.
Collapse
Affiliation(s)
- Sanyu Ge
- Environmental Medicine and Population Science, Department of Social Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ling Zha
- Environmental Medicine and Population Science, Department of Social Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomotaka Sobue
- Environmental Medicine and Population Science, Department of Social Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tetsuhisa Kitamura
- Environmental Medicine and Population Science, Department of Social Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroyasu Iso
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Junko Ishihara
- Department of Food and Life Science, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | - Kumiko Kito
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Motoki Iwasaki
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Chuo-Ku, Tokyo, 104-0045, Japan
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Manami Inoue
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Chuo-Ku, Tokyo, 104-0045, Japan
- Division of Prevention, National Cancer Center Institute for Cancer Control, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Chuo-Ku, Tokyo, 104-0045, Japan
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Chuo-Ku, Tokyo, 104-0045, Japan
| |
Collapse
|
21
|
Fan R, Xie S, Wang S, Yu Z, Sun X, Du Q, Yang Y, Han R. Identification markers of goat milk adulterated with bovine milk based on proteomics and metabolomics. Food Chem X 2023; 17:100601. [PMID: 36974185 PMCID: PMC10039227 DOI: 10.1016/j.fochx.2023.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
This study investigated the differences in proteins and metabolites from goat and bovine milk, and their mixtures, using data-independent-acquisition-based proteomics and metabolomics methods. In the skim milk, relative abundances of secretoglobin family 1D member (SCGB1D), polymeric immunoglobulin receptor, and glycosylation-dependent cell adhesion molecule 1 were increased, with an increase in the amount of 1-100 % bovine milk and served as markers at the 1 % adulteration level. In whey samples, β-lactoglobulin and α-2-HS-glycoprotein could be used to detect adulteration at the 0.1 % adulteration level, and SCGB1D and zinc-alpha-2-glycoprotein at the 1 % level. The metabolites of uric acid and N-formylkynurenine could be used to detect bovine milk at adulteration levels as low as 1 % based on variable importance at a projection value of > 1.0 and P-value of < 0.05. Our findings suggest novel markers of SCGB1D, uric acid, and N-formylkynurenine that can help to facilitate assessments of goat milk authenticity.
Collapse
Affiliation(s)
- Rongbo Fan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Shubin Xie
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Shifeng Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Zhongna Yu
- Haidu College. Qingdao Agricultural University, Laiyang 265200, Shandong, China
| | - Xueheng Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Qijing Du
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
- Corresponding author.
| |
Collapse
|
22
|
Immune System and Epidemics: The Role of African Indigenous Bioactive Substances. Nutrients 2023; 15:nu15020273. [PMID: 36678143 PMCID: PMC9864875 DOI: 10.3390/nu15020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
With over 6 million coronavirus pandemic deaths, the African continent reported the lowest death rate despite having a high disease burden. The African community's resilience to the pandemic has been attributed to climate and weather conditions, herd immunity, repeated exposure to infectious organisms that help stimulate the immune system, and a disproportionately large youth population. In addition, functional foods, herbal remedies, and dietary supplements contain micronutrients and bioactive compounds that can help boost the immune system. This review identified significant traditional fermented foods and herbal remedies available within the African continent with the potential to boost the immune system in epidemics and pandemics. Methodology: Databases, such as PubMed, the Web of Science, and Scopus, were searched using relevant search terms to identify traditional African fermented foods and medicinal plants with immune-boosting or antiviral capabilities. Cereal-based fermented foods, meat-, and fish-based fermented foods, and dairy-based fermented foods containing antioxidants, immunomodulatory effects, probiotics, vitamins, and peptides were identified and discussed. In addition, nine herbal remedies and spices belonging to eight plant families have antioxidant, immunomodulatory, anti-inflammatory, neuroprotective, hepatoprotective, cardioprotective, and antiviral properties. Peptides, flavonoids, alkaloids, sterols, ascorbic acid, minerals, vitamins, and saponins are some of the bioactive compounds in the remedies. Bioactive compounds in food and plants significantly support the immune system and help increase resistance against infectious diseases. The variety of food and medicinal plants found on the African continent could play an essential role in providing community resilience against infectious diseases during epidemics and pandemics. The African continent should investigate nutritional, herbal, and environmental factors that support healthy living and longevity.
Collapse
|
23
|
Lactoferrin alleviates spermatogenesis dysfunction caused by bisphenol A and cadmium via ameliorating disordered autophagy, apoptosis and oxidative stress. Int J Biol Macromol 2022; 222:1048-1062. [DOI: 10.1016/j.ijbiomac.2022.09.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022]
|
24
|
Long J, Wang J, Li Y, Chen S. Gut microbiota in ischemic stroke: Where we stand and challenges ahead. Front Nutr 2022; 9:1008514. [DOI: 10.3389/fnut.2022.1008514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Gut microbiota is increasingly recognized to affect host health and disease, including ischemic stroke (IS). Here, we systematically review the current understanding linking gut microbiota as well as the associated metabolites to the pathogenesis of IS (e.g., oxidative stress, apoptosis, and neuroinflammation). Of relevance, we highlight that the implications of gut microbiota-dependent intervention could be harnessed in orchestrating IS.
Collapse
|
25
|
Yi K, Cui S, Tang M, Wu Y, Xiang Y, Yu Y, Tong X, Jiang Y, Zhao Q, Zhao G. Adherence to DASH Dietary Pattern and Its Association with Incident Hyperuricemia Risk: A Prospective Study in Chinese Community Residents. Nutrients 2022; 14:nu14224853. [PMID: 36432539 PMCID: PMC9692761 DOI: 10.3390/nu14224853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Hyperuricemia represents a great burden on global public health, and it is important to provide effective guidance at the level of dietary patterns. We evaluated the association between the Dietary Approaches to Stop Hypertension (DASH) diet and the risk of hyperuricemia in a large-scale, community-based cohort in East China. In total, 45,853 participants that did not have either hyperuricemia nor gout were included and assigned a DASH dietary score based on their baseline dietary intake. They were then divided into five quintiles (Q1−Q5) according to their score, followed by cross-linkages with local health information systems and in-person surveys. Cox proportional hazards models were adopted to calculate hazard ratio (HR) and 95% confidence intervals (CIs). During a median follow-up of 4.54 years, 2079 newly diagnosed hyperuricemia cases were documented. Compared to the DASH Q1 group, the risk of incident hyperuricemia for the Q5 group was significantly reduced by 16% (HR: 0.84; 95% CIs: 0.72−0.97) in the adjusted model. The associations of DASH diet with hyperuricemia appeared stronger (P for interaction <0.001) among participants with 3−4 cardiometabolic diseases at baseline, compared with their counterparts. Our results suggest that the DASH diet could be taken into account in the recognition of risk population and the prevention of hyperuricemia.
Collapse
Affiliation(s)
- Kangqi Yi
- Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Shuheng Cui
- Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Minhua Tang
- Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yiling Wu
- Songjiang District Center for Disease Prevention and Control, Shanghai 201600, China
| | - Yu Xiang
- Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuting Yu
- Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xin Tong
- Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yonggen Jiang
- Songjiang District Center for Disease Prevention and Control, Shanghai 201600, China
| | - Qi Zhao
- Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Genming Zhao
- Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
- Correspondence: ; Tel.: +86-21-5423-7334
| |
Collapse
|
26
|
Chen Y, Lin Q, Wang J, Mu J, Liang Y. Proteins, polysaccharides and their derivatives as macromolecular antioxidant supplements: A review of in vitro screening methods and strategies. Int J Biol Macromol 2022; 224:958-971. [DOI: 10.1016/j.ijbiomac.2022.10.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
27
|
Bryukhanov AL, Klimko AI, Netrusov AI. Antioxidant Properties of Lactic Acid Bacteria. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722601439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Kishimoto-Urata M, Urata S, Fujimoto C, Yamasoba T. Role of Oxidative Stress and Antioxidants in Acquired Inner Ear Disorders. Antioxidants (Basel) 2022; 11:1469. [PMID: 36009187 PMCID: PMC9405327 DOI: 10.3390/antiox11081469] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Oxygen metabolism in the mitochondria is essential for biological activity, and reactive oxygen species (ROS) are produced simultaneously in the cell. Once an imbalance between ROS production and degradation (oxidative stress) occurs, cells are damaged. Sensory organs, especially those for hearing, are constantly exposed during daily life. Therefore, almost all mammalian species are liable to hearing loss depending on their environment. In the auditory pathway, hair cells, spiral ganglion cells, and the stria vascularis, where mitochondria are abundant, are the main targets of ROS. Excessive generation of ROS in auditory sensory organs is widely known to cause sensorineural hearing loss, and mitochondria-targeted antioxidants are candidates for treatment. This review focuses on the relationship between acquired hearing loss and antioxidant use to provide an overview of novel antioxidants, namely medicines, supplemental nutrients, and natural foods, based on clinical, animal, and cultured-cell studies.
Collapse
Affiliation(s)
| | | | | | - Tatsuya Yamasoba
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655, Japan; (M.K.-U.); (S.U.); (C.F.)
| |
Collapse
|
29
|
Hellbach F, Baumeister SE, Wilson R, Wawro N, Dahal C, Freuer D, Hauner H, Peters A, Winkelmann J, Schwettmann L, Rathmann W, Kronenberg F, Koenig W, Meisinger C, Waldenberger M, Linseisen J. Association between Usual Dietary Intake of Food Groups and DNA Methylation and Effect Modification by Metabotype in the KORA FF4 Cohort. Life (Basel) 2022; 12:life12071064. [PMID: 35888152 PMCID: PMC9318948 DOI: 10.3390/life12071064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Associations between diet and DNA methylation may vary among subjects with different metabolic states, which can be captured by clustering populations in metabolically homogenous subgroups, called metabotypes. Our aim was to examine the relationship between habitual consumption of various food groups and DNA methylation as well as to test for effect modification by metabotype. A cross-sectional analysis of participants (median age 58 years) of the population-based prospective KORA FF4 study, habitual dietary intake was modeled based on repeated 24-h diet recalls and a food frequency questionnaire. DNA methylation was measured using the Infinium MethylationEPIC BeadChip providing data on >850,000 sites in this epigenome-wide association study (EWAS). Three metabotype clusters were identified using four standard clinical parameters and BMI. Regression models were used to associate diet and DNA methylation, and to test for effect modification. Few significant signals were identified in the basic analysis while many significant signals were observed in models including food group-metabotype interaction terms. Most findings refer to interactions of food intake with metabotype 3, which is the metabotype with the most unfavorable metabolic profile. This research highlights the importance of the metabolic characteristics of subjects when identifying associations between diet and white blood cell DNA methylation in EWAS.
Collapse
Affiliation(s)
- Fabian Hellbach
- Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilian University of Munich, Marchioninistr. 15, 81377 Munich, Germany; (N.W.); (J.L.)
- Epidemiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany; (C.D.); (D.F.); (C.M.)
- Correspondence: ; Tel.: +49-821-598-6473
| | - Sebastian-Edgar Baumeister
- Institute of Health Services Research in Dentistry, Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany;
| | - Rory Wilson
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (R.W.); (A.P.); (M.W.)
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Nina Wawro
- Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilian University of Munich, Marchioninistr. 15, 81377 Munich, Germany; (N.W.); (J.L.)
- Epidemiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany; (C.D.); (D.F.); (C.M.)
| | - Chetana Dahal
- Epidemiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany; (C.D.); (D.F.); (C.M.)
| | - Dennis Freuer
- Epidemiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany; (C.D.); (D.F.); (C.M.)
| | - Hans Hauner
- Else Kröner-Fresenius-Center for Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Georg-Brauchle-Ring 62, 80992 Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (R.W.); (A.P.); (M.W.)
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany;
| | - Juliane Winkelmann
- Institute of Neurogenomic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany;
| | - Lars Schwettmann
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany;
- Department of Economics, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany;
| | - Florian Kronenberg
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstr. 41, 6020 Innsbruck, Austria;
| | - Wolfgang Koenig
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Pettenkoferstr. 8A & 9, 80336 Munich, Germany;
- German Heart Centre Munich, Technical University Munich, Lazarettstr. 36, 80636 Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Helmholtzstr. 22, 89081 Ulm, Germany
| | - Christa Meisinger
- Epidemiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany; (C.D.); (D.F.); (C.M.)
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (R.W.); (A.P.); (M.W.)
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany;
| | - Jakob Linseisen
- Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilian University of Munich, Marchioninistr. 15, 81377 Munich, Germany; (N.W.); (J.L.)
- Epidemiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany; (C.D.); (D.F.); (C.M.)
| |
Collapse
|
30
|
He J, Li W, Deng J, Lin Q, Bai J, Zhang L, Fang Y. An insight into the health beneficial of probiotics dairy products: a critical review. Crit Rev Food Sci Nutr 2022; 63:11290-11309. [PMID: 35730254 DOI: 10.1080/10408398.2022.2090493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Probiotic dairy products satisfy people's pursuit of health, and are widely favored because of their easy absorption, high nutritional value, and various health benefits. However, its effectiveness and safety are still controversial. This proposal aims to analyze the effect of probiotics on the quality characteristics of dairy products, clarify a series of physiological functions of probiotic dairy products and critically evaluate the effectiveness and safety of probiotic dairy products. Also, dairy products containing inactivated microorganisms were compared with probiotic products. The addition of probiotics enables dairy products to obtain unique quality characteristics, and probiotic dairy products have better health-promoting effects. This review will promote the further development of probiotic dairy products, provide directions for the research and development of probiotic-related products, and help guide the general public to choose and purchase probiotic fermentation products.
Collapse
Affiliation(s)
- JinTao He
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| | - QinLu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| | - Jie Bai
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lin Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| |
Collapse
|
31
|
Evaluation of the antioxidant properties and total phenolic content of a dairy product (yogurt) supplemented with Thymus willdenowii essential oil from Algeria. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Roth-Walter F. Iron-Deficiency in Atopic Diseases: Innate Immune Priming by Allergens and Siderophores. FRONTIERS IN ALLERGY 2022; 3:859922. [PMID: 35769558 PMCID: PMC9234869 DOI: 10.3389/falgy.2022.859922] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Although iron is one of the most abundant elements on earth, about a third of the world's population are affected by iron deficiency. Main drivers of iron deficiency are beside the chronic lack of dietary iron, a hampered uptake machinery as a result of immune activation. Macrophages are the principal cells distributing iron in the human body with their iron restriction skewing these cells to a more pro-inflammatory state. Consequently, iron deficiency has a pronounced impact on immune cells, favoring Th2-cell survival, immunoglobulin class switching and primes mast cells for degranulation. Iron deficiency during pregnancy increases the risk of atopic diseases in children, while both children and adults with allergy are more likely to have anemia. In contrast, an improved iron status seems to protect against allergy development. Here, the most important interconnections between iron metabolism and allergies, the effect of iron deprivation on distinct immune cell types, as well as the pathophysiology in atopic diseases are summarized. Although the main focus will be humans, we also compare them with innate defense and iron sequestration strategies of microbes, given, particularly, attention to catechol-siderophores. Similarly, the defense and nutritional strategies in plants with their inducible systemic acquired resistance by salicylic acid, which further leads to synthesis of flavonoids as well as pathogenesis-related proteins, will be elaborated as both are very important for understanding the etiology of allergic diseases. Many allergens, such as lipocalins and the pathogenesis-related proteins, are able to bind iron and either deprive or supply iron to immune cells. Thus, a locally induced iron deficiency will result in immune activation and allergic sensitization. However, the same proteins such as the whey protein beta-lactoglobulin can also transport this precious micronutrient to the host immune cells (holoBLG) and hinder their activation, promoting tolerance and protecting against allergy. Since 2019, several clinical trials have also been conducted in allergic subjects using holoBLG as a food for special medical purposes, leading to a reduction in the allergic symptom burden. Supplementation with nutrient-carrying lipocalin proteins can circumvent the mucosal block and nourish selectively immune cells, therefore representing a new dietary and causative approach to compensate for functional iron deficiency in allergy sufferers.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Franziska Roth-Walter ;
| |
Collapse
|
33
|
Andrewes P. Modifications can make antioxidant assays more informative but not necessarily more correct: an illustration in heat-treated milk. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Effect of Lacticaseibacillus rhamnosus Yoba Fermentation on Physicochemical Properties, Amino Acids, and Antioxidant Activity of Cowpea-Peanut Milk. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3192061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The global renewed interest in plant-based milk and products is increasing amongst health-conscious consumers. There is increased utilisation of generic probiotics in the processing of legume milk as alternatives to dairy milk are scarce in Africa. This study evaluated the probiotic potential, physicochemical, and sensory properties of novel fermented cowpea-peanut milk with Lacticaseibacillus rhamnosus Yoba. A 3 × 1 factorial design as ratio of cowpea-peanut milk (1 : 1, 2 : 1, 3 : 1v/v) and the application of 2% w/v L. rhamnosus Yoba obtained from Yoba for Life Foundation, Netherlands, was used. The chemical and mineral contents of the fermented cowpea-peanut milk was analysed using Association of Official Analytical Chemists (AOAC) methods. Quality parameters such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging rate, total antioxidant activity, antinutrient, and amino acids content were determined. The fermented cowpea-peanut milk samples had 7.7–8.1 log CFU/mL viable L. rhamnosus Yoba cells after fermentation. Nutrient content range was given in g/100 g: carbohydrate 5.18–6.05, crude fat 3.3–3.5, crude protein 5.6–7.1, ash 1.04–1.26, crude fibre 0.72–1.18, and total reducing sugars 1.80–2.20. Lysine, leucine, and methionine content was 6.30–7.31, 6.60–8.75, and 1.7–1.86 g/100 g, respectively. Phytic acid and trypsin inhibitor content range was 0.3–0.34 mg/100 g and 0.86–1.12 TIU/mg, respectively. Iron and potassium content (mg/100 g) was 0.48–0.58 and 202–243 with pH 4.1–4.2. DPPH free radical scavenging, and total antioxidant rate was 56–59% and 49–54%, respectively. Physicochemical parameters were significantly different (
< 0.05). The fermented cowpea-peanut milk had an acceptance rating of 78%. The successful application and consumer acceptability of the fermented cowpea-peanut milk has the potential to increase the utilisation of these legumes and enhance their market value.
Collapse
|
35
|
Turmeric-Fortified Cow and Soya Milk: Golden Milk as a Street Food to Support Consumer Health. Foods 2022; 11:foods11040558. [PMID: 35206034 PMCID: PMC8871262 DOI: 10.3390/foods11040558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
We studied plant-based milk from soya beans as a means to release and convey the bound antioxidants in turmeric to benefit consumer health. This was compared to cow milk as a carrier because soya milk consumption as an alternative to cow milk is increasing globally. Hence, turmeric paste was added to milk to investigate the release of turmeric antioxidants when changing the matrix (cow vs. soy), the amount of turmeric paste (0%, 2%, and 6%), and the effect of heating (with and without). Proximate, physicochemical, and mineral analysis were carried out for all samples. The total phenol content (TPC) and total antioxidant activity were measured using Folin–Ciocalteu and Quencher methods. Protein ranged from 2.0% to 4.0%, and minerals ranged from 17.8 to 85.1, 0.37 to 0.53, and 0.29 to 0.30 mg/100 mL for calcium, iron, and zinc, respectively. TPC ranged from 0.01 to 0.147 GAE (g/kg) and antioxidant activity from 7.5 to 17.7 TEAC (mmol Trolox/kg sample). Overall, turmeric added nutritional and chemical value to all the samples with and without heat treatment. However, turmeric-fortified soya milk samples showed the highest protein, iron, zinc, TPC, and antioxidant activity. This study identified a cheap, additional nutrient source for developing-countries’ malnourished populations by utilizing soya bean milk to produce golden milk.
Collapse
|
36
|
Stobiecka M, Król J, Brodziak A. Antioxidant Activity of Milk and Dairy Products. Animals (Basel) 2022; 12:245. [PMID: 35158569 PMCID: PMC8833589 DOI: 10.3390/ani12030245] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/16/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of the study was to present a review of literature data on the antioxidant potential of raw milk and dairy products (milk, fermented products, and cheese) and the possibility to modify its level at the milk production and processing stage. Based on the available reports, it can be concluded that the consumption of products that are a rich source of bioactive components improves the antioxidant status of the organism and reduces the risk of development of many civilization diseases. Milk and dairy products are undoubtedly rich sources of antioxidant compounds. Various methods, in particular, ABTS, FRAP, and DPPH assays, are used for the measurement of the overall antioxidant activity of milk and dairy products. Research indicates differences in the total antioxidant capacity of milk between animal species, which result from the differences in the chemical compositions of their milk. The content of antioxidant components in milk and the antioxidant potential can be modified through animal nutrition (e.g., supplementation of animal diets with various natural additives (herbal mixtures, waste from fruit and vegetable processing)). The antioxidant potential of dairy products is associated with the quality of the raw material as well as the bacterial cultures and natural plant additives used. Antioxidant peptides released during milk fermentation increase the antioxidant capacity of dairy products, and the use of probiotic strains contributes its enhancement. Investigations have shown that the antioxidant activity of dairy products can be enhanced by the addition of plant raw materials or their extracts in the production process. Natural plant additives should therefore be widely used in animal nutrition or as functional additives to dairy products.
Collapse
Affiliation(s)
| | - Jolanta Król
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (M.S.); (A.B.)
| | | |
Collapse
|
37
|
Di Trana A, Di Rosa AR, Addis M, Fiori M, Di Grigoli A, Morittu VM, Spina AA, Claps S, Chiofalo V, Licitra G, Todaro M. The Quality of Five Natural, Historical Italian Cheeses Produced in Different Months: Gross Composition, Fat-Soluble Vitamins, Fatty Acids, Total Phenols, Antioxidant Capacity, and Health Index. Animals (Basel) 2022; 12:ani12020199. [PMID: 35049821 PMCID: PMC8772999 DOI: 10.3390/ani12020199] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary For the purposes of raising awareness of five historical cheeses of Southern Italy that are less known by consumers, and of restoring dignity to the breeders and producers of these cheeses, we studied their quality in terms of chemical composition, monounsaturated fatty acid (MUFA), polyunsaturated fatty acid (PUFA), conjugated linoleic acid (CLA), PUFA-ω6, PUFA-ω3, α-tocopherol, retinol, cholesterol, polyphenol content (TPC), total antioxidant capacity (FRAP and TEAC), and health index (GHIC). Two stretched-curd bovine cheeses, Caciocavallo Palermitano (CP) and Casizolu del Montiferru (CdM), two ovine cheeses, Vastedda della Valle del Belìce (VVB) and Pecorino Siciliano (PS), and one caprine cheese, Caprino Nicastrese (CN), were evaluated. These cheeses are produced in different months, with raw milk from animals reared in an extensive feeding system. In April, the CP cheese showed high values for CLA, TPC, and GHIC, while the CN cheese exhibited high PUFA, PUFA-ω6, PUFA-ω3, TEAC, and GHIC. In May, the CdM cheese exhibited high content of fat, saturated fatty acids, PUFA-ω3, α-tocopherol, TEAC, and GHIC, while the PS cheese showed high values of protein, CLA, PUFA, PUFA-ω3, α-tocopherol, and GHIC. These measured parameters characterize and distinguish each cheese due to links with numerous factors: species, breed, feeding system, pasture biodiversity, climate, production technology, traditional tools, and ripening type. It is highlighted that, in general, the highest nutritional quality, linked to the highest presence of healthy compounds, originates from the pasture of cheese production in the spring. Abstract Five natural historic cheeses of Southern Italy were investigated—Caciocavallo Palermitano (CP), Casizolu del Montiferru (CdM), Vastedda della Valle del Belìce (VVB), Pecorino Siciliano (PS), and Caprino Nicastrese (CN)—which are produced with raw milk and with traditional techniques and tools, from autochthonous breeds reared under an extensive system. The effects of the month of production on gross composition, MUFA, PUFA, PUFA-ω6, PUFA-ω3, α-tocopherol, retinol, cholesterol, TPC, TEAC, and GHIC were evaluated. In CP, CLA, TPC, and GHIC were higher in April than in February. CdM showed higher values in terms of fat, saturated fatty acids, PUFA-ω3, α-tocopherol, TEAC, and GHIC in May than in February and September, while low values in terms of protein, moisture, and CLA were found. In VVB, MUFA, PUFA-ω6, and α-tocopherol increased in June compared with April; conversely, protein, FRAP, and TEAC were higher in April. In PS, protein, CLA, PUFA, PUFA-ω3, α-tocopherol, and GHIC increased in May compared with January; on the contrary, moisture, NaCl, and TEAC showed high values in January. CN showed higher values in terms of PUFA, PUFA-ω6, PUFA-ω3, TPC, TEAC, and GHIC in April and June compared with January. It is shown that each cheese is unique and closely linked to the production area. Cheeses produced in the spring months showed a high nutritional quality due to the greatest presence of healthy compounds originating from an extensive feeding system.
Collapse
Affiliation(s)
- Adriana Di Trana
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
- Correspondence: (A.D.T.); (M.A.)
| | - Ambra Rita Di Rosa
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Margherita Addis
- AGRIS Agris Sardegna, Loc. Bonassai, 07040 Olmedo, Italy;
- Correspondence: (A.D.T.); (M.A.)
| | - Myriam Fiori
- AGRIS Agris Sardegna, Loc. Bonassai, 07040 Olmedo, Italy;
| | - Antonino Di Grigoli
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy; (A.D.G.); (M.T.)
| | - Valeria Maria Morittu
- Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.M.M.); (A.A.S.)
| | - Anna Antonella Spina
- Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.M.M.); (A.A.S.)
| | - Salvatore Claps
- CREA Research Centre for Animal Production and Aquaculture, 85051 Bella Muro, Italy;
| | - Vincenzo Chiofalo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Giuseppe Licitra
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy;
| | - Massimo Todaro
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy; (A.D.G.); (M.T.)
| |
Collapse
|
38
|
Physicochemical Characteristics of Yogurt from Sheep Fed with Moringa oleifera Leaf Extracts. Animals (Basel) 2022; 12:ani12010110. [PMID: 35011216 PMCID: PMC8749588 DOI: 10.3390/ani12010110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
This study determined the effect of feeding Moringa oleifera (MO) leaf extracts to lactating ewes on the physicochemical composition of their milk and yogurt during storage (4 °C for 14 days) and the sensory acceptance of the yogurt. Over 45 days, 24 multiparous lactating Pelibuey and Katahdin ewes (two days in lactation) were randomly assigned to four groups: MO-0, basal diet (BD) + 0 mL MO; MO-20, BD + 20 mL MO; MO-40, BD + 40 mL MO; and MO-60, BD + 60 mL MO. In the milk, an increase of 6% in protein, 26% in leucine, 14% in ash, and 1% in the pH (6.71) was observed with MO-60. The density values decreased by 0.3% at a higher dose of MO compared to MO-0, while the nonfat solids (NFS) in the milk were similar between the treatments. In the yogurt, an increase of 5% in protein, 113% in leucine (MO-20), 9% in NFS, and a reduction of 2% in moisture with MO-60 was observed. The acidity reflected an inverse relationship to the pH, as did the moisture and NFS with MO-60. In conclusion, dietary supplementation with MO in lactating ewes did not have negative effects on the chemical composition of their yogurt during storage (14 days). Overall, feeding sheep with 20 mL of MO positively influenced the physicochemical composition of their milk and yogurt during storage.
Collapse
|
39
|
Sharma H, Ozogul F, Bartkiene E, Rocha JM. Impact of lactic acid bacteria and their metabolites on the techno-functional properties and health benefits of fermented dairy products. Crit Rev Food Sci Nutr 2021:1-23. [PMID: 34845955 DOI: 10.1080/10408398.2021.2007844] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
After conversion of lactose to lactic acid, several biochemical changes occur such as enhanced protein digestibility, fatty acids release, and production of bioactive compounds etc. during the fermentation process that brings nutritional and quality improvement in the fermented dairy products (FDP). A diverse range of lactic acid bacteria (LAB) is being utilized for the development of FDP with specific desirable techno-functional attributes. This review contributes to the knowledge of basic pathways and changes during fermentation process and the current research on techniques used for identification and quantification of metabolites. The focus of this article is mainly on the metabolites responsible for maintaining the desired attributes and health benefits of FDP as well as their characterization from raw milk. LAB genera including Lactobacillus, Streptococcus, Leuconostoc, Pediococcus and Lactococcus are involved in the fermentation of milk and milk products. LAB species accrue these benefits and desirable properties of FDP producing the bioactive compounds and metabolites using homo-fermentative and heterofermentative pathways. Generation of metabolites vary with incubation and other processing conditions and are analyzed and quantified using highly advanced and sophisticated instrumentation including nuclear magnetic resonance, mass-spectrometry based techniques. Health benefits of FDP are mainly possible due to the biological roles of such metabolites that also cause technological improvements desired by dairy manufacturers and consumers.
Collapse
Affiliation(s)
- Heena Sharma
- Food Technology Lab, Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Adana, Turkey
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - João Miguel Rocha
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering (DEQ), Faculty of Engineering, University of Porto FEUP), Porto, Portugal
| |
Collapse
|
40
|
Dairy product consumption reduces cardiovascular mortality: results after 8 year follow-up of ELSA-Brasil. Eur J Nutr 2021; 61:859-869. [PMID: 34626206 DOI: 10.1007/s00394-021-02686-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/19/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE To investigate whether the consumption of dairy products and their subgroups is associated with the risk of death from cardiovascular disease (CVD) after 8-year follow-up, and verify if dairy products predict changes in high-sensitivity C-reactive protein (hs-CRP) between two follow-up visits of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). METHODS Prospective study with 6671 participants without CVD at baseline. Consumption in grams/day of total dairy, full-fat and low-fat dairy, fermented dairy, and milk was obtained through a food frequency questionnaire and categorized into sex-specific quartiles. Cox regression and linear mixed-effect models were used to estimate associations of dairy products intake with death from CVD and changes in hs-CRP levels, respectively. RESULTS After adjustments, individuals in the 3rd and 4th quartiles of total dairy consumption presented, respectively, 62% (HR 0.38; 95% CI 0.15-0.99) and 64% (HR 0.36; 95% CI 0.14-0.94) lower hazards of death from CVD compared to the 1st quartile. Also, participants in the 4th quartile of milk consumption had 66% (HR 0.34; 95% CI 0.14-0.86) lower hazard to die from CVD, but only the 2nd quartile of full-fat dairy consumption indicated a lower hazard to die from CVD (HR 0.30; 95% CI 0.10-0.92). No association was observed between low-fat or fermented dairy products and cardiovascular mortality. Consumption of total dairy and their subgroups did not predict changes in hs-CRP levels after 4-year follow-up. CONCLUSION Results suggest beneficial effects of total dairy and milk, but only low-to-moderate full-fat dairy consumption, on the risk of death from CVD. Assuming true effects, public policies should encourage the consumption of dairy products, especially milk.
Collapse
|
41
|
Hazra T, Sindhav R, Sudheendra CVK, Bumbadiya M, Govani R, Ramani V. A comparative study on the effects of boiling and ultrasonication on radical scavenging activity, casein particle size, and whiteness of milk. Vet World 2021; 14:1784-1787. [PMID: 34475698 PMCID: PMC8404115 DOI: 10.14202/vetworld.2021.1784-1787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Different processing treatments affect the functional properties of milk. This study aimed to evaluate the effects of boiling and ultrasonication on radical scavenging activity, micellar casein particle size, and the whiteness of milk. Materials and Methods Milk was subjected to boiling and ultrasonication treatments. Then, the micellar casein size and the whiteness of the milk were evaluated using L-Value- intensity of whiteness and the radical scavenging capacity of the milk was evaluated using 1,1-diphenyl-2-picrylhydrazyl method. Results The radical scavenging activity of the milk was found to be reduced during the different processing treatments, but this decrease was non-significant for the ultrasonication treatment (p>0.05). However, a significant reduction in radical scavenging activity (p<0.05) was observed for the boiled milk. Micellar casein size reduction was observed after both treatments, and boiling had a significant effect (p<0.05) on the micellar casein particle size. We found that the whiteness of skim milk was significantly decreased after boiling treatment, but was not significantly decreased after ultrasonication. Ultrasonication had a non-significant effect on the whiteness of ultrasonicated milk which was observed. Conclusion Ultrasonicated milk had a very non-significant effect on the antioxidant activity (radical scavenging activity) of milk, whereas the effect of boiling was significant. Ultrasonication treatment increases the shelf-life of milk while retaining its bioactive properties.
Collapse
Affiliation(s)
- Tanmay Hazra
- Department of Dairy Chemistry, College of Dairy Science, Kamdhenu University, Amreli, Gujarat, India
| | - Rohit Sindhav
- Department of Dairy Technology, College of Dairy Science, Kamdhenu University, Amreli, Gujarat, India
| | - Ch V K Sudheendra
- Department of Dairy Microbiology, College of Dairy Science, Kamdhenu University, Amreli, Gujarat, India
| | - Mitul Bumbadiya
- Department of Dairy Chemistry, College of Dairy Science, Kamdhenu University, Amreli, Gujarat, India
| | - Radhika Govani
- Department of Dairy Business Management, College of Dairy Science, Kamdhenu University, Amreli, Gujarat, India
| | - Vimal Ramani
- Department of Dairy Microbiology, College of Dairy Science, Kamdhenu University, Amreli, Gujarat, India
| |
Collapse
|
42
|
Chen HJ, Dai FJ, Chen CY, Fan SL, Zheng JH, Huang YC, Chau CF, Lin YS, Chen CS. Evaluating the Antioxidants, Whitening and Antiaging Properties of Rice Protein Hydrolysates. Molecules 2021; 26:molecules26123605. [PMID: 34204643 PMCID: PMC8231118 DOI: 10.3390/molecules26123605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Plant-derived protein hydrolysates have potential applications in nutrition. Rice protein hydrolysates (RPHs), an excellent source of proteins, have attracted attention for the development of cosmeceuticals. However, few studies have reported the potential application of RPH in analysis, and this study examined their antioxidant activities and the inhibitory activities of skin aging enzymes. The results indicated that the total phenolic and flavonoid concentrations were 2.06 ± 0.13 mg gallic acid equivalent/g RPHs and 25.96 ± 0.52 µg quercetin equivalent/g RPHs, respectively. RPHs demonstrated dose-dependent activity for scavenging free radicals from 1,1-diphenyl-2-picrylhydrazyl [half-maximal inhibitory concentration (IC50) = 42.58 ± 2.1 mg/g RPHs] and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (IC50 = 2.11 ± 0.88 mg/g RPHs), dose-dependent reduction capacity (6.95 ± 1.40 mg vitamin C equivalent/g RPHs) and oxygen radical absorbance capacity (473 µmol Trolox equivalent/g RPHs). The concentrations of the RPH solution required to achieve 50% inhibition of hyaluronidase and tyrosinase activities were determined to be 8.91 and 107.6 mg/mL, respectively. This study demonstrated that RPHs have antioxidant, antihyaluronidase, and antityrosinase activities for future cosmetic applications.
Collapse
Affiliation(s)
- Hui-Ju Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402204, Taiwan; (H.-J.C.); (C.-F.C.)
- Healthmate Co., Ltd., Changhua City 500016, Taiwan; (F.-J.D.); (S.-L.F.); (Y.-C.H.)
| | - Fan-Jhen Dai
- Healthmate Co., Ltd., Changhua City 500016, Taiwan; (F.-J.D.); (S.-L.F.); (Y.-C.H.)
| | - Cheng-You Chen
- Ph.D. Program in Materials and Chemical Engineering, National United University, Miaoli 360001, Taiwan;
| | - Siao-Ling Fan
- Healthmate Co., Ltd., Changhua City 500016, Taiwan; (F.-J.D.); (S.-L.F.); (Y.-C.H.)
| | - Ji-Hong Zheng
- Department of Chemical Engineering, National United University, Miaoli 360001, Taiwan;
| | - Yu-Chun Huang
- Healthmate Co., Ltd., Changhua City 500016, Taiwan; (F.-J.D.); (S.-L.F.); (Y.-C.H.)
| | - Chi-Fai Chau
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402204, Taiwan; (H.-J.C.); (C.-F.C.)
| | - Yung-Sheng Lin
- Ph.D. Program in Materials and Chemical Engineering, National United University, Miaoli 360001, Taiwan;
- Department of Chemical Engineering, National United University, Miaoli 360001, Taiwan;
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 112304, Taiwan
- Correspondence: (Y.-S.L.); (C.-S.C.)
| | - Chin-Shuh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402204, Taiwan; (H.-J.C.); (C.-F.C.)
- Correspondence: (Y.-S.L.); (C.-S.C.)
| |
Collapse
|
43
|
Leischner C, Egert S, Burkard M, Venturelli S. Potential Protective Protein Components of Cow's Milk against Certain Tumor Entities. Nutrients 2021; 13:1974. [PMID: 34201342 PMCID: PMC8228601 DOI: 10.3390/nu13061974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Milk and dairy products, especially from cow's milk, play a major role in the daily human diet. It is therefore hardly surprising that the subject of milk is being extensively researched and that many effects of individual milk components have been characterized as a result. With the wealth of results available today, the influence of milk on the development of various types of cancer and, in particular, its often protective effects have been shown both in vitro and in vivo and in the evaluation of large-scale cohort and case-control studies. Various caseins, diverse whey proteins such as α-lactalbumin (α-LA), bovine α-lactalbumin made lethal to tumor cells (BAMLET), β-lactoglobulin (β-LG), or bovine serum albumin (BSA), and numerous milk fat components, such as conjugated linoleic acid (CLA), milk fat globule membrane (MFGM), or butyrate, as well as calcium and other protein components such as lactoferrin (Lf), lactoferricin (Lfcin), and casomorphines, show antitumor or cytotoxic effects on cells from different tumor entities. With regard to a balanced and health-promoting diet, milk consumption plays a major role in a global context. This work provides an overview of what is known about the antitumoral properties of proteins derived from cow's milk and their modes of action.
Collapse
Affiliation(s)
- Christian Leischner
- Institute of Nutritional Sciences 140, Nutritional Biochemistry 140c, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany;
| | - Sarah Egert
- Institute of Nutritional Medicine, Nutritional Science/Dietetics 180c, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany;
| | - Markus Burkard
- Institute of Nutritional Sciences 140, Nutritional Biochemistry 140c, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany;
| | - Sascha Venturelli
- Institute of Nutritional Sciences 140, Nutritional Biochemistry 140c, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany;
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University Hospital Tuebingen, Wilhelmstr. 56, 72074 Tuebingen, Germany
| |
Collapse
|
44
|
Long-term consumption of non-fermented and fermented dairy products and risk of breast cancer by estrogen receptor status – Population-based prospective cohort study. Clin Nutr 2021; 40:1966-1973. [DOI: 10.1016/j.clnu.2020.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/23/2022]
|
45
|
Petrova P, Ivanov I, Tsigoriyna L, Valcheva N, Vasileva E, Parvanova-Mancheva T, Arsov A, Petrov K. Traditional Bulgarian Dairy Products: Ethnic Foods with Health Benefits. Microorganisms 2021; 9:microorganisms9030480. [PMID: 33668910 PMCID: PMC7996614 DOI: 10.3390/microorganisms9030480] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
The reported health effects of fermented dairy foods, which are traditionally manufactured in Bulgaria, are connected with their microbial biodiversity. The screening and development of probiotic starters for dairy products with unique properties are based exclusively on the isolation and characterization of lactic acid bacterial (LAB) strains. This study aims to systematically describe the LAB microbial content of artisanal products such as Bulgarian-type yoghurt, white brined cheese, kashkaval, koumiss, kefir, katak, and the Rhodope's brano mliako. The original technologies for their preparation preserve the valuable microbial content and improve their nutritional and probiotic qualities. This review emphasises the features of LAB starters and the autochthonous microflora, the biochemistry of dairy food production, and the approaches for achieving the fortification of the foods with prebiotics, bioactive peptides (ACE2-inhibitors, bacteriocins, cyclic peptides with antimicrobial activity), immunomodulatory exopolysaccharides, and other metabolites (indol-3-propionic acid, free amino acids, antioxidants, prebiotics) with reported beneficial effects on human health. The link between the microbial content of dairy foods and the healthy human microbiome is highlighted.
Collapse
Affiliation(s)
- Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.I.); (A.A.)
- Correspondence: (P.P.); (K.P.)
| | - Ivan Ivanov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.I.); (A.A.)
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (N.V.); (E.V.); (T.P.-M.)
| | - Nadezhda Valcheva
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (N.V.); (E.V.); (T.P.-M.)
| | - Evgenia Vasileva
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (N.V.); (E.V.); (T.P.-M.)
| | - Tsvetomila Parvanova-Mancheva
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (N.V.); (E.V.); (T.P.-M.)
| | - Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.I.); (A.A.)
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (N.V.); (E.V.); (T.P.-M.)
- Correspondence: (P.P.); (K.P.)
| |
Collapse
|
46
|
Song Y, Fu Y, Huang S, Liao L, Wu Q, Wang Y, Ge F, Fang B. Identification and antioxidant activity of bovine bone collagen-derived novel peptides prepared by recombinant collagenase from Bacillus cereus. Food Chem 2021; 349:129143. [PMID: 33581432 DOI: 10.1016/j.foodchem.2021.129143] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/05/2021] [Accepted: 01/16/2021] [Indexed: 11/29/2022]
Abstract
Millions of tons of collagen-rich bovine bone are produced as byproducts of the consumption of beef. Hydrolyzing bovine bone collagen (BBC) is an effective measure for both increasing its added value and protecting the environment. In this study, a kind of recombinant bacterial collagenase mining from Bacillus cereus was successfully performed and applied to hydrolyze BBC to collagen-soluble peptides (CPP). Response surface methodology (RSM) was applied to optimize the processing conditions of antioxidant CPP, attaining a distinguished ABTS free radical scavenging activity of 99.21 ± 0.35% while keeping DPPH free radical scavenging activity and reducing power at high levels under the optimal condition. Furthermore, we identified five new antioxidant peptides by LC-MS/MS with typical collagen repeated Gly-Xaa-Yaa sequence units within the CPP. These results suggest that our recombinant collagenase is a powerful tool for degrading collagen and the CPP are promising candidates for antioxidant and related functional food applications.
Collapse
Affiliation(s)
- Yihang Song
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yousi Fu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shiyang Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Langxing Liao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Qian Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yali Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fuchun Ge
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Baishan Fang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, Fujian 361005, China; The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
47
|
Impact of pregelatinized composite flour on nutritional and functional properties of gluten-free cereal-based cake premixes. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Li C, Si J, Tan F, Park KY, Zhao X. Lactobacillus plantarum KSFY06 Prevents Inflammatory Response and Oxidative Stress in Acute Liver Injury Induced by D-Gal/LPS in Mice. Drug Des Devel Ther 2021; 15:37-50. [PMID: 33442235 PMCID: PMC7797359 DOI: 10.2147/dddt.s286104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/24/2020] [Indexed: 01/04/2023] Open
Abstract
AIM The purpose of this study is to investigate the preventive effect of Lactobacillus plantarum KSFY06 (LP-KSFY06) on D-galactose/lipopolysaccharide (D-Gal/LPS)-induced acute liver injury (ALI) in mice. METHODS We evaluated the antioxidant capacity of LP-KSFY06 in vitro, detailed the effects of LP-KSFY06 on the organ index, liver function index, biochemical index, cytokines, and related genes, and noted the accompanying pathological changes. RESULTS The results clearly showed that LP-KSFY06 can remove 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline -6-sulphonic acid) diammonium salt (ABTS) free radicals in vitro. The analysis of the organ index and pathology demonstrated that LP-KSFY06 significantly prevented ALI. Biochemical and molecular biological analysis showed that LP-KSFY06 prevented a decrease in the antioxidant-related levels of superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GSH-Px), catalase (CAT), and total antioxidant capacity (T-AOC), and also prevented an increase in aspartate aminotransaminase (AST), alanine aminotransaminase (ALT), malondialdehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) levels. LP-KSFY06 upregulated the anti-inflammatory factor interleukin (IL)-10 and downregulated the pro-inflammatory factors IL-6, IL-1β, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). These oxidative and inflammatory indicators were consistent with the results of gene detections. Furthermore, we determined that LP-KSFY06 downregulated Keap1, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), IL-18, and mitogen-activated protein kinase 14 (MAPK14 or p38), upregulated Nrf2, heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase [quinone] 1 (NQO1), B-cell inhibitor-α (IκB-α), and thioredoxin (Trx) mRNA expression. These may be related to the regulation of the Kelch-like ECH-associated protein-1 (Keap1)-nuclear factor-erythroid-2-related factor (Nrf2)/antioxidant response element (ARE) and NLRP3/NF-κB pathways. CONCLUSION LP-KSFY06 is an effective multifunctional Lactobacillus with strong anti-oxidant and anti-inflammatory ability that can prevent D-gal/LPS-induced ALI in mice and assist in maintaining health.
Collapse
Affiliation(s)
- Chong Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
| | - Jun Si
- Pre-Hospital Emergency Department, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing400014, People’s Republic of China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, Valenzuela838, Philippines
| | - Kun-Young Park
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
| |
Collapse
|
49
|
Lamothe S, Guérette C, Britten M. Nutrient release and oxidative stability during in vitro digestion of linseed oil emulsions produced from cow milk, soy drink, and green tea extract. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
50
|
Lamothe S, Jolibois É, Britten M. Effect of emulsifiers on linseed oil emulsion structure, lipolysis and oxidation during in vitro digestion. Food Funct 2020; 11:10126-10136. [PMID: 33150352 DOI: 10.1039/d0fo02072a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Health benefits have been associated with the consumption of omega-3 polyunsaturated fatty acids (PUFA). Linseed oil is rich in long chain omega-3 PUFA, but can generate toxic compounds due to its high susceptibility to oxidation. The nature of the emulsifier can affect both lipolysis and oxidation during digestion since these phenomena occur at the oil-water interface. The objective of this study was to compare the effect of low-molecular weight surfactants (cetyltrimethylammonium bromide (CTAB), Citrem), protein (sodium caseinate, fish gelatin) and polysaccharides (gum arabic, modified starch) on the structure of linseed oil emulsions, lipolysis and formation of reactive oxidation species during in vitro digestion. The emulsion stabilized with Citrem underwent extensive coalescence in the gastric phase, which strongly decreased the extent of lipid digestion and reduced the formation of oxidation markers relative to other emulsions. Emulsions stabilized by proteins and modified starch showed aggregation with partial coalescence in the gastric phase, but protein-stabilized emulsions showed better resistance to oxidation. This study shows that emulsifier properties affect the susceptibility of the emulsion to aggregation and coalescence in the gastrointestinal environment, and strongly influence the extent of lipid digestion and the formation of reactive oxidation products. These findings point out the importance of the choice of the emulsifier to control the lipid digestibility and the protection of sensible lipids thus promoting optimal nutritional properties in omega-3-enriched foods.
Collapse
Affiliation(s)
- Sophie Lamothe
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec J2S 8E3, Canada.
| | | | | |
Collapse
|