1
|
Chen Y, Li Q, Li X, Liu H, Li P, Hai R, Guo Y, Wang S, Wang K, Du C. Amylin regulates testosterone levels via steroidogenesis-related enzymes in the central nervous system of male mice. Neuropeptides 2022; 96:102288. [PMID: 36279616 DOI: 10.1016/j.npep.2022.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Amylin is a peripheral satiation signal polypeptide co-secreted with insulin by pancreatic β-cells in response to nutrient ingestion. Amylin participates in the eating-inhibitory effect and regulates energy metabolism by acting on the central nervous system (CNS). However, the role of amylin in regulating the biosynthesis of steroid hormones, such as testosterone, through the hypothalamic-pituitary-gonadal axis (HPG) remains unexplored. However, only limited evidence is available on the involvement of amylin in steroid synthesis, we hypothesize that amylin regulates testosterone levels via steroidogenesis-related enzymes in the CNS. In this study, we elucidated the effect of intraperitoneal injection of amylin on the protein expression of steroidogenesis-related enzymes, including 3β-hydroxysteroid dehydrogenase (3β-HSD), cytochrome P450 17A1 (CYP17A1), and steroidogenic acute regulatory protein (StAR), and phospho-extracellular signal-regulated kinase (pERK). Additionally, the effect of amylin on testosterone levels in male mice was examined. Our results suggested that 3β-HSD and CYP17A1 neurons were widely expressed in the CNS of male mice, whereas StAR neurons were mainly expressed in the zona incerta (ZI) and locus coeruleus (LC) regions. Intraperitoneal injection of amylin significantly reduced (p < 0.01) the expression of 3β-HSD, CYP17A1, and StAR in ZI and other areas near the third ventricle (3 V) but increased (p < 0.01) pERK expression, brain testosterone levels, serum FSH, serum LH, and decreased (p < 0.01) serum testosterone levels in mice. In conclusion, amylin regulates testosterone levels via steroidogenesis-related enzymes in the central nervous system of male mice.
Collapse
Affiliation(s)
- Yujie Chen
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China
| | - Qiang Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaojing Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Haodong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Penghui Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rihan Hai
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China
| | - Yongqing Guo
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China
| | - Siwei Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050000, China; Key Laboratory of Crop Cultivation Physiology and Green Production in Hebei Province, Shijiazhuang 050000, China
| | - Kun Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050000, China; Key Laboratory of Crop Cultivation Physiology and Green Production in Hebei Province, Shijiazhuang 050000, China
| | - Chenguang Du
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
2
|
Abdusalamova AI, Bettikher OA, Rudenko KA, Belyaeva OA, Neimark AE, Zazerskaya IE. Adipokinesand Ghrelin Rolein Regulation of Ovarian Function in Obesity. OBESITY AND METABOLISM 2022. [DOI: 10.14341/omet12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There is a great worldwide trend in the incidence of obesity, which is increasing with each passing year among all populations, including women of reproductive age. Given the impressive list of diseases associated with obesity, as well as the negative inverse correlation of the severity of obesity with fertility, this problem is global not only in the social sphere, but it also becomes demographically significant.Along with other pathogenetic mechanisms leading to persistent anovulation, an imbalance in adipokine production by adipose tissue can also serve as one of the important links in the development of reproductive dysfunction. Despite apparent interest in this topic, a large number of previously discovered adipokines are still not studied. Among adipokines, the effects of adiponectin and leptin on reproductive function are best known. Alterations in adiponectin and leptin levels can affect hypothalamic-pituitary-gonadal signaling, folliculogenesis, oogenesis and steroidogenesis. In addition, leptin is involved in the initiation of puberty, regulation of the menstrual cycle, and changes the balance between proliferation and apoptosis in ovarian cells. The leading causes of reduced fertility, infertility, and IVF failure in obese patients are mechanisms that promote the formation of chronic anovulation, delay the maturation of oocytes, reduce their quality, and/or lead to changes in endometrial susceptibility. These effects can be caused by an imbalance in the concentrations of leptin and adiponectin (leptin excess and adiponectin deficiency), lead to endometrial dysfunction, disruption of implantation and early embryogenesis. These changes, in turn, can affect just as the likelihood of spontaneous conception, so the effectiveness of assisted reproductive technologies and subsequent gestation.Thus, the study of potential pathogenetic pathways of fertility regulation in obesity, one of which is the subject of this review, is an important area for further study.
Collapse
Affiliation(s)
| | - O. A. Bettikher
- Almazov National Medical Research Centre;
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
| | | | | | | | - I. E. Zazerskaya
- Almazov National Medical Research Centre;
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
| |
Collapse
|
3
|
Kim M, Hwang SU, Yoon JD, Lee J, Kim E, Cai L, Choi H, Oh D, Lee G, Hyun SH. Physiological and Functional Roles of Neurotrophin-4 During In Vitro Maturation of Porcine Cumulus–Oocyte Complexes. Front Cell Dev Biol 2022; 10:908992. [PMID: 35898394 PMCID: PMC9310091 DOI: 10.3389/fcell.2022.908992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Neurotrophin-4 (NT-4), a granulosa cell-derived factor and a member of the neurotrophin family, is known to promote follicular development and oocyte maturation in mammals. However, the physiological and functional roles of NT-4 in porcine ovarian development are not yet known. The aim of this study was to investigate the physiological role of NT-4-related signaling in the in vitro maturation (IVM) of porcine cumulus–oocyte complexes (COCs). The NT-4 protein and its receptors were detected in matured porcine COCs via immunofluorescence analysis. NT-4 was shown to promote the maturation of COCs by upregulating NFKB1 transcription via the neurotrophin/p75NTR signaling pathway. Notably, the mRNA expression levels of the oocyte-secreted factors GDF9 and BMP15, sperm–oocyte interaction regulator CD9, and DNA methylase DNMT3A were significantly upregulated in NT-4-treated than in untreated porcine oocytes. Concurrently, there were no significant differences in the levels of total and phosphorylated epidermal growth factor receptor and p38 mitogen-activated protein kinase between NT-4-treated and untreated cumulus cells (CCs); however, the level of phosphorylated ERK1/2 was significantly higher in NT-4-treated CCs. Both total and phosphorylated ERK1/2 levels were significantly higher in NT-4-treated than in untreated oocytes. In addition, NT-4 improved subsequent embryonic development after in vitro fertilization and somatic cell nuclear transfer. Therefore, the physiological and functional roles of NT-4 in porcine ovarian development include the promotion of oocyte maturation, CC expansion, and ERK1/2 phosphorylation in porcine COCs during IVM.
Collapse
Affiliation(s)
- Mirae Kim
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Seon-Ung Hwang
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, United States
| | - Junchul David Yoon
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Joohyeong Lee
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Lian Cai
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
| | - Hyerin Choi
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Dongjin Oh
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Gabsang Lee
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sang-Hwan Hyun
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
- *Correspondence: Sang-Hwan Hyun,
| |
Collapse
|
4
|
The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:11059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059&set/a 934136356+984013925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus-pituitary-gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
|
5
|
Schalla MA, Stengel A. The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:ijms222011059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus–pituitary–gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
Affiliation(s)
- Martha A. Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
6
|
Kurowska P, Mlyczyńska E, Dawid M, Dupont J, Rak A. Role of vaspin in porcine ovary: effect on signaling pathways and steroid synthesis via GRP78 receptor and protein kinase A†. Biol Reprod 2021; 102:1290-1305. [PMID: 32149334 PMCID: PMC7703729 DOI: 10.1093/biolre/ioaa027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/16/2019] [Accepted: 02/27/2020] [Indexed: 02/01/2023] Open
Abstract
Vaspin, visceral-adipose-tissue-derived serine protease inhibitor, is involved in the development of obesity, insulin resistance, inflammation, and energy metabolism. Our previous study showed vaspin expression and its regulation in the ovary; however, the role of this adipokine in ovarian cells has never been studied. Here, we studied the in vitro effect of vaspin on various kinase-signaling pathways: mitogen-activated kinase (MAP3/1), serine/threonine kinase (AKT), signal transducer and activator of transcription 3 (STAT3) protein kinase AMP (PRKAA1), protein kinase A (PKA), and on expression of nuclear factor kappa B (NFKB2) as well as on steroid synthesis by porcine ovarian cells. By using western blot, we found that vaspin (1 ng/ml), in a time-dependent manner, increased phosphorylation of MAP3/1, AKT, STAT3, PRKAA1, and PKA, while it decreased the expression of NFKB2. We observed that vaspin, in a dose-dependent manner, increased the basal steroid hormone secretion (progesterone and estradiol), mRNA and protein expression of steroid enzymes using real-time PCR and western blot, respectively, and the mRNA of gonadotropins (FSHR, LHCGR) and steroids (PGR, ESR2) receptors. The stimulatory effect of vaspin on basal steroidogenesis was reversed when ovarian cells were cultured in the presence of a PKA pharmacological inhibitor (KT5720) and when GRP78 receptor was knocked down (siRNA). However, in the presence of insulin-like growth factor type 1 and gonadotropins, vaspin reduced steroidogenesis. Thus, vaspin, by activation of various signaling pathways and stimulation of basal steroid production via GRP78 receptor and PKA, could be a new regulator of porcine ovarian function.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Monika Dawid
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Joelle Dupont
- Department of Animal Physiology and Livestock Systems, French National Institute for Agricultural Research-INRA, Nouzilly, France
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
7
|
Carranza-Martín AC, Nikoloff N, Anchordoquy JP, Anchordoquy JM, Relling AE, Furnus CC. Ghrelin antagonist D-Lys3-GHRP-6 counteract ghrelin effects in bovine cumulus-oocytes complexes matured in vitro. Reprod Domest Anim 2021; 56:1235-1242. [PMID: 34173284 DOI: 10.1111/rda.13982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022]
Abstract
Ghrelin is a gut hormone related to energy balance and reproductive functions. The aim of this study was to evaluate the effect of ghrelin antagonist D-Lys3-GHRP-6 (GA) as a potential agent that prevents ghrelin effects during bovine oocyte maturation on progesterone production, cumulus cell (CC) viability, CC DNA damage and embryo development and hatching rates. Ghrelin's potential to induce oxidative stress in cumulus-oocyte complexes (COC) was also evaluated. COCs were cultured for 24 hr in medium without supplementation (C) or supplemented with 60 pM ghrelin (Ghrelin60), Ghrelin60 + 20 pM GA (GA20), Ghrelin60 + 60 pM GA (GA60) or Ghrelin60 + 100 pM GA (GA100) for experiment I. For experiment II, C and Ghrelin60 treatments were used. Differences between C and Ghrelin60 and the linear or quadratic association between GAs on Ghrelin60 were evaluated. Results demonstrated that Ghrelin60 increased progesterone concentration, reduced CC viability, induced CC DNA damage and decreased blastocyst and hatching rate compared with C (p < .05). GA20, GA60 and GA100 had a linear effect on CC genetic damage index (p ≤ .05) and a quadratic effect on CC viability (p < .01). GA20 counteracted the low hatching rate produced by Ghrelin60. However, GAs did not counteract progesterone concentration and blastocyst rate (p ≥ .21). GRH60 did not differ from C in the oxidative status (p ≥ .19). Our study highlights that GA could prevent the negative effects of ghrelin during bovine IVM.
Collapse
Affiliation(s)
- Ana C Carranza-Martín
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Noelia Nikoloff
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - J Patricio Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - J Mateo Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | | | - Cecilia C Furnus
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
8
|
|
9
|
UCH-L1 inhibitor LDN-57444 hampers mouse oocyte maturation by regulating oxidative stress and mitochondrial function and reducing ERK1/2 expression. Biosci Rep 2021; 40:226606. [PMID: 33030206 PMCID: PMC7601359 DOI: 10.1042/bsr20201308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022] Open
Abstract
Oocyte maturation is a prerequisite for successful fertilization and embryo development. Incomplete oocyte maturation can result in infertility. Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) has been found to be implicated in oocyte maturation and embryo development. However, the cellular and molecular mechanisms of UCH-L1 underlying oocyte maturation have not been fully elucidated. In the present study, we observed that the introduction of UCH-L1 inhibitor LDN-57444 suppressed first polar body extrusion during mouse oocyte maturation. The inhibition of UCH-L1 by LDN-57444 led to the notable increase in reactive oxygen species (ROS) level, conspicuous reduction in glutathione (GSH) content and mitochondrial membrane potential (MMP), and blockade of spindle body formation. As a conclusion, UCH-L1 inhibitor LDN-57444 suppressed mouse oocyte maturation by improving oxidative stress, attenuating mitochondrial function, curbing spindle body formation and down-regulating extracellular signal-related kinases (ERK1/2) expression, providing a deep insight into the cellular and molecular basis of UCH-L1 during mouse oocyte maturation.
Collapse
|
10
|
Pan D, Wang K, Cao G, Fan K, Liu H, Li P, Li H, Chenguang D. Inhibitory effect of central ghrelin on steroid synthesis affecting reproductive health in female mice. J Steroid Biochem Mol Biol 2020; 204:105750. [PMID: 32920127 DOI: 10.1016/j.jsbmb.2020.105750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022]
Abstract
Ghrelin is a 28-amino acid peptide hormone that regulates ovarian steroid hormone synthesis; however, there is limited evidence regarding the regulation of this pathway by ghrelin in mice ovary. Thus, we aimed to investigate whether central ghrelin action plays a role in murine reproductive health by inhibiting steroid synthesis. Further, we sought to examine the mechanism of central ghrelin action in ovarian steroid hormone synthesis. After the administration of intracerebroventricular ghrelin (1 nmol), we found reduced serum concentrations of oestradiol and progesterone and reduced secretion of follicle-stimulating hormone and luteinising hormone. Although ghrelin reduced 3β-hydroxysteroid dehydrogenase mRNA and protein levels in the hypothalamus, it did not affect the expression of steroidogenic acute regulatory protein and cytochrome P450 17A1. In the ovary, central ghrelin regulation indirectly inhibited the mRNA and protein levels of steroidogenic acute regulatory protein, cytochrome P450 17A1, and 3β-hydroxysteroid dehydrogenase. Moreover, no changes were observed in the expression of proliferating cell nuclear antigen and phosphorylation of extracellular signal-regulated kinase. We hypothesised that central ghrelin regulation suppressed serum oestradiol and progesterone levels by indirectly inhibiting the expression of steroidogenic acute regulatory protein, cytochrome P450 17A1, and 3β-hydroxysteroid dehydrogenase in the ovary. In this regulation, the suppressed secretion of the follicle-stimulating hormone and luteinising hormone in the pituitary by ghrelin could be involved. Furthermore, hypothalamic 3β-hydroxysteroid dehydrogenase expression is reduced by ghrelin injection.
Collapse
Affiliation(s)
- Deng Pan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
| | - Kun Wang
- Institute of Grain and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050000, China
| | - Guifang Cao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
| | - Kuikui Fan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
| | - Haodong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
| | - Penghui Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
| | - Haijun Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
| | - Du Chenguang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China; Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, 014109, China.
| |
Collapse
|
11
|
Zhang X, Xiao H, Zhang X, E Q, Gong X, Li T, Han Y, Ying X, Cherrington BD, Xu B, Liu X, Zhang X. Decreased microRNA-125b-5p disrupts follicle steroidogenesis through targeting PAK3/ERK1/2 signalling in mouse preantral follicles. Metabolism 2020; 107:154241. [PMID: 32304754 DOI: 10.1016/j.metabol.2020.154241] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Hyperandrogenism is one of the major characteristics of polycystic ovary syndrome (PCOS). Abnormal miR-125b-5p expression has been documented in multiple diseases, but whether miR-125b-5p is associated with aberrant steroidogenesis in preantral follicles remains unknown. METHODS Steriod hormone concentrations and miR-125b-5p expression were measured in clinical serum samples from PCOS patients. Using a mouse preantral follicle culture model and a letrozole-induced PCOS mouse model, we investigated the mechanism underlying miR-125b-5p regulation of androgen and oestrogen secretion. RESULTS The decreased miR-125b-5p expression was observed in the sera from hyperandrogenic PCOS (HA-PCOS) patients. In mouse preantral follicles, inhibiting miR-125b-5p increased the expression of androgen synthesis-related genes and stimulated the secretion of testosterone, while simultaneously downregulating oestrogen synthesis-related genes and decreasing oestradiol release. Ectopically expressed miR-125b-5p reversed the effects on steroidogenesis-related gene expression and hormone release. Mechanistic studies identified Pak3 as a direct target of miR-125b-5p. Furthermore, inhibiting miR-125b-5p facilitated the activation of ERK1/2 in mouse preantral follicles, while inhibiting Pak3 abrogated this activating effect. These results were recapitulated in letrozole-induced PCOS mouse ovaries. Of note, inhibiting PAK3 antagonised the positive effect of miR-125b-5p siRNA on the expressions of androgen synthesis-related enzymes and testosterone secretion. Luteinizing hormone (LH) inhibited miR-125b-5p expression, and stimulated Pak3 expression. CONCLUSION High serum LH concentrations in PCOS patients repress miR-125b-5p expression, which further increases Pak3 expression, leading to activation of ERK1/2 signalling, thus stimulating the expression of androgen synthesis-related enzymes and testosterone secretion in HA-PCOS.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hua Xiao
- Department of Obstetrics and Gynaecology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xueying Zhang
- Department of Obstetrics and Gynaecology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiukai E
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xuefeng Gong
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Tingting Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yun Han
- Department of Obstetrics and Gynaecology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Obstetrics and Gynaecology, Nantong First People's Hospital, Nantong, China
| | - Xiaoyan Ying
- Department of Obstetrics and Gynaecology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Obstetrics and Gynaecology, the Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Brian D Cherrington
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Boqun Xu
- Department of Obstetrics and Gynaecology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Obstetrics and Gynaecology, the Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiaoqiu Liu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, China.
| | - Xuesen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Toxicological evaluation of 3-(4-Chlorophenylselanyl)-1-methyl-1H-indole through the bovine oocyte in vitro maturation model. Toxicol In Vitro 2019; 62:104678. [PMID: 31629896 DOI: 10.1016/j.tiv.2019.104678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
The development of new bioactive molecules based on the molecular hybridization has been widely explored. In line with this, reliable tests should be employed to give information about the toxicology of these new molecules. In this sense, the use of in vitro tests is a valuable tool, especially the in vitro maturation of oocytes (IVM), which is an efficient resource to discover the potential toxicity of synthetic molecules. Thus, the aim of the present study was to evaluate the toxicological effects of the selenium-containing indolyl compound 3-(4-Chlorophenylselanyl)-1-methyl-1H-indole (CMI), on different quality parameters of bovine oocytes through the IVM. Different concentrations of the CMI compound (0, 25, 50, 100, 200 μM) were supplemented during the in vitro maturation process. After, the oocyte maturation rate, glutathione (GSH) levels, reactive oxygen species (ROS) levels, membrane, and mitochondrial integrity were evaluated. The results showed that the lowest concentration of CMI induced the highest GSH production (P < 0.05), an important marker of cytoplasmic quality and maturation. All treatments increased ROS production in relation to non-supplementation (P < 0.05). In addition, oocyte maturation was reduced only with the highest concentration of CMI (P < 0.05). Supplementation with CMI did not impact mitochondrial activity, integrity and cell membrane. To our knowledge, this is the first study that evaluates CMI on the oocyte in vitro maturation process. Importantly, our results did not find any toxic effect of CMI on bovine oocytes. CMI was efficient for cytoplasmic maturation by promoting an increase in the intracellular levels of glutathione.
Collapse
|
13
|
Olabarrieta E, Totorikaguena L, Agirregoitia N, Agirregoitia E. Implication of mu opioid receptor in the in vitro maturation of oocytes and its effects on subsequent fertilization and embryo development in mice. Mol Reprod Dev 2019; 86:1236-1244. [PMID: 31355501 DOI: 10.1002/mrd.23248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/13/2019] [Indexed: 11/12/2022]
Abstract
Oocyte maturation is the process by which immature oocytes acquire all the necessary characteristics for successful fertilization. The endogenous opioid peptides have been suggested to have a role modulating this process. However, little is known about its implication and the effect of exposing oocyte maturation to opioids on the subsequent fertilization and embryo development. Hence, in the present work, we focused on elucidating the function of the mu opioid receptor (OPRM1) in the modulation of the oocyte maturation. We analyzed the expression and localization of OPRM1 in mice oocytes and granulosa cells by reverse-transcription polymerase chain reaction (RT-PCR) and immunocytochemistry. To observe the activity of the OPRM1, immature oocytes were incubated with morphine agonist and/or naloxone antagonist and we evaluated the PI3K/Akt and MAPK pathways, as well as the effect on the subsequent fertilization and embryo development. OPRM1 was present in mice oocytes and granulosa cells, changing its expression pattern depending on the maturation stage. Moreover, morphine, modulating PI3K/Akt and MAPK pathways, helped oocytes to reach blastocyst stage, which was reverted by naloxone. These results propose the OPRM1 as a possible therapeutic target for in vitro maturation culture medium, as it could improve the blastocyst rates obtained in the actual reproduction assisted techniques.
Collapse
Affiliation(s)
- Estibaliz Olabarrieta
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Bizkaia, Spain
| | - Lide Totorikaguena
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Bizkaia, Spain
| | - Naiara Agirregoitia
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Bizkaia, Spain
| | - Ekaitz Agirregoitia
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Bizkaia, Spain
| |
Collapse
|
14
|
Choi H, Roh J. Role of Klf4 in the Regulation of Apoptosis and Cell Cycle in Rat Granulosa Cells during the Periovulatory Period. Int J Mol Sci 2018; 20:E87. [PMID: 30587813 PMCID: PMC6337711 DOI: 10.3390/ijms20010087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/30/2022] Open
Abstract
In the ovary, the luteinizing hormone (LH) surge suppresses the proliferation and induces the luteinization of preovulatory granulosa cells (GCs), which is crucial for the survival of terminally-differentiated GCs. Krüppel-like factor 4 (Klf4) has been shown to play a role in regulating the cell cycle and apoptosis in various cell types. The rapid induction of Klf4 expressions by LH was observed in preovulatory GCs. To evaluate whether Klf4 affects GC proliferation and survival, primary rat GCs were isolated from pregnant mare serum gonadotropin-primed Sprague⁻Dawley rat ovaries and transfected with a Klf4 expression vector or Klf4-specific siRNA, followed by determination of the transcript levels of apoptosis-related and cell cycle-related genes. Cell proliferation, viability, and apoptosis were analyzed by BrdU incorporation, a Cell Counting Kit-8 assay, a bioluminescence caspase 3/7 assay, and flow cytometry. LH treatment increased Klf4 mRNA expression in preovulatory GCs. Transcripts of B-cell lymphoma 2 (Bcl-2) and cell cycle promoters (Cyclin D1 and Cyclin D2) decreased, whereas those of the cell cycle inhibitor, p21, increased. Altering the expression of Klf4 by overexpression or knockdown consistently affected the expression of Bcl-2 and Cyclin D1. In agreement with this, Klf4 overexpression reduced cell viability, increased the fraction of apoptotic cells, and arrested cell cycle progression in G1 phase. We conclude that Klf4 increases the susceptibility of preovulatory GCs to apoptosis by down-regulating Bcl-2, and promotes LH-induced cell cycle exit. It appears to be a key regulator induced by the LH surge that determines the fate of GCs in preovulatory follicles during the luteal transition.
Collapse
Affiliation(s)
- Hyeonhae Choi
- Laboratory of Reproductive Endocrinology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 133-791, Korea.
| | - Jaesook Roh
- Laboratory of Reproductive Endocrinology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 133-791, Korea.
| |
Collapse
|
15
|
Ge Y, Long Y, Xiao S, Liang L, He Z, Yue C, Wei X, Zhou Y. CD38 affects the biological behavior and energy metabolism of nasopharyngeal carcinoma cells. Int J Oncol 2018; 54:585-599. [PMID: 30535454 PMCID: PMC6317656 DOI: 10.3892/ijo.2018.4651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the most common malignant tumor type in Southern China and South-East Asia. Cluster of differentiation (CD)38 is highly expressed in the human immune system and participates in the activation of T, natural killer and plasma cells mediated by CD2 and CD3 through synergistic action. CD38 is a type II transmembrane glycoprotein, which was observed to mediate diverse activities, including signal transduction, cell adhesion and cyclic ADP-ribose synthesis. However, the significance of CD38 in NPC biological behavior and cellular energy metabolism has not been examined. In order to elucidate the effect of CD38 on the biological behavior of NPC cells, stable CD38-overexpressed NPC cell lines were established. It was demonstrated that CD38 promoted NPC cell proliferation with Cell Counting Kit-8 and colony formation assays. It was also indicated that CD38 inhibited cell senescence, and promoted cell metastasis. Furthermore, it was determined that CD38 promoted the conversion of cells to the S phase and decreased the content of reactive oxygen species and Ca2+. Additionally, cell metabolism assays demonstrated that CD38 increased the concentration of ATP, lactic acid, cyclic adenosine monophosphate and human ADP/acrp30 concentration in NPC cells. To investigate the possible mechanism, bioinformatics analysis and mass spectrometry technology was used to determine the most notably changing molecule and signaling pathways, and it was determined and verified that CD38 regulated the metabolic-associated signaling pathways associated with tumor protein 53, hypoxia inducible factor-1α and sirtuin 1. The present results indicated that CD38 may serve a carcinogenic role in NPC by regulating metabolic-associated signaling pathways.
Collapse
Affiliation(s)
- Yanshan Ge
- Department of Oncology, Hunan Provincial Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Yuehua Long
- Department of Oncology, Hunan Provincial Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Lin Liang
- Department of Oncology, Hunan Provincial Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Zhengxi He
- Department of Oncology, Hunan Provincial Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Chunxue Yue
- Department of Oncology, Hunan Provincial Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Xiong Wei
- Department of Oncology, Hunan Provincial Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Yanhong Zhou
- Department of Oncology, Hunan Provincial Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| |
Collapse
|
16
|
Chouzouris TM, Dovolou E, Rekkas CA, Georgoulias P, Athanasiou LV, Amiridis GS. A study on ghrelin and LH secretion after short fasting and on ghrelin levels at perioestrual period in dairy cattle. Reprod Domest Anim 2018; 54:91-99. [PMID: 30171634 DOI: 10.1111/rda.13321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022]
Abstract
In two experiments, we studied (a) the changes of LH secretion in heifers under different feeding schedules and (b) total ghrelin concentration at oestrus in cows and heifers. In experiment one, synchronized heifers were allocated in three groups (R, regularly fed controls; F, fasted; and F-F fasted-fed). One day after the completion of the oestrous induction protocol, group F and F-F animals stayed without feed for 24 hr; thereafter, feed was provided to R and F-F cattle; 2 hr later, GnRH was administered to all animals. Blood samples were collected for ghrelin, progesterone, LH and cortisol concentrations. Fasting caused increased ghrelin concentrations in groups F and F-F, while in response to GnRH, LH surge was significantly attenuated in groups F and F-F compared to R. In experiment 2, lactating cows and heifers were used. On day 9 of a synchronized cycle, PGF2α was administered, and blood samples were collected twice daily until the third day after oestrus and analysed for progesterone, estradiol, ghrelin, glucose and BHBA concentrations. No difference was recorded between groups in steroids and BHBA concentrations. In comparison to mid-luteal values, ghrelin concentrations significantly increased at perioestrual period in cows, but not in heifers. This study provides evidence that starving-induced elevated ghrelin concentrations can have suppressing effect on LH secretion, even after ghrelin's restoration to basal values and that during oestrus, ghrelin secretion is differently regulated in cows and heifers, likely being independent from oestradiol concentrations. Further research is required to identify the determining factors that drive the different regulation of ghrelin secretion in cows and heifers.
Collapse
Affiliation(s)
- Thomas Markos Chouzouris
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| | - Eleni Dovolou
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| | | | - Panagiotis Georgoulias
- Department of Nuclear Medicine, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Lambrini V Athanasiou
- Department of Medicine, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| | - Georgios S Amiridis
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| |
Collapse
|
17
|
Xu XL, Bai JH, Feng T, Xiao LL, Song YQ, Xiao YX, Liu Y. N-octanoylated ghrelin peptide inhibits bovine oocyte meiotic resumption. Gen Comp Endocrinol 2018; 263:7-11. [PMID: 29673842 DOI: 10.1016/j.ygcen.2018.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/09/2018] [Accepted: 04/14/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Studies have shown that ghrelin plays an important role in the mammalian reproductive system, including the central, gonadal levels, and also during in vitro maturation of oocytes; however, the functions of ghrelin in bovine oocyte meiosis require further investigation. OBJECTIVE We aimed to evaluate the effects of an n-octanoylated ghrelin peptide on oocyte meiotic resumption and the developmental competence of mature oocytes in vitro. EXPERIMENTAL design: The expression of GHRL (encoding ghrelin) mRNA and its receptor (the growth hormone secretagogue receptor, GHSR) in the cumulus-oocyte complex (COCs), denuded oocytes (DOs), and cumulus cells (CCs) was assessed using quantitative real-time reverse transcription PCR (qRT-PCR), and the effects of the n-octanoylated ghrelin peptide on meiotic resumption were studied at four different doses (0, 10, 50, and 100 ng/mL) in a 6 h culture system. RESULTS qRT-PCR analysis showed that GHRL and GHSR mRNAs were expressed in all tested samples; however, GHRL was predominantly expressed in DOs, and GHSR was predominantly expressed in CCs. Germinal vesicle breakdown was inhibited significantly by 50 ng/mL ghrelin compared with that in the negative control (P < 0.05). Further studies showed that n-octanoylated ghrelin increased the levels of cAMP and cGMP in the CCs and DOs, which inhibited the meiotic resumption of bovine oocytes. And the inhibitory role in the developmental competence of mature oocytes were also included, ghrelin could significantly improve the cleavage rate (P < 0.05) and blastocyst rate (P < 0.05). CONCLUSION N-octanoylated ghrelin maintained bovine oocytes meiotic arrest and further improved their developmental competence; therefore, n-octanoylated ghrelin could be considered as a potential pharmaceutical inhibitor of meiosis for the in vitro maturation of bovine oocytes.
Collapse
Affiliation(s)
- X L Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - J H Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - T Feng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - L L Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Y Q Song
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Y X Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Y Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
18
|
Campen KA, Abbott CR, Rispoli LA, Payton RR, Saxton AM, Edwards JL. Heat stress impairs gap junction communication and cumulus function of bovine oocytes. J Reprod Dev 2018; 64:385-392. [PMID: 29937465 PMCID: PMC6189573 DOI: 10.1262/jrd.2018-029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The intimate association of cumulus cells with one another and with the oocyte is important for regulating oocyte meiotic arrest and resumption. The objective of this study was to determine
the effects of heat stress on cumulus cell communication and functions that may be related to accelerated oocyte meiosis during early maturation. Bovine cumulus-oocyte complexes underwent
in vitro maturation for up to 6 h at thermoneutral control (38.5°C) or elevated (40.0, 41.0 or 42.0°C) temperatures. Gap junction communication between the cumulus cells
and the oocyte was assessed using the fluorescent dye calcein after 4 h of in vitro maturation. Dye transfer was reduced in cumulus-oocyte complexes matured at 41.0°C or
42.0°C; transfer at 40.0°C was similar to control (P < 0.0001). Subsequent staining of oocytes with Hoechst revealed that oocytes matured at 41.0 or 42.0°C contained chromatin at more
advanced stages of condensation. Maturation of cumulus-oocyte complexes at elevated temperatures reduced levels of active 5’ adenosine monophosphate activated kinase (P = 0.03). Heat stress
exposure had no effect on active extracellular-regulated kinase 1/2 in oocytes (P = 0.67), associated cumulus cells (P = 0.60) or intact cumulus-oocyte complexes (P = 0.44). Heat-induced
increases in progesterone production by cumulus-oocyte complexes were detected during the first 6 h of maturation (P = 0.001). Heat-induced alterations in gap junction communication and
other cumulus-cell functions likely cooperate to accelerate bovine oocyte meiotic progression.
Collapse
Affiliation(s)
- Kelly A Campen
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Chelsea R Abbott
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Louisa A Rispoli
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Rebecca R Payton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Arnold M Saxton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - J Lannett Edwards
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| |
Collapse
|
19
|
Effects of pregnancy and short-lasting acute feed restriction on total ghrelin concentration and metabolic parameters in dairy cattle. Theriogenology 2018; 106:141-148. [DOI: 10.1016/j.theriogenology.2017.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/02/2017] [Accepted: 10/07/2017] [Indexed: 02/01/2023]
|