1
|
Ma JH, Dong C, Qiao HW, Barret O, Tamagnan GD, Mao W, Xu EH, Zhang C, Lu J, Chan P, Liu SY. Striatal and Extrastriatal Monoaminergic Disruption in Progressive Supranuclear Palsy. Mov Disord 2024; 39:847-854. [PMID: 38477228 DOI: 10.1002/mds.29769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND As a biomarker targeting vesicular monoamine transporter 2 (VMAT2), 18F-9-fluoropropyldihydrotetrabenazine (18F-FP-DTBZ) positron emission tomography (PET) is highly accurate in diagnosing Parkinson's disease (PD) and assessing its severity. However, evidence is insufficient in patients with progressive supranuclear palsy (PSP). OBJECTIVE We evaluated the striatal and extrastriatal monoaminergic disruption of PSP and differences in patterns between patients with PSP, PD, and healthy controls (HCs) using 18F-FP-DTBZ PET, as well as its correlations with the clinical characteristics of PSP. METHODS We recruited 58 patients with PSP, 23 age- and duration-matched patients with PD, as well as 17 HCs. Patients were scanned using 18F-FP-DTBZ PET/computed tomography, and images were spatially normalized and analyzed based on the volume of interest. RESULTS VMAT2 binding differed significantly in the striatum and substantia nigra among the groups (P < 0.001). A more severe disruption in the caudate was noted in the PSP group (P < 0.001) than in the PD group. However, no differences were found in the nucleus accumbens, hippocampus, amygdala, or raphe between the PD and PSP groups. Within the PSP group, striatal VMAT2 binding was significantly associated with the fall/postural stability subscore of the PSP Rating Scale, especially in the putamen. Furthermore, VMAT2 binding was correlated with Mini-Mental State Examination or Montreal Cognitive Assessment in the hippocampus. CONCLUSIONS Caudate disruptions showed prominent differences among the groups. VAMT2 binding in the striatum and hippocampus reflects the severity of fall/postural stability and cognition, respectively. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jing-Hong Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chong Dong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hong-Wen Qiao
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Olivier Barret
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Paris, France
| | - Gilles D Tamagnan
- National Clinical Research Center for Geriatric Diseases, Beijing, China
- XingImaging LLC, New Haven, Connecticut, USA
| | - Wei Mao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Er-He Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chun Zhang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shu-Ying Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
- Chinese Institute for Brain Research (CIBR), Beijing, China
| |
Collapse
|
2
|
Hernández-González M, Barrera-Cobos FJ, Hernández-Arteaga E, González-Burgos I, Flores-Soto M, Guevara MA, Cortes PM. Sexual Experience Induces A Preponderance of Mushroom Spines in the Medial Prefrontal Cortex and Nucleus Accumbens of Male Rats. Behav Brain Res 2023; 447:114437. [PMID: 37059188 DOI: 10.1016/j.bbr.2023.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Sexual experience improves copulatory performance in male rats. Copulatory performance has been associated with dendritic spines density in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAcc), structures involved in the processing of sexual stimuli and the manifestation of sexual behavior. Dendritic spines modulate excitatory synaptic contacts, and their morphology is associated with the ability to learn from experience. This study was designed to determine the effect of sexual experience on the density of different types or shapes of dendritic spines in the mPFC and NAcc of male rats. A total of 16 male rats were used, half of them were sexually experienced while the other half were sexually inexperienced. After three sessions of sexual interaction to ejaculation, the sexually-experienced males presented shorter mount, intromission, and ejaculation latencies. Those rats presented a higher total dendritic density in the mPFC, and a higher numerical density of thin, mushroom, stubby, and wide spines. Sexual experience also increased the numerical density of mushroom spines in the NAcc. In both the mPFC and NAcc of the sexually experienced rats, there was a lower proportional density of thin spines and a higher proportional density of mushroom spines. Results show that the improvement in copulatory efficiency resulting from prior sexual experience in male rats is associated with changes in the proportional density of thin and mushroom dendritic spines in the mPFC and NAcc. This could represent the consolidation of afferent synaptic information in these brain regions, derived from the stimulus-sexual reward association.
Collapse
Affiliation(s)
- Marisela Hernández-González
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Francisco Javier Barrera-Cobos
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | | | - Mario Flores-Soto
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jalisco, Mexico
| | - Miguel Angel Guevara
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Pedro Manuel Cortes
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; Corresponding author at: Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Francisco de Quevedo #180, Col. Arcos Vallarta, C.P 44130, Guadalajara, Jalisco, Mexico. E-mail:
| |
Collapse
|
3
|
Alhassen W, Alhassen S, Chen J, Monfared RV, Alachkar A. Cilia in the Striatum Mediate Timing-Dependent Functions. Mol Neurobiol 2023; 60:545-565. [PMID: 36322337 PMCID: PMC9849326 DOI: 10.1007/s12035-022-03095-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
Almost all brain cells contain cilia, antennae-like microtubule-based organelles. Yet, the significance of cilia, once considered vestigial organelles, in the higher-order brain functions is unknown. Cilia act as a hub that senses and transduces environmental sensory stimuli to generate an appropriate cellular response. Similarly, the striatum, a brain structure enriched in cilia, functions as a hub that receives and integrates various types of environmental information to drive appropriate motor response. To understand cilia's role in the striatum functions, we used loxP/Cre technology to ablate cilia from the dorsal striatum of male mice and monitored the behavioral consequences. Our results revealed an essential role for striatal cilia in the acquisition and brief storage of information, including learning new motor skills, but not in long-term consolidation of information or maintaining habitual/learned motor skills. A fundamental aspect of all disrupted functions was the "time perception/judgment deficit." Furthermore, the observed behavioral deficits form a cluster pertaining to clinical manifestations overlapping across psychiatric disorders that involve the striatum functions and are known to exhibit timing deficits. Thus, striatal cilia may act as a calibrator of the timing functions of the basal ganglia-cortical circuit by maintaining proper timing perception. Our findings suggest that dysfunctional cilia may contribute to the pathophysiology of neuro-psychiatric disorders, as related to deficits in timing perception.
Collapse
Affiliation(s)
- Wedad Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA
| | - Sammy Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA
| | - Jiaqi Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA
| | - Roudabeh Vakil Monfared
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA ,UC Irvine Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA 92697 USA ,Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92697 USA
| |
Collapse
|
4
|
Correia JP, Vaz JR, Domingos C, Freitas SR. From thinking fast to moving fast: motor control of fast limb movements in healthy individuals. Rev Neurosci 2022; 33:919-950. [PMID: 35675832 DOI: 10.1515/revneuro-2021-0171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
The ability to produce high movement speeds is a crucial factor in human motor performance, from the skilled athlete to someone avoiding a fall. Despite this relevance, there remains a lack of both an integrative brain-to-behavior analysis of these movements and applied studies linking the known dependence on open-loop, central control mechanisms of these movements to their real-world implications, whether in the sports, performance arts, or occupational setting. In this review, we cover factors associated with the planning and performance of fast limb movements, from the generation of the motor command in the brain to the observed motor output. At each level (supraspinal, peripheral, and motor output), the influencing factors are presented and the changes brought by training and fatigue are discussed. The existing evidence of more applied studies relevant to practical aspects of human performance is also discussed. Inconsistencies in the existing literature both in the definitions and findings are highlighted, along with suggestions for further studies on the topic of fast limb movement control. The current heterogeneity in what is considered a fast movement and in experimental protocols makes it difficult to compare findings in the existing literature. We identified the role of the cerebellum in movement prediction and of surround inhibition in motor slowing, as well as the effects of fatigue and training on central motor control, as possible avenues for further research, especially in performance-driven populations.
Collapse
Affiliation(s)
- José Pedro Correia
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal.,Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal
| | - João R Vaz
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal.,Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal
| | - Christophe Domingos
- CIEQV, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, Av. Dr. Mário Soares nº 110, 2040-413, Rio Maior, Portugal
| | - Sandro R Freitas
- Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal
| |
Collapse
|
5
|
Murphy MD, Heller EA. Convergent actions of stress and stimulants via epigenetic regulation of neural circuitry. Trends Neurosci 2022; 45:955-967. [PMID: 36280459 PMCID: PMC9671852 DOI: 10.1016/j.tins.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022]
Abstract
The dorsal striatum integrates prior and current information to guide appropriate decision-making. Chronic stress and stimulant exposure interferes with decision-making, and can confer similar cognitive and behavioral inflexibilities. This review examines the literature on acute and chronic regulation of the epigenome by stress and stimulants. Recent evidence suggests that exposures to stress and stimulants share similarities in the manners in which they regulate the dorsal striatum epigenome through DNA methylation, transposable element activity, and histone post-translational modifications. These findings suggest that chronic stress and stimulant exposure leads to the accumulation of epigenetic modifications that impair immediate and future neuron function and activity. Such epigenetic mechanisms represent potential therapeutic targets for ameliorating convergent symptoms of stress and addiction.
Collapse
Affiliation(s)
- Michael D Murphy
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth A Heller
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Roberts RC, McCollum LA, Schoonover KE, Mabry SJ, Roche JK, Lahti AC. Ultrastructural evidence for glutamatergic dysregulation in schizophrenia. Schizophr Res 2022; 249:4-15. [PMID: 32014360 PMCID: PMC7392793 DOI: 10.1016/j.schres.2020.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/14/2022]
Abstract
The aim of this paper is to summarize ultrastructural evidence for glutamatergic dysregulation in several linked regions in postmortem schizophrenia brain. Following a brief summary of glutamate circuitry and how synapses are identified at the electron microscopic (EM) level, we will review EM pathology in the cortex and basal ganglia. We will include the effects of antipsychotic drugs and the relation of treatment response. We will discuss how these findings support or confirm other postmortem findings as well as imaging results. Briefly, synaptic and mitochondrial density in anterior cingulate cortex was decreased in schizophrenia, versus normal controls (NCs), in a selective layer specific pattern. In dorsal striatum, increases in excitatory synaptic density were detected in caudate matrix, a compartment associated with cognitive and motor function, and in the putamen patches, a region associated with limbic function and in the core of the nucleus accumbens. Patients who were treatment resistant or untreated had significantly elevated numbers of excitatory synapses in limbic striatal areas in comparison to NCs and responders. Protein levels of vGLUT2, found in subcortical glutamatergic neurons, were increased in the nucleus accumbens in schizophrenia. At the EM level, schizophrenia subjects had an increase in density of excitatory synapses in several areas of the basal ganglia. In the substantia nigra, the protein levels of vGLUT2 were elevated in untreated patients compared to NCs. The density of inhibitory synapses was decreased in schizophrenia versus NCs. In schizophrenia, glutamatergic synapses are differentially affected depending on the brain region, treatment status, and treatment response.
Collapse
Affiliation(s)
- Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America.
| | - Lesley A McCollum
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| | - Kirsten E Schoonover
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| | - Samuel J Mabry
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| | - Joy K Roche
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| |
Collapse
|
7
|
Circuits regulating pleasure and happiness - focus on potential biomarkers for circuitry including the habenuloid complex. Acta Neuropsychiatr 2022; 34:229-239. [PMID: 35587050 DOI: 10.1017/neu.2022.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION The multiplicity and complexity of the neuronal connections in the central nervous system make it difficult to disentangle circuits that play an essential role in the development or treatment of (neuro)psychiatric disorders. By choosing the evolutionary development of the forebrain as a starting point, a certain order in the connections can be created. The dorsal diencephalic connection (DDC) system can be applied for the development of biomarkers that can predict treatment response. MATERIALS AND METHODS After providing a brief introduction to the theory, we examined neuroanatomical publications on the connectivity of the DDC system. We then searched for neurochemical components that are specific for the habenula. RESULTS AND DISCUSSION The best strategy to find biomarkers that reflect the function of the habenular connection is to use genetic variants of receptors, transporters or enzymes specific to this complex. By activating these with probes and measuring the response in people with different functional genotypes, the usefulness of biomarkers can be assessed. CONCLUSIONS The most promising biomarkers in this respect are those linked to activation or inhibition of the nicotine receptor, dopamine D4 receptor, μ-opioid receptor and also those of the functioning of habenular glia cells (astrocytes and microglia).
Collapse
|
8
|
Imaging the Limbic System in Parkinson's Disease-A Review of Limbic Pathology and Clinical Symptoms. Brain Sci 2022; 12:brainsci12091248. [PMID: 36138984 PMCID: PMC9496800 DOI: 10.3390/brainsci12091248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 01/09/2023] Open
Abstract
The limbic system describes a complex of brain structures central for memory, learning, as well as goal directed and emotional behavior. In addition to pathological studies, recent findings using in vivo structural and functional imaging of the brain pinpoint the vulnerability of limbic structures to neurodegeneration in Parkinson's disease (PD) throughout the disease course. Accordingly, dysfunction of the limbic system is critically related to the symptom complex which characterizes PD, including neuropsychiatric, vegetative, and motor symptoms, and their heterogeneity in patients with PD. The aim of this systematic review was to put the spotlight on neuroimaging of the limbic system in PD and to give an overview of the most important structures affected by the disease, their function, disease related alterations, and corresponding clinical manifestations. PubMed was searched in order to identify the most recent studies that investigate the limbic system in PD with the help of neuroimaging methods. First, PD related neuropathological changes and corresponding clinical symptoms of each limbic system region are reviewed, and, finally, a network integration of the limbic system within the complex of PD pathology is discussed.
Collapse
|
9
|
Cui L, Ye M, Sun L, Zhang S, He G. Common and Distinct Neural Correlates of Intertemporal and Risky Decision-Making: Meta-Analytical Evidence for the Dual-System Theory. Neurosci Biobehav Rev 2022; 141:104851. [PMID: 36058404 DOI: 10.1016/j.neubiorev.2022.104851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/20/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
The relationship between intertemporal and risky decision-making has received considerable attention in decision research. Single-process theories suggest that choices involving delay and risk are simply two manifestations of the same psychological mechanism, which implies similar patterns of neural activation. Conversely, the dual-system theory suggests that delayed and risky choices are two contrasting types of processes, which implies distinct brain networks. How these two types of choices relate to each other remains unclear. The current study addressed this issue by performing a meta-analysis of 28 intertemporal decision-making studies (862 subjects) and 51 risky decision-making studies (1539 subjects). We found no common area activated in the conjunction analysis of the delayed and risky rewards. Based on the contrast analysis, delayed rewards were associated with stronger activation in the left dorsal insula, while risky rewards were associated with activation in the bilateral ventral striatum and the right anterior insula. The results align with the dual-system theory with separate neural networks for delayed and risky rewards.
Collapse
Affiliation(s)
- Lidan Cui
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310028, China; College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
| | - Meng Ye
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310028, China
| | - Lingyun Sun
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
| | - Shunmin Zhang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310028, China.
| | - Guibing He
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310028, China.
| |
Collapse
|
10
|
Feng C, Huang W, Xu K, Stewart JL, Camilleri JA, Yang X, Wei P, Gu R, Luo W, Eickhoff SB. Neural substrates of motivational dysfunction across neuropsychiatric conditions: Evidence from meta-analysis and lesion network mapping. Clin Psychol Rev 2022; 96:102189. [PMID: 35908312 PMCID: PMC9720091 DOI: 10.1016/j.cpr.2022.102189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/13/2022] [Accepted: 07/18/2022] [Indexed: 02/03/2023]
Abstract
Motivational dysfunction constitutes one of the fundamental dimensions of psychopathology cutting across traditional diagnostic boundaries. However, it is unclear whether there is a common neural circuit responsible for motivational dysfunction across neuropsychiatric conditions. To address this issue, the current study combined a meta-analysis on psychiatric neuroimaging studies of reward/loss anticipation and consumption (4308 foci, 438 contrasts, 129 publications) with a lesion network mapping approach (105 lesion cases). Our meta-analysis identified transdiagnostic hypoactivation in the ventral striatum (VS) for clinical/at-risk conditions compared to controls during the anticipation of both reward and loss. Moreover, the VS subserves a key node in a distributed brain network which encompasses heterogeneous lesion locations causing motivation-related symptoms. These findings do not only provide the first meta-analytic evidence of shared neural alternations linked to anticipatory motivation-related deficits, but also shed novel light on the role of VS dysfunction in motivational impairments in terms of both network integration and psychological functions. Particularly, the current findings suggest that motivational dysfunction across neuropsychiatric conditions is rooted in disruptions of a common brain network anchored in the VS, which contributes to motivational salience processing rather than encoding positive incentive values.
Collapse
Affiliation(s)
- Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education (South China Normal University), Guangzhou, China,Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China,Corresponding authors at: Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China. (C. Feng), (R. Gu)
| | - Wenhao Huang
- Beijing Key Laboratory of Learning and Cognition, and School of Psychology, Capital Normal University, Beijing, China,Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany
| | - Kangli Xu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | - Julia A. Camilleri
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Xiaofeng Yang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ping Wei
- Beijing Key Laboratory of Learning and Cognition, and School of Psychology, Capital Normal University, Beijing, China
| | - Ruolei Gu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China,Corresponding authors at: Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China. (C. Feng), (R. Gu)
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
11
|
Puy L, Leboullenger C, Auger F, Bordet R, Cordonnier C, Bérézowski V. Intracerebral Hemorrhage-Induced Cognitive Impairment in Rats Is Associated With Brain Atrophy, Hypometabolism, and Network Dysconnectivity. Front Neurosci 2022; 16:882996. [PMID: 35844211 PMCID: PMC9280302 DOI: 10.3389/fnins.2022.882996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
The mechanisms underlying intracerebral hemorrhage (ICH)-related cognitive impairment (CI) remain unclear. Long-term structural and functional changes were investigated in the brains of healthy male and female Wistar rats after experimental ICH. Following double injection of autologous blood, rats underwent short-term (onset, 3 and 7 days) and long-term (3 and 6 months) radiological assessment and behavioral tests exploring spontaneous locomotion, anxiety-like behavior and working memory, spatial recognition memory and visual recognition memory. Volumetric and metabolic changes in brain areas were examined by 7Tesla-MRI and [18F] FDG-PET, respectively. Brain connectomic disorders and maladaptive processes were seeked through brain metabolic connectivity analysis and atrophy-related network analysis. From an initial hematoma mean volume of 23.35 ± 9.50 mm3, we found early spontaneous locomotor recovery and significant spontaneous blood resorption (≈ 40% of the initial lesion) from days 0 to 7. After 3 and 6 months, ICH rats exhibited CI in several domains as compared to the sham group (working memory: 58.1 ± 1.2 vs. 70.7 ± 1.2%, p < 0.001; spatial recognition memory: 48.7 ± 1.9 vs. 64 ± 1.8%, p < 0.001 and visual recognition memory: 0.14 ± 0.05 vs. 0.33 ± 0.04, p = 0.013, in female only). Rats that experienced ICH had remote and concomitant cerebral atrophy and hypometabolism of ipsilateral striatum, thalamus, limbic system and cortical areas (temporal and parietal lobes). Interestingly, both structural and metabolic deterioration was found in the limbic system connected to the affected site, but remotely from the initial insult. On the other hand, increased activity and functional connectivity occurred in the contralateral hemisphere. These connectomics results showed that both maladaptative and compensation processes coexist in the rat brain following ICH, even at young age and in a disease-free setting. These radiological findings deepen our understanding of ICH-related CI and may serve as biomarkers in the view of future therapeutic intervention.
Collapse
Affiliation(s)
- Laurent Puy
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 – LilNCog - Lille Neuroscience and Cognition, Lille, France
| | - Clémence Leboullenger
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, France
| | - Florent Auger
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, France
| | - Régis Bordet
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 – LilNCog - Lille Neuroscience and Cognition, Lille, France
| | - Charlotte Cordonnier
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 – LilNCog - Lille Neuroscience and Cognition, Lille, France
- *Correspondence: Charlotte Cordonnier,
| | - Vincent Bérézowski
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 – LilNCog - Lille Neuroscience and Cognition, Lille, France
- UArtois, Lens, France
- Vincent Bérézowski,
| |
Collapse
|
12
|
Raval NR, Gudmundsen F, Juhl M, Andersen IV, Speth N, Videbæk A, Petersen IN, Mikkelsen JD, Fisher PM, Herth MM, Plavén-Sigray P, Knudsen GM, Palner M. Synaptic Density and Neuronal Metabolic Function Measured by Positron Emission Tomography in the Unilateral 6-OHDA Rat Model of Parkinson's Disease. Front Synaptic Neurosci 2021; 13:715811. [PMID: 34867258 PMCID: PMC8636601 DOI: 10.3389/fnsyn.2021.715811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022] Open
Abstract
Parkinson’s disease (PD) is caused by progressive neurodegeneration and characterised by motor dysfunction. Neurodegeneration of dopaminergic neurons also causes aberrations within the cortico-striato-thalamo-cortical (CSTC) circuit, which has been hypothesised to lead to non-motor symptoms such as depression. Individuals with PD have both lower synaptic density and changes in neuronal metabolic function in the basal ganglia, as measured using [11C]UCB-J and [18F]FDG positron emission tomography (PET), respectively. However, the two radioligands have not been directly compared in the same PD subject or in neurodegeneration animal models. Here, we investigate [11C]UCB-J binding and [18F]FDG uptake in the CSTC circuit following a unilateral dopaminergic lesion in rats and compare it to sham lesioned rats. Rats received either a unilateral injection of 6-hydroxydopamine (6-OHDA) or saline in the medial forebrain bundle and rostral substantia nigra (n = 4/group). After 3 weeks, all rats underwent two PET scans using [18F]FDG, followed by [11C]UCB-J on a separate day. [18F]FDG uptake and [11C]UCB-J binding were both lower in the ipsilateral striatal regions compared to the contralateral regions. Using [11C]UCB-J, we could detect an 8.7% decrease in the ipsilateral ventral midbrain, compared to a 2.9% decrease in ventral midbrain using [18F]FDG. Differential changes between hemispheres for [11C]UCB-J and [18F]FDG outcomes were also evident in the CSTC circuit’s cortical regions, especially in the orbitofrontal cortex and medial prefrontal cortex where higher synaptic density yet lower neuronal metabolic function was observed, following lesioning. In conclusion, [11C]UCB-J and [18F]FDG PET can detect divergent changes following a dopaminergic lesion in rats, especially in cortical regions that are not directly affected by the neurotoxin. These results suggest that combined [11C]UCB-J and [18F]FDG scans could yield a better picture of the heterogeneous cerebral changes in neurodegenerative disorders.
Collapse
Affiliation(s)
- Nakul Ravi Raval
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Gudmundsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Morten Juhl
- Cardiology Stem Cell Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ida Vang Andersen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj Speth
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Annesofie Videbæk
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ida Nymann Petersen
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens D Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pontus Plavén-Sigray
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Palner
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| |
Collapse
|
13
|
Resolving heterogeneity in schizophrenia through a novel systems approach to brain structure: individualized structural covariance network analysis. Mol Psychiatry 2021; 26:7719-7731. [PMID: 34316005 DOI: 10.1038/s41380-021-01229-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022]
Abstract
Reliable mapping of system-level individual differences is a critical first step toward precision medicine for complex disorders such as schizophrenia. Disrupted structural covariance indicates a system-level brain maturational disruption in schizophrenia. However, most studies examine structural covariance at the group level. This prevents subject-level inferences. Here, we introduce a Network Template Perturbation approach to construct individual differential structural covariance network (IDSCN) using regional gray-matter volume. IDSCN quantifies how structural covariance between two nodes in a patient deviates from the normative covariance in healthy subjects. We analyzed T1 images from 1287 subjects, including 107 first-episode (drug-naive) patients and 71 controls in the discovery datasets and established robustness in 213 first-episode (drug-naive), 294 chronic, 99 clinical high-risk patients, and 494 controls from the replication datasets. Patients with schizophrenia were highly variable in their altered structural covariance edges; the number of altered edges was related to severity of hallucinations. Despite this variability, a subset of covariance edges, including the left hippocampus-bilateral putamen/globus pallidus edges, clustered patients into two distinct subgroups with opposing changes in covariance compared to controls, and significant differences in their anxiety and depression scores. These subgroup differences were stable across all seven datasets with meaningful genetic associations and functional annotation for the affected edges. We conclude that the underlying physiology of affective symptoms in schizophrenia involves the hippocampus and putamen/pallidum, predates disease onset, and is sufficiently consistent to resolve morphological heterogeneity throughout the illness course. The two schizophrenia subgroups identified thus have implications for the nosology and clinical treatment.
Collapse
|
14
|
Glutamatergic Dysfunction and Synaptic Ultrastructural Alterations in Schizophrenia and Autism Spectrum Disorder: Evidence from Human and Rodent Studies. Int J Mol Sci 2020; 22:ijms22010059. [PMID: 33374598 PMCID: PMC7793137 DOI: 10.3390/ijms22010059] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The correlation between dysfunction in the glutamatergic system and neuropsychiatric disorders, including schizophrenia and autism spectrum disorder, is undisputed. Both disorders are associated with molecular and ultrastructural alterations that affect synaptic plasticity and thus the molecular and physiological basis of learning and memory. Altered synaptic plasticity, accompanied by changes in protein synthesis and trafficking of postsynaptic proteins, as well as structural modifications of excitatory synapses, are critically involved in the postnatal development of the mammalian nervous system. In this review, we summarize glutamatergic alterations and ultrastructural changes in synapses in schizophrenia and autism spectrum disorder of genetic or drug-related origin, and briefly comment on the possible reversibility of these neuropsychiatric disorders in the light of findings in regular synaptic physiology.
Collapse
|
15
|
Li YX, An H, Wen Z, Tao ZY, Cao DY. Can oxytocin inhibit stress-induced hyperalgesia? Neuropeptides 2020; 79:101996. [PMID: 31776011 DOI: 10.1016/j.npep.2019.101996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 11/19/2022]
Abstract
Stress-induced hyperalgesia is a problematic condition that lacks an effective therapeutic measure, and hence impairs health-related quality of life. The regulation of stress by oxytocin (OT) has overlapping effects on pain. OT can alleviate pain directly mainly at the spinal level and the peripheral tissues. Additionally, OT plays an analgesic role by dealing with stress and fear learning. When OT relieves stress by targeting the prefrontal brain regions and the hypothalamic-pituitary-adrenal axis, the body's sensitivity to pain is attenuated. Meanwhile, OT facilitates fear learning and may, in turn, enhance the anticipatory actions to painful stimulation. The unique therapeutic value of OT in patients suffering from stress and stress-related hyperalgesia conditions is worth considering. We reviewed recent advances in animal and human studies involving the effects of OT on stress and pain, and discussed the possible targets of OT within the descending and ascending pathways in the central nervous system. This review provides an overview of the evidence on the role of OT in alleviating stress-induced hyperalgesia.
Collapse
Affiliation(s)
- Yue-Xin Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China; Department of Special Dental Care, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China
| | - Hong An
- Department of Special Dental Care, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China.
| | - Zhuo Wen
- Department of Special Dental Care, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China
| | - Zhuo-Ying Tao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|
16
|
Le TM, Zhang S, Zhornitsky S, Wang W, Li CSR. Neural correlates of reward-directed action and inhibition of action. Cortex 2019; 123:42-56. [PMID: 31747630 DOI: 10.1016/j.cortex.2019.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 05/13/2019] [Accepted: 10/16/2019] [Indexed: 11/28/2022]
Abstract
Human and non-human primate studies have examined neural responses to action and inhibition of action. However, it remains unclear whether the cerebral processes supporting these two distinct responses are differentially modulated by reward. In a sample of 35 healthy human adults, we examined brain activations to action and inhibition of action in a reward go/no-go task, with approximately ⅔ go and ⅓ no-go trials. Correct go and no-go trials were rewarded with $1 or ¢5 in reward sessions. Behaviorally, reward facilitated go and impeded no-go. A conjunction analysis showed shared activation to rewarded go and no-go responses in the rostral anterior cingulate cortex (rACC) and inferior parietal cortex. A whole-brain two-way ANOVA of response (go vs no-go) and reward (dollar vs nickel) revealed a significant main effect of response, with greater activity for no-go vs go success in the middle frontal cortex and the reversed pattern in the dorsal ACC, insula, thalamus, and caudate. The thalamus and caudate also responded preferentially to dollar relative to nickel reward during go trials. The main effect of reward (dollar > nickel) involved not only regions associated with reward valuation (e.g., medial orbitofrontal cortex - mOFC) but also those implicated in motor control, saliency, and visual attention including the rACC, ventral striatum, insula, and occipital cortex. Finally, the mOFC distinguished go and no-go responses in the dollar but not nickel trials, suggesting a functional bias toward response execution that leads to larger rewards. Together, these findings identified both shared and non-overlapping neural processes underlying goal-directed action and inhibition of action as well as delineated the effects of reward magnitude on such processes.
Collapse
Affiliation(s)
- Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
17
|
Griffies WS. Impaired Mind-Body Connections in Psychosomatic Patients: A Contemporary Neuropsychodynamic Model. Psychodyn Psychiatry 2019; 47:317-342. [PMID: 31448984 DOI: 10.1521/pdps.2019.47.3.317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In alexithymia-type psychosomatic patients who do not have the capacity to mentalize, arousal is experienced non-symbolically within the body. These people also often have significant histories of attachment trauma and other adverse childhood experiences. This article extends a previous neuropsychodynamic formulation that takes into account recent work on how attachment trauma is internalized in developing brain circuits. Specifically, it considers the possibility that early attachment trauma impairs thalamo-amygdala-striatal-thalamic circuits, resulting in disconnect of subcortical arousal to the prefrontal cortex where the arousal can be mentalized. These impaired subcortical circuits perpetuate stress deep within these patients' implicit procedural circuitry, making them very resistant to psychotherapy. Knowledge of this interaction deepens our understanding of these patients, who suffer greatly, and suggests guidelines for treatment approaches with which they are more likely to engage.
Collapse
Affiliation(s)
- W Scott Griffies
- Associate Professor, Duke Psychiatry and Behavioral Sciences, Medical Director, Psychosomatic Medicine Service, Duke Raleigh Hospital
| |
Collapse
|
18
|
Smith CT, San Juan MD, Dang LC, Katz DT, Perkins SF, Burgess LL, Cowan RL, Manning HC, Nickels ML, Claassen DO, Samanez-Larkin GR, Zald DH. Ventral striatal dopamine transporter availability is associated with lower trait motor impulsivity in healthy adults. Transl Psychiatry 2018; 8:269. [PMID: 30531858 PMCID: PMC6286354 DOI: 10.1038/s41398-018-0328-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
Impulsivity is a transdiagnostic feature of a range of externalizing psychiatric disorders. Preclinical work links reduced ventral striatal dopamine transporter (DAT) availability with heightened impulsivity and novelty seeking. However, there is a lack of human data investigating the relationship between DAT availability, particularly in subregions of the striatum, and the personality traits of impulsivity and novelty seeking. Here we collected PET measures of DAT availability (BPND) using the tracer 18F-FE-PE2I in 47 healthy adult subjects and examined relations between BPND in striatum, including its subregions: caudate, putamen, and ventral striatum (VS), and trait impulsivity (Barratt Impulsiveness Scale: BIS-11) and novelty seeking (Tridimensional Personality Questionnaire: TPQ-NS), controlling for age and sex. DAT BPND in each striatal subregion showed nominal negative associations with total BIS-11 but not TPQ-NS. At the subscale level, VS DAT BPND was significantly associated with BIS-11 motor impulsivity (e.g., taking actions without thinking) after correction for multiple comparisons. VS DAT BPND explained 13.2% of the variance in motor impulsivity. Our data demonstrate that DAT availability in VS is negatively related to impulsivity and suggest a particular influence of DAT regulation of dopamine signaling in VS on acting without deliberation (BIS motor impulsivity). While needing replication, these data converge with models of ventral striatal functions that emphasize its role as a key interface linking motivation to action.
Collapse
Affiliation(s)
- Christopher T. Smith
- 0000 0001 2264 7217grid.152326.1Department of Psychology, PMB 407817, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37240-7817 USA
| | - M. Danica San Juan
- 0000 0001 2264 7217grid.152326.1Department of Psychology, PMB 407817, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37240-7817 USA
| | - Linh C. Dang
- 0000 0001 2264 7217grid.152326.1Department of Psychology, PMB 407817, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37240-7817 USA
| | - Daniel T. Katz
- 0000 0001 2264 7217grid.152326.1Department of Psychology, PMB 407817, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37240-7817 USA
| | - Scott F. Perkins
- 0000 0001 2264 7217grid.152326.1Department of Psychology, PMB 407817, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37240-7817 USA
| | - Leah L. Burgess
- 0000 0001 2264 7217grid.152326.1Department of Psychology, PMB 407817, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37240-7817 USA
| | - Ronald L. Cowan
- 0000 0001 2264 7217grid.152326.1Department of Psychology, PMB 407817, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37240-7817 USA ,0000 0004 1936 9916grid.412807.8Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Suite 3057, Nashville, TN 37212 USA ,0000 0004 1936 9916grid.412807.8Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Avenue South, Nashville, TN 37232 USA
| | - H. Charles Manning
- 0000 0004 1936 9916grid.412807.8Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Avenue South, Nashville, TN 37232 USA ,0000 0001 2264 7217grid.152326.1Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235 USA ,0000 0001 2264 7217grid.152326.1Department of Biomedical Engineering, PMB 351826, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235-1826 USA ,0000 0004 1936 9916grid.412807.8Department of Neurological Surgery, Vanderbilt University Medical Center, 1161 21st Avenue South, T4224 Medical Center North, Nashville, TN 37232-2380 USA
| | - Michael L. Nickels
- 0000 0004 1936 9916grid.412807.8Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Avenue South, Nashville, TN 37232 USA
| | - Daniel O. Claassen
- 0000 0004 1936 9916grid.412807.8Department of Neurology, Vanderbilt University Medical Center, 1161 21st Avenue South, A-0118, Nashville, TN 37232-2551 USA
| | - Gregory R. Samanez-Larkin
- 0000 0004 1936 7961grid.26009.3dDepartment of Psychology and Neuroscience, Duke University, 417 Chapel Drive, Durham, NC 27708 USA
| | - David H. Zald
- 0000 0001 2264 7217grid.152326.1Department of Psychology, PMB 407817, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37240-7817 USA ,0000 0004 1936 9916grid.412807.8Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Suite 3057, Nashville, TN 37212 USA
| |
Collapse
|
19
|
Dopamine receptors mediate strategy abandoning via modulation of a specific prelimbic cortex-nucleus accumbens pathway in mice. Proc Natl Acad Sci U S A 2018; 115:E4890-E4899. [PMID: 29735678 DOI: 10.1073/pnas.1717106115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ability to abandon old strategies and adopt new ones is essential for survival in a constantly changing environment. While previous studies suggest the importance of the prefrontal cortex and some subcortical areas in the generation of strategy-switching flexibility, the fine neural circuitry and receptor mechanisms involved are not fully understood. In this study, we showed that optogenetic excitation and inhibition of the prelimbic cortex-nucleus accumbens (NAc) pathway in the mouse respectively enhances and suppresses strategy-switching ability in a cross-modal spatial-egocentric task. This ability is dependent on an intact dopaminergic tone in the NAc, as local dopamine denervation impaired the performance of the animal in the switching of tasks. In addition, based on a brain-slice preparation obtained from Drd2-EGFP BAC transgenic mice, we demonstrated direct innervation of D2 receptor-expressing medium spiny neurons (D2-MSNs) in the NAc by prelimbic cortical neurons, which is under the regulation by presynaptic dopamine receptors. While presynaptic D1-type receptor activation enhances the glutamatergic transmission from the prelimbic cortex to D2-MSNs, D2-type receptor activation suppresses this synaptic connection. Furthermore, manipulation of this pathway by optogenetic activation or administration of a D1-type agonist or a D2-type antagonist could restore impaired task-switching flexibility in mice with local NAc dopamine depletion; this restoration is consistent with the effects of knocking down the expression of specific dopamine receptors in the pathway. Our results point to a critical role of a specific prelimbic cortex-NAc subpathway in mediating strategy abandoning, allowing the switching from one strategy to another in problem solving.
Collapse
|
20
|
Abstract
Severe impairment of social interaction is a core symptom of numerous psychiatric disorders. Oxytocin (OT) has been shown to be involved in various aspects of social behavior related to reproduction, but little is known about its effects on nonreproductive social interaction between adults or the neuroanatomical location where OT exerts its action. Here, we examined the nucleus accumbens, a region of the brain containing high levels of the oxytocin receptor (OTR) and comprising an important node in the neural circuitry possibly related to social interaction. Behavioral effects of a local microinfusion of OT (0.1, 1, and 10 ng/side) and an oxytocin receptor antagonist (OTR-A) (1, 10, and 100 ng/side) were evaluated in naturally high social and low social female and male monogamous mandarin voles (Microtus mandarinus) using the social preference paradigm and open-field tests. The results showed that administration of 1 ng/side OT increased social preference; however, this effect was not apparent at lower or higher doses. OT did not alter anxiety-like behavior or total locomotion. Microinfusions of a selective OTR-A at 10 and 100 ng doses reduced social approach behavior; a dose of 1 ng had no effect. In conclusion, our results suggest that accumbal OT and OTR-A regulate social preferences in voles in a dose-dependent manner.
Collapse
|
21
|
Abbott AE, Linke AC, Nair A, Jahedi A, Alba LA, Keown CL, Fishman I, Müller RA. Repetitive behaviors in autism are linked to imbalance of corticostriatal connectivity: a functional connectivity MRI study. Soc Cogn Affect Neurosci 2018; 13:32-42. [PMID: 29177509 PMCID: PMC5793718 DOI: 10.1093/scan/nsx129] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/03/2017] [Accepted: 10/23/2017] [Indexed: 01/17/2023] Open
Abstract
The neural underpinnings of repetitive behaviors (RBs) in autism spectrum disorders (ASDs), ranging from cognitive to motor characteristics, remain unknown. We assessed RB symptomatology in 50 ASD and 52 typically developing (TD) children and adolescents (ages 8-17 years), examining intrinsic functional connectivity (iFC) of corticostriatal circuitry, which is important for reward-based learning and integration of emotional, cognitive and motor processing, and considered impaired in ASDs. Connectivity analyses were performed for three functionally distinct striatal seeds (limbic, frontoparietal and motor). Functional connectivity with cortical regions of interest was assessed for corticostriatal circuit connectivity indices and ratios, testing the balance of connectivity between circuits. Results showed corticostriatal overconnectivity of limbic and frontoparietal seeds, but underconnectivity of motor seeds. Correlations with RBs were found for connectivity between the striatal motor seeds and cortical motor clusters from the whole-brain analysis, and for frontoparietal/limbic and motor/limbic connectivity ratios. Division of ASD participants into high (n = 17) and low RB subgroups (n = 19) showed reduced frontoparietal/limbic and motor/limbic circuit ratios for high RB compared to low RB and TD groups in the right hemisphere. Results suggest an association between RBs and an imbalance of corticostriatal iFC in ASD, being increased for limbic, but reduced for frontoparietal and motor circuits.
Collapse
Affiliation(s)
- Angela E Abbott
- Department of Psychology, Brain Development Imaging Laboratories, San Diego State University
| | - Annika C Linke
- Department of Psychology, Brain Development Imaging Laboratories, San Diego State University
| | - Aarti Nair
- Department of Psychology, Brain Development Imaging Laboratories, San Diego State University
- Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, San Diego, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Afrooz Jahedi
- Department of Psychology, Brain Development Imaging Laboratories, San Diego State University
- Computational Science Research Center, San Diego State University
| | - Laura A Alba
- Department of Psychology, Brain Development Imaging Laboratories, San Diego State University
| | - Christopher L Keown
- Department of Psychology, Brain Development Imaging Laboratories, San Diego State University
- Computational Science Research Center, San Diego State University
- Department of Cognitive Science, University of California, San Diego, CA, USA
| | - Inna Fishman
- Department of Psychology, Brain Development Imaging Laboratories, San Diego State University
- Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, San Diego, CA, USA
| | - Ralph-Axel Müller
- Department of Psychology, Brain Development Imaging Laboratories, San Diego State University
- Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
22
|
Dutra SJ, Man V, Kober H, Cunningham WA, Gruber J. Disrupted cortico-limbic connectivity during reward processing in remitted bipolar I disorder. Bipolar Disord 2017; 19:661-675. [PMID: 29024194 PMCID: PMC5739987 DOI: 10.1111/bdi.12560] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/08/2017] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Bipolar disorder (BD) is associated with elevated reward sensitivity and persistent positive affect, yet the neural mechanisms underlying these patterns are not well understood. In the present study, we examined putative disruptions in communication within a well-known cortico-limbic reward circuit during reward processing as a potential contributing mechanism to these symptoms. METHODS The present investigation employed a within- and between-subjects design utilizing a monetary and social incentive delay task among adults with bipolar disorder type I (BD; N = 24) and a healthy non-psychiatric control group (HC; N = 25) during functional magnetic resonance imaging (fMRI). Participants in the BD group were remitted at the time of testing. RESULTS Functional connectivity analyses revealed increased connectivity between the ventral striatum (VS) seed region and orbitofrontal cortex (OFC) as well as the amygdala during processing of reward receipt in the BD group. After omission of expected rewards, the BD group showed decreased functional connectivity between the VS and a medial frontopolar cortex (mFPC) region associated with consideration of behavioral alternatives. Follow-up analyses within the BD group showed that increased VS-OFC connectivity after reward receipt, and decreased VS-mFPC connected after reward omission, were associated with higher levels of subthreshold mania symptoms. CONCLUSIONS Results point toward potential mechanisms implicated in elevated reward sensitivity in BD. Enhanced VS-OFC connectivity after reward receipt may be involved in elevated valuation of rewards whereas blunted VS-mFPC connectivity after reward omission may reflect a failure to consider behavioral alternatives to reward pursuit.
Collapse
Affiliation(s)
- Sunny J. Dutra
- Boston University School of Medicine,VA Boston Healthcare System,Corresponding Author: Sunny J. Dutra, PhD, Boston University School of Medicine, Department of Psychiatry, 72 E Concord Street, Boston, Massachusetts 02118, VA Boston Healthcare System Jamaica Plain, 150 S. Huntington Ave (116B-4), Boston, Massachusetts 02130, Office: (857) 364-6996,
| | - Vincent Man
- University of Toronto, Department of Psychology
| | - Hedy Kober
- Yale University School of Medicine, Department of Psychiatry,Yale University, Department of Psychology
| | | | - June Gruber
- University of Colorado Boulder, Department of Psychology and Neuroscience
| |
Collapse
|
23
|
Loonen AJM, Kupka RW, Ivanova SA. Circuits Regulating Pleasure and Happiness in Bipolar Disorder. Front Neural Circuits 2017; 11:35. [PMID: 28588455 PMCID: PMC5439000 DOI: 10.3389/fncir.2017.00035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 05/08/2017] [Indexed: 01/21/2023] Open
Abstract
According to our model, the motivation for appetitive-searching vs. distress-avoiding behaviors is regulated by two parallel cortico-striato-thalamo-cortical (CSTC) re-entry circuits that include the core and the shell parts of the nucleus accumbens, respectively. An entire series of basal ganglia, running from the caudate nucleus on one side to the centromedial amygdala on the other side, control the intensity of these reward-seeking and misery-fleeing behaviors by stimulating the activity of the (pre)frontal and limbic cortices. Hyperactive motivation to display behavior that potentially results in reward induces feelings of hankering (relief leads to pleasure); while, hyperactive motivation to exhibit behavior related to avoidance of aversive states results in dysphoria (relief leads to happiness). These two systems collaborate in a reciprocal fashion. We hypothesized that the mechanism inducing the switch from bipolar depression to mania is the most essential characteristic of bipolar disorder. This switch is attributed to a dysfunction of the lateral habenula, which regulates the activity of midbrain centers, including the dopaminergic ventral tegmental area (VTA). From an evolutionary perspective, the activity of the lateral habenula should be regulated by the human homolog of the habenula-projecting globus pallidus, which in turn might be directed by the amygdaloid complex and the phylogenetically old part of the limbic cortex. In bipolar disorder, it is possible that the system regulating the activity of this reward-driven behavior is damaged or the interaction between the medial and lateral habenula may be dysfunctional. This may lead to an adverse coupling between the activities of the misery-fleeing and reward-seeking circuits, which results in independently varying activities.
Collapse
Affiliation(s)
- Anton J. M. Loonen
- Groningen Research Institute of Pharmacy, University of GroningenGroningen, Netherlands
- GGZ WNB, Mental Health HospitalBergen op Zoom, Netherlands
| | - Ralph W. Kupka
- Department of Psychiatry, VU University Medical CenterAmsterdam, Netherlands
| | - Svetlana A. Ivanova
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research InstituteTomsk, Russia
- Department of Ecology and Basic Safety, National Research Tomsk Polytechnic UniversityTomsk, Russia
| |
Collapse
|
24
|
Nasehi M, Ostadi E, Khakpai F, Ebrahimi-Ghiri M, Zarrindast MR. Synergistic effect between D-AP5 and muscimol in the nucleus accumbens shell on memory consolidation deficit in adult male Wistar rats: An isobologram analysis. Neurobiol Learn Mem 2017; 141:134-142. [DOI: 10.1016/j.nlm.2017.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/15/2017] [Accepted: 03/25/2017] [Indexed: 10/19/2022]
|
25
|
Fareed A, Kim J, Ketchen B, Kwak WJ, Wang D, Shongo-Hiango H, Drexler K. Effect of heroin use on changes of brain functions as measured by functional magnetic resonance imaging, a systematic review. J Addict Dis 2017; 36:105-116. [DOI: 10.1080/10550887.2017.1280898] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ayman Fareed
- Atlanta VA Medical Center, Decatur, Georgia, USA
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jungjin Kim
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bethany Ketchen
- Atlanta VA Medical Center, Decatur, Georgia, USA
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Woo Jin Kwak
- Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Danzhao Wang
- Atlanta VA Medical Center, Decatur, Georgia, USA
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hilaire Shongo-Hiango
- Atlanta VA Medical Center, Decatur, Georgia, USA
- Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Karen Drexler
- Atlanta VA Medical Center, Decatur, Georgia, USA
- Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
26
|
Loonen AJM, Ivanova SA. Circuits Regulating Pleasure and Happiness: The Evolution of the Amygdalar-Hippocampal-Habenular Connectivity in Vertebrates. Front Neurosci 2016; 10:539. [PMID: 27920666 PMCID: PMC5118621 DOI: 10.3389/fnins.2016.00539] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/04/2016] [Indexed: 01/05/2023] Open
Abstract
Appetitive-searching (reward-seeking) and distress-avoiding (misery-fleeing) behavior are essential for all free moving animals to stay alive and to have offspring. Therefore, even the oldest ocean-dwelling animal creatures, living about 560 million years ago and human ancestors, must have been capable of generating these behaviors. The current article describes the evolution of the forebrain with special reference to the development of the misery-fleeing system. Although, the earliest vertebrate ancestor already possessed a dorsal pallium, which corresponds to the human neocortex, the structure and function of the neocortex was acquired quite recently within the mammalian evolutionary line. Up to, and including, amphibians, the dorsal pallium can be considered to be an extension of the medial pallium, which later develops into the hippocampus. The ventral and lateral pallium largely go up into the corticoid part of the amygdala. The striatopallidum of these early vertebrates becomes extended amygdala, consisting of centromedial amygdala (striatum) connected with the bed nucleus of the stria terminalis (pallidum). This amygdaloid system gives output to hypothalamus and brainstem, but also a connection with the cerebral cortex exists, which in part was created after the development of the more recent cerebral neocortex. Apart from bidirectional connectivity with the hippocampal complex, this route can also be considered to be an output channel as the fornix connects the hippocampus with the medial septum, which is the most important input structure of the medial habenula. The medial habenula regulates the activity of midbrain structures adjusting the intensity of the misery-fleeing response. Within the bed nucleus of the stria terminalis the human homolog of the ancient lateral habenula-projecting globus pallidus may exist; this structure is important for the evaluation of efficacy of the reward-seeking response. The described organization offers a framework for the regulation of the stress response, including the medial habenula and the subgenual cingulate cortex, in which dysfunction may explain the major symptoms of mood and anxiety disorders.
Collapse
Affiliation(s)
- Anton J. M. Loonen
- Department of Pharmacy, University of GroningenGroningen, Netherlands
- GGZ Westelijk Noord-Brabant (GGZ-WNB)Halsteren, Netherlands
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of SciencesTomsk, Russia
- Department of Ecology and Basic Safety, National Research Tomsk Polytechnic UniversityTomsk, Russia
| |
Collapse
|
27
|
Loonen AJM, Ivanova SA. Circuits Regulating Pleasure and Happiness-Mechanisms of Depression. Front Hum Neurosci 2016; 10:571. [PMID: 27891086 PMCID: PMC5102894 DOI: 10.3389/fnhum.2016.00571] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 10/27/2016] [Indexed: 01/22/2023] Open
Abstract
According to our model of the regulation of appetitive-searching vs. distress-avoiding behaviors, the motivation to display these essential conducts is regulated by two parallel cortico-striato-thalamo-cortical, re-entry circuits, including the core and the shell parts of the nucleus accumbens, respectively. An entire series of basal ganglia, running from the caudate nucleus on one side, to the centromedial amygdala on the other side, controls the intensity of these reward-seeking and misery-fleeing behaviors by stimulating the activity of the (pre)frontal and limbic cortices. Hyperactive motivation to display behavior that potentially results in reward induces feelings of hankering (relief leads to pleasure). Hyperactive motivation to exhibit behavior related to avoidance of misery results in dysphoria (relief leads to happiness). These two systems collaborate in a reciprocal fashion. In clinical depression, a mismatch exists between the activities of these two circuits: the balance is shifted to the misery-avoiding side. Five theories have been developed to explain the mechanism of depressive mood disorders, including the monoamine, biorhythm, neuro-endocrine, neuro-immune, and kindling/neuroplasticity theories. This paper describes these theories in relationship to the model (described above) of the regulation of reward-seeking vs. misery-avoiding behaviors. Chronic stress that leads to structural changes may induce the mismatch between the two systems. This mismatch leads to lack of pleasure, low energy, and indecisiveness, on one hand, and dysphoria, continuous worrying, and negative expectations on the other hand. The neuroplastic effects of monoamines, cortisol, and cytokines may mediate the induction of these structural alterations. Long-term exposure to stressful situations (particularly experienced during childhood) may lead to increased susceptibility for developing this condition. This hypothesis opens up the possibility of treating depression with psychotherapy. Genetic and other biological factors (toxic, infectious, or traumatic) may increase sensitivity to the induction of relevant neuroplastic changes. Reversal or compensation of these neuroplastic adjustments may explain the effects of biological therapies in treating depression.
Collapse
Affiliation(s)
- Anton J. M. Loonen
- Department of Pharmacy, University of GroningenGroningen, Netherlands
- GGZ WNB, Mental Health HospitalBergen op Zoom, Netherlands
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of SciencesTomsk, Russia
- National Research Tomsk Polytechnic UniversityTomsk, Russia
| |
Collapse
|
28
|
Gill RS, Mirsattari SM, Leung LS. Resting state functional network disruptions in a kainic acid model of temporal lobe epilepsy. Neuroimage Clin 2016; 13:70-81. [PMID: 27942449 PMCID: PMC5133653 DOI: 10.1016/j.nicl.2016.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/19/2016] [Accepted: 11/01/2016] [Indexed: 12/16/2022]
Abstract
We studied the graph topological properties of brain networks derived from resting-state functional magnetic resonance imaging in a kainic acid induced model of temporal lobe epilepsy (TLE) in rats. Functional connectivity was determined by temporal correlation of the resting-state Blood Oxygen Level Dependent (BOLD) signals between two brain regions during 1.5% and 2% isoflurane, and analyzed as networks in epileptic and control rats. Graph theoretical analysis revealed a significant increase in functional connectivity between brain areas in epileptic than control rats, and the connected brain areas could be categorized as a limbic network and a default mode network (DMN). The limbic network includes the hippocampus, amygdala, piriform cortex, nucleus accumbens, and mediodorsal thalamus, whereas DMN involves the medial prefrontal cortex, anterior and posterior cingulate cortex, auditory and temporal association cortex, and posterior parietal cortex. The TLE model manifested a higher clustering coefficient, increased global and local efficiency, and increased small-worldness as compared to controls, despite having a similar characteristic path length. These results suggest extensive disruptions in the functional brain networks, which may be the basis of altered cognitive, emotional and psychiatric symptoms in TLE.
Collapse
Affiliation(s)
- Ravnoor Singh Gill
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada
- Department of Physiology & Pharmacology, Western University, London, Ontario, Canada
| | - Seyed M. Mirsattari
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada
- Clinical Neurological Sciences, Western University, London, Ontario, Canada
- Department of Biomedical Imaging, Western University, London, Ontario, Canada
- Department of Biomedical Physics, Western University, London, Ontario, Canada
- Department of Psychology, Western University, London, Ontario, Canada
| | - L. Stan Leung
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada
- Department of Physiology & Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
29
|
Gorzelańczyk EJ, Walecki P, Feit J, Kunc M, Fareed A. Improvement of saccadic functions after dosing with methadone in opioid addicted individuals. J Addict Dis 2016; 35:52-7. [PMID: 26488804 DOI: 10.1080/10550887.2016.1107289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the current experiment, we used the saccadometric test to study the effect of a single therapeutic dose of methadone on the integrity of cortico-subcortical brain functioning. In this prospective study, we used the Saccadometer System (Advanced Clinical Instrumentation, Cambridge, UK). The saccadometric test was performed before and 1.5 hours after methadone dosing. We analyzed the following saccadic parameters: latency, duration, amplitude, average and peak velocity, and processing performance (promptness) as well as a number of different types of saccades (like correct/incorrect, under/overshoot, and left-sided/right-sided). The sample consists of 40 subjects with an average 18 years of opioid addiction. The mean age is 35.3 ± 7 (80% males and 20% females). The mean period of heroin dependence is 15.3 ± 6.3 years. The mean daily dose of methadone in substitution therapy is 90 ± 26.5 mg. After administration of a single therapeutic dose of methadone, there were statistically significant differences in the values of saccade duration and latency when compared to the values before the drug administration. Average duration of saccade was significantly longer [51.40 ± 8.75 ms versus 48.93 ± 6.91 ms, z = 2.53, p = .01] and average latency was significantly longer [198.85 ± 52.57 ms versus 183.05 ± 30.95 ms, z = 2.09 p < .03]. This is the first study to test the therapeutic effect of daily methadone dosing on the integrity of the cortico-subcortical brain functions as measured by the saccadometry. More research is needed to explore the effect of illicit opioid use on the integrity of brain structures and functions, and the protective effect of opioid agonist therapy on reversing the damaging effects of illicit opioid use.
Collapse
Affiliation(s)
- Edward Jacek Gorzelańczyk
- a Department of Theoretical Basis of Bio-Medical Sciences and Medical Informatics , Nicolaus Copernicus University Collegium Medicum , Bydgoszcz , Poland.,b Non-Public Health Care Center Sue Ryder Home , Bydgoszcz , Poland.,c Medseven-Outpatient Addiction Treatment , Rzeźniackiego, Bydgoszcz , Poland.,d Institute of Philosophy, Kazimierz Wielki University , Bydgoszcz , Poland
| | - Piotr Walecki
- e Medical College, Jagiellonian University , Kraków , Poland
| | - Julia Feit
- a Department of Theoretical Basis of Bio-Medical Sciences and Medical Informatics , Nicolaus Copernicus University Collegium Medicum , Bydgoszcz , Poland.,b Non-Public Health Care Center Sue Ryder Home , Bydgoszcz , Poland
| | | | - Ayman Fareed
- g Department of Psychiatry , School of Medicine, Emory University , Atlanta , Georgia , USA
| |
Collapse
|
30
|
Clarke J, Ramoz N, Fladung AK, Gorwood P. Higher reward value of starvation imagery in anorexia nervosa and association with the Val66Met BDNF polymorphism. Transl Psychiatry 2016; 6:e829. [PMID: 27271855 PMCID: PMC4931615 DOI: 10.1038/tp.2016.98] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/19/2016] [Accepted: 03/12/2016] [Indexed: 02/06/2023] Open
Abstract
Recent studies support the idea that abnormalities of the reward system contribute to onset and maintenance of anorexia nervosa (AN). Next to cues coding for overweight, other research suggest cues triggering the proposed starvation dependence to be pivotally involved in the AN pathogenesis. We assessed the characteristics of the cognitive, emotional and physiologic response toward disease-specific pictures of female body shapes, in adult AN patients compared with healthy control (HC) women. Frequency and amplitude of skin conductance response (SCR) in 71 patients with AN and 20 HC were registered during processing of stimuli of three weight categories (over-, under- and normal weight). We then assessed the role of the Val66Met BDNF polymorphism as a potential intermediate factor. AN patients reported more positive feelings during processing of underweight stimuli and more negative feelings for normal- and overweight stimuli. The SCR showed a group effect (P=0.007), AN patients showing overall higher frequency of the response. SCR within patients was more frequent during processing of underweight stimuli compared with normal- and overweight stimuli. The Met allele of the BDNF gene was not more frequent in patients compared with controls, but was associated to an increased frequency of SCR (P=0.008) in response to cues for starvation. A higher positive value of starvation, rather than more negative one of overweight, might more accurately define females with AN. The Met allele of the BDNF gene could partly mediate the higher reward value of starvation observed in AN.
Collapse
Affiliation(s)
- J Clarke
- Clinique des Maladies Mentales et de l'Encéphale (CMME), Hospital Sainte-Anne, Paris-Descartes University, Paris, France,Centre of Psychiatry and Neuroscience, INSERM UMR 894, Paris, France
| | - N Ramoz
- Clinique des Maladies Mentales et de l'Encéphale (CMME), Hospital Sainte-Anne, Paris-Descartes University, Paris, France,Centre of Psychiatry and Neuroscience, INSERM UMR 894, Paris, France
| | - A-K Fladung
- Department of Psychiatry and Psychotherapy, University of Ulm, Ulm, Germany
| | - P Gorwood
- Clinique des Maladies Mentales et de l'Encéphale (CMME), Hospital Sainte-Anne, Paris-Descartes University, Paris, France,Centre of Psychiatry and Neuroscience, INSERM UMR 894, Paris, France,CMME, Hospital Sainte-Anne, Paris-Descartes University, 100 rue de la Santé, Paris 75014, France. E-mail:
| |
Collapse
|
31
|
Motahari AA, Sahraei H, Meftahi GH. Role of Nitric Oxide on Dopamine Release and Morphine-Dependency. Basic Clin Neurosci 2016; 7:283-290. [PMID: 27872689 PMCID: PMC5102557 DOI: 10.15412/j.bcn.03070401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The catastrophic effects of opioids use on public health and the economy are documented clearly in numerous studies. Repeated morphine administration can lead to either a decrease (tolerance) or an increase (sensitization) in its behavioral and rewarding effects. Morphine-induced sensitization is a major problem and plays an important role in abuse of the opioid drugs. Studies reported that morphine may exert its effects by the release of nitric oxide (NO). NO is a potent neuromodulator, which is produced by nitric oxide synthase (NOS). However, the exact role of NO in the opioid-induced sensitization is unknown. In this study, we reviewed the role of NO on opioid-induced sensitization in 2 important, rewarding regions of the brain: nucleus accumbens and ventral tegmentum. In addition, we focused on the contribution of NO on opioid-induced sensitization in the limbic system.
Collapse
Affiliation(s)
- Amir Arash Motahari
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
32
|
Baldermann JC, Schüller T, Huys D, Becker I, Timmermann L, Jessen F, Visser-Vandewalle V, Kuhn J. Deep Brain Stimulation for Tourette-Syndrome: A Systematic Review and Meta-Analysis. Brain Stimul 2015; 9:296-304. [PMID: 26827109 DOI: 10.1016/j.brs.2015.11.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/15/2015] [Accepted: 11/13/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND A significant proportion of patients with Tourette syndrome (TS) continue to experience symptoms across adulthood that in severe cases fail to respond to standard therapies. For these cases, deep brain stimulation (DBS) is emerging as a promising treatment option. OBJECTIVE We conducted a systematic literature review to evaluate the efficacy of DBS for GTS. METHODS Individual data of case reports and series were pooled; the Yale Global Tic Severity Scale (YGTSS) was chosen as primary outcome parameter. RESULTS In total, 57 studies were eligible, including 156 cases. Overall, DBS resulted in a significant improvement of 52.68% (IQR = 40.74, p < 0.001) in the YGTSS. Analysis of controlled studies significantly favored stimulation versus off stimulation with a standardized mean difference of 0.96 (95% CI: 0.36-1.56). Disentangling different target points revealed significant YGTSS reductions after stimulation of the thalamus, the posteroventrolateral part and the anteromedial part of the globus pallidus internus, the anterior limb of the internal capsule and nucleus accumbens with no significant difference between these targets. A significant negative correlation of preoperative tic scores with the outcome of thalamic stimulation was found. CONCLUSIONS Despite small patient numbers, we conclude that DBS for GTS is a valid option for medically intractable patients. Different brain targets resulted in comparable improvement rates, indicating a modulation of a common network. Future studies might focus on a better characterization of the clinical effects of distinct regions, rather than searching for a unique target.
Collapse
Affiliation(s)
- Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany.
| | - Thomas Schüller
- Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Ingrid Becker
- Institute of Medical Statistics, Informatics and Epidemiology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| |
Collapse
|
33
|
Loonen AJM, Ivanova SA. Circuits regulating pleasure and happiness in major depression. Med Hypotheses 2015; 87:14-21. [PMID: 26826634 DOI: 10.1016/j.mehy.2015.12.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/21/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
The introduction of selective serotonin reuptake inhibitors has gradually changed the borders of the major depression disease class. Anhedonia was considered a cardinal symptom of endogenous depression, but the potential of selective serotonin reuptake inhibitors to treat anxiety disorders has increased the relevance of stress-induced morbidity. This shift has led to an important heterogeneity of current major depressive disorder. The complexity can be disentangled by postulating the existence of two different but mutually interacting neuronal circuits regulating the intensity of anhedonia (lack of pleasure) and dysphoria (lack of happiness). These circuits are functionally dominated by partly closed limbic (regulating misery-fleeing behaviour) and extrapyramidal (regulating reward-seeking behaviour) cortico-striato-thalamo-cortical (CSTC) circuits. The re-entry circuits include the shell and core parts of the accumbens nucleus, respectively. Pleasure can be considered to result from finding relief from the hypermotivation to exhibit rewarding behaviour, and happiness from finding relief from negative or conflicting circumstances. Hyperactivity of the extrapyramidal CSTC circuit results in craving, whereas hyperactivity of the limbic system results in dysphoria.
Collapse
Affiliation(s)
- A J M Loonen
- Department of Pharmacy, University of Groningen, The Netherlands.
| | - S A Ivanova
- Mental Health Research Institute, and National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| |
Collapse
|
34
|
Loonen AJM, Ivanova SA. Circuits regulating pleasure and happiness: the evolution of reward-seeking and misery-fleeing behavioral mechanisms in vertebrates. Front Neurosci 2015; 9:394. [PMID: 26557051 PMCID: PMC4615821 DOI: 10.3389/fnins.2015.00394] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022] Open
Abstract
The very first free-moving animals in the oceans over 540 million years ago must have been able to obtain food, territory, and shelter, as well as reproduce. Therefore, they would have needed regulatory mechanisms to induce movements enabling achievement of these prerequisites for survival. It can be useful to consider these mechanisms in primitive chordates, which represent our earliest ancestors, to develop hypotheses addressing how these essential parts of human behavior are regulated and relate to more sophisticated behavioral manifestations such as mood. An animal comparable to lampreys was the earliest known vertebrate with a modern forebrain consisting of old and new cortical parts. Lampreys have a separate dorsal pallium, the forerunner of the most recently developed part of the cerebral cortex. In addition, the lamprey extrapyramidal system (EPS), which regulates movement, is modern. However, in lampreys and their putative forerunners, the hagfishes, the striatum, which is the input part of this EPS, probably corresponds to the human centromedial amygdala, which in higher vertebrates is part of a system mediating fear and anxiety. Both animals have well-developed nuclear habenulae, which are involved in several critical behaviors; in lampreys this system regulates the reward system that reinforces appetitive-seeking behavior or the avoidance system that reinforces flight behavior resulting from negative inputs. Lampreys also have a distinct glutamatergic nucleus, the so-called habenula-projection globus pallidus, which receives input from glutamatergic and GABAergic signals and gives output to the lateral habenula. Via this route, this nucleus influences midbrain monoaminergic nuclei and regulates the food acquisition system. These various structures involved in motor regulation in the lampreys may be conserved in humans and include two complementary mechanisms for reward reinforcement and avoidance behaviors. The first system is associated with experiencing pleasure and the second with happiness. The activities of these mechanisms are regulated by a tract running via the habenula to the upper brainstem. Identifying the human correlate of the lamprey habenula-projecting globus pallidus may help in elucidating the mechanism of the antidepressant effects of glutamatergic drugs.
Collapse
Affiliation(s)
- Anton J M Loonen
- Department of Pharmacy, Geestelijke GezondheidsZorg Westelijk Noord-Brabant Chair of Pharmacotherapy in Psychiatric Patients, University of Groningen Groningen, Netherlands ; Mental Health Institute Westelijk Noord-Brabant Halsteren, Netherlands
| | - Svetlana A Ivanova
- Molecular Biology and Biological Psychiatry, Mental Health Research Institute Tomsk, Russia ; Department of Ecology and Basic Safety, National Research Tomsk Polytechnic University Tomsk, Russia
| |
Collapse
|
35
|
McCollum LA, Walker CK, Roche JK, Roberts RC. Elevated Excitatory Input to the Nucleus Accumbens in Schizophrenia: A Postmortem Ultrastructural Study. Schizophr Bull 2015; 41:1123-32. [PMID: 25817135 PMCID: PMC4535638 DOI: 10.1093/schbul/sbv030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cause of schizophrenia (SZ) is unknown and no single region of the brain can be pinpointed as an area of primary pathology. Rather, SZ results from dysfunction of multiple neurotransmitter systems and miswiring between brain regions. It is necessary to elucidate how communication between regions is disrupted to advance our understanding of SZ pathology. The nucleus accumbens (NAcc) is a prime region of interest, where inputs from numerous brain areas altered in SZ are integrated. Aberrant signaling in the NAcc is hypothesized to cause symptoms of SZ, but it is unknown if these abnormalities are actually present. Electron microscopy was used to study the morphology of synaptic connections in SZ. The NAcc core and shell of 6 SZ subjects and 8 matched controls were compared in this pilot study. SZ subjects had a 19% increase in the density of asymmetric axospinous synapses (characteristic of excitatory inputs) in the core, but not the shell. Both groups had similar densities of symmetric synapses (characteristic of inhibitory inputs). The postsynaptic densities of asymmetric synapses had 22% smaller areas in the core, but not the shell. These results indicate that the core receives increased excitatory input in SZ, potentially leading to dysfunctional dopamine neurotransmission and cortico-striatal-thalamic stimulus processing. The reduced postsynaptic density size of asymmetric synapses suggests impaired signaling at these synapses. These findings enhance our understanding of the role the NAcc might play in SZ and the interaction of glutamatergic and dopaminergic abnormalities in SZ.
Collapse
Affiliation(s)
- Lesley A. McCollum
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL;,*To whom correspondence should be addressed; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 841, 1720 2nd Avenue South, Birmingham, AL 35294, US; tel: +1-205-934-1858, fax: +1-205-996-9377, e-mail:
| | - Courtney K. Walker
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL
| | - Joy K. Roche
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL
| | - Rosalinda C. Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
36
|
Local inactivation of Gpr88 in the nucleus accumbens attenuates behavioral deficits elicited by the neonatal administration of phencyclidine in rats. Mol Psychiatry 2015; 20:951-8. [PMID: 25155879 DOI: 10.1038/mp.2014.92] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 06/20/2014] [Accepted: 07/08/2014] [Indexed: 12/15/2022]
Abstract
Gpr88, an orphan G-protein-coupled receptor, is highly and almost exclusively expressed in the medium spiny projection neurons of the striatum, and may thus participate in the control of motor functions and cognitive processing that are impaired in neuropsychiatric disorders such as Parkinson's disease or schizophrenia (SZ). This study investigated the relevance of Gpr88 to SZ-associated behavior by knocking down Gpr88 gene expression in the ventral striatum (nucleus accumbens) in a neurodevelopmental rat model of SZ, generated by neonatal treatment with phencyclidine (PCP). In this model, we compared the effects of the local inactivation in the adult animal of the expression of Gpr88 and of Drd2, a gene strongly implicated in the etiology of SZ and coding for the dopamine receptor type 2 (D2). To inactivate specifically Gpr88 and D2 expression, we used the lentiviral vector-mediated microRNA silencing strategy. The neonatal PCP treatment induced in the adult rat hyperlocomotion in response to amphetamine (Amph) and social novelty discrimination (SND) deficits. The inactivation of D2 did not modify the locomotor response to Amph or the cognitive deficits induced by PCP, whereas the silencing of Gpr88 inhibited the Amph-induced hyperlocomotion and reduced the impairment of SND elicited by neonatal exposure to PCP. These observations suggest a role for Gpr88 in the regulation of cognitive and motor functions, and support its relevance to the pathophysiology and treatment of SZ and other disorders involving dysfunction of the accumbens-striatal complex.
Collapse
|
37
|
Yager LM, Garcia AF, Wunsch AM, Ferguson SM. The ins and outs of the striatum: role in drug addiction. Neuroscience 2015; 301:529-41. [PMID: 26116518 DOI: 10.1016/j.neuroscience.2015.06.033] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/05/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
Addiction is a chronic relapsing disorder characterized by the loss of control over drug intake, high motivation to obtain the drug, and a persistent craving for the drug. Accumulating evidence implicates cellular and molecular alterations within cortico-basal ganglia-thalamic circuitry in the development and persistence of this disease. The striatum is a heterogeneous structure that sits at the interface of this circuit, receiving input from a variety of brain regions (e.g., prefrontal cortex, ventral tegmental area) to guide behavioral output, including motor planning, decision-making, motivation and reward. However, the vast interconnectivity of this circuit has made it difficult to isolate how individual projections and cellular subtypes within this circuit modulate each of the facets of addiction. Here, we review the use of new technologies, including optogenetics and DREADDs (Designer Receptors Exclusively Activated by Designer Drugs), in unraveling the role of the striatum in addiction. In particular, we focus on the role of striatal cell populations (i.e., direct and indirect pathway medium spiny neurons) and striatal dopaminergic and glutamatergic afferents in addiction-related plasticity and behaviors.
Collapse
Affiliation(s)
- L M Yager
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - A F Garcia
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Neuroscience Graduate Program, University of Washington, Seattle, WA, United States
| | - A M Wunsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Neuroscience Graduate Program, University of Washington, Seattle, WA, United States
| | - S M Ferguson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Neuroscience Graduate Program, University of Washington, Seattle, WA, United States; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.
| |
Collapse
|
38
|
Feja M, Koch M. Frontostriatal systems comprising connections between ventral medial prefrontal cortex and nucleus accumbens subregions differentially regulate motor impulse control in rats. Psychopharmacology (Berl) 2015; 232:1291-302. [PMID: 25308377 DOI: 10.1007/s00213-014-3763-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/29/2014] [Indexed: 12/23/2022]
Abstract
RATIONALE Deficits in impulse control are prevalent in several neuropsychiatric disorders that are based on impaired frontostriatal communication. The ventral medial prefrontal cortex (vmPFC) and the nucleus accumbens (NAc) are key substrates of impulse control in rats. The NAc core and shell are considered to be differentially involved suggesting a functional distinction between the connections of the vmPFC and particular NAc subregions concerning impulse control. OBJECTIVES/METHODS In the present study, simultaneous inactivation of the rats' vmPFC and NAc core or shell by contralateral microinfusion of the GABAA receptor agonist muscimol was used to investigate their relevance for impulse control in the five-choice serial reaction time task (5-CSRTT). RESULTS Disconnection of the vmPFC and NAc shell produced specific impairments in inhibitory control, indicated by significantly increased premature responding and an enhanced number of time-out responses, closely resembling the effects of bilateral inactivation of either the vmPFC or NAc shell previously reported using the same task. In contrast, disconnection of the vmPFC and NAc core only slightly increased the rate of omissions and latency of reward collection indicating attentional and motivational deficits. CONCLUSIONS Our results extend previous findings indicating the functional specialisation of frontostriatal networks and show a differential contribution of specific vmPFC-NAc connections to behavioural control depending on the NAc subregion. We conclude that the regulation of impulse control in rats requires an intact connection between the vmPFC and the NAc shell, while the vmPFC-NAc core projection seems to be of minor importance.
Collapse
Affiliation(s)
- Malte Feja
- Department of Neuropharmacology, Brain Research Institute, Center for Cognitive Sciences, University of Bremen, PO Box 330440, 28359, Bremen, Germany,
| | | |
Collapse
|
39
|
Yan C, Yang T, Yu QJ, Jin Z, Cheung EFC, Liu X, Chan RCK. Rostral medial prefrontal dysfunctions and consummatory pleasure in schizophrenia: a meta-analysis of functional imaging studies. Psychiatry Res 2015; 231:187-96. [PMID: 25637357 DOI: 10.1016/j.pscychresns.2015.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 08/22/2014] [Accepted: 01/01/2015] [Indexed: 01/10/2023]
Abstract
A large number of imaging studies have examined the neural correlates of consummatory pleasure and anticipatory pleasure in schizophrenia, but the brain regions where schizophrenia patients consistently demonstrate dysfunctions remain unclear. We performed a series of meta-analyses on imaging studies to delineate the regions associated with consummatory and anticipatory pleasure dysfunctions in schizophrenia. Nineteen functional magnetic resonance imaging or positron emission tomography studies using whole brain analysis were identified through a literature search (PubMed and EBSCO; January 1990-February 2014). Activation likelihood estimation was performed using the GingerALE software. The clusters identified were obtained after controlling for the false discovery rate at p<0.05 and applying a minimum cluster size of 200 mm(3). It was found that schizophrenia patients exhibited decreased activation mainly in the rostral medial prefrontal cortex (rmPFC), the right parahippocampus/amygala, and other limbic regions (e.g., the subgenual anterior cingulate cortex, the putamen, and the medial globus pallidus) when consummating pleasure. Task instructions (feeling vs. stimuli) were differentially related to medial prefrontal dysfunction in schizophrenia. When patients anticipated pleasure, reduced activation in the left putamen was observed, despite the limited number of studies. Our findings suggest that the medial prefrontal cortex and limbic regions may play an important role in neural dysfunction underlying deficits in consummatory pleasure in schizophrenia.
Collapse
Affiliation(s)
- Chao Yan
- Shanghai Key Laboratory of Brain Functional Genomics (MOE & STCSM), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tammy Yang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Qi-Jing Yu
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Jin
- Beijing 306 Hospital, Beijing, China
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Special Administrative Region, China
| | - Xun Liu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Magnetic Resonance Imaging Research Centre, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Magnetic Resonance Imaging Research Centre, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
40
|
Weng HH, Chen CF, Tsai YH, Wu CY, Lee M, Lin YC, Yang CT, Tsai YH, Yang CY. Gray matter atrophy in narcolepsy: An activation likelihood estimation meta-analysis. Neurosci Biobehav Rev 2015; 59:53-63. [PMID: 25825285 DOI: 10.1016/j.neubiorev.2015.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 02/07/2015] [Accepted: 03/19/2015] [Indexed: 12/17/2022]
Abstract
The authors reviewed the literature on the use of voxel-based morphometry (VBM) in narcolepsy magnetic resonance imaging (MRI) studies via the use of a meta-analysis of neuroimaging to identify concordant and specific structural deficits in patients with narcolepsy as compared with healthy subjects. We used PubMed to retrieve articles published between January 2000 and March 2014. The authors included all VBM research on narcolepsy and compared the findings of the studies by using gray matter volume (GMV) or gray matter concentration (GMC) to index differences in gray matter. Stereotactic data were extracted from 8 VBM studies of 149 narcoleptic patients and 162 control subjects. We applied activation likelihood estimation (ALE) technique and found significant regional gray matter reduction in the bilateral hypothalamus, thalamus, globus pallidus, extending to nucleus accumbens (NAcc) and anterior cingulate cortex (ACC), left mid orbital and rectal gyri (BAs 10 and 11), right inferior frontal gyrus (BA 47), and the right superior temporal gyrus (BA 41) in patients with narcolepsy. The significant gray matter deficits in narcoleptic patients occurred in the bilateral hypothalamus and frontotemporal regions, which may be related to the emotional processing abnormalities and orexin/hypocretin pathway common among populations of patients with narcolepsy.
Collapse
Affiliation(s)
- Hsu-Huei Weng
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taiwan; Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan; Department of Psychology, National Chung Cheng University, Chiayi, Taiwan
| | - Chih-Feng Chen
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taiwan
| | - Yuan-Hsiung Tsai
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taiwan
| | - Chih-Ying Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taiwan
| | - Meng Lee
- Department of Neurology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taiwan
| | - Yu-Ching Lin
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan; Division of Pulmonary and Critical Care Medicine and Department of Respiratory Care, Chang Gung Memorial Hospital, Chiayi, Taiwan; Department of Respiratory Care, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Ta Yang
- Division of Pulmonary and Critical Care Medicine of Chang Gung Memorial Hospital, Chiayi, Taiwan; Department of Respiratory Care, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Huang Tsai
- Division of Pulmonary and Critical Care Medicine of Chang Gung Memorial Hospital, Chiayi, Taiwan; Department of Respiratory Therapy, Chang Gung University, Taoyuan, Taiwan.
| | - Chun-Yuh Yang
- Faculty of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
41
|
Reinhard I, Leménager T, Fauth-Bühler M, Hermann D, Hoffmann S, Heinz A, Kiefer F, Smolka MN, Wellek S, Mann K, Vollstädt-Klein S. A comparison of region-of-interest measures for extracting whole brain data using survival analysis in alcoholism as an example. J Neurosci Methods 2015; 242:58-64. [PMID: 25593047 DOI: 10.1016/j.jneumeth.2015.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 01/01/2015] [Accepted: 01/03/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Aggregation of functional magnetic resonance imaging (fMRI) data in regions-of-interest (ROIs) is required for complex statistical analyses not implemented in standard fMRI software. Different data-aggregation measures assess various aspects of neural activation, including spatial extent and intensity. NEW METHOD In this study, conducted within the framework of the PREDICT study, we compared different aggregation measures for voxel-wise fMRI activations to be used as prognostic factors for relapse in 49 abstinent alcohol-dependent individuals in an outpatient setting using a cue-reactivity task. We compared the importance of the data-aggregation measures as prognostic factors for treatment outcomes by calculating the proportion of explained variation. RESULTS AND COMPARISON WITH EXISTING METHOD(S) Relapse risk was associated with cue-induced brain activation during abstinence in the ventral striatum (VS) and in the orbitofrontal cortex (OFC). While various ROI measures proved appropriate for using fMRI cue-reactivity to predict relapse, on the descriptive level the most "important" prognostic factor was a measure defined as the sum of t-values exceeding an individually defined threshold. Data collected in the VS was superior to that from other regions. CONCLUSIONS In conclusion, it seems that fMRI cue-reactivity, especially in the VS, can be used as prognostic factor for relapse in abstinent alcohol-dependent patients. Our findings suggest that data-aggregation measures that take both spatial extent and intensity of cue-induced brain activation into account make better biomarkers for predicting relapse than measures that consider an activation's spatial extent or intensity alone.
Collapse
Affiliation(s)
- I Reinhard
- Department of Biostatistics, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany
| | - T Leménager
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany
| | - M Fauth-Bühler
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany
| | - D Hermann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany
| | - S Hoffmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany
| | - A Heinz
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charité Mitte, 10117 Berlin, Germany
| | - F Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany
| | - M N Smolka
- Section of Systems Neuroscience, Department of Psychiatry and Psychotherapy, Technische Universität Dresden, 01187 Dresden, Germany
| | - S Wellek
- Department of Biostatistics, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany
| | - K Mann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany
| | - S Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany.
| |
Collapse
|
42
|
Abstract
In this review, we explore the similarities and differences in the behavioural neurobiology found in the mouse models of Huntington's disease (HD) and the human disease state. The review is organised with a comparative focus on the functional domains of motor control, cognition and behavioural disturbance (akin to psychiatric disturbance in people) and how our knowledge of the underlying physiological changes that are manifest in the HD mouse lines correspond to those seen in the HD clinical population. The review is framed in terms of functional circuitry and neurotransmitter systems and how abnormalities in these systems impact on the behavioural readouts across the mouse lines and how these may correspond to the deficits observed in people. In addition, interpretational issues associated with the data from animal studies are discussed.
Collapse
Affiliation(s)
- Simon P Brooks
- Brain Repair Group, Division of Neuroscience, Cardiff University School of Bioscience, Museum Avenue, Cardiff, Wales, UK,
| | | |
Collapse
|
43
|
The dopamine stabilizer (-)-OSU6162 occupies a subpopulation of striatal dopamine D2/D3 receptors: an [(11)C]raclopride PET study in healthy human subjects. Neuropsychopharmacology 2015; 40:472-9. [PMID: 25248987 PMCID: PMC4443962 DOI: 10.1038/npp.2014.195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/14/2014] [Accepted: 06/16/2014] [Indexed: 11/08/2022]
Abstract
(-)-OSU6162 is a dopamine stabilizer that can counteract both hyperdopaminergic and hypodopaminergic states. In this study, D2/D3 receptor occupancy of (-)-OSU6162 in the human brain was investigated using positron emission tomography (PET). Twelve male healthy volunteers underwent [(11)C]raclopride PET scanning before and 1 h after a single oral dose of (-)-OSU6162 (15-90 mg). Blood samples for determination of (-)-OSU6162 and prolactin plasma levels were collected at Tmax. Parametric images of [(11)C]raclopride binding potential relative to nondisplaceable tissue (cerebellar grey matter) uptake (BPND) at baseline and after (-)-OSU6162 administration were generated using the simplified reference tissue model. MRI-based regions of interest were defined for the striatum, composed of caudate nucleus and putamen, and projected onto the co-registered parametric [(11)C]raclopride BPND image. Furthermore, three striatal subregions, ie, anterior dorsal caudate, anterior dorsal putamen, and ventral striatum, were defined manually and additionally analyzed. Plasma concentrations of (-)-OSU6162, ranging from 0.01 to 0.9 μM, showed a linear relationship with prolactin levels, reflecting blockade of pituitary D2 receptors. A concentration-dependent increase in striatal D2/D3 receptor occupancy was observed, reaching a value of about 20% at an (-)-OSU6162 plasma level of 0.2 μM, and which for higher concentrations leveled off to a maximal occupancy of about 40%. Findings were similar in the striatal subregions. The present data corroborate the notion that (-)-OSU6162 binds preferentially to a subpopulation of D2/D3 receptors, possibly predominantly extrasynaptic, and this may form the basis for the dopamine-stabilizing properties of (-)-OSU6162.
Collapse
|
44
|
Göttlich M, Krämer UM, Kordon A, Hohagen F, Zurowski B. Decreased limbic and increased fronto-parietal connectivity in unmedicated patients with obsessive-compulsive disorder. Hum Brain Mapp 2014; 35:5617-32. [PMID: 25044747 PMCID: PMC6868939 DOI: 10.1002/hbm.22574] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/30/2014] [Accepted: 06/24/2014] [Indexed: 12/20/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is characterized by recurrent intrusive thoughts and ritualized, repetitive behaviors, or mental acts. Convergent experimental evidence from neuroimaging and neuropsychological studies supports an orbitofronto-striato-thalamo-cortical dysfunction in OCD. Moreover, an over excitability of the amygdala and over monitoring of thoughts and actions involving the anterior cingulate, frontal and parietal cortex has been proposed as aspects of pathophysiology in OCD. We chose a data driven, graph theoretical approach to investigate brain network organization in 17 unmedicated OCD patients and 19 controls using resting-state fMRI. OCD patients showed a decreased connectivity of the limbic network to several other brain networks: the basal ganglia network, the default mode network, and the executive/attention network. The connectivity within the limbic network was also found to be decreased in OCD patients compared to healthy controls. Furthermore, we found a stronger connectivity of brain regions within the executive/attention network in OCD patients. This effect was positively correlated with disease severity. The decreased connectivity of limbic regions (amygdala, hippocampus) may be related to several neurocognitive deficits observed in OCD patients involving implicit learning, emotion processing and expectation, and processing of reward and punishment. Limbic disconnection from fronto-parietal regions relevant for (re)-appraisal may explain why intrusive thoughts become and/or remain threatening to patients but not to healthy subjects. Hyperconnectivity within the executive/attention network might be related to OCD symptoms such as excessive monitoring of thoughts and behavior as a dysfunctional strategy to cope with threat and uncertainty.
Collapse
Affiliation(s)
| | | | - Andreas Kordon
- Department of PsychiatryUniversity of LübeckLübeckGermany
| | - Fritz Hohagen
- Department of PsychiatryUniversity of LübeckLübeckGermany
| | - Bartosz Zurowski
- Department of PsychiatryUniversity of LübeckLübeckGermany
- Department of Systems NeuroscienceUniversity of HamburgHamburgGermany
| |
Collapse
|
45
|
Feja M, Hayn L, Koch M. Nucleus accumbens core and shell inactivation differentially affects impulsive behaviours in rats. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:31-42. [PMID: 24810333 DOI: 10.1016/j.pnpbp.2014.04.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/24/2014] [Accepted: 04/26/2014] [Indexed: 11/28/2022]
Abstract
Impulsivity is a multifactorial phenomenon, determined by deficits in decision-making (impulsive choice) and impulse control (impulsive action). Recent findings indicate that impulsive behaviour is not only top-down controlled by cortical areas, but also modulated at subcortical level. The nucleus accumbens (NAc) might be a key substrate in cortico-limbic-striatal circuits involved in impulsive behaviour. Dissociable effects of the NAc subregions in various behavioural paradigms point to a potential functional distinction between NAc core and shell concerning different types of impulsivity. The present study used reversible inactivation of the rats' NAc core and shell via bilateral microinfusion of the GABAA receptor agonist muscimol (0.05μg/0.3μl) and fluorophore-conjugated muscimol (FCM, 0.27μg/0.3μl) in order to study their contribution to different aspects of impulse control in a 5-choice serial reaction time task (5-CSRTT) and impulsive choice in a delay-based decision-making T-maze task. Acute inactivation of NAc core as well as shell by muscimol increased impulsive choice, with higher impairments of the rats' waiting capacity in the T-maze following core injections compared to shell. Intra-NAc shell infusion of muscimol also induced specific impulse control deficits in the 5-CSRTT, while deactivation of the core caused severe general impairments in task performance. FCM did not affect animal behaviour. Our findings reveal clear involvement of NAc shell in both forms of impulsivity. Both subareas play a key role in the regulation of impulsive decision-making, but show functional dichotomy regarding impulse control with the core being more implicated in motivational and motor aspects.
Collapse
Affiliation(s)
- Malte Feja
- Department of Neuropharmacology, Brain Research Institute, Center for Cognitive Sciences, University of Bremen, PO Box 330440, 28359 Bremen, Germany.
| | - Linda Hayn
- Department of Neuropharmacology, Brain Research Institute, Center for Cognitive Sciences, University of Bremen, PO Box 330440, 28359 Bremen, Germany.
| | - Michael Koch
- Department of Neuropharmacology, Brain Research Institute, Center for Cognitive Sciences, University of Bremen, PO Box 330440, 28359 Bremen, Germany.
| |
Collapse
|
46
|
Gorzelańczyk EJ, Fareed A, Walecki P, Feit J, Kunc M. Risk behavior in opioid-dependent individuals after the administration of a therapeutic dose of methadone. Am J Addict 2014; 23:608-12. [PMID: 25251600 DOI: 10.1111/j.1521-0391.2014.12154.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 05/18/2014] [Accepted: 06/16/2014] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Evidence suggests that methadone may play a protective role in the faulty decision-making in heroin-addicted individuals. This may reduce craving for opioids and the risky decisions associated with active opioid use. METHODS We tested the effect of a daily therapeutic dose of methadone on faulty decision-making in eighty (n = 80) individuals with a history of opioid addiction. We used the Iowa Gambling Task (IGT) and compared the score and response time before and after the daily methadone dosing. RESULTS The mean net IGT score before methadone dose was 10 (±22) and 22 (±23) after methadone dose (t = 4.23, p = .00006). These results reflect statistically significant improvement in faulty decisions after the administration of the daily methadone dose. The mean response time for the reward cards before methadone dose were 1,856 ms (±871) and 1,465 ms (±851) after methadone dose (t = 2.55, p = .012). The mean response time for the punishment cards before methadone dose were 1,688 ms (±911) and 1,399 ms (±827) after methadone dose (t = 1.86, p = .065). These results reflect statistically significant improvement in response time to a rewarding healthy decisions after the administration of the daily methadone dose. CONCLUSIONS AND SCIENTIFIC SIGNIFICANCE This is the first study to report the effect of a therapeutic dose of methadone on improving faulty decisions for individuals with a long history of opioids addiction. This study demonstrated that the time to making a healthy decision was significantly shorter as a result of administration of methadone.
Collapse
Affiliation(s)
- Edward Jacek Gorzelańczyk
- Department of Theoretical Basis of Bio-Medical Sciences and Medical Informatics, Nicolaus Copernicus University Collegium Medicum, Bydgoszcz, Poland; Institute of Philosophy, Kazimierz Wielki University, Bydgoszcz, Poland; Non-Public Health Care Center Sue Ryder Home, Bydgoszcz, Poland; Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland; Medseven-Outpatient Addiction Treatment, Bydgoszcz, Poland
| | | | | | | | | |
Collapse
|
47
|
Stress hormone exposure reduces mGluR5 expression in the nucleus accumbens: functional implications for interoceptive sensitivity to alcohol. Neuropsychopharmacology 2014; 39:2376-86. [PMID: 24713611 PMCID: PMC4138747 DOI: 10.1038/npp.2014.85] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/11/2014] [Accepted: 04/02/2014] [Indexed: 12/19/2022]
Abstract
Escalations in alcohol drinking associated with experiencing stressful life events and chronic life stressors may be related to altered sensitivity to the interoceptive/subjective effects of alcohol. Indeed, through the use of drug discrimination methods, rats show decreased sensitivity to the discriminative stimulus (interoceptive) effects of alcohol following exposure to the stress hormone corticosterone (CORT). This exposure produces heightened elevations in plasma CORT levels (eg, as may be experienced by an individual during stressful episodes). We hypothesized that decreased sensitivity to alcohol may be related, in part, to changes in metabotropic glutamate receptors-subtype 5 (mGluR5) in the nucleus accumbens, as these receptors in this brain region are known to regulate the discriminative stimulus effects of alcohol. In the accumbens, we found reduced mGluR5 expression (immunohistochemistry and Western blot) and decreased neural activation (as measured by c-Fos immunohistochemistry) in response to a moderate alcohol dose (1 g/kg) following CORT exposure (7 days). The functional role of these CORT-induced adaptations in relation to the discriminative stimulus effects of alcohol was confirmed, as both the systemic administration of 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) an mGluR5 positive allosteric modulator and the intra-accumbens administration of (R,S)-2-Amino-2-(2-chloro-5-hydroxyphenyl)acetic acid sodium salt (CHPG) an mGluR5 agonist restored sensitivity to alcohol in discrimination-trained rats. These results suggest that activation of mGluR5 may alleviate the functional impact of the CORT-induced downregulation of mGluR5 in relation to sensitivity to alcohol. Understanding the contribution of such neuroadaptations to the interoceptive effects of alcohol may enrich our understanding of potential changes in subjective sensitivity to alcohol during stressful episodes.
Collapse
|
48
|
Rasekhi K, Oryan S, Nasehi M, Zarrindast MR. Involvement of the nucleus accumbens shell glutamatergic system in ACPA-induced impairment of inhibitory avoidance memory consolidation. Behav Brain Res 2014; 269:28-36. [DOI: 10.1016/j.bbr.2014.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/30/2022]
|
49
|
Grèzes J, Valabrègue R, Gholipour B, Chevallier C. A direct amygdala-motor pathway for emotional displays to influence action: A diffusion tensor imaging study. Hum Brain Mapp 2014; 35:5974-83. [PMID: 25053375 DOI: 10.1002/hbm.22598] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 07/01/2014] [Accepted: 07/15/2014] [Indexed: 12/11/2022] Open
Abstract
An important evolutionary function of emotions is to prime individuals for action. Although functional neuroimaging has provided evidence for such a relationship, little is known about the anatomical substrates allowing the limbic system to influence cortical motor-related areas. Using diffusion-weighted magnetic resonance imaging and probabilistic tractography on a cohort of 40 participants, we provide evidence of a structural connection between the amygdala and motor-related areas (lateral and medial precentral, motor cingulate and primary motor cortices, and postcentral gyrus) in humans. We then compare this connection with the connections of the amygdala with emotion-related brain areas (superior temporal sulcus, fusiform gyrus, orbitofrontal cortex, and lateral inferior frontal gyrus) and determine which amygdala nuclei are at the origin of these projections. Beyond the well-known subcortical influences over automatic and stereotypical emotional behaviors, a direct amygdala-motor pathway might provide a mechanism by which the amygdala can influence more complex motor behaviors.
Collapse
Affiliation(s)
- Julie Grèzes
- Cognitive Neuroscience Laboratory, Inserm U960, Institute for Cognitive Studies, Ecole Normale Supérieure, Paris, France; Centre de NeuroImagerie de Recherche - CENIR, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Université Pierre et Marie Curie-Paris 6, UMR-S975, Inserm U975, CNRS UMR7225, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
50
|
Yang FC, Liang K. Interactions of the dorsal hippocampus, medial prefrontal cortex and nucleus accumbens in formation of fear memory: Difference in inhibitory avoidance learning and contextual fear conditioning. Neurobiol Learn Mem 2014; 112:186-94. [DOI: 10.1016/j.nlm.2013.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/10/2013] [Accepted: 07/17/2013] [Indexed: 11/15/2022]
|