1
|
Meissner J, Eysmont K, Matylla-Kulińska K, Konarska MM. Characterization of Cwc2, U6 snRNA, and Prp8 interactions destabilized by Prp16 ATPase at the transition between the first and second steps of splicing. RNA (NEW YORK, N.Y.) 2024; 30:1199-1212. [PMID: 38876504 PMCID: PMC11331412 DOI: 10.1261/rna.079886.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
The spliceosome performs two consecutive transesterification reactions using one catalytic center, thus requiring its rearrangement between the two catalytic steps of splicing. The Prp16 ATPase facilitates exit from the first-step conformation of the catalytic center by destabilizing some interactions important for catalysis. To better understand rearrangements within the Saccharomyces cerevisiae catalytic center, we characterize factors that modulate the function of Prp16: Cwc2, N-terminal domain of Prp8, and U6-41AACAAU46 region. Alleles of these factors were identified through genetic screens for mutants that correct cs defects of prp16-302 alleles. Several of the identified U6, cwc2, and prp8 alleles are located in close proximity of each other in cryo-EM structures of the spliceosomal catalytic conformations. Cwc2 and U6 interact with the intron sequences in the first step, but they do not seem to contribute to the stability of the second-step catalytic center. On the other hand, the N-terminal segment of Prp8 not only affects intron positioning for the first step, but it also makes important contacts in the proximity of the active site for both the first and second steps of splicing. By identifying interactions important for the stability of catalytic conformations, our genetic analyses indirectly inform us about features of the transition-state conformation of the spliceosome.
Collapse
Affiliation(s)
- Jadwiga Meissner
- IMol, Polish Academy of Sciences, 02-247 Warsaw, Poland
- ReMedy-International Research Agenda Unit, 02-247 Warsaw, Poland
| | | | | | - Maria M Konarska
- IMol, Polish Academy of Sciences, 02-247 Warsaw, Poland
- ReMedy-International Research Agenda Unit, 02-247 Warsaw, Poland
| |
Collapse
|
2
|
Henke-Schulz L, Minocha R, Maier NH, Sträßer K. The Prp19C/NTC subunit Syf2 and the Prp19C/NTC-associated protein Cwc15 function in TREX occupancy and transcription elongation. RNA (NEW YORK, N.Y.) 2024; 30:854-865. [PMID: 38627018 PMCID: PMC11182008 DOI: 10.1261/rna.079944.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/02/2024] [Indexed: 06/19/2024]
Abstract
The Prp19 complex (Prp19C), also named NineTeen Complex (NTC), is conserved from yeast to human and functions in many different processes such as genome stability, splicing, and transcription elongation. In the latter, Prp19C ensures TREX occupancy at transcribed genes. TREX, in turn, couples transcription to nuclear mRNA export by recruiting the mRNA exporter to transcribed genes and consequently to nascent mRNAs. Here, we assess the function of the nonessential Prp19C subunit Syf2 and the nonessential Prp19C-associated protein Cwc15 in the interaction of Prp19C and TREX with the transcription machinery, Prp19C and TREX occupancy, and transcription elongation. Whereas both proteins are important for Prp19C-TREX interaction, Syf2 is needed for full Prp19C occupancy, and Cwc15 is important for the interaction of Prp19C with RNA polymerase II and TREX occupancy. These partially overlapping functions are corroborated by a genetic interaction between Δcwc15 and Δsyf2 Finally, Cwc15 also interacts genetically with the transcription elongation factor Dst1 and functions in transcription elongation. In summary, we uncover novel roles of the Prp19C component Syf2 and the Prp19C-associated protein Cwc15 in Prp19C's function in transcription elongation.
Collapse
Affiliation(s)
- Laura Henke-Schulz
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany
| | - Rashmi Minocha
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany
| | - Nils Holger Maier
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany
| | - Katja Sträßer
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), EXC 2026, 35392 Giessen, Germany
| |
Collapse
|
3
|
Li D, Wang Q, Bayat A, Battig MR, Zhou Y, Bosch DG, van Haaften G, Granger L, Petersen AK, Pérez-Jurado LA, Aznar-Laín G, Aneja A, Hancarova M, Bendova S, Schwarz M, Kremlikova Pourova R, Sedlacek Z, Keena BA, March ME, Hou C, O’Connor N, Bhoj EJ, Harr MH, Lemire G, Boycott KM, Towne M, Li M, Tarnopolsky M, Brady L, Parker MJ, Faghfoury H, Parsley LK, Agolini E, Dentici ML, Novelli A, Wright M, Palmquist R, Lai K, Scala M, Striano P, Iacomino M, Zara F, Cooper A, Maarup TJ, Byler M, Lebel RR, Balci TB, Louie R, Lyons M, Douglas J, Nowak C, Afenjar A, Hoyer J, Keren B, Maas SM, Motazacker MM, Martinez-Agosto JA, Rabani AM, McCormick EM, Falk MJ, Ruggiero SM, Helbig I, Møller RS, Tessarollo L, Tomassoni Ardori F, Palko ME, Hsieh TC, Krawitz PM, Ganapathi M, Gelb BD, Jobanputra V, Wilson A, Greally J, Jacquemont S, Jizi K, Bruel AL, Quelin C, Misra VK, Chick E, Romano C, Greco D, Arena A, Morleo M, Nigro V, Seyama R, Uchiyama Y, Matsumoto N, Taira R, Tashiro K, Sakai Y, Yigit G, Wollnik B, Wagner M, Kutsche B, Hurst AC, Thompson ML, Schmidt R, Randolph L, Spillmann RC, Shashi V, Higginbotham EJ, Cordeiro D, Carnevale A, Costain G, Khan T, Funalot B, Tran Mau-Them F, Fernandez Garcia Moya L, García-Miñaúr S, Osmond M, Chad L, Quercia N, Carrasco D, Li C, Sanchez-Valle A, Kelley M, Nizon M, Jensson BO, Sulem P, Stefansson K, Gorokhova S, Busa T, Rio M, Hadj Habdallah H, Lesieur-Sebellin M, Amiel J, Pingault V, Mercier S, Vincent M, Philippe C, Fatus-Fauconnier C, Friend K, Halligan RK, Biswas S, Rosser J, Shoubridge C, Corbett M, Barnett C, Gecz J, Leppig K, Slavotinek A, Marcelis C, Pfundt R, de Vries BB, van Slegtenhorst MA, Brooks AS, Cogne B, Rambaud T, Tümer Z, Zackai EH, Akizu N, Song Y, Hakonarson H. Spliceosome malfunction causes neurodevelopmental disorders with overlapping features. J Clin Invest 2024; 134:e171235. [PMID: 37962958 PMCID: PMC10760965 DOI: 10.1172/jci171235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
Pre-mRNA splicing is a highly coordinated process. While its dysregulation has been linked to neurological deficits, our understanding of the underlying molecular and cellular mechanisms remains limited. We implicated pathogenic variants in U2AF2 and PRPF19, encoding spliceosome subunits in neurodevelopmental disorders (NDDs), by identifying 46 unrelated individuals with 23 de novo U2AF2 missense variants (including 7 recurrent variants in 30 individuals) and 6 individuals with de novo PRPF19 variants. Eight U2AF2 variants dysregulated splicing of a model substrate. Neuritogenesis was reduced in human neurons differentiated from human pluripotent stem cells carrying two U2AF2 hyper-recurrent variants. Neural loss of function (LoF) of the Drosophila orthologs U2af50 and Prp19 led to lethality, abnormal mushroom body (MB) patterning, and social deficits, which were differentially rescued by wild-type and mutant U2AF2 or PRPF19. Transcriptome profiling revealed splicing substrates or effectors (including Rbfox1, a third splicing factor), which rescued MB defects in U2af50-deficient flies. Upon reanalysis of negative clinical exomes followed by data sharing, we further identified 6 patients with NDD who carried RBFOX1 missense variants which, by in vitro testing, showed LoF. Our study implicates 3 splicing factors as NDD-causative genes and establishes a genetic network with hierarchy underlying human brain development and function.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, and
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Qin Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Allan Bayat
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department for Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Yijing Zhou
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daniëlle G.M. Bosch
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Leslie Granger
- Department of Genetics and Metabolism, Randall Children’s Hospital at Legacy Emanuel Medical Center, Portland, Oregon, USA
| | - Andrea K. Petersen
- Department of Genetics and Metabolism, Randall Children’s Hospital at Legacy Emanuel Medical Center, Portland, Oregon, USA
| | - Luis A. Pérez-Jurado
- Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- Genetic Service, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Gemma Aznar-Laín
- Universitat Pompeu Fabra, Barcelona, Spain
- Pediatric Neurology, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Anushree Aneja
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Miroslava Hancarova
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Sarka Bendova
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Martin Schwarz
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Radka Kremlikova Pourova
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Zdenek Sedlacek
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Beth A. Keena
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Elizabeth J. Bhoj
- Center for Applied Genomics, and
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Gabrielle Lemire
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kym M. Boycott
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Megan Li
- Invitae, San Francisco, California, USA
| | - Mark Tarnopolsky
- Division of Neuromuscular and Neurometabolic Disorders, Department of Paediatrics, McMaster University Children’s Hospital, Hamilton, Ontario, Canada
| | - Lauren Brady
- Division of Neuromuscular and Neurometabolic Disorders, Department of Paediatrics, McMaster University Children’s Hospital, Hamilton, Ontario, Canada
| | - Michael J. Parker
- Department of Clinical Genetics, Sheffield Children’s Hospital, Sheffield, United Kingdom
| | | | - Lea Kristin Parsley
- University of Illinois College of Medicine, Mercy Health Systems, Rockford, Illinois, USA
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit, Academic Department of Pediatrics, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Meredith Wright
- Rady Children’s Institute for Genomic Medicine, San Diego, California, USA
| | - Rachel Palmquist
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Khanh Lai
- Division of Pediatric Pulmonary and Sleep Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, and
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, and
| | - Michele Iacomino
- Medical Genetics Unit, IRCCS, Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS, Istituto Giannina Gaslini, Genoa, Italy
| | - Annina Cooper
- Department of Genetics, Southern California Permanente Medical Group, Kaiser Permanente, San Diego, California, USA
| | - Timothy J. Maarup
- Department of Genetics, Kaiser Permanente, Los Angeles, California, USA
| | - Melissa Byler
- Center for Development, Behavior and Genetics, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Robert Roger Lebel
- Center for Development, Behavior and Genetics, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Tugce B. Balci
- Division of Genetics, Department of Paediatrics, London Health Sciences Centre, London, Ontario, Canada
| | - Raymond Louie
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Michael Lyons
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Jessica Douglas
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Catherine Nowak
- Division of Genetics and Metabolism, Mass General Hospital for Children, Boston, Massachusetts, USA
| | - Alexandra Afenjar
- APHP. SU, Reference Center for Intellectual Disabilities Caused by Rare Causes, Department of Genetics and Medical Embryology, Hôpital Trousseau, Paris, France
| | - Juliane Hoyer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Boris Keren
- Department of Genetics, Hospital Pitié-Salpêtrière, Paris, France
| | - Saskia M. Maas
- Department of Human Genetics, Academic Medical Center, and
| | - Mahdi M. Motazacker
- Laboratory of Genome Diagnostics, Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Ahna M. Rabani
- Division of Medical Genetics, Department of Pediatrics, UCLA, Los Angeles, California, USA
| | - Elizabeth M. McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics
| | - Marni J. Falk
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics
| | - Sarah M. Ruggiero
- Division of Neurology, and
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ingo Helbig
- Division of Neurology, and
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rikke S. Møller
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Francesco Tomassoni Ardori
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Mary Ellen Palko
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter M. Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Mythily Ganapathi
- New York Genome Center, New York, New York, USA
- Department of Pathology, Columbia University Irving Medical Center, New York, New York, USA
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute and the Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine, New York, New York, USA
| | - Vaidehi Jobanputra
- New York Genome Center, New York, New York, USA
- Department of Pathology, Columbia University Irving Medical Center, New York, New York, USA
| | | | - John Greally
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sébastien Jacquemont
- Division of Genetics and Genomics, CHU Ste-Justine Hospital and CHU Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Khadijé Jizi
- Division of Genetics and Genomics, CHU Ste-Justine Hospital and CHU Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Ange-Line Bruel
- INSERM UMR 1231, Genetics of Developmental Anomalies, Université de Bourgogne Franche-Comté, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Translational Medicine in Developmental Anomalies, CHU Dijon Bourgogne, Dijon, France
| | - Chloé Quelin
- Medical Genetics Department, Centre de Référence Maladies Rares CLAD-Ouest, CHU Hôpital Sud, Rennes, France
| | - Vinod K. Misra
- Division of Genetic, Genomic, and Metabolic Disorders, Children’s Hospital of Michigan, Detroit, Michigan, USA
- Central Michigan University College of Medicine, Discipline of Pediatrics, Mount Pleasant, Michigan, USA
| | - Erika Chick
- Division of Genetic, Genomic, and Metabolic Disorders, Children’s Hospital of Michigan, Detroit, Michigan, USA
| | - Corrado Romano
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | | | - Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rie Seyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuya Tashiro
- Department of Pediatrics, Karatsu Red Cross Hospital, Saga, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Michael Wagner
- Kinderzentrum Oldenburg, Sozialpädiatrisches Zentrum, Diakonisches Werk Oldenburg, Oldenburg, Germany
| | - Barbara Kutsche
- Kinderzentrum Oldenburg, Sozialpädiatrisches Zentrum, Diakonisches Werk Oldenburg, Oldenburg, Germany
| | - Anna C.E. Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Ryan Schmidt
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, California, USA
- Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Linda Randolph
- Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- Division of Medical Genetics, Children’s Hospital Los Angeles, California, USA
| | - Rebecca C. Spillmann
- Department of Pediatrics–Medical Genetics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Vandana Shashi
- Department of Pediatrics–Medical Genetics, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Dawn Cordeiro
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amanda Carnevale
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tayyaba Khan
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Benoît Funalot
- Department of Genetics, Hôpital Henri-Mondor APHP and CHI Creteil, University Paris Est Creteil, IMRB, Inserm U.955, Creteil, France
| | - Frederic Tran Mau-Them
- INSERM UMR 1231, Genetics of Developmental Anomalies, Université de Bourgogne Franche-Comté, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
| | | | - Sixto García-Miñaúr
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Madrid, Spain
| | - Matthew Osmond
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Lauren Chad
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Nada Quercia
- Department of Genetic Counselling, Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Ottawa, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Diana Carrasco
- Department of Clinical Genetics, Cook Children’s Hospital, Fort Worth, Texas, USA
| | - Chumei Li
- Division of Genetics, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Amarilis Sanchez-Valle
- Division of Genetics and Metabolism, Department of Pediatrics, University of South Florida, Tampa, Florida, USA
| | - Meghan Kelley
- Division of Genetics and Metabolism, Department of Pediatrics, University of South Florida, Tampa, Florida, USA
| | - Mathilde Nizon
- Nantes Université, CHU Nantes, Medical Genetics Department, Nantes, France
- Nantes Université, CNRS, INSERM, l’Institut du Thorax, Nantes, France
| | | | | | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Svetlana Gorokhova
- Aix Marseille University, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France
- Department of Medical Genetics, Timone Hospital, APHM, Marseille, France
| | - Tiffany Busa
- Department of Medical Genetics, Timone Hospital, APHM, Marseille, France
| | - Marlène Rio
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Hamza Hadj Habdallah
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Marion Lesieur-Sebellin
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Jeanne Amiel
- Rare Disease Genetics Department, APHP, Hôpital Necker, Paris, France
- Université Paris Cité, Inserm, Institut Imagine, Embryology and Genetics of Malformations Laboratory, Paris, France
| | - Véronique Pingault
- Rare Disease Genetics Department, APHP, Hôpital Necker, Paris, France
- Université Paris Cité, Inserm, Institut Imagine, Embryology and Genetics of Malformations Laboratory, Paris, France
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA (laboratoire-seqoia.fr), Paris, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Medical Genetics Department, Nantes, France
- Nantes Université, CNRS, INSERM, l’Institut du Thorax, Nantes, France
| | - Marie Vincent
- Nantes Université, CHU Nantes, Medical Genetics Department, Nantes, France
- Nantes Université, CNRS, INSERM, l’Institut du Thorax, Nantes, France
| | - Christophe Philippe
- INSERM UMR 1231, Genetics of Developmental Anomalies, Université de Bourgogne Franche-Comté, Dijon, France
| | | | - Kathryn Friend
- Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | | | | | - Jane Rosser
- Department of General Medicine, Women’s and Children’s Hospital, Adelaide, South Australia, Australia
| | - Cheryl Shoubridge
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, South Australia, Australia
| | - Mark Corbett
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, South Australia, Australia
| | - Christopher Barnett
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, South Australia, Australia
- Pediatric and Reproductive Genetics Unit, Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kathleen Leppig
- Genetic Services, Kaiser Permenante of Washington, Seattle, Washington, USA
| | - Anne Slavotinek
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Carlo Marcelis
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bert B.A. de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Alice S. Brooks
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Benjamin Cogne
- Nantes Université, CHU Nantes, Medical Genetics Department, Nantes, France
- Nantes Université, CNRS, INSERM, l’Institut du Thorax, Nantes, France
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA (laboratoire-seqoia.fr), Paris, France
| | - Thomas Rambaud
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA (laboratoire-seqoia.fr), Paris, France
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elaine H. Zackai
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Naiara Akizu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, and
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Yao X, Wang C, Sun L, Yan L, Chen X, Lv Z, Xie X, Tian S, Liu W, Li L, Zhang H, Liu J. BCAS2 regulates granulosa cell survival by participating in mRNA alternative splicing. J Ovarian Res 2023; 16:104. [PMID: 37248466 DOI: 10.1186/s13048-023-01187-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/14/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Granulosa cell proliferation and differentiation are essential for follicle development. Breast cancer amplified sequence 2 (BCAS2) is necessary for spermatogenesis, oocyte development, and maintaining the genome integrity of early embryos in mice. However, the function of BCAS2 in granulosa cells is still unknown. RESULTS We show that conditional disruption of Bcas2 in granulosa cells caused follicle development failure; the ratio of the positive cells of the cell proliferation markers PCNA and Ki67 were unchanged in granulosa cells. Specific deletion of Bcas2 caused a decrease in the BrdU-positive cell ratio, cell cycle arrest, DNA damage, and an increase in apoptosis in granulosa cells, and RPA1 was abnormally stained in granulosa cells. RNA-seq results revealed that knockout of Bcas2 results in unusual expression of cellular senescence genes. BCAS2 participated in the PRP19 complex to mediate alternative splicing (AS) of E2f3 and Flt3l mRNA to inhibit the cell cycle. Knockout of Bcas2 resulted in a significant decrease in the ratio of BrdU-positive cells in the human granulosa-like tumour (KGN) cell line. CONCLUSIONS Our results suggest that BCAS2 may influence the proliferation and survival of granulosa cells through regulating pre-mRNA splicing of E2f3 and Flt3l by forming the splicing complex with CDC5L and PRP19.
Collapse
Affiliation(s)
- Xiaohong Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chaofan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lu Yan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuexue Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zheng Lv
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Xie
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuang Tian
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenbo Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Idrissou M, Maréchal A. The PRP19 Ubiquitin Ligase, Standing at the Cross-Roads of mRNA Processing and Genome Stability. Cancers (Basel) 2022; 14:878. [PMID: 35205626 PMCID: PMC8869861 DOI: 10.3390/cancers14040878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/07/2022] Open
Abstract
mRNA processing factors are increasingly being recognized as important regulators of genome stability. By preventing and resolving RNA:DNA hybrids that form co-transcriptionally, these proteins help avoid replication-transcription conflicts and thus contribute to genome stability through their normal function in RNA maturation. Some of these factors also have direct roles in the activation of the DNA damage response and in DNA repair. One of the most intriguing cases is that of PRP19, an evolutionarily conserved essential E3 ubiquitin ligase that promotes mRNA splicing, but also participates directly in ATR activation, double-strand break resection and mitosis. Here, we review historical and recent work on PRP19 and its associated proteins, highlighting their multifarious cellular functions as central regulators of spliceosome activity, R-loop homeostasis, DNA damage signaling and repair and cell division. Finally, we discuss open questions that are bound to shed further light on the functions of PRP19-containing complexes in both normal and cancer cells.
Collapse
Affiliation(s)
- Mouhamed Idrissou
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N3, Canada
| | - Alexandre Maréchal
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N3, Canada
| |
Collapse
|
6
|
He Y, Huang C, Cai K, Liu P, Chen X, Xu YI, Ming Z, Liu Q, Xie Q, Xia X, Sun Y, Luo J, Wei R. PRPF19 promotes tongue cancer growth and chemoradiotherapy resistance. Acta Biochim Biophys Sin (Shanghai) 2021; 53:893-902. [PMID: 33954334 DOI: 10.1093/abbs/gmab059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Indexed: 12/19/2022] Open
Abstract
Pre-mRNA processing factor 19 (PRPF19) is a multifaceted protein and participates in DNA damage response and pre-mRNA processing. The role of PRPF19 in cancer is unclear. Here, we report that the expression of PRPF19 in human tongue cancer is associated with unfavorable prognosis. Overexpression of PRPF19 promotes while knockdown of PRPF19 inhibits tongue cancer cell migration, proliferation, and tumor growth. Overexpression of PRPF19 increases the resistance of tongue cancer cells to radiation and cisplatin treatment. Furthermore, PRPF19 regulates the expression of solute carrier family 40 member 1 (SLC40A1) and mono-ADP ribosylhydrolase 2 (MACROD2), knockdown of SLC40A1 or MACROD2 decreases the sensitivity of tongue cancer cells to radiation and cisplatin treatment. Thus, our results establish a key role of PRPF19 in tongue cancer growth and chemoradiotherapy resistance, targeting PRPF19 would be an effective therapeutic strategy for tongue cancer, especially for those resistant to chemoradiotherapy.
Collapse
Affiliation(s)
- Yihong He
- Department of General Surgery and the Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Changhao Huang
- Department of General Surgery and the Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kaimei Cai
- Department of General Surgery and the Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Pei Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xueyan Chen
- Department of General Surgery and the Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Y i Xu
- Department of General Surgery and the Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhengnan Ming
- Department of General Surgery and the Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410008, China
| | - Qingqing Liu
- Department of General Surgery and the Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiongxuan Xie
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xue Xia
- Department of General Surgery and the Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410008, China
| | - Yangqing Sun
- Department of General Surgery and the Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Junli Luo
- Department of General Surgery and the Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Rui Wei
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
7
|
Liu X, Pan X, Chen D, Yin C, Peng J, Shi W, Qi L, Wang R, Zhao W, Zhang Z, Yang J, Peng YL. Prp19-associated splicing factor Cwf15 regulates fungal virulence and development in the rice blast fungus. Environ Microbiol 2021; 23:5901-5916. [PMID: 34056823 DOI: 10.1111/1462-2920.15616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/29/2022]
Abstract
The splicing factor Cwf15 is an essential component of the Prp19-associated component of the spliceosome and regulates intron splicing in several model species, including yeasts and human cells. However, the roles of Cwf15 remain unexplored in plant pathogenic fungi. Here, we report that MoCWF15 in the rice blast fungus Magnaporthe oryzae is non-essential to viability and important to fungal virulence, growth and conidiation. MoCwf15 contains a putative nuclear localization signal (NLS) and is localized into the nucleus. The NLS sequence but not the predicted phosphorylation site or two sumoylation sites was essential for the biological functions of MoCwf15. Importantly, MoCwf15 physically interacted with the Prp19-associated splicing factors MoCwf4, MoSsa1 and MoCyp1, and negatively regulated protein accumulations of MoCyp1 and MoCwf4. Furthermore, with the deletion of MoCWF15, aberrant intron splicing occurred in near 400 genes, 20 of which were important to the fungal development and virulence. Taken together, MoCWF15 regulates fungal growth and infection-related development by modulating the intron splicing efficiency of a subset of genes in the rice blast fungus.
Collapse
Affiliation(s)
- Xinsen Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiao Pan
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Deng Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Changfa Yin
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Junbo Peng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Wei Shi
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Linlu Qi
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ruijin Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wensheng Zhao
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China.,Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - You-Liang Peng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
8
|
Slane D, Lee CH, Kolb M, Dent C, Miao Y, Franz-Wachtel M, Lau S, Maček B, Balasubramanian S, Bayer M, Jürgens G. The integral spliceosomal component CWC15 is required for development in Arabidopsis. Sci Rep 2020; 10:13336. [PMID: 32770129 PMCID: PMC7415139 DOI: 10.1038/s41598-020-70324-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
Efficient mRNA splicing is a prerequisite for protein biosynthesis and the eukaryotic splicing machinery is evolutionarily conserved among species of various phyla. At its catalytic core resides the activated splicing complex Bact consisting of the three small nuclear ribonucleoprotein complexes (snRNPs) U2, U5 and U6 and the so-called NineTeen complex (NTC) which is important for spliceosomal activation. CWC15 is an integral part of the NTC in humans and it is associated with the NTC in other species. Here we show the ubiquitous expression and developmental importance of the Arabidopsis ortholog of yeast CWC15. CWC15 associates with core components of the Arabidopsis NTC and its loss leads to inefficient splicing. Consistent with the central role of CWC15 in RNA splicing, cwc15 mutants are embryo lethal and additionally display strong defects in the female haploid phase. Interestingly, the haploid male gametophyte or pollen in Arabidopsis, on the other hand, can cope without functional CWC15, suggesting that developing pollen might be more tolerant to CWC15-mediated defects in splicing than either embryo or female gametophyte.
Collapse
Affiliation(s)
- Daniel Slane
- Max Planck Institute for Developmental Biology, Cell Biology, 72076, Tübingen, Germany
| | - Cameron H Lee
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Martina Kolb
- Max Planck Institute for Developmental Biology, Cell Biology, 72076, Tübingen, Germany
| | - Craig Dent
- School of Biological Sciences, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia
| | - Yingjing Miao
- Max Planck Institute for Developmental Biology, Cell Biology, 72076, Tübingen, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Steffen Lau
- Max Planck Institute for Developmental Biology, Cell Biology, 72076, Tübingen, Germany
| | - Boris Maček
- Proteome Center Tübingen, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | | | - Martin Bayer
- Max Planck Institute for Developmental Biology, Cell Biology, 72076, Tübingen, Germany
| | - Gerd Jürgens
- Max Planck Institute for Developmental Biology, Cell Biology, 72076, Tübingen, Germany.
| |
Collapse
|
9
|
Yan C, Wan R, Shi Y. Molecular Mechanisms of pre-mRNA Splicing through Structural Biology of the Spliceosome. Cold Spring Harb Perspect Biol 2019; 11:11/1/a032409. [PMID: 30602541 DOI: 10.1101/cshperspect.a032409] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precursor messenger RNA (pre-mRNA) splicing is executed by the spliceosome. In the past 3 years, cryoelectron microscopy (cryo-EM) structures have been elucidated for a majority of the yeast spliceosomal complexes and for a few human spliceosomes. During the splicing reaction, the dynamic spliceosome has an immobile core of about 20 protein and RNA components, which are organized around a conserved splicing active site. The divalent metal ions, coordinated by U6 small nuclear RNA (snRNA), catalyze the branching reaction and exon ligation. The spliceosome also contains a mobile but compositionally stable group of about 13 proteins and a portion of U2 snRNA, which facilitate substrate delivery into the splicing active site. The spliceosomal transitions are driven by the RNA-dependent ATPase/helicases, resulting in the recruitment and dissociation of specific splicing factors that enable the reaction. In summary, the spliceosome is a protein-directed metalloribozyme.
Collapse
Affiliation(s)
- Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310064, Zhejiang Province, China
| |
Collapse
|
10
|
Wilkinson ME, Lin PC, Plaschka C, Nagai K. Cryo-EM Studies of Pre-mRNA Splicing: From Sample Preparation to Model Visualization. Annu Rev Biophys 2018; 47:175-199. [PMID: 29494253 DOI: 10.1146/annurev-biophys-070317-033410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The removal of noncoding introns from pre-messenger RNA (pre-mRNA) is an essential step in eukaryotic gene expression and is catalyzed by a dynamic multi-megadalton ribonucleoprotein complex called the spliceosome. The spliceosome assembles on pre-mRNA substrates by the stepwise addition of small nuclear ribonucleoprotein particles and numerous protein factors. Extensive remodeling is required to form the RNA-based active site and to mediate the pre-mRNA branching and ligation reactions. In the past two years, cryo-electron microscopy (cryo-EM) structures of spliceosomes captured in different assembly and catalytic states have greatly advanced our understanding of its mechanism. This was made possible by long-standing efforts in the purification of spliceosome intermediates as well as recent developments in cryo-EM imaging and computational methodology. The resulting high-resolution densities allow for de novo model building in core regions of the complexes. In peripheral and less ordered regions, the combination of cross-linking, bioinformatics, biochemical, and genetic data is essential for accurate modeling. Here, we summarize these achievements and highlight the critical steps in obtaining near-atomic resolution structures of the spliceosome.
Collapse
Affiliation(s)
- Max E Wilkinson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; , , ,
| | - Pei-Chun Lin
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; , , ,
| | - Clemens Plaschka
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; , , ,
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; , , ,
| |
Collapse
|
11
|
Zhang X, Yan C, Zhan X, Li L, Lei J, Shi Y. Structure of the human activated spliceosome in three conformational states. Cell Res 2018; 28:307-322. [PMID: 29360106 PMCID: PMC5835773 DOI: 10.1038/cr.2018.14] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 12/13/2022] Open
Abstract
During each cycle of pre-mRNA splicing, the pre-catalytic spliceosome (B complex) is converted into the activated spliceosome (Bact complex), which has a well-formed active site but cannot proceed to the branching reaction. Here, we present the cryo-EM structure of the human Bact complex in three distinct conformational states. The EM map allows atomic modeling of nearly all protein components of the U2 small nuclear ribonucleoprotein (snRNP), including three of the SF3a complex and seven of the SF3b complex. The structure of the human Bact complex contains 52 proteins, U2, U5, and U6 small nuclear RNA (snRNA), and a pre-mRNA. Three distinct conformations have been captured, representing the early, mature, and late states of the human Bact complex. These complexes differ in the orientation of the Switch loop of Prp8, the splicing factors RNF113A and NY-CO-10, and most components of the NineTeen complex (NTC) and the NTC-related complex. Analysis of these three complexes and comparison with the B and C complexes reveal an ordered flux of components in the B-to-Bact and the Bact-to-B* transitions, which ultimately prime the active site for the branching reaction.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiechao Zhan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lijia Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Shilongshan Road No. 18, Hangzhou, Zhejiang 310064, China
| |
Collapse
|
12
|
Hildebrandt A, Alanis-Lobato G, Voigt A, Zarnack K, Andrade-Navarro MA, Beli P, König J. Interaction profiling of RNA-binding ubiquitin ligases reveals a link between posttranscriptional regulation and the ubiquitin system. Sci Rep 2017; 7:16582. [PMID: 29185492 PMCID: PMC5707401 DOI: 10.1038/s41598-017-16695-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/14/2017] [Indexed: 11/09/2022] Open
Abstract
RNA-binding ubiquitin ligases (RBULs) have the potential to link RNA-mediated mechanisms to protein ubiquitylation. Despite this, the cellular functions, substrates and interaction partners of most RBULs remain poorly characterized. Affinity purification (AP) combined with quantitative mass spectrometry (MS)-based proteomics is a powerful approach for analyzing protein functions. Mapping the physiological interaction partners of RNA-binding proteins has been hampered by their intrinsic properties, in particular the existence of low-complexity regions, which are prone to engage in non-physiological interactions. Here, we used an adapted AP approach to identify the interaction partners of human RBULs harboring different RNA-binding domains. To increase the likelihood of recovering physiological interactions, we combined control and bait-expressing cells prior to lysis. In this setup, only stable interactions that were originally present in the cell will be identified. We exploit gene function similarity between the bait proteins and their interactors to benchmark our approach in its ability to recover physiological interactions. We reveal that RBULs engage in stable interactions with RNA-binding proteins involved in different steps of RNA metabolism as well as with components of the ubiquitin conjugation machinery and ubiquitin-binding proteins. Our results thus demonstrate their capacity to link posttranscriptional regulation with the ubiquitin system.
Collapse
Affiliation(s)
- Andrea Hildebrandt
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Gregorio Alanis-Lobato
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.,Faculty of Biology, Johannes Gutenberg University, Gresemundweg 2, 55128, Mainz, Germany
| | - Andrea Voigt
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt, Germany
| | - Miguel A Andrade-Navarro
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.,Faculty of Biology, Johannes Gutenberg University, Gresemundweg 2, 55128, Mainz, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| | - Julian König
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| |
Collapse
|
13
|
Fica SM, Nagai K. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Nat Struct Mol Biol 2017; 24:791-799. [PMID: 28981077 DOI: 10.1038/nsmb.3463] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022]
Abstract
The spliceosome excises introns from pre-messenger RNAs using an RNA-based active site that is cradled by a dynamic protein scaffold. A recent revolution in cryo-electron microscopy (cryo-EM) has led to near-atomic-resolution structures of key spliceosome complexes that provide insight into the mechanism of activation, splice site positioning, catalysis, protein rearrangements and ATPase-mediated dynamics of the active site. The cryo-EM structures rationalize decades of observations from genetic and biochemical studies and provide a molecular framework for future functional studies.
Collapse
|
14
|
Zhang M, Zhang GQ, Kang HH, Zhou SM, Wang W. TaPUB1, a Putative E3 Ligase Gene from Wheat, Enhances Salt Stress Tolerance in Transgenic Nicotiana benthamiana. PLANT & CELL PHYSIOLOGY 2017; 58:1673-1688. [PMID: 29016965 DOI: 10.1093/pcp/pcx101] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 07/15/2017] [Indexed: 05/25/2023]
Abstract
High salinity is one of the most severe environmental stresses and limits the growth and yield of diverse crop plants. We isolated a gene named TaPUB1 from wheat (Triticum aestivum L. cv HF9703) that encodes a novel protein containing a U-box domain, the precursor RNA processing 19p (Prp19) superfamily and WD-40 repeats. Real-time reverse transcription-PCR analysis showed that TaPUB1 transcript accumulation was up-regulated by high salinity, drought and phytohormones, suggesting that it plays a role in the abiotic-related defense response. We overexpressed TaPUB1 in Nicotiana benthamiana to evaluate the function of TaPUB1 in the regulation of the salt stress response. Transgenic N. benthamiana plants (OE) with constitutively overexpressed TaPUB1 under the control of the Cauliflower mosaic virus 35S (CaMV 35S) promoter exhibited a higher germination rate, less growth inhibition, less Chl loss and higher photosynthetic capacity than wild-type (WT) plants under salt stress conditions. These results demonstrated the increased tolerance of OE plants to salt stress compared with the WT. The OE plants had lower osmotic potential (OP), reduced Na+ toxicity and less reactive oxygen species accumulation compared with the WT, which may be related to their higher level of osmolytes, lower Na+/K+ ratio and higher antioxidant enzyme activities under salt stress conditions. Consistent with these results, the up-regulated expression of osmic- and antioxidant-related genes in OE plants indicated a role for TaPUB1 in plant salt tolerance.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, PR China
| | - Guang-Qiang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Han-Han Kang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Shu-Mei Zhou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| |
Collapse
|
15
|
Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat Rev Mol Cell Biol 2017; 18:655-670. [DOI: 10.1038/nrm.2017.86] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Scheres SH, Nagai K. CryoEM structures of spliceosomal complexes reveal the molecular mechanism of pre-mRNA splicing. Curr Opin Struct Biol 2017; 46:130-139. [PMID: 28888105 DOI: 10.1016/j.sbi.2017.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023]
Abstract
The spliceosome is an intricate molecular machine which catalyses the removal of introns from eukaryotic mRNA precursors by two trans-esterification reactions (branching and exon ligation) to produce mature mRNA with uninterrupted protein coding sequences. The structures of the spliceosome in several key states determined by electron cryo-microscopy have greatly advanced our understanding of its molecular mechanism. The catalytic RNA core is formed during the activation of the fully assembled B to Bact complex and remains largely unchanged throughout the splicing cycle. RNA helicases and step specific factors regulate docking and undocking of the substrates (branch site and 3' splice site) to the single RNA-based active site to catalyse the two trans-esterification reactions.
Collapse
Affiliation(s)
- Sjors Hw Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
17
|
Song J, Mo X, Yang H, Yue L, Song J, Mo B. The U-box family genes in Medicago truncatula: Key elements in response to salt, cold, and drought stresses. PLoS One 2017; 12:e0182402. [PMID: 28771553 PMCID: PMC5542650 DOI: 10.1371/journal.pone.0182402] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/17/2017] [Indexed: 11/18/2022] Open
Abstract
The ubiquitination pathway regulates growth, development, and stress responses in plants, and the U-box protein family of ubiquitin ligases has important roles in this pathway. Here, 64 putative U-box proteins were identified in the Medicago truncatula genome. In addition to the conserved U-box motif, other functional domains, such as the ARM, kinase, KAP, and WD40 domains, were also detected. Phylogenetic analysis of the M. truncatula U-box proteins grouped them into six subfamilies, and chromosomal mapping and synteny analyses indicated that tandem and segmental duplications may have contributed to the expansion and evolution of the U-box gene family in this species. Using RNA-seq data from M. truncatula seedlings subjected to three different abiotic stresses, we identified 33 stress-inducible plant U-box genes (MtPUBs). Specifically, 25 salinity-, 15 drought-, and 16 cold-regulated MtPUBs were detected. Among them, MtPUB10, MtPUB17, MtPUB18, MtPUB35, MtPUB42, and MtPUB44 responded to all three stress conditions. Expression profiling by qRT-PCR was consistent with the RNA-seq data, and stress-related elements were identified in the promoter regions. The present findings strongly indicate that U-box proteins play critical roles in abiotic stress response in M. truncatula.
Collapse
Affiliation(s)
- Jianbo Song
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Department of Biochemistry and Molecular Biology, College of Science, Jiang Xi Agricultural University, Nanchang, China
| | - Xiaowei Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Haiqi Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Luming Yue
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
18
|
Shi Y. The Spliceosome: A Protein-Directed Metalloribozyme. J Mol Biol 2017; 429:2640-2653. [PMID: 28733144 DOI: 10.1016/j.jmb.2017.07.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 11/15/2022]
Abstract
Pre-mRNA splicing is executed by the ribonucleoprotein machinery spliceosome. Nearly 40 years after the discovery of pre-mRNA splicing, the atomic structure of the spliceosome has finally come to light. Four distinct conformational states of the yeast spliceosome have been captured at atomic or near-atomic resolutions. Two catalytic metal ions at the active site are specifically coordinated by the U6 small nuclear RNA (snRNA) and catalyze both the branching reaction and the exon ligation. Of the three snRNAs in the fully assembled spliceosome, U5 and U6, along with 30 contiguous nucleotides of U2 at its 5'-end, remain structurally rigid throughout the splicing reaction. The rigidity of these RNA elements is safeguarded by Prp8 and 16 core protein components, which maintain the same overall conformation in all structurally characterized spliceosomes during the splicing reaction. Only the sequences downstream of nucleotide 30 of U2 snRNA are mobile; their movement, directed by the protein components, delivers the intron branch site into the close proximity of the 5'-splice site for the branching reaction. A set of additional structural rearrangement is required for exon ligation, and the lariat junction is moved out of the active site for recruitment of the 3'-splice site and 3'-exon. The spliceosome is proven to be a protein-directed metalloribozyme.
Collapse
Affiliation(s)
- Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310064, Zhejiang Province, Province, China.
| |
Collapse
|
19
|
Cryo-EM structure of the spliceosome immediately after branching. Nature 2016; 537:197-201. [PMID: 27459055 PMCID: PMC5156311 DOI: 10.1038/nature19316] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/19/2016] [Indexed: 12/11/2022]
Abstract
Precursor mRNA (pre-mRNA) splicing proceeds by two consecutive transesterification reactions via a lariat-intron intermediate. Here we present the 3.8 Å cryo-electron microscopy structure of the spliceosome immediately after lariat formation. The 5'-splice site is cleaved but remains close to the catalytic Mg2+ site in the U2/U6 small nuclear RNA (snRNA) triplex, and the 5'-phosphate of the intron nucleotide G(+1) is linked to the branch adenosine 2'OH. The 5'-exon is held between the Prp8 amino-terminal and linker domains, and base-pairs with U5 snRNA loop 1. Non-Watson-Crick interactions between the branch helix and 5'-splice site dock the branch adenosine into the active site, while intron nucleotides +3 to +6 base-pair with the U6 snRNA ACAGAGA sequence. Isy1 and the step-one factors Yju2 and Cwc25 stabilize docking of the branch helix. The intron downstream of the branch site emerges between the Prp8 reverse transcriptase and linker domains and extends towards the Prp16 helicase, suggesting a plausible mechanism of remodelling before exon ligation.
Collapse
|
20
|
CryoEM structures of two spliceosomal complexes: starter and dessert at the spliceosome feast. Curr Opin Struct Biol 2016; 36:48-57. [PMID: 26803803 PMCID: PMC4830896 DOI: 10.1016/j.sbi.2015.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022]
Abstract
Recent advances in cryoEM are revolutionizing our understanding of how molecular machines function. The structure of Saccharomyces cerevisiae U4/U6.U5 tri-snRNP has been revealed. The structure of Schizosaccharomyces pombe U2.U6.U5 spliceosomal complex has been revealed. These structures greatly advanced our understanding of the mechanism of pre-mRNA splicing.
The spliceosome is formed on pre-mRNA substrates from five small nuclear ribonucleoprotein particles (U1, U2, U4/U6 and U5 snRNPs), and numerous non-snRNP factors. Saccharomyces cerevisiae U4/U6.U5 tri-snRNP comprises U5 snRNA, U4/U6 snRNA duplex and approximately 30 proteins and represents a substantial part of the spliceosome before activation. Schizosaccharomyces pombe U2.U6.U5 spliceosomal complex is a post-catalytic intron lariat spliceosome containing U2 and U5 snRNPs, NTC (nineteen complex), NTC-related proteins (NTR), U6 snRNA, and an RNA intron lariat. Two recent papers describe near-complete atomic structures of these complexes based on cryoEM single-particle analysis. The U4/U6.U5 tri-snRNP structure provides crucial insight into the activation mechanism of the spliceosome. The U2.U6.U5 complex reveals the striking architecture of NTC and NTR and important features of the group II intron-like catalytic RNA core remaining after spliced mRNA is released. These two structures greatly advance our understanding of the mechanism of pre-mRNA splicing.
Collapse
|
21
|
Ahn JW, Sik Jin K, Francis Son H, Ho Chang J, Kim KJ. Small angle X-ray scattering studies of CTNNBL1 dimerization and CTNNBL1/CDC5L complex. Sci Rep 2015; 5:14251. [PMID: 26381213 PMCID: PMC4585563 DOI: 10.1038/srep14251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/21/2015] [Indexed: 01/13/2023] Open
Abstract
The hPrp19/CDC5L complex is a non-snRNP spliceosome complex that plays a key role in the spliceosome activation during pre-mRNA splicing, and CTNNBL1 and CDC5L are essential components of the complex. In this study, to investigate the oligomeric state of CTNNBL1 in solution, we performed small angle X-ray scattering experiments in various concentrations of NaCl. We observed that CTNNBL1 existed as a dimer in physiological NaCl concentrations. Site-directed mutagenesis experiment of CTNNBL1 confirmed that N-terminal capping region and the first four ARM repeats are important for dimerization of the protein. We also found that the positively-charged NLS3-containing region (residues 197-235) of CDC5L bound to the negatively-charged patch of CTNNBL1 and that the CTNNBL1/CDC5L complex formed a heterotetramer consisting of one CTNNBL1 dimer and one CDC5L dimer. Moreover, reconstruction of 3D models of CTNNBL1/CDC5L complexes containing CTNNBL1 and three different truncated forms of CDC5L showed that the CDC5L(141-196) region and the CDC5L(236-377) region were positioned at the top of the N-terminal capping region and at the bottom of ARM VII of CTNNBL1, respectively.
Collapse
Affiliation(s)
- Jae-Woo Ahn
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Jigok-ro 80, Pohang, Kyungbuk 790-784, Korea
| | - Hyeoncheol Francis Son
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Korea
| | - Jeong Ho Chang
- Department of Biology, Teachers College, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Korea
| |
Collapse
|
22
|
Chou MH, Hsieh YC, Huang CW, Chen PH, Chan SP, Tsao YP, Lee HH, Wu JT, Chen SL. BCAS2 Regulates Delta-Notch Signaling Activity through Delta Pre-mRNA Splicing in Drosophila Wing Development. PLoS One 2015; 10:e0130706. [PMID: 26091239 PMCID: PMC4475048 DOI: 10.1371/journal.pone.0130706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/23/2015] [Indexed: 11/19/2022] Open
Abstract
Previously, we showed that BCAS2 is essential for Drosophila viability and functions in pre-mRNA splicing. In this study, we provide strong evidence that BCAS2 regulates the activity of Delta-Notch signaling via Delta pre-mRNA splicing. Depletion of dBCAS2 reduces Delta mRNA expression and leads to accumulation of Delta pre-mRNA, resulting in diminished transcriptions of Delta-Notch signaling target genes, such as cut and E(spl)m8. Furthermore, ectopic expression of human BCAS2 (hBCAS2) and Drosophila BCAS2 (dBCAS2) in a dBCAS2-deprived fly can rescue dBCAS2 depletion-induced wing damage to the normal phenotypes. These rescued phenotypes are correlated with the restoration of Delta pre-mRNA splicing, which affects Delta-Notch signaling activity. Additionally, overexpression of Delta can rescue the wing deformation by deprivation of dBCAS2; and the depletion of dBCAS2 can restore the aberrant eye associated with Delta-overexpressing retinas; providing supporting evidence for the regulation of Delta-Notch signaling by dBCAS2. Taken together, dBCAS2 participates in Delta pre-mRNA splicing that affects the regulation of Delta-Notch signaling in Drosophila wing development.
Collapse
Affiliation(s)
- Meng-Hsuan Chou
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Yi-Chen Hsieh
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Chu-Wei Huang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Po-Han Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Shih-Peng Chan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, 104, Taiwan
| | - Hsiu-Hsiang Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - June-Tai Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, 100, Taiwan
- * E-mail: (SLC); (JTW)
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
- * E-mail: (SLC); (JTW)
| |
Collapse
|
23
|
Ambrósio DL, Badjatia N, Günzl A. The spliceosomal PRP19 complex of trypanosomes. Mol Microbiol 2015; 95:885-901. [PMID: 25524563 DOI: 10.1111/mmi.12910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2014] [Indexed: 02/05/2023]
Abstract
In trypanosomes, mRNAs are processed by spliced leader (SL) trans splicing, in which a capped SL, derived from SL RNA, is spliced onto the 5' end of each mRNA. This process is mediated by the spliceosome, a large and dynamic RNA-protein machinery consisting of small nuclear ribonucleoproteins (snRNPs) and non-snRNP proteins. Due to early evolutionary divergence, the amino acid sequences of trypanosome splicing factors exhibit limited similarity to those of their eukaryotic orthologs making their bioinformatic identification challenging. Most of the ~ 60 protein components that have been characterized thus far are snRNP proteins because, in contrast to individual snRNPs, purification of intact spliceosomes has not been achieved yet. Here, we characterize the non-snRNP PRP19 complex of Trypanosoma brucei. We identified a complex that contained the core subunits PRP19, CDC5, PRL1, and SPF27, as well as PRP17, SKIP and PPIL1. Three of these proteins were newly annotated. The PRP19 complex was associated primarily with the activated spliceosome and, accordingly, SPF27 silencing blocked the first splicing step. Interestingly, SPF27 silencing caused an accumulation of SL RNA with a hypomethylated cap that closely resembled the defect observed previously upon depletion of the cyclin-dependent kinase CRK9, indicating that both proteins may function in spliceosome activation.
Collapse
Affiliation(s)
- Daniela L Ambrósio
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT, 06030-6403, USA
| | | | | |
Collapse
|
24
|
Collier SE, Voehler M, Peng D, Ohi R, Gould KL, Reiter NJ, Ohi MD. Structural and functional insights into the N-terminus of Schizosaccharomyces pombe Cdc5. Biochemistry 2014; 53:6439-51. [PMID: 25263959 PMCID: PMC4204884 DOI: 10.1021/bi5008639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The
spliceosome is a dynamic macromolecular machine composed of
five small nuclear ribonucleoparticles (snRNPs), the NineTeen Complex
(NTC), and other proteins that catalyze the removal of introns mature
to form the mature message. The NTC, named after its founding member Saccharomyces cerevisiae Prp19, is a conserved spliceosome
subcomplex composed of at least nine proteins. During spliceosome
assembly, the transition to an active spliceosome correlates with
stable binding of the NTC, although the mechanism of NTC function
is not understood. Schizosaccharomyces pombe Cdc5, a core subunit of the NTC, is an essential protein required
for pre-mRNA splicing. The highly conserved Cdc5 N-terminus contains
two canonical Myb (myeloblastosis) repeats (R1 and R2) and a third
domain (D3) that was previously classified as a Myb-like repeat. Although
the N-terminus of Cdc5 is required for its function, how R1, R2, and
D3 each contribute to functionality is unclear. Using a combination
of yeast genetics, structural approaches, and RNA binding assays,
we show that R1, R2, and D3 are all required for the function of Cdc5
in cells. We also show that the N-terminus of Cdc5 binds RNA in vitro. Structural and functional analyses of Cdc5-D3
show that, while this domain does not adopt a Myb fold, Cdc5-D3 preferentially
binds double-stranded RNA. Our data suggest that the Cdc5 N-terminus
interacts with RNA structures proposed to be near the catalytic core
of the spliceosome.
Collapse
Affiliation(s)
- Scott E Collier
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | |
Collapse
|
25
|
Hogg R, de Almeida RA, Ruckshanthi JPD, O'Keefe RT. Remodeling of U2-U6 snRNA helix I during pre-mRNA splicing by Prp16 and the NineTeen Complex protein Cwc2. Nucleic Acids Res 2014; 42:8008-23. [PMID: 24848011 PMCID: PMC4081067 DOI: 10.1093/nar/gku431] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Removal of intron regions from pre-messenger RNA (pre-mRNA) requires spliceosome assembly with pre-mRNA, then subsequent spliceosome remodeling to allow activation for the two steps of intron removal. Spliceosome remodeling is carried out through the action of DExD/H-box ATPases that modulate RNA-RNA and protein-RNA interactions. The ATPase Prp16 remodels the spliceosome between the first and second steps of splicing by catalyzing release of first step factors Yju2 and Cwc25 as well as destabilizing U2-U6 snRNA helix I. How Prp16 destabilizes U2-U6 helix I is not clear. We show that the NineTeen Complex (NTC) protein Cwc2 displays genetic interactions with the U6 ACAGAGA, the U6 internal stem loop (ISL) and the U2-U6 helix I, all RNA elements that form the spliceosome active site. We find that one function of Cwc2 is to stabilize U2-U6 snRNA helix I during splicing. Cwc2 also functionally cooperates with the NTC protein Isy1/NTC30. Mutation in Cwc2 can suppress the cold sensitive phenotype of the prp16-302 mutation indicating a functional link between Cwc2 and Prp16. Specifically the prp16-302 mutation in Prp16 stabilizes Cwc2 interactions with U6 snRNA and destabilizes Cwc2 interactions with pre-mRNA, indicating antagonistic functions of Cwc2 and Prp16. We propose that Cwc2 is a target for Prp16-mediated spliceosome remodeling during pre-mRNA splicing.
Collapse
Affiliation(s)
- Rebecca Hogg
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT
| | | | | | - Raymond T O'Keefe
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT
| |
Collapse
|
26
|
Ahn JW, Kim S, Kim EJ, Kim YJ, Kim KJ. Structural insights into the novel ARM-repeat protein CTNNBL1 and its association with the hPrp19-CDC5L complex. ACTA ACUST UNITED AC 2014; 70:780-8. [PMID: 24598747 DOI: 10.1107/s139900471303318x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/08/2013] [Indexed: 11/10/2022]
Abstract
The hPrp19-CDC5L complex plays a crucial role during human pre-mRNA splicing by catalytic activation of the spliceosome. In order to elucidate the molecular architecture of the hPrp19-CDC5L complex, the crystal structure of CTNNBL1, one of the major components of this complex, was determined. Unlike canonical ARM-repeat proteins such as β-catenin and importin-α, CTNNBL1 was found to contain a twisted and extended ARM-repeat structure at the C-terminal domain and, more importantly, the protein formed a stable dimer. A highly negatively charged patch formed in the N-terminal ARM-repeat domain of CTNNBL1 provides a binding site for CDC5L, a binding partner of the protein in the hPrp19-CDC5L complex, and these two proteins form a complex with a stoichiometry of 2:2. These findings not only present the crystal structure of a novel ARM-repeat protein, CTNNBL1, but also provide insights into the detailed molecular architecture of the hPrp19-CDC5L complex.
Collapse
Affiliation(s)
- Jae-Woo Ahn
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Sangwoo Kim
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Eun-Jung Kim
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Yeo-Jin Kim
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Kyung-Jin Kim
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| |
Collapse
|
27
|
The SPF27 homologue Num1 connects splicing and kinesin 1-dependent cytoplasmic trafficking in Ustilago maydis. PLoS Genet 2014; 10:e1004046. [PMID: 24391515 PMCID: PMC3879195 DOI: 10.1371/journal.pgen.1004046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/30/2013] [Indexed: 12/23/2022] Open
Abstract
The conserved NineTeen protein complex (NTC) is an integral subunit of the spliceosome and required for intron removal during pre-mRNA splicing. The complex associates with the spliceosome and participates in the regulation of conformational changes of core spliceosomal components, stabilizing RNA-RNA- as well as RNA-protein interactions. In addition, the NTC is involved in cell cycle checkpoint control, response to DNA damage, as well as formation and export of mRNP-particles. We have identified the Num1 protein as the homologue of SPF27, one of NTC core components, in the basidiomycetous fungus Ustilago maydis. Num1 is required for polarized growth of the fungal hyphae, and, in line with the described NTC functions, the num1 mutation affects the cell cycle and cell division. The num1 deletion influences splicing in U. maydis on a global scale, as RNA-Seq analysis revealed increased intron retention rates. Surprisingly, we identified in a screen for Num1 interacting proteins not only NTC core components as Prp19 and Cef1, but several proteins with putative functions during vesicle-mediated transport processes. Among others, Num1 interacts with the motor protein Kin1 in the cytoplasm. Similar phenotypes with respect to filamentous and polar growth, vacuolar morphology, as well as the motility of early endosomes corroborate the genetic interaction between Num1 and Kin1. Our data implicate a previously unidentified connection between a component of the splicing machinery and cytoplasmic transport processes. As the num1 deletion also affects cytoplasmic mRNA transport, the protein may constitute a novel functional interconnection between the two disparate processes of splicing and trafficking. In eukaryotic cells, nascent mRNA is processed by splicing to remove introns and to join the exon sequences. The processed mRNA is then transported out of the nucleus and employed by ribosomes to synthesize proteins. Splicing is achieved by the spliceosome and associated protein complexes, among them the so-called NineTeen complex (NTC). We have identified the Num1 protein as one of the core components of the NTC in the fungus Ustilago maydis, and could show that it is required for polarized growth of the filamentous fungal cells. Consistent with the NTC function, cells with a num1-deletion show reduced splicing of mRNA. Moreover, we uncover a novel cytoplasmic function of the Num1 protein: It physically interacts with the microtubule-associated Kinesin 1 motor protein, and phenotypic analyses corroborate that both proteins are functionally connected. Our findings reveal a yet unidentified role of a global splicing factor during intracellular trafficking processes. A possible connection between these disparate mechanisms presumably resides in mRNA-export out of the nucleus and/or the transport of mRNA within the cytoplasm.
Collapse
|
28
|
Livesay SB, Collier SE, Bitton DA, Bähler J, Ohi MD. Structural and functional characterization of the N terminus of Schizosaccharomyces pombe Cwf10. EUKARYOTIC CELL 2013; 12:1472-89. [PMID: 24014766 PMCID: PMC3837936 DOI: 10.1128/ec.00140-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/03/2013] [Indexed: 01/10/2023]
Abstract
The spliceosome is a dynamic macromolecular machine that catalyzes the removal of introns from pre-mRNA, yielding mature message. Schizosaccharomyces pombe Cwf10 (homolog of Saccharomyces cerevisiae Snu114 and human U5-116K), an integral member of the U5 snRNP, is a GTPase that has multiple roles within the splicing cycle. Cwf10/Snu114 family members are highly homologous to eukaryotic translation elongation factor EF2, and they contain a conserved N-terminal extension (NTE) to the EF2-like portion, predicted to be an intrinsically unfolded domain. Using S. pombe as a model system, we show that the NTE is not essential, but cells lacking this domain are defective in pre-mRNA splicing. Genetic interactions between cwf10-ΔNTE and other pre-mRNA splicing mutants are consistent with a role for the NTE in spliceosome activation and second-step catalysis. Characterization of Cwf10-NTE by various biophysical techniques shows that in solution the NTE contains regions of both structure and disorder. The first 23 highly conserved amino acids of the NTE are essential for its role in splicing but when overexpressed are not sufficient to restore pre-mRNA splicing to wild-type levels in cwf10-ΔNTE cells. When the entire NTE is overexpressed in the cwf10-ΔNTE background, it can complement the truncated Cwf10 protein in trans, and it immunoprecipitates a complex similar in composition to the late-stage U5.U2/U6 spliceosome. These data show that the structurally flexible NTE is capable of independently incorporating into the spliceosome and improving splicing function, possibly indicating a role for the NTE in stabilizing conformational rearrangements during a splice cycle.
Collapse
Affiliation(s)
- S. Brent Livesay
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Scott E. Collier
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Danny A. Bitton
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Melanie D. Ohi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
29
|
Dreumont N, Séraphin B. Rapid screening of yeast mutants with reporters identifies new splicing phenotypes. FEBS J 2013; 280:2712-26. [PMID: 23560879 DOI: 10.1111/febs.12277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 11/29/2022]
Abstract
Nuclear precursor mRNA splicing requires the stepwise assembly of a large complex, the spliceosome. Recent large-scale analyses, including purification of splicing complexes, high-throughput genetic screens and interactomic studies, have linked numerous factors to this dynamic process, including a well-defined core conserved from yeast to human. Intriguingly, despite extensive studies, no splicing defects were reported for some of the corresponding yeast mutants. To resolve this paradox, we screened a collection of viable yeast strains carrying mutations in splicing-related factors with a set of reporters including artificial constructs carrying competing splice sites. Previous analyses have indeed demonstrated that this strategy identifies yeast factors able to regulate alternative splicing and whose properties are conserved in human cells. The method, sensitive to subtle defects, revealed new splicing phenotypes for most analyzed factors such as the Urn1 protein. Interestingly, a mutant of PRP8 specifically lacking an N-terminal proline-rich region stimulated the splicing of a reporter containing competing branchpoint/3' splice site regions. Thus, using appropriate reporters, yeast can be used to quickly delineate the effect of various factors on splicing and identify those with the propensity to regulate alternative splicing events.
Collapse
Affiliation(s)
- Natacha Dreumont
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France
| | | |
Collapse
|
30
|
Fourmann JB, Schmitzová J, Christian H, Urlaub H, Ficner R, Boon KL, Fabrizio P, Lührmann R. Dissection of the factor requirements for spliceosome disassembly and the elucidation of its dissociation products using a purified splicing system. Genes Dev 2013; 27:413-28. [PMID: 23431055 DOI: 10.1101/gad.207779.112] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The spliceosome is a single-turnover enzyme that needs to be dismantled after catalysis to both release the mRNA and recycle small nuclear ribonucleoproteins (snRNPs) for subsequent rounds of pre-mRNA splicing. The RNP remodeling events occurring during spliceosome disassembly are poorly understood, and the composition of the released snRNPs are only roughly known. Using purified components in vitro, we generated post-catalytic spliceosomes that can be dissociated into mRNA and the intron-lariat spliceosome (ILS) by addition of the RNA helicase Prp22 plus ATP and without requiring the step 2 proteins Slu7 and Prp18. Incubation of the isolated ILS with the RNA helicase Prp43 plus Ntr1/Ntr2 and ATP generates defined spliceosomal dissociation products: the intron-lariat, U6 snRNA, a 20-25S U2 snRNP containing SF3a/b, an 18S U5 snRNP, and the "nineteen complex" associated with both the released U2 snRNP and intron-lariat RNA. Our system reproduces the entire ordered disassembly phase of the spliceosome with purified components, which defines the minimum set of agents required for this process. It enabled us to characterize the proteins of the ILS by mass spectrometry and identify the ATPase action of Prp43 as necessary and sufficient for dissociation of the ILS without the involvement of Brr2 ATPase.
Collapse
Affiliation(s)
- Jean-Baptiste Fourmann
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lee H, Alpi AF, Park MS, Rose A, Koo HS. C. elegans ring finger protein RNF-113 is involved in interstrand DNA crosslink repair and interacts with a RAD51C homolog. PLoS One 2013; 8:e60071. [PMID: 23555887 PMCID: PMC3610817 DOI: 10.1371/journal.pone.0060071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/21/2013] [Indexed: 12/27/2022] Open
Abstract
The Fanconi anemia (FA) pathway recognizes interstrand DNA crosslinks (ICLs) and contributes to their conversion into double-strand DNA breaks, which can be repaired by homologous recombination. Seven orthologs of the 15 proteins associated with Fanconi anemia are functionally conserved in the model organism C. elegans. Here we report that RNF-113, a ubiquitin ligase, is required for RAD-51 focus formation after inducing ICLs in C. elegans. However, the formation of foci of RPA-1 or FCD-2/FANCD2 in the FA pathway was not affected by depletion of RNF-113. Nevertheless, the RPA-1 foci formed did not disappear with time in the depleted worms, implying serious defects in ICL repair. As a result, RNF-113 depletion increased embryonic lethality after ICL treatment in wild-type worms, but it did not increase the ICL-induced lethality of rfs-1/rad51C mutants. In addition, the persistence of RPA-1 foci was suppressed in doubly-deficient rnf-113;rfs-1 worms, suggesting that there is an epistatic interaction between the two genes. These results lead us to suggest that RNF-113 and RFS-1 interact to promote the displacement of RPA-1 by RAD-51 on single-stranded DNA derived from ICLs.
Collapse
Affiliation(s)
- Hyojin Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Arno F. Alpi
- Scottish Institute for Cell Signaling, University of Dundee, Dundee, United Kingdom
| | - Mi So Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ann Rose
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Hyeon-Sook Koo
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
32
|
Chen PH, Lee CI, Weng YT, Tarn WY, Tsao YP, Kuo PC, Hsu PH, Huang CW, Huang CS, Lee HH, Wu JT, Chen SL. BCAS2 is essential for Drosophila viability and functions in pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2013; 19:208-218. [PMID: 23249746 PMCID: PMC3543084 DOI: 10.1261/rna.034835.112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 11/14/2012] [Indexed: 06/01/2023]
Abstract
Here, we show that dBCAS2 (CG4980, human Breast Carcinoma Amplified Sequence 2 ortholog) is essential for the viability of Drosophila melanogaster. We find that ubiquitous or tissue-specific depletion of dBCAS2 leads to larval lethality, wing deformities, impaired splicing, and apoptosis. More importantly, overexpression of hBCAS2 rescues these defects. Furthermore, the C-terminal coiled-coil domain of hBCAS2 binds directly to CDC5L and recruits hPrp19/PLRG1 to form a core complex for splicing in mammalian cells and can partially restore wing damage induced by knocking down dBCAS2 in flies. In summary, Drosophila and human BCAS2 share a similar function in RNA splicing, which affects cell viability.
Collapse
Affiliation(s)
- Po-Han Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chia-I Lee
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Tzu Weng
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Ping-Chang Kuo
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Pang-Hung Hsu
- Department of Life Science, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan
- Institute of Bioscience and Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Chu-Wei Huang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chiun-Sheng Huang
- Department of Surgery, College of Medicine, National Taiwan University and Hospital, Taipei 100, Taiwan
| | - Hsiu-Hsiang Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - June-Tai Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
33
|
Abstract
RNA splicing is one of the fundamental processes in gene expression in eukaryotes. Splicing of pre-mRNA is catalysed by a large ribonucleoprotein complex called the spliceosome, which consists of five small nuclear RNAs and numerous protein factors. The spliceosome is a highly dynamic structure, assembled by sequential binding and release of the small nuclear RNAs and protein factors. DExD/H-box RNA helicases are required to mediate structural changes in the spliceosome at various steps in the assembly pathway and have also been implicated in the fidelity control of the splicing reaction. Other proteins also play key roles in mediating the progression of the spliceosome pathway. In this review, we discuss the functional roles of the protein factors involved in the spliceosome pathway primarily from studies in the yeast system.
Collapse
|
34
|
Cvitkovic I, Jurica MS. Spliceosome database: a tool for tracking components of the spliceosome. Nucleic Acids Res 2012; 41:D132-41. [PMID: 23118483 PMCID: PMC3531166 DOI: 10.1093/nar/gks999] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The spliceosome is the extremely complex macromolecular machine responsible for pre-mRNA splicing. It assembles from five U-rich small nuclear RNAs (snRNAs) and over 200 proteins in a highly dynamic fashion. One important challenge to studying the spliceosome is simply keeping track of all these proteins, a situation further complicated by the variety of names and identifiers that exist in the literature for them. To facilitate studies of the spliceosome and its components, we created a database of spliceosome-associated proteins and snRNAs, which is available at http://spliceosomedb.ucsc.edu and can be queried through a simple browser interface. In the database, we cataloged the various names, orthologs and gene identifiers of spliceosome proteins to navigate the complex nomenclature of spliceosome proteins. We also provide links to gene and protein records for the spliceosome components in other databases. To navigate spliceosome assembly dynamics, we created tools to compare the association of spliceosome proteins with complexes that form at specific stages of spliceosome assembly based on a compendium of mass spectrometry experiments that identified proteins in purified splicing complexes. Together, the information in the database provides an easy reference for spliceosome components and will support future modeling of spliceosome structure and dynamics.
Collapse
Affiliation(s)
- Ivan Cvitkovic
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
35
|
Coltri PP, Oliveira CC. Cwc24p is a general Saccharomyces cerevisiae splicing factor required for the stable U2 snRNP binding to primary transcripts. PLoS One 2012; 7:e45678. [PMID: 23029180 PMCID: PMC3454408 DOI: 10.1371/journal.pone.0045678] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/23/2012] [Indexed: 12/31/2022] Open
Abstract
Splicing of primary transcripts is an essential process for the control of gene expression. Specific conserved sequences in premature transcripts are important to recruit the spliceosome machinery. The Saccharomyces cerevisiae catalytic spliceosome is composed of about 60 proteins and 5 snRNAs (U1, U2, U4/U6 and U5). Among these proteins, there are core components and regulatory factors, which might stabilize or facilitate splicing of specific substrates. Assembly of a catalytic complex depends on the dynamics of interactions between these proteins and RNAs. Cwc24p is an essential S. cerevisiae protein, originally identified as a component of the NTC complex, and later shown to affect splicing in vivo. In this work, we show that Cwc24p also affects splicing in vitro. We show that Cwc24p is important for the U2 snRNP binding to primary transcripts, co-migrates with spliceosomes, and that it interacts with Brr2p. Additionally, we show that Cwc24p is important for the stable binding of Prp19p to the spliceosome. We propose a model in which Cwc24p is required for stabilizing the U2 association with primary transcripts, and therefore, especially important for splicing of RNAs containing non-consensus branchpoint sequences.
Collapse
Affiliation(s)
- Patricia P. Coltri
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Carla C. Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
36
|
Human CWC22 escorts the helicase eIF4AIII to spliceosomes and promotes exon junction complex assembly. Nat Struct Mol Biol 2012; 19:983-90. [DOI: 10.1038/nsmb.2380] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 08/08/2012] [Indexed: 01/09/2023]
|
37
|
Chanarat S, Burkert-Kautzsch C, Meinel DM, Sträßer K. Prp19C and TREX: interacting to promote transcription elongation
and mRNA export. Transcription 2012; 3:8-12. [PMID: 22456314 DOI: 10.4161/trns.3.1.19078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During transcription of protein coding genes by RNA Polymerase II the mRNA is processed and packaged into an mRNP. Among the proteins binding cotranscriptionally to the mRNP are mRNA export factors. One of the protein complexes thus coupling transcription to mRNA export is the TREX complex. However, despite the fact that TREX was identified and characterized about a decade ago, it had remained enigmatic how TREX is recruited to genes. The conserved Prp19 complex (Prp19C) has long been known for its function in splicing. We recently identified Prp19C to be essential for a second step in gene expression namely TREX occupancy at transcribed genes, answering this long-standing question but also raising new ones.
Collapse
|
38
|
Li W, Ahn IP, Ning Y, Park CH, Zeng L, Whitehill JG, Lu H, Zhao Q, Ding B, Xie Q, Zhou JM, Dai L, Wang GL. The U-Box/ARM E3 ligase PUB13 regulates cell death, defense, and flowering time in Arabidopsis. PLANT PHYSIOLOGY 2012; 159:239-50. [PMID: 22383540 PMCID: PMC3366716 DOI: 10.1104/pp.111.192617] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/27/2012] [Indexed: 05/18/2023]
Abstract
The components in plant signal transduction pathways are intertwined and affect each other to coordinate plant growth, development, and defenses to stresses. The role of ubiquitination in connecting these pathways, particularly plant innate immunity and flowering, is largely unknown. Here, we report the dual roles for the Arabidopsis (Arabidopsis thaliana) Plant U-box protein13 (PUB13) in defense and flowering time control. In vitro ubiquitination assays indicated that PUB13 is an active E3 ubiquitin ligase and that the intact U-box domain is required for the E3 ligase activity. Disruption of the PUB13 gene by T-DNA insertion results in spontaneous cell death, the accumulation of hydrogen peroxide and salicylic acid (SA), and elevated resistance to biotrophic pathogens but increased susceptibility to necrotrophic pathogens. The cell death, hydrogen peroxide accumulation, and resistance to necrotrophic pathogens in pub13 are enhanced when plants are pretreated with high humidity. Importantly, pub13 also shows early flowering under middle- and long-day conditions, in which the expression of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 and FLOWERING LOCUS T is induced while FLOWERING LOCUS C expression is suppressed. Finally, we found that two components involved in the SA-mediated signaling pathway, SID2 and PAD4, are required for the defense and flowering-time phenotypes caused by the loss of function of PUB13. Taken together, our data demonstrate that PUB13 acts as an important node connecting SA-dependent defense signaling and flowering time regulation in Arabidopsis.
Collapse
|
39
|
Query CC, Konarska MM. CEF1/CDC5 alleles modulate transitions between catalytic conformations of the spliceosome. RNA (NEW YORK, N.Y.) 2012; 18:1001-13. [PMID: 22408182 PMCID: PMC3334688 DOI: 10.1261/rna.029421.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Conformational change within the spliceosome is required between the first and second catalytic steps of pre-mRNA splicing. A prior genetic screen for suppressors of an intron mutant that stalls between the two steps yielded both prp8 and non-prp8 alleles that suppressed second-step splicing defects. We have now identified the strongest non-prp8 suppressors as alleles of the NTC (Prp19 complex) component, CEF1. These cef1 alleles generally suppress second-step defects caused by a variety of intron mutations, mutations in U6 snRNA, or deletion of the second-step protein factor Prp17, and they can activate alternative 3' splice sites. Genetic and functional interactions between cef1 and prp8 alleles suggest that they modulate the same event(s) in the first-to-second-step transition, most likely by stabilization of the second-step spliceosome; in contrast, alleles of U6 snRNA that also alter this transition modulate a distinct event, most likely by stabilization of the first-step spliceosome. These results implicate a myb-like domain of Cef1/CDC5 in interactions that modulate conformational states of the spliceosome and suggest that alteration of these events affects splice site use, resulting in alternative splicing-like patterns in yeast.
Collapse
Affiliation(s)
- Charles C. Query
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
- Corresponding authors.E-mail .E-mail .
| | - Maria M. Konarska
- The Rockefeller University, New York, New York 10065, USA
- Corresponding authors.E-mail .E-mail .
| |
Collapse
|
40
|
Rasche N, Dybkov O, Schmitzová J, Akyildiz B, Fabrizio P, Lührmann R. Cwc2 and its human homologue RBM22 promote an active conformation of the spliceosome catalytic centre. EMBO J 2012; 31:1591-604. [PMID: 22246180 PMCID: PMC3321175 DOI: 10.1038/emboj.2011.502] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/15/2011] [Indexed: 11/09/2022] Open
Abstract
RNA-structural elements play key roles in pre-mRNA splicing catalysis; yet, the formation of catalytically competent RNA structures requires the assistance of spliceosomal proteins. We show that the S. cerevisiae Cwc2 protein functions prior to step 1 of splicing, and it is not required for the Prp2-mediated spliceosome remodelling that generates the catalytically active B complex, suggesting that Cwc2 plays a more sophisticated role in the generation of a functional catalytic centre. In active spliceosomes, Cwc2 contacts catalytically important RNA elements, including the U6 internal stem-loop (ISL), and regions of U6 and the pre-mRNA intron near the 5' splice site, placing Cwc2 at/near the spliceosome's catalytic centre. These interactions are evolutionarily conserved, as shown by studies with Cwc2's human counterpart RBM22, indicating that Cwc2/RBM22-RNA contacts are functionally important. We propose that Cwc2 induces an active conformation of the spliceosome's catalytic RNA elements. Thus, the function of RNA-RNA tertiary interactions within group II introns, namely to induce an active conformation of domain V, may be fulfilled by proteins that contact the functionally analogous U6-ISL, within the spliceosome.
Collapse
Affiliation(s)
- Nicolas Rasche
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | - Olexandr Dybkov
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | - Jana Schmitzová
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | - Berktan Akyildiz
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | - Patrizia Fabrizio
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
41
|
Crystal structure of Cwc2 reveals a novel architecture of a multipartite RNA-binding protein. EMBO J 2012; 31:2222-34. [PMID: 22407296 DOI: 10.1038/emboj.2012.58] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 02/14/2012] [Indexed: 11/08/2022] Open
Abstract
The yeast splicing factor Cwc2 contacts several catalytically important RNA elements in the active spliceosome, suggesting that Cwc2 is involved in determining their spatial arrangement at the spliceosome's catalytic centre. We have determined the crystal structure of the Cwc2 functional core, revealing how a previously uncharacterized Torus domain, an RNA recognition motif (RRM) and a zinc finger (ZnF) are tightly integrated in a compact folding unit. The ZnF plays a pivotal role in the architecture of the whole assembly. UV-induced crosslinking of Cwc2-U6 snRNA allowed the identification by mass spectrometry of six RNA-contacting sites: four in or close to the RRM domain, one in the ZnF and one on a protruding element connecting the Torus and RRM domains. The three distinct regions contacting RNA are connected by a contiguous and conserved positively charged surface, suggesting an expanded interface for RNA accommodation. Cwc2 mutations confirmed that the connector element plays a crucial role in splicing. We conclude that Cwc2 acts as a multipartite RNA-binding platform to bring RNA elements of the spliceosome's catalytic centre into an active conformation.
Collapse
|
42
|
Koncz C, deJong F, Villacorta N, Szakonyi D, Koncz Z. The spliceosome-activating complex: molecular mechanisms underlying the function of a pleiotropic regulator. FRONTIERS IN PLANT SCIENCE 2012; 3:9. [PMID: 22639636 PMCID: PMC3355604 DOI: 10.3389/fpls.2012.00009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/09/2012] [Indexed: 05/18/2023]
Abstract
Correct interpretation of the coding capacity of RNA polymerase II transcribed eukaryotic genes is determined by the recognition and removal of intronic sequences of pre-mRNAs by the spliceosome. Our current knowledge on dynamic assembly and subunit interactions of the spliceosome mostly derived from the characterization of yeast, Drosophila, and human spliceosomal complexes formed on model pre-mRNA templates in cell extracts. In addition to sequential structural rearrangements catalyzed by ATP-dependent DExH/D-box RNA helicases, catalytic activation of the spliceosome is critically dependent on its association with the NineTeen Complex (NTC) named after its core E3 ubiquitin ligase subunit PRP19. NTC, isolated recently from Arabidopsis, occurs in a complex with the essential RNA helicase and GTPase subunits of the U5 small nuclear RNA particle that are required for both transesterification reactions of splicing. A compilation of mass spectrometry data available on the composition of NTC and spliceosome complexes purified from different organisms indicates that about half of their conserved homologs are encoded by duplicated genes in Arabidopsis. Thus, while mutations of single genes encoding essential spliceosome and NTC components lead to cell death in other organisms, differential regulation of some of their functionally redundant Arabidopsis homologs permits the isolation of partial loss of function mutations. Non-lethal pleiotropic defects of these mutations provide a unique means for studying the roles of NTC in co-transcriptional assembly of the spliceosome and its crosstalk with DNA repair and cell death signaling pathways.
Collapse
Affiliation(s)
- Csaba Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
- Institute of Plant Biology, Biological Research Center of Hungarian Academy of SciencesSzeged, Hungary
- *Correspondence: Csaba Koncz, Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-59829 Cologne, Germany. e-mail:
| | - Femke deJong
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Nicolas Villacorta
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Dóra Szakonyi
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Zsuzsa Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| |
Collapse
|
43
|
Abstract
AbstractRecent work in plant immunity has shown that MOS4, a known intermediate in R protein mediated resistance, is a core member of the nuclear MOS4-associated complex (MAC). This complex is highly conserved in eukaryotes, as orthologous complexes known as the CDC5L-SNEVPrp19-Pso4 complex and the Nineteen complex (NTC) were previously identified in human and yeast, respectively. The involvement of these complexes in pre-mRNA splicing and spliceosome assembly suggests that the MAC probably has a similar function in plants. Double mutants of any two MAC components are lethal, whereas single mutants of the MAC core components mos4, Atcdc5, mac3, and prl1 are all viable and display pleiotropic defects. This suggests that while the MAC is required for some essential biological function such as splicing, individual MAC components are not crucial for complex functionality and likely have regulatory roles in other biological processes such as plant immunity and flowering time control. Future studies on MAC components in Arabidopsis will provide further insight into the regulatory mechanisms of the MAC on specific biological processes.
Collapse
|
44
|
Chanarat S, Seizl M, Strässer K. The Prp19 complex is a novel transcription elongation factor required for TREX occupancy at transcribed genes. Genes Dev 2011; 25:1147-58. [PMID: 21576257 DOI: 10.1101/gad.623411] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Different steps in gene expression are intimately linked. In Saccharomyces cerevisiae, the conserved TREX complex couples transcription to nuclear messenger RNA (mRNA) export. However, it is unknown how TREX is recruited to actively transcribed genes. Here, we show that the Prp19 splicing complex functions in transcription elongation. The Prp19 complex is recruited to transcribed genes, interacts with RNA polymerase II (RNAPII) and TREX, and is absolutely required for TREX occupancy at transcribed genes. Importantly, the Prp19 complex is necessary for full transcriptional activity. Taken together, we identify the Prp19 splicing complex as a novel transcription elongation factor that is essential for TREX occupancy at transcribed genes and that thus provides a novel link between transcription and messenger ribonucleoprotein (mRNP) formation.
Collapse
Affiliation(s)
- Sittinan Chanarat
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-University Munich, Germany
| | | | | |
Collapse
|
45
|
Brown HF, Wang L, Khadka S, Fields S, LaCount DJ. A densely overlapping gene fragmentation approach improves yeast two-hybrid screens for Plasmodium falciparum proteins. Mol Biochem Parasitol 2011; 178:56-9. [PMID: 21530591 DOI: 10.1016/j.molbiopara.2011.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/08/2011] [Accepted: 04/14/2011] [Indexed: 01/18/2023]
Abstract
Use of the yeast two-hybrid assay to study Plasmodium falciparum protein-protein interactions is limited by poor expression of P. falciparum genes in yeast and lack of easily implemented assays to confirm the results. We report here two methods to create gene fragments - random fragmentation by partial DNAse I digestion and generation of densely overlapping fragments by PCR - that enable most portions of P. falciparum genes to be expressed and screened in the yeast two-hybrid assay. The PCR-based method is less technically challenging and facilitates fine-scale mapping of protein interaction domains. Both approaches revealed a putative interaction between PfMyb2 (PF10_0327) and PFC0365w. We developed new plasmids to express the proteins in wheat germ extracts and confirmed the interaction in both the split-luciferase assay and in co-purification experiments with glutathione-S-transferase and HA-tagged proteins. The combination of improved yeast two-hybrid screening approaches and convenient systems to validate interactions enhances the utility of yeast two-hybrid assays for P. falciparum.
Collapse
Affiliation(s)
- Hakeenah F Brown
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
46
|
Ren L, McLean JR, Hazbun TR, Fields S, Vander Kooi C, Ohi MD, Gould KL. Systematic two-hybrid and comparative proteomic analyses reveal novel yeast pre-mRNA splicing factors connected to Prp19. PLoS One 2011; 6:e16719. [PMID: 21386897 PMCID: PMC3046128 DOI: 10.1371/journal.pone.0016719] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 12/23/2010] [Indexed: 11/19/2022] Open
Abstract
Prp19 is the founding member of the NineTeen Complex, or NTC, which is a spliceosomal subcomplex essential for spliceosome activation. To define Prp19 connectivity and dynamic protein interactions within the spliceosome, we systematically queried the Saccharomyces cerevisiae proteome for Prp19 WD40 domain interaction partners by two-hybrid analysis. We report that in addition to S. cerevisiae Cwc2, the splicing factor Prp17 binds directly to the Prp19 WD40 domain in a 1:1 ratio. Prp17 binds simultaneously with Cwc2 indicating that it is part of the core NTC complex. We also find that the previously uncharacterized protein Urn1 (Dre4 in Schizosaccharomyces pombe) directly interacts with Prp19, and that Dre4 is conditionally required for pre-mRNA splicing in S. pombe. S. pombe Dre4 and S. cerevisiae Urn1 co-purify U2, U5, and U6 snRNAs and multiple splicing factors, and dre4Δ and urn1Δ strains display numerous negative genetic interactions with known splicing mutants. The S. pombe Prp19-containing Dre4 complex co-purifies three previously uncharacterized proteins that participate in pre-mRNA splicing, likely before spliceosome activation. Our multi-faceted approach has revealed new low abundance splicing factors connected to NTC function, provides evidence for distinct Prp19 containing complexes, and underscores the role of the Prp19 WD40 domain as a splicing scaffold.
Collapse
Affiliation(s)
- Liping Ren
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Janel R. McLean
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Tony R. Hazbun
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences and Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Stanley Fields
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences and Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Craig Vander Kooi
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Melanie D. Ohi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Kathleen L. Gould
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
47
|
Valadkhan S, Jaladat Y. The spliceosomal proteome: at the heart of the largest cellular ribonucleoprotein machine. Proteomics 2010; 10:4128-41. [PMID: 21080498 DOI: 10.1002/pmic.201000354] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Almost all primary transcripts in higher eukaryotes undergo several splicing events and alternative splicing is a major factor in generating proteomic diversity. Thus, the spliceosome, the ribonucleoprotein assembly that performs splicing, is a highly critical cellular machine and as expected, a very complex one. Indeed, the spliceosome is one of the largest, if not the largest, molecular machine in the cell with over 150 different components in human. A large fraction of the spliceosomal proteome is organized into small nuclear ribonucleoprotein particles by associating with one of the small nuclear RNAs, and the function of many spliceosomal proteins revolve around their association or interaction with the spliceosomal RNAs or the substrate pre-messenger RNAs. In addition to the complex web of protein-RNA interactions, an equally complex network of protein-protein interactions exists in the spliceosome, which includes a number of large, conserved proteins with critical functions in the spliceosomal catalytic core. These include the largest conserved nuclear protein, Prp8, which plays a critical role in spliceosomal function in a hitherto unknown manner. Taken together, the large spliceosomal proteome and its dynamic nature has made it a highly challenging system to study, and at the same time, provides an exciting example of the evolution of a proteome around a backbone of primordial RNAs likely dating from the RNA World.
Collapse
Affiliation(s)
- Saba Valadkhan
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44113, USA.
| | | |
Collapse
|
48
|
McKay SL, Johnson TL. A bird's-eye view of post-translational modifications in the spliceosome and their roles in spliceosome dynamics. MOLECULAR BIOSYSTEMS 2010; 6:2093-102. [PMID: 20672149 PMCID: PMC4065859 DOI: 10.1039/c002828b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pre-mRNA splicing, the removal of noncoding intron sequences from the pre-mRNA, is a critical reaction in eukaryotic gene expression. Pre-mRNA splicing is carried out by a remarkable macromolecular machine, the spliceosome, which undergoes dynamic rearrangements of its RNA and protein components to assemble its catalytic center. While significant progress has been made in describing the "moving parts" of this machine, the mechanisms by which spliceosomal proteins mediate the ordered rearrangements within the spliceosome remain elusive. Here we explore recent evidence from proteomics studies revealing extensive post-translational modification of splicing factors. While the functional significance of most of these modifications remains to be characterized, we describe recent studies in which the roles of specific post-translational modifications of splicing factors have been characterized. These examples illustrate the importance of post-translational modifications in spliceosome dynamics.
Collapse
Affiliation(s)
- Susannah L. McKay
- Division of Biological Sciences, Molecular Biology Section MC-0377, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA
| | - Tracy L. Johnson
- Division of Biological Sciences, Molecular Biology Section MC-0377, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA
| |
Collapse
|
49
|
Splicing factor Cwc22 is required for the function of Prp2 and for the spliceosome to escape from a futile pathway. Mol Cell Biol 2010; 31:43-53. [PMID: 20956557 DOI: 10.1128/mcb.00801-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cwc22 was previously identified to associate with the pre-mRNA splicing factor Cef1/Ntc85, a component of the Prp19-associated complex (nineteen complex [NTC]) involved in spliceosome activation. We show here that Cwc22 is required for pre-mRNA splicing both in vivo and in vitro but is neither tightly associated with the NTC nor required for spliceosome activation. Cwc22 is associated with the spliceosome prior to catalytic steps and remains associated throughout the reaction. The stable association of Cwc22 with the spliceosome requires the presence of the NTC but is independent of Prp2. Although Cwc22 is not required for the recruitment of Prp2 to the spliceosome, it is essential for the function of Prp2 in promoting the release of the U2 components SF3a and SF3b. In the absence of Cwc22, Prp2 can bind to the spliceosome but is dissociated upon ATP hydrolysis without promoting the release of SF3a/b. Thus, Cwc22 represents a novel ATP-dependent step one factor besides Prp2 and Spp2 and has a distinct role from that of Spp2 in mediating the function of Prp2.
Collapse
|
50
|
Vander Kooi CW, Ren L, Xu P, Ohi MD, Gould KL, Chazin WJ. The Prp19 WD40 domain contains a conserved protein interaction region essential for its function. Structure 2010; 18:584-93. [PMID: 20462492 DOI: 10.1016/j.str.2010.02.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 02/17/2010] [Accepted: 02/23/2010] [Indexed: 01/03/2023]
Abstract
Prp19 is a member of the WD40 repeat family of E3 ubiquitin ligases and a conserved eukaryotic RNA splicing factor essential for activation and stabilization of the spliceosome. To understand the role of the WD40 repeat domain of Prp19 we have determined its structure using X-ray crystallography. The domain has a distorted seven bladed WD40 architecture with significant asymmetry due to irregular packing of blades one and seven into the core of the WD40 domain. Structure-based mutagenesis identified a highly conserved surface centered around blade five that is required for the physical interaction between Prp19 and Cwc2, another essential splicing factor. This region is found to be required for Prp19 function and yeast viability. Experiments in vitro and in vivo demonstrate that two molecules of Cwc2 bind to the Prp19 tetramer. These coupled structural and functional studies provide a model for the functional architecture of Prp19.
Collapse
Affiliation(s)
- Craig W Vander Kooi
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|