1
|
Liu Q, Song Y, Su J, Yang S, Lian Q, Wang T, Wei H, Fang J. PUF60 Promotes Chemoresistance Through Drug Efflux and Reducing Apoptosis in Gastric Cancer. Int J Med Sci 2025; 22:269-282. [PMID: 39781520 PMCID: PMC11704696 DOI: 10.7150/ijms.102976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/15/2024] [Indexed: 01/12/2025] Open
Abstract
Background: Chemotherapy resistance is a great challenge in the treatment of gastric cancer (GC), so it is urgent to explore the prognostic markers of chemoresistance. PUF60 (Poly (U)-binding splicing factor 60) is a nucleic acid-binding protein that has been shown to regulate transcription and link to tumorigenesis in various cancers. However, its biological role and function in chemotherapy resistance of GC is unclear. Methods: The expression and prognostic value of PUF60 in GC chemotherapy-resistant patients were analyzed by databases and K-M Plotter. The functional effect of PUF60 on chemoresistance in GC was studied by by RNA interference, CCK8 test, colony formation test and apoptosis detection. Moreover, further validation and mechanism exploration were conducted in clinical samples. Results: PUF60 was highly expressed in both GC and chemoresistant tissues, and was positively correlated with poor prognosis in GC patients treated with 5-fluorouracil (5-FU). In addition, the knockdown of PUF60 significantly reduced the proliferation of human gastric cancer cells and increased sensitivity to chemotherapy drugs, such as 5-FU and cisplatin (CDDP). Mechanistically, PUF60 enhances chemotherapy resistance in gastric cancer (GC) cells by actively excluding chemotherapy drugs via the recombinant ATP Binding Cassette Transporter A1 (ABCA1) and ATP Binding Cassette Subfamily C Member 1 (ABCC1). This process further affects the cell cycle, reduces cell apoptosis, and ultimately promotes resistance to chemotherapy in GC. Conclusion: PUF60 promotes chemoresistance in GC, resulting in poor prognosis of GC patients treated with 5-FU, and providing a new idea for overcoming the chemoresistance in GC.
Collapse
Affiliation(s)
- Qianhui Liu
- Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingqiu Song
- Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Su
- Department of Nursing, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shangbin Yang
- Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qinghai Lian
- Department of Cell-Gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tiantian Wang
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiafeng Fang
- Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Maji D, Jenkins JL, Boutz PL, Kielkopf CL. Recurrent Neurodevelopmentally Associated Variants of the Pre-mRNA Splicing Factor U2AF2 Alter RNA Binding Affinities and Interactions. Biochemistry 2024; 63:2718-2722. [PMID: 39388459 PMCID: PMC11542177 DOI: 10.1021/acs.biochem.4c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
De novo mutations affecting the pre-mRNA splicing factor U2AF2 are associated with developmental delays and intellectual disabilities, yet the molecular basis is unknown. Here, we demonstrated by fluorescence anisotropy RNA binding assays that recurrent missense mutants (Arg149Trp, Arg150His, or Arg150Cys) decreased the binding affinity of U2AF2 for a consensus splice site RNA. Crystal structures at 1.4 Å resolutions showed that Arg149Trp or Arg150His disrupted hydrogen bonds between U2AF2 and the terminal nucleotides of the RNA site. Reanalysis of publicly available RNaseq data confirmed that U2AF2 depletion altered splicing of transcripts encoding RNA binding proteins (RBPs). These results confirmed that the impaired RNA interactions of Arg149Trp and Arg150His U2AF2 variants could contribute to dysregulating an RBP-governed neurodevelopmental program of alternative splicing.
Collapse
Affiliation(s)
| | - Jermaine L. Jenkins
- Department of Biochemistry and Biophysics,
and the Center for RNA Biology, University
of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Paul L. Boutz
- Department of Biochemistry and Biophysics,
and the Center for RNA Biology, University
of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Clara L. Kielkopf
- Department of Biochemistry and Biophysics,
and the Center for RNA Biology, University
of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| |
Collapse
|
3
|
Anglada-Girotto M, Ciampi L, Bonnal S, Head SA, Miravet-Verde S, Serrano L. In silico RNA isoform screening to identify potential cancer driver exons with therapeutic applications. Nat Commun 2024; 15:7039. [PMID: 39147755 PMCID: PMC11327330 DOI: 10.1038/s41467-024-51380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
Alternative splicing is crucial for cancer progression and can be targeted pharmacologically, yet identifying driver exons genome-wide remains challenging. We propose identifying such exons by associating statistically gene-level cancer dependencies from knockdown viability screens with splicing profiles and gene expression. Our models predict the effects of splicing perturbations on cell proliferation from transcriptomic data, enabling in silico RNA screening and prioritizing targets for splicing-based therapies. We identified 1,073 exons impacting cell proliferation, many from genes not previously linked to cancer. Experimental validation confirms their influence on proliferation, especially in highly proliferative cancer cell lines. Integrating pharmacological screens with splicing dependencies highlights the potential driver exons affecting drug sensitivity. Our models also allow predicting treatment outcomes from tumor transcriptomes, suggesting applications in precision oncology. This study presents an approach to identifying cancer driver exon and their therapeutic potential, emphasizing alternative splicing as a cancer target.
Collapse
Affiliation(s)
- Miquel Anglada-Girotto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
| | - Ludovica Ciampi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Sarah A Head
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Samuel Miravet-Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland.
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
4
|
Bach MY, Miron SR, Kurolap A, Feldman HB. PUF60 loss-of-function with normal cognition should be considered in the differential diagnosis of Klippel-Feil syndrome. Am J Med Genet A 2024; 194:e63550. [PMID: 38297485 DOI: 10.1002/ajmg.a.63550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Klippel-Feil syndrome (KFS) has a genetically heterogeneous phenotype with six known genes, exhibiting both autosomal dominant and autosomal recessive inheritance patterns. PUF60 is a nucleic acid-binding protein, which is involved in a number of nuclear processes, including pre-mRNA splicing, apoptosis, and transcription regulation. Pathogenic variants in this gene have been described in Verheij syndrome due to either 8q24.3 microdeletion or PUF60 single-nucleotide variants. PUF60-associated conditions usually include intellectual disability, among other findings, some overlapping KFS; however, PUF60 is not classically referred to as a KFS gene. Here, we describe a 6-year-old female patient with clinically diagnosed KFS and normal cognition, who harbors a heterozygous de novo variant in the PUF60 gene (c.1179del, p.Ile394Serfs*7). This is a novel frameshift variant, which is predicted to result in a premature stop codon. Clinically, our patient demonstrates a pattern of malformations that matches reported cases of PUF60 variants; however, unlike most others, she has no clear learning difficulties. In light of these findings, we propose that PUF60 should be considered in the differential diagnosis of KFS and that normal cognition should not exclude its testing.
Collapse
Affiliation(s)
- Michal Yacobi Bach
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Endocrinology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sivan Reytan Miron
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Alina Kurolap
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hagit Baris Feldman
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Verma SK, Kuyumcu-Martinez MN. RNA binding proteins in cardiovascular development and disease. Curr Top Dev Biol 2024; 156:51-119. [PMID: 38556427 DOI: 10.1016/bs.ctdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect affecting>1.35 million newborn babies worldwide. CHD can lead to prenatal, neonatal, postnatal lethality or life-long cardiac complications. RNA binding protein (RBP) mutations or variants are emerging as contributors to CHDs. RBPs are wizards of gene regulation and are major contributors to mRNA and protein landscape. However, not much is known about RBPs in the developing heart and their contributions to CHD. In this chapter, we will discuss our current knowledge about specific RBPs implicated in CHDs. We are in an exciting era to study RBPs using the currently available and highly successful RNA-based therapies and methodologies. Understanding how RBPs shape the developing heart will unveil their contributions to CHD. Identifying their target RNAs in the embryonic heart will ultimately lead to RNA-based treatments for congenital heart disease.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States.
| | - Muge N Kuyumcu-Martinez
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States; University of Virginia Cancer Center, Charlottesville, VA, United States.
| |
Collapse
|
6
|
Zhang C, Ni X, Tao C, Zhou Z, Wang F, Gu F, Cui X, Jiang S, Li Q, Lu H, Li D, Wu Z, Zhang R. Targeting PUF60 prevents tumor progression by retarding mRNA decay of oxidative phosphorylation in ovarian cancer. Cell Oncol (Dordr) 2024; 47:157-174. [PMID: 37632669 PMCID: PMC10899302 DOI: 10.1007/s13402-023-00859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/28/2023] Open
Abstract
PURPOSE Ovarian cancer (OC) is the leading cause of death from gynecological malignancies, and its etiology and pathogenesis are currently unclear. Recent studies have found that PUF60 overexpressed in various cancers. However, the exact function of PUF60 in global RNA processing and its role in OC has been unclear. METHODS The expression of PUF60 and its relationship with clinical characteristics were analyzed by multiple database analysis and immunohistochemistry. Phenotypic effects of PUF60 on ovarian cancer cell proliferation and metastasis were examined by in vitro cell proliferation assay, migration assay, and in vivo xenograft models and lung metastasis models. RNA immunoprecipitation, seahorse analyses, RNA stability assay were used to study the effect of PUF60 on the stability of oxidative phosphorylation (OXPHOS)-related genes in OC. RESULTS We report PUF60 is highly expressed in OC with frequent amplification of up to 33.9% and its upregulation predicts a poor prognosis. PUF60 promotes the proliferation and migration of OC cells both in vitro and in vivo. Mechanistically, we demonstrated that silencing of PUF60 enhanced the stability of mRNA transcripts involved in OXPHOS and decreased the formation of processing bodies (P-bodies), ultimately elevating the OXPHOS level. CONCLUSION Our study unveils a novel function of PUF60 in OC energy metabolism. Thus, PUF60 may serve as a novel target for the treatment of patients with OC.
Collapse
Affiliation(s)
- Cancan Zhang
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xiaoge Ni
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Chunlin Tao
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Ziyang Zhou
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Fengmian Wang
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Fei Gu
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Xiaoxiao Cui
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huan Lu
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Dongxue Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhiyong Wu
- Gynecology Department, Shanghai Obstetrics and Gynecology Hospital of Fudan University, No. 419 Fangxie Road, Shanghai, 200011, China.
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China.
- Shanghai Geriatric Medical Center, Shanghai, China.
| |
Collapse
|
7
|
Kitamura K, Hoshino T, Okabe A, Fukuyo M, Rahmutulla B, Tanaka N, Kobayashi S, Tanaka T, Shida T, Ueda M, Minamoto T, Matsubara H, Kaneda A, Ishii H, Matsushita K. The Link of mRNA and rRNA Transcription by PUF60/FIR through TFIIH/P62 as a Novel Therapeutic Target for Cancer. Int J Mol Sci 2023; 24:17341. [PMID: 38139171 PMCID: PMC10743661 DOI: 10.3390/ijms242417341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The interaction between mRNA and ribosomal RNA (rRNA) transcription in cancer remains unclear. RNAP I and II possess a common N-terminal tail (NTT), RNA polymerase subunit RPB6, which interacts with P62 of transcription factor (TF) IIH, and is a common target for the link between mRNA and rRNA transcription. The mRNAs and rRNAs affected by FUBP1-interacting repressor (FIR) were assessed via RNA sequencing and qRT-PCR analysis. An FIR, a c-myc transcriptional repressor, and its splicing form FIRΔexon2 were examined to interact with P62. Protein interaction was investigated via isothermal titration calorimetry measurements. FIR was found to contain a highly conserved region homologous to RPB6 that interacts with P62. FIRΔexon2 competed with FIR for P62 binding and coactivated transcription of mRNAs and rRNAs. Low-molecular-weight chemical compounds that bind to FIR and FIRΔexon2 were screened for cancer treatment. A low-molecular-weight chemical, BK697, which interacts with FIRΔexon2, inhibited tumor cell growth with rRNA suppression. In this study, a novel coactivation pathway for cancer-related mRNA and rRNA transcription through TFIIH/P62 by FIRΔexon2 was proposed. Direct evidence in X-ray crystallography is required in further studies to show the conformational difference between FIR and FIRΔexon2 that affects the P62-RBP6 interaction.
Collapse
Affiliation(s)
- Kouichi Kitamura
- Department of Laboratory Medicine, Chiba University Hospital, Chiba 260-8677, Japan; (K.K.); (N.T.); (S.K.)
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Tyuji Hoshino
- Department of Molecular Design, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan;
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (A.O.); (M.F.); (B.R.); (A.K.)
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (A.O.); (M.F.); (B.R.); (A.K.)
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (A.O.); (M.F.); (B.R.); (A.K.)
| | - Nobuko Tanaka
- Department of Laboratory Medicine, Chiba University Hospital, Chiba 260-8677, Japan; (K.K.); (N.T.); (S.K.)
| | - Sohei Kobayashi
- Department of Laboratory Medicine, Chiba University Hospital, Chiba 260-8677, Japan; (K.K.); (N.T.); (S.K.)
- Department of Medical Technology and Sciences, Health and Sciences, International University of Health and Welfare, Chiba 286-8686, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Takashi Shida
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan;
| | - Mashiro Ueda
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (A.O.); (M.F.); (B.R.); (A.K.)
| | - Hideshi Ishii
- Medical Data Science, Center of Medical Innovation and Translational Research (CoMIT), Osaka University, Osaka 565-0871, Japan;
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine, Chiba University Hospital, Chiba 260-8677, Japan; (K.K.); (N.T.); (S.K.)
| |
Collapse
|
8
|
Xu N, Ren Y, Bao Y, Shen X, Kang J, Wang N, Wang Z, Han X, Li Z, Zuo J, Wei GH, Wang Z, Zong WX, Liu W, Xie G, Wang Y. PUF60 promotes cell cycle and lung cancer progression by regulating alternative splicing of CDC25C. Cell Rep 2023; 42:113041. [PMID: 37682709 DOI: 10.1016/j.celrep.2023.113041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/27/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Alternative splicing (AS) has been implicated in cell cycle regulation and cancer, but the underlying mechanisms are poorly understood. The poly(U)-binding splicing factor 60 (PUF60) is essential for embryonic development and is overexpressed in multiple types of cancer. Here, we report that PUF60 promotes mitotic cell cycle and lung cancer progression by controlling AS of the cell division cycle 25C (CDC25C). Systematic analysis of splicing factors deregulated in lung adenocarcinoma (LUAD) identifies that elevated copy number and expression of PUF60 correlate with poor prognosis. PUF60 depletion inhibits LUAD cell-cycle G2/M transition, cell proliferation, and tumor development. Mechanistically, PUF60 knockdown leads to exon skipping enriched in mitotic cell cycle genes, including CDC25C. Exon 3 skipping in the full-length CDC25C results in nonsense-mediated mRNA decay and a decrease of CDC25C protein, thereby inhibiting cell proliferation. This study establishes PUF60 as a cell cycle regulator and an oncogenic splicing factor in lung cancer.
Collapse
Affiliation(s)
- Nan Xu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yunpeng Ren
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yufang Bao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xianfeng Shen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jiahui Kang
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
| | - Ning Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zixian Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xinlu Han
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhen Li
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ji Zuo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Gong-Hong Wei
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zefeng Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wen Liu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Gangcai Xie
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China.
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Minhang Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
Eléouët M, Lu C, Zhou Y, Yang P, Ma J, Xu G. Insights on the biological functions and diverse regulation of RNA-binding protein 39 and their implication in human diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194902. [PMID: 36535628 DOI: 10.1016/j.bbagrm.2022.194902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
RNA-binding protein 39 (RBM39) involves in pre-mRNA splicing and transcriptional regulation. RBM39 is dysregulated in many cancers and its upregulation enhances cancer cell proliferation. Recently, it has been discovered that aryl sulfonamides act as molecular glues to recruit RBM39 to the CRL4DCAF15 E3 ubiquitin ligase complex for its ubiquitination and proteasomal degradation. Therefore, various studies have focused on the degradation of RBM39 by aryl sulfonamides in the aim of finding new cancer therapeutics. These discoveries also attracted focus for thorough study on the biological functions of RBM39. RBM39 was found to regulate the splicing and transcription of genes mainly involved in pre-mRNA splicing, cell cycle regulation, DNA damage response, and metabolism, but the understanding of these regulations is still in its infancy. This article reviews the advances of the current literature and discusses the remaining key issues on the biological function and dynamic regulation of RBM39 at the post-translational level.
Collapse
Affiliation(s)
- Morgane Eléouët
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Synbio Technologies Company, BioBay C20, 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Chengpiao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yijia Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Ping Yang
- Synbio Technologies Company, BioBay C20, 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
10
|
Fennell AP, Baxter AE, Berkovic SF, Ellaway CJ, Forwood C, Hildebrand MS, Kumble S, McKeown C, Mowat D, Poke G, Rajagopalan S, Regan BM, Scheffer IE, Stark Z, Stutterd CA, Tan TY, Wilkins EJ, Yeung A, Hunter MF. The diverse pleiotropic effects of spliceosomal protein PUF60: A case series of Verheij syndrome. Am J Med Genet A 2022; 188:3432-3447. [PMID: 36367278 DOI: 10.1002/ajmg.a.62950] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/17/2022] [Accepted: 06/11/2022] [Indexed: 01/31/2023]
Abstract
Verheij syndrome (VRJS) is a rare craniofacial spliceosomopathy presenting with craniofacial dysmorphism, multiple congenital anomalies and variable neurodevelopmental delay. It is caused by single nucleotide variants (SNVs) in PUF60 or interstitial deletions of the 8q24.3 region. PUF60 encodes a splicing factor which forms part of the spliceosome. To date, 36 patients with a sole diagnosis of VRJS due to disease-causing PUF60 SNVs have been reported in peer-reviewed publications. Although the depth of their phenotyping has varied greatly, they exhibit marked phenotypic heterogeneity. We report 10 additional unrelated patients, including the first described patients of Khmer, Indian, and Vietnamese ethnicities, and the eldest patient to date, with 10 heterozygous PUF60 variants identified through exome sequencing, 8 previously unreported. All patients underwent deep phenotyping identifying variable dysmorphism, growth delay, neurodevelopmental delay, and multiple congenital anomalies, including several unique features. The eldest patient is the only reported individual with a germline variant and neither neurodevelopmental delay nor intellectual disability. In combining these detailed phenotypic data with that of previously reported patients (n = 46), we further refine the known frequencies of features associated with VRJS. These include neurodevelopmental delay/intellectual disability (98%), axial skeletal anomalies (74%), appendicular skeletal anomalies (73%), oral anomalies (68%), short stature (66%), cardiac anomalies (63%), brain malformations (48%), hearing loss (46%), microcephaly (41%), colobomata (38%), and other ocular anomalies (65%). This case series, incorporating three patients from previously unreported ethnic backgrounds, further delineates the broad pleiotropy and mutational spectrum of PUF60 pathogenic variants.
Collapse
Affiliation(s)
- Andrew Paul Fennell
- Monash Genetics, Monash Health, Melbourne, Australia.,Clinical Genetics Service, Austin Health, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia
| | | | - Samuel Frank Berkovic
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Australia
| | - Carolyn Jane Ellaway
- Paediatrics North, Sydney, Australia.,Genetic Metabolic Disorders Service, The Sydney Children's Hospital Network, Sydney, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital Randwick, Sydney, Australia
| | - Caitlin Forwood
- Centre for Clinical Genetics, Sydney Children's Hospital Randwick, Sydney, Australia
| | - Michael Stephen Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| | - Smitha Kumble
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Colina McKeown
- Genetic Health Service New Zealand, Wellington Hospital, Wellington, New Zealand
| | - David Mowat
- Centre for Clinical Genetics, Sydney Children's Hospital Randwick, Sydney, Australia
| | - Gemma Poke
- Genetic Health Service New Zealand, Wellington Hospital, Wellington, New Zealand
| | | | - Brigid M Regan
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Australia
| | - Ingrid Eileen Scheffer
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Australia.,Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia.,The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Chloe Alice Stutterd
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Ella Jane Wilkins
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Alison Yeung
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Matthew Frank Hunter
- Monash Genetics, Monash Health, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia
| |
Collapse
|
11
|
wang F, Peng L, Sun Y, Zhang B, Lu S. PUF60 promotes glioblastoma progression through regulation of EGFR stability. Biochem Biophys Res Commun 2022; 636:190-196. [DOI: 10.1016/j.bbrc.2022.10.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022]
|
12
|
Huang W, Kew C, Fernandes SDA, Löhrke A, Han L, Demetriades C, Antebi A. Decreased spliceosome fidelity and egl-8 intron retention inhibit mTORC1 signaling to promote longevity. NATURE AGING 2022; 2:796-808. [PMID: 37118503 PMCID: PMC10154236 DOI: 10.1038/s43587-022-00275-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
AbstractChanges in splicing fidelity are associated with loss of homeostasis and aging, yet only a handful of splicing factors have been shown to be causally required to promote longevity, and the underlying mechanisms and downstream targets in these paradigms remain elusive. Surprisingly, we found a hypomorphic mutation within ribonucleoprotein RNP-6/poly(U)-binding factor 60 kDa (PUF60), a spliceosome component promoting weak 3′-splice site recognition, which causes aberrant splicing, elevates stress responses and enhances longevity in Caenorhabditis elegans. Through genetic suppressor screens, we identify a gain-of-function mutation within rbm-39, an RNP-6-interacting splicing factor, which increases nuclear speckle formation, alleviates splicing defects and curtails longevity caused by rnp-6 mutation. By leveraging the splicing changes induced by RNP-6/RBM-39 activities, we uncover intron retention in egl-8/phospholipase C β4 (PLCB4) as a key splicing target prolonging life. Genetic and biochemical evidence show that neuronal RNP-6/EGL-8 downregulates mammalian target of rapamycin complex 1 (mTORC1) signaling to control organismal lifespan. In mammalian cells, PUF60 downregulation also potently and specifically inhibits mTORC1 signaling. Altogether, our results reveal that splicing fidelity modulates lifespan through mTOR signaling.
Collapse
|
13
|
Han H, Best AJ, Braunschweig U, Mikolajewicz N, Li JD, Roth J, Chowdhury F, Mantica F, Nabeel-Shah S, Parada G, Brown KR, O'Hanlon D, Wei J, Yao Y, Zid AA, Comsa LC, Jen M, Wang J, Datti A, Gonatopoulos-Pournatzis T, Weatheritt RJ, Greenblatt JF, Wrana JL, Irimia M, Gingras AC, Moffat J, Blencowe BJ. Systematic exploration of dynamic splicing networks reveals conserved multistage regulators of neurogenesis. Mol Cell 2022; 82:2982-2999.e14. [PMID: 35914530 PMCID: PMC10686216 DOI: 10.1016/j.molcel.2022.06.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/16/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022]
Abstract
Alternative splicing (AS) is a critical regulatory layer; yet, factors controlling functionally coordinated splicing programs during developmental transitions are poorly understood. Here, we employ a screening strategy to identify factors controlling dynamic splicing events important for mammalian neurogenesis. Among previously unknown regulators, Rbm38 acts widely to negatively control neural AS, in part through interactions mediated by the established repressor of splicing, Ptbp1. Puf60, a ubiquitous factor, is surprisingly found to promote neural splicing patterns. This activity requires a conserved, neural-differential exon that remodels Puf60 co-factor interactions. Ablation of this exon rewires distinct AS networks in embryonic stem cells and at different stages of mouse neurogenesis. Single-cell transcriptome analyses further reveal distinct roles for Rbm38 and Puf60 isoforms in establishing neuronal identity. Our results describe important roles for previously unknown regulators of neurogenesis and establish how an alternative exon in a widely expressed splicing factor orchestrates temporal control over cell differentiation.
Collapse
Affiliation(s)
- Hong Han
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Andrew J Best
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | | | - Jack Daiyang Li
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathan Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Fuad Chowdhury
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Federica Mantica
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona 08003, Spain
| | - Syed Nabeel-Shah
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Guillermo Parada
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Kevin R Brown
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Dave O'Hanlon
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jiarun Wei
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Yuxi Yao
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Abdelrahman Abou Zid
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Lim Caden Comsa
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Mark Jen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jenny Wang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Alessandro Datti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Thomas Gonatopoulos-Pournatzis
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Center for Cancer Research National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Robert J Weatheritt
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Jack F Greenblatt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey L Wrana
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona 08003, Spain; Universitat Pompeu Fabra, Barcelona, Spain; ICREA, Barcelona, Spain
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
14
|
Saha K, Fernandez MM, Biswas T, Joseph S, Ghosh G. Discovery of a pre-mRNA structural scaffold as a contributor to the mammalian splicing code. Nucleic Acids Res 2021; 49:7103-7121. [PMID: 34161584 PMCID: PMC8266590 DOI: 10.1093/nar/gkab533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
The specific recognition of splice signals at or near exon-intron junctions is not explained by their weak conservation and instead is postulated to require a multitude of features embedded in the pre-mRNA strand. We explored the possibility of 3D structural scaffold of AdML-a model pre-mRNA substrate-guiding early spliceosomal components to the splice signal sequences. We find that mutations in the non-cognate splice signal sequences impede recruitment of early spliceosomal components due to disruption of the global structure of the pre-mRNA. We further find that the pre-mRNA segments potentially interacting with the early spliceosomal component U1 snRNP are distributed across the intron, that there is a spatial proximity of 5' and 3' splice sites within the pre-mRNA scaffold, and that an interplay exists between the structural scaffold and splicing regulatory elements in recruiting early spliceosomal components. These results suggest that early spliceosomal components can recognize a 3D structural scaffold beyond the short splice signal sequences, and that in our model pre-mRNA, this scaffold is formed across the intron involving the major splice signals. This provides a conceptual basis to analyze the contribution of recognizable 3D structural scaffolds to the splicing code across the mammalian transcriptome.
Collapse
Affiliation(s)
- Kaushik Saha
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375, USA
| | - Mike Minh Fernandez
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375, USA
| | - Tapan Biswas
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375, USA
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375, USA
| |
Collapse
|
15
|
Královičová J, Borovská I, Pengelly R, Lee E, Abaffy P, Šindelka R, Grutzner F, Vořechovský I. Restriction of an intron size en route to endothermy. Nucleic Acids Res 2021; 49:2460-2487. [PMID: 33550394 PMCID: PMC7969005 DOI: 10.1093/nar/gkab046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 11/15/2022] Open
Abstract
Ca2+-insensitive and -sensitive E1 subunits of the 2-oxoglutarate dehydrogenase complex (OGDHC) regulate tissue-specific NADH and ATP supply by mutually exclusive OGDH exons 4a and 4b. Here we show that their splicing is enforced by distant lariat branch points (dBPs) located near the 5' splice site of the intervening intron. dBPs restrict the intron length and prevent transposon insertions, which can introduce or eliminate dBP competitors. The size restriction was imposed by a single dominant dBP in anamniotes that expanded into a conserved constellation of four dBP adenines in amniotes. The amniote clusters exhibit taxon-specific usage of individual dBPs, reflecting accessibility of their extended motifs within a stable RNA hairpin rather than U2 snRNA:dBP base-pairing. The dBP expansion took place in early terrestrial species and was followed by a uridine enrichment of large downstream polypyrimidine tracts in mammals. The dBP-protected megatracts permit reciprocal regulation of exon 4a and 4b by uridine-binding proteins, including TIA-1/TIAR and PUF60, which promote U1 and U2 snRNP recruitment to the 5' splice site and BP, respectively, but do not significantly alter the relative dBP usage. We further show that codons for residues critically contributing to protein binding sites for Ca2+ and other divalent metals confer the exon inclusion order that mirrors the Irving-Williams affinity series, linking the evolution of auxiliary splicing motifs in exons to metallome constraints. Finally, we hypothesize that the dBP-driven selection for Ca2+-dependent ATP provision by E1 facilitated evolution of endothermy by optimizing the aerobic scope in target tissues.
Collapse
Affiliation(s)
- Jana Královičová
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
- Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Ivana Borovská
- Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Reuben Pengelly
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
| | - Eunice Lee
- School of Biological Sciences, University of Adelaide, Adelaide 5005, SA, Australia
| | - Pavel Abaffy
- Czech Academy of Sciences, Institute of Biotechnology, 25250 Vestec, Czech Republic
| | - Radek Šindelka
- Czech Academy of Sciences, Institute of Biotechnology, 25250 Vestec, Czech Republic
| | - Frank Grutzner
- School of Biological Sciences, University of Adelaide, Adelaide 5005, SA, Australia
| | - Igor Vořechovský
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
| |
Collapse
|
16
|
Kobayashi S, Hiwasa T, Ishige T, Kano M, Hoshino T, Rahmutulla B, Seimiya M, Shimada H, Nomura F, Matsubara H, Matsushita K. Anti-FIRΔexon2 autoantibody as a novel indicator for better overall survival in gastric cancer. Cancer Sci 2021; 112:847-858. [PMID: 33306856 PMCID: PMC7894018 DOI: 10.1111/cas.14767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
There is no clinically available biomarker for efficiently indicating the overall survival or therapy response of gastric cancer (GC). The autoantibodies (Abs) in the sera of anti‐far‐upstream element‐binding protein‐interacting repressor‐lacking exon2 (FIRΔexon2), anti‐sorting nexin 15, and anti‐spermatogenesis and oogenesis–specific basic helix–loop–helix 1 were markedly higher in GC patients than in healthy donors (HDs). These Abs were identified by large‐scale serological identification of antigens by recombinant cDNA expression cloning screenings and their expression levels were evaluated by amplified luminescence proximity homogeneous assay. In particular, compared with age‐matched HDs, the level of anti‐FIRΔexon2 Abs in GC patients was significantly higher (P < .001). The Spearman's rank correlation analysis between anti‐FIRΔexon2 Abs and clinically available tumor markers such as carcinoembryonic antigen (CEA) was statistically insignificant, indicating that FIRΔexon2 Abs is an independent biomarker. We performed receiver‐operating curve analysis to evaluate the anti‐FIRΔexon2 Ab as a candidate biomarker with CEA and carbohydrate antigen 19‐9 (CA19‐9). The overall survival of GC patients with high anti‐FIRΔexon2 Abs titer was significantly favorable (P = .04) than that of GC patients who were below detection level of anti‐FIRΔexon2 Abs. However, clinical stages were not apparently correlated with the levels of anti‐FIRΔexon2 Ab, CEA, and CA19‐9. In conclusion, anti‐FIRΔexon2 Abs detected in GC patients is a potential biomarker for monitoring a better prognosis. Hence, anti‐FIRΔexon2 Abs is a promising biomarker for indicating better overall survival of gastric cancer patients.
Collapse
Affiliation(s)
- Sohei Kobayashi
- Department of Laboratory Medicine & Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan.,Department of Medical Technology & Sciences, School of Health Sciences at Narita, International University of Health and Welfare, Chiba, Japan
| | - Takaki Hiwasa
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayuki Ishige
- Department of Laboratory Medicine & Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masanori Seimiya
- Department of Medical Technology & Sciences, School of Health Sciences at Narita, International University of Health and Welfare, Chiba, Japan
| | - Hideaki Shimada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Toho University, Tokyo, Japan
| | - Fumio Nomura
- Department of Laboratory Medicine & Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine & Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
17
|
Hsiao HHT, Crichlow GV, Murphy JW, Folta-Stogniew EJ, Lolis EJ, Braddock DT. Unraveling the mechanism of recognition of the 3' splice site of the adenovirus major late promoter intron by the alternative splicing factor PUF60. PLoS One 2020; 15:e0242725. [PMID: 33253191 PMCID: PMC7703929 DOI: 10.1371/journal.pone.0242725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/06/2020] [Indexed: 11/18/2022] Open
Abstract
Pre-mRNA splicing is critical for achieving required amounts of a transcript at a given time and for regulating production of encoded protein. A given pre-mRNA may be spliced in many ways, or not at all, giving rise to multiple gene products. Numerous splicing factors are recruited to pre-mRNA splice sites to ensure proper splicing. One such factor, the 60 kDa poly(U)-binding splicing factor (PUF60), is recruited to sites that are not always spliced, but rather function as alternative splice sites. In this study, we characterized the interaction of PUF60 with a splice site from the adenovirus major late promoter (the AdML 3' splice site, AdML3'). We found that the PUF60-AdML3' dissociation constants are in the micromolar range, with the binding affinity predominantly provided by PUF60's two central RNA recognition motifs (RRMs). A 1.95 Å crystal structure of the two PUF60 RRMs in complex with AdML3' revealed a dimeric organization placing two stretches of nucleic acid tracts in opposing directionalities, which can cause looping of nucleic acid and explain how PUF60 affects pre-mRNA geometry to effect splicing. Solution characterization of this complex by light-scattering and UV/Vis spectroscopy suggested a potential 2:1 (PUF602:AdML3') stoichiometry, consistent with the crystal structure. This work defines the sequence specificity of the alternative splicing factor PUF60 at the pre-mRNA 3' splice site. Our observations suggest that control of pre-mRNA directionality is important in the early stage of spliceosome assembly, and advance our understanding of the molecular mechanism by which alternative and constitutive splicing factors differentiate among 3' splice sites.
Collapse
Affiliation(s)
- Hsin-hao T. Hsiao
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Gregg V. Crichlow
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - James W. Murphy
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ewa J. Folta-Stogniew
- W.M. Keck Biotechnology Research Laboratory, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Elias J. Lolis
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Demetrios T. Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
18
|
Xu Y, Nijhuis A, Keun HC. RNA-binding motif protein 39 (RBM39): An emerging cancer target. Br J Pharmacol 2020; 179:2795-2812. [PMID: 33238031 DOI: 10.1111/bph.15331] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/13/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
RNA-binding motif protein 39 (RBM39) is an RNA-binding protein involved in transcriptional co-regulation and alternative RNA splicing. Recent studies have revealed that RBM39 is the unexpected target of aryl sulphonamides, which act as molecular glues between RBM39 and the DCAF15-associated E3 ubiquitin ligase complex leading to selective degradation of the target. Loss of RBM39 leads to aberrant splicing events and differential gene expression, thereby inhibiting cell cycle progression and causing tumour regression in a number of preclinical models. Many clinical studies have shown that aryl sulphonamides were well tolerated, but their clinical performance was limited due to an insufficient understanding of the target, RBM39 biology and a lack of predictive biomarkers. This review summarises the current knowledge of RBM39 function and discusses the therapeutic potential of this spliceosome target in cancer therapy.
Collapse
Affiliation(s)
- Yuewei Xu
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Anke Nijhuis
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Hector C Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
19
|
Long Q, Hua Y, He L, Zhang C, Sui S, Li Y, Qiu H, Tian T, An X, Luo G, Yan Y, Zhao A, Shi D, Xie F, Chen M, Zheng F, Deng W. Poly(U) binding splicing factor 60 promotes renal cell carcinoma growth by transcriptionally upregulating telomerase reverse transcriptase. Int J Biol Sci 2020; 16:3002-3017. [PMID: 33061812 PMCID: PMC7545719 DOI: 10.7150/ijbs.45115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Abnormal transcriptional upregulation of telomerase reverse transcriptase (TERT) plays a dominant role in telomerase activation in various cancers. TERT promoter mutations (TPMs) have been identified as a key mechanism in TERT upregulation. However, the mechanism of TERT upregulation in cancers with low frequency of TPMs are not fully elucidated so far. Methods: The expression of PUF60 and TERT was detected by real-time PCR, western blot and immunohistochemistry. TERT promoter binding proteins were identified by streptavidin-agarose pulldown assay and mass spectrum (MS) analysis. The role of PUF60/TERT in renal cancer was evaluated on cell growth in vitro and in vivo. Results: In this study, we identify the regulation mechanism of TERT in renal cell carcinoma (RCC) cells which have rare TPMs but exert significant upregulation of TERT. We found that TERT was highly expressed in RCC tumor tissues, and elevated TERT expression was associated with poor prognosis for patients. We also detected the relatively rare TPM status in both RCC tumor tissues and RCC cell lines. Mechanistically, PUF60, a RNA binding protein, was identified as a novel TERT regulator which bound to the TERT and transcriptionally upregulated TERT expression in RCC cells. The in vitro and in vivo experiments also demonstrated that PUF60 could promote RCC cell growth through activation of TERT expression in a TPM status independent way. Furthermore, we showed that there was a strong correlation of the expression of PUF60 and TERT in RCC tumor tissues and RCC cell lines, and the patients with high expression of PUF60 and TERT had significantly shorter survival. Conclusions: Collectively, these results indicated that PUF60 transcriptionally upregulated TERT expression to promote RCC growth and progression in a TPM status independent way, suggesting that the PUF60/TERT signaling pathway may serve as potential prognostic biomarkers and therapeutic targets for RCC.
Collapse
Affiliation(s)
- Qian Long
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yijun Hua
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Liru He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Changlin Zhang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Silei Sui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yixin Li
- Department of Clinical Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Huijuan Qiu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Tian Tian
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xin An
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Guangyu Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yue Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Anshi Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Dingbo Shi
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Fangyun Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Fufu Zheng
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| |
Collapse
|
20
|
Long Q, An X, Chen M, Wang N, Sui S, Li Y, Zhang C, Lee K, Wang X, Tian T, Pan Y, Qiu H, Xie F, Deng W, Zheng F, He L. PUF60/AURKA Axis Contributes to Tumor Progression and Malignant Phenotypes in Bladder Cancer. Front Oncol 2020; 10:568015. [PMID: 33117697 PMCID: PMC7576680 DOI: 10.3389/fonc.2020.568015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
Abnormal expression or mutation of RNA splicing proteins are widely observed in human cancers. Here, we identified poly(U) binding splicing factor 60 (PUF60) as one of the most differentially expressed genes out of 97 RNA splicing proteins between normal and bladder cancer tissues by bioinformatics analysis of TCGA bladder cancer expression data. The expression of PUF60 was significantly higher in tumor tissues, while high PUF60 expression was associated with malignant phenotypes of bladder cancer and shorter survival time. Moreover, we identified aurora kinase A (AURKA) as a new downstream target of PUF60 in bladder cancer cells. PUF60 knockdown significantly inhibited cell viability and colony formation capacity in bladder cancer cells, whereas AURKA overexpression reversed this inhibition effect. Overexpression of PUF60 significantly promoted cell viability and colony formation in bladder cancer cells, while treatment with AURKA specific inhibitor reversed this promotive effect. Mechanistically, PUF60 specifically bound to the AURKA promoter, thereby activating its transcription and expression. Furthermore, we showed that there was a significant positive correlation between PUF60 and AURKA expression in bladder cancer tissues, and PUF60 and AURKA expression contributed to tumor progression and malignant phenotypes in the patients with bladder cancer. Collectively, these results indicate that the PUF60/AURKA axis plays a key role in regulating tumorigenesis and progression of bladder cancer, and may be a potential prognostic biomarker and therapeutic target for bladder cancer patients.
Collapse
Affiliation(s)
- Qian Long
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xin An
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Nan Wang
- College of Life Science, Jiaying University, Meizhou, China
| | - Silei Sui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yixin Li
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Changlin Zhang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kaping Lee
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiaonan Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tian Tian
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yangxun Pan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Huijuan Qiu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,College of Life Science, Jiaying University, Meizhou, China.,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.,The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fangyun Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fufu Zheng
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liru He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
21
|
Yamada M, Uehara T, Suzuki H, Takenouchi T, Kosaki K. Protein elongation variant of PUF60: Milder phenotypic end of the Verheij syndrome. Am J Med Genet A 2020; 182:2709-2714. [PMID: 32851780 DOI: 10.1002/ajmg.a.61816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
The PUF60 gene encodes a ubiquitously expressed essential splicing factor that is recruited to the U2snRNA complex. The complex binds to the 3' splice site of exons in specific target genes and regulates the inclusion or exclusion of such exons. Recently, pathogenic variants of PUF60 have been shown to cause a relatively specific and potentially recognizable pattern of malformation referred to as Verheij syndrome. Here, we report a 12-year-old female patient with a de novo mutation in PUF60 whose phenotype was representative of the milder end of the phenotypic spectrum of Verheij syndrome; the de novo mutation was a frameshift mutation p.(Ser558Cysfs*21) that resulted in the addition of 21 extra amino acids at the carboxy end of the protein. Among the frequent features of Verheij syndrome, the patient exhibited coloboma, cervical spinal segmentation defects, and borderline intellectual functioning, but lacked cardiac abnormalities, deafness, and urogenital abnormalities. The results of RNA analysis using peripheral blood showed the escape of the mutant allele from nonsense-mediated mRNA decay, possibly accounting for the mild phenotype in the presently reported patient. Based on our clinical observations, we inferred that two embryologic processes, closure of the ocular plate and cervical spinal segmentation, are particularly susceptible to deficient PUF60-mediated splicing regulation, compared with other embryogenetic processes leading to the central nervous system, heart, ear, and kidney.
Collapse
Affiliation(s)
- Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Kumar R, Verma H, Singhvi N, Sood U, Gupta V, Singh M, Kumari R, Hira P, Nagar S, Talwar C, Nayyar N, Anand S, Rawat CD, Verma M, Negi RK, Singh Y, Lal R. Comparative Genomic Analysis of Rapidly Evolving SARS-CoV-2 Reveals Mosaic Pattern of Phylogeographical Distribution. mSystems 2020; 5:e00505-20. [PMID: 32723797 PMCID: PMC7394360 DOI: 10.1128/msystems.00505-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) that started in Wuhan, China, in December 2019 has spread worldwide, emerging as a global pandemic. The severe respiratory pneumonia caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has so far claimed more than 0.38 million lives and has impacted human lives worldwide. However, as the novel SARS-CoV-2 virus displays high transmission rates, the underlying genomic severity is required to be fully understood. We studied the complete genomes of 95 SARS-CoV-2 strains from different geographical regions worldwide to uncover the pattern of the spread of the virus. We show that there is no direct transmission pattern of the virus among neighboring countries, suggesting that its spread is a result of travel of infected humans to different countries. We revealed unique single nucleotide polymorphisms (SNPs) in nonstructural protein 13 (nsp13), nsp14, nsp15, and nsp16 (ORF1b polyproteins) and in the S-protein within 10 viral isolates from the United States. These viral proteins are involved in RNA replication and binding with the human receptors, indicating that the viral variants that are circulating in the population of the United States are different from those circulating in the populations of other countries. In addition, we found an amino acid addition in nsp16 (mRNA cap-1 methyltransferase) of a U.S. isolate (GenBank accession no. MT188341.1) leading to a shift in the amino acid frame from position 2540 onward. Through comparative structural analysis of the wild-type and mutant proteins, we showed that this addition of a phenylalanine residue renders the protein in the mutant less stable, which might affect mRNA cap-1 methyltransferase function. We further analyzed the SARS-CoV-2-human interactome, which revealed that the interferon signaling pathway is targeted by orf1ab during infection and that it also interacts with NF-κB-repressing factor (NKRF), which is a potential regulator of interleukin-8 (IL-8). We propose that targeting this interaction may subsequently improve the health condition of COVID-19 patients. Our analysis also emphasized that SARS-CoV-2 manipulates spliceosome machinery during infection; hence, targeting splicing might affect viral replication. In conclusion, the replicative machinery of SARS-CoV-2 is targeting interferon and the notch signaling pathway along with spliceosome machinery to evade host challenges.IMPORTANCE The COVID-19 pandemic continues to storm the world, with over 6.5 million cases worldwide. The severity of the disease varies with the territories and is mainly influenced by population density and age factor. In this study, we analyzed the transmission pattern of 95 SARS-CoV-2 genomes isolated from 11 different countries. Our study also revealed several nonsynonymous mutations in ORF1b and S-proteins and the impact on their structural stability. Our analysis showed the manipulation of host system by viral proteins through SARS-CoV-2-human protein interactome, which can be useful to understand the impact of virus on human health.
Collapse
Affiliation(s)
- Roshan Kumar
- P.G. Department of Zoology, Magadh University, Bodh Gaya, Bihar, India
| | - Helianthous Verma
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | | | - Utkarsh Sood
- The Energy and Resources Institute, New Delhi, India
| | - Vipin Gupta
- PhiXGen Private Limited, Gurugram, Haryana, India
| | - Mona Singh
- PhiXGen Private Limited, Gurugram, Haryana, India
| | - Rashmi Kumari
- Department of Zoology, College of Commerce, Arts & Science, Patliputra University, Patna, Bihar, India
| | - Princy Hira
- Department of Zoology, Maitreyi College, University of Delhi, New Delhi, India
| | - Shekhar Nagar
- Department of Zoology, University of Delhi, Delhi, India
| | - Chandni Talwar
- Department of Zoology, University of Delhi, Delhi, India
| | - Namita Nayyar
- Department of Zoology, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Shailly Anand
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Charu Dogra Rawat
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Mansi Verma
- Department of Zoology, Sri Venkateswara College, University of Delhi, New Delhi, India
| | | | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, India
| | - Rup Lal
- The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
23
|
Kralovicova J, Borovska I, Kubickova M, Lukavsky PJ, Vorechovsky I. Cancer-Associated Substitutions in RNA Recognition Motifs of PUF60 and U2AF65 Reveal Residues Required for Correct Folding and 3' Splice-Site Selection. Cancers (Basel) 2020; 12:cancers12071865. [PMID: 32664474 PMCID: PMC7408900 DOI: 10.3390/cancers12071865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
U2AF65 (U2AF2) and PUF60 (PUF60) are splicing factors important for recruitment of the U2 small nuclear ribonucleoprotein to lariat branch points and selection of 3′ splice sites (3′ss). Both proteins preferentially bind uridine-rich sequences upstream of 3′ss via their RNA recognition motifs (RRMs). Here, we examined 36 RRM substitutions reported in cancer patients to identify variants that alter 3′ss selection, RNA binding and protein properties. Employing PUF60- and U2AF65-dependent 3′ss previously identified by RNA-seq of depleted cells, we found that 43% (10/23) and 15% (2/13) of independent RRM mutations in U2AF65 and PUF60, respectively, conferred splicing defects. At least three RRM mutations increased skipping of internal U2AF2 (~9%, 2/23) or PUF60 (~8%, 1/13) exons, indicating that cancer-associated RRM mutations can have both cis- and trans-acting effects on splicing. We also report residues required for correct folding/stability of each protein and map functional RRM substitutions on to existing high-resolution structures of U2AF65 and PUF60. These results identify new RRM residues critical for 3′ss selection and provide relatively simple tools to detect clonal RRM mutations that enhance the mRNA isoform diversity.
Collapse
Affiliation(s)
- Jana Kralovicova
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia;
| | - Ivana Borovska
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia;
| | - Monika Kubickova
- CEITEC, Masaryk University, 625 00 Brno, Czech Republic; (M.K.); (P.J.L.)
| | - Peter J. Lukavsky
- CEITEC, Masaryk University, 625 00 Brno, Czech Republic; (M.K.); (P.J.L.)
| | - Igor Vorechovsky
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
- Correspondence: ; Tel.: +44-2381-206425; Fax: +44-2381-204264
| |
Collapse
|
24
|
Kew C, Huang W, Fischer J, Ganesan R, Robinson N, Antebi A. Evolutionarily conserved regulation of immunity by the splicing factor RNP-6/PUF60. eLife 2020; 9:57591. [PMID: 32538777 PMCID: PMC7332298 DOI: 10.7554/elife.57591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/14/2020] [Indexed: 12/25/2022] Open
Abstract
Splicing is a vital cellular process that modulates important aspects of animal physiology, yet roles in regulating innate immunity are relatively unexplored. From genetic screens in C. elegans, we identified splicing factor RNP-6/PUF60 whose activity suppresses immunity, but promotes longevity, suggesting a tradeoff between these processes. Bacterial pathogen exposure affects gene expression and splicing in a rnp-6 dependent manner, and rnp-6 gain and loss-of-function activities reveal an active role in immune regulation. Another longevity promoting splicing factor, SFA-1, similarly exerts an immuno-suppressive effect, working downstream or parallel to RNP-6. RNP-6 acts through TIR-1/PMK-1/MAPK signaling to modulate immunity. The mammalian homolog, PUF60, also displays anti-inflammatory properties, and its levels swiftly decrease after bacterial infection in mammalian cells, implying a role in the host response. Altogether our findings demonstrate an evolutionarily conserved modulation of immunity by specific components of the splicing machinery.
Collapse
Affiliation(s)
- Chun Kew
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Wenming Huang
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Julia Fischer
- Department I of Internal Medicine, University of Cologne, Cologne, Germany.,Division of Infectious Diseases, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Raja Ganesan
- Cellular-Stress and Immune Response Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Nirmal Robinson
- Cellular-Stress and Immune Response Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
25
|
Ailiken G, Kitamura K, Hoshino T, Satoh M, Tanaka N, Minamoto T, Rahmutulla B, Kobayashi S, Kano M, Tanaka T, Kaneda A, Nomura F, Matsubara H, Matsushita K. Post-transcriptional regulation of BRG1 by FIRΔexon2 in gastric cancer. Oncogenesis 2020; 9:26. [PMID: 32071290 PMCID: PMC7028737 DOI: 10.1038/s41389-020-0205-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Brahma-related gene 1 (BRG1), an ATPase subunit of the SWItch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex controls multipotent neural crest formation by regulating epithelial-mesenchymal transition (EMT)-related genes with adenosine triphosphate-dependent chromodomain-helicase DNA-binding protein 7 (CHD7). The expression of BRG1 engages in pre-mRNA splicing through interacting RNPs in cancers; however, the detailed molecular pathology of how BRG1and CHD7 relate to cancer development remains largely unveiled. This study demonstrated novel post-transcriptional regulation of BRG1 in EMT and relationship with FIRΔexon2, which is a splicing variant of the far-upstream element-binding protein (FUBP) 1-interacting repressor (FIR) lacking exon 2, which fails to repress c-myc transcription in cancers. Previously, we have reported that FIR complete knockout mice (FIR-/-) was embryonic lethal before E9.5, suggesting FIR is crucial for development. FIRΔexon2 acetylated H3K27 on promoter of BRG1 by CHIP-sequence and suppressed BRG1 expression post-transcriptionally; herein BRG1 suppressed Snai1 that is a transcriptional suppressor of E-cadherin that prevents cancer invasion and metastasis. Ribosomal proteins, hnRNPs, splicing-related factors, poly (A) binding proteins, mRNA-binding proteins, tRNA, DEAD box, and WD-repeat proteins were identified as co-immunoprecipitated proteins with FIR and FIRΔexon2 by redoing exhaustive mass spectrometry analysis. Furthermore, the effect of FIRΔexon2 on FGF8 mRNA splicing was examined as an indicator of neural development due to impaired CHD7 revealed in CHARGE syndrome. Expectedly, siRNA of FIRΔexon2 altered FGF8 pre-mRNA splicing, indicated close molecular interaction among FIRΔexon2, BRG1 and CHD7. FIRΔexon2 mRNA was elevated in human gastric cancers but not in non-invasive gastric tumors in FIR+/ mice (K19-Wnt1/C2mE x FIR+/-). The levels of FIR family (FIR, FIRΔexon2 and PUF60), BRG1, Snai1, FBW7, E-cadherin, c-Myc, cyclin-E, and SAP155 increased in the gastric tumors in FIR+/- mice compared to those expressed in wild-type mice. FIR family, Snai1, cyclin-E, BRG1, and c-Myc showed trends toward higher expression in larger tumors than in smaller tumors in Gan-mice (K19-Wnt1/C2mE). The expressions of BRG1 and Snai1 were positively correlated in the gastric tumors of the Gan-mice. Finally, BRG1 is a candidate substrate of F-box and WD-repeat domain-containing 7 (FBW7) revealed by three-dimensional crystal structure analysis that the U2AF-homology motif (UHM) of FIRΔexon2 interacted with tryptophan-425 and asparate-399 (WD)-like motif in the degron pocket of FBW7 as a UHM-ligand motif. Together, FIRΔexon2 engages in multi-step post-transcriptional regulation of BRG1, affecting EMT through the BRG1/Snai1/E-cadherin pathway and promoting tumor proliferation and invasion of gastric cancers.
Collapse
Affiliation(s)
- Guzhanuer Ailiken
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kouichi Kitamura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Mamoru Satoh
- Divisions of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Nobuko Tanaka
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sohei Kobayashi
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumio Nomura
- Divisions of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan.
| |
Collapse
|
26
|
Královicová J, Ševcíková I, Stejskalová E, Obuca M, Hiller M, Stanek D, Vorechovský I. PUF60-activated exons uncover altered 3' splice-site selection by germline missense mutations in a single RRM. Nucleic Acids Res 2019; 46:6166-6187. [PMID: 29788428 PMCID: PMC6093180 DOI: 10.1093/nar/gky389] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/01/2018] [Indexed: 12/27/2022] Open
Abstract
PUF60 is a splicing factor that binds uridine (U)-rich tracts and facilitates association of the U2 small nuclear ribonucleoprotein with primary transcripts. PUF60 deficiency (PD) causes a developmental delay coupled with intellectual disability and spinal, cardiac, ocular and renal defects, but PD pathogenesis is not understood. Using RNA-Seq, we identify human PUF60-regulated exons and show that PUF60 preferentially acts as their activator. PUF60-activated internal exons are enriched for Us upstream of their 3′ splice sites (3′ss), are preceded by longer AG dinucleotide exclusion zones and more distant branch sites, with a higher probability of unpaired interactions across a typical branch site location as compared to control exons. In contrast, PUF60-repressed exons show U-depletion with lower estimates of RNA single-strandedness. We also describe PUF60-regulated, alternatively spliced isoforms encoding other U-bound splicing factors, including PUF60 partners, suggesting that they are co-regulated in the cell, and identify PUF60-regulated exons derived from transposed elements. PD-associated amino-acid substitutions, even within a single RNA recognition motif (RRM), altered selection of competing 3′ss and branch points of a PUF60-dependent exon and the 3′ss choice was also influenced by alternative splicing of PUF60. Finally, we propose that differential distribution of RNA processing steps detected in cells lacking PUF60 and the PUF60-paralog RBM39 is due to the RBM39 RS domain interactions. Together, these results provide new insights into regulation of exon usage by the 3′ss organization and reveal that germline mutation heterogeneity in RRMs can enhance phenotypic variability at the level of splice-site and branch-site selection.
Collapse
Affiliation(s)
- Jana Královicová
- University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.,Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Ivana Ševcíková
- Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Eva Stejskalová
- Czech Academy of Sciences, Institute of Molecular Genetics, 142 20 Prague, Czech Republic
| | - Mina Obuca
- Czech Academy of Sciences, Institute of Molecular Genetics, 142 20 Prague, Czech Republic
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics and Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - David Stanek
- Czech Academy of Sciences, Institute of Molecular Genetics, 142 20 Prague, Czech Republic
| | - Igor Vorechovský
- University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
27
|
Kobayashi S, Hiwasa T, Ishige T, Rahmutulla B, Kano M, Hoshino T, Minamoto T, Shimada H, Nomura F, Matsubara H, Matsushita K. Anti-FIRΔexon2, a splicing variant form of PUF60, autoantibody is detected in the sera of esophageal squamous cell carcinoma. Cancer Sci 2019; 110:2004-2013. [PMID: 30980774 PMCID: PMC6549911 DOI: 10.1111/cas.14024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
Anti‐PUF60 autoantibodies are reportedly detected in the sera of patients with dermatomyositis and Sjögren's syndrome; however, little is known regarding its existence in the sera of cancer patients. FIR, a splicing variant of the PUF60 gene, is a transcriptional repressor of c‐myc. In colorectal cancer, there is an overexpression of the dominant negative form of FIR, in which exon 2 is lacking (FIRΔexon2). Previously, large‐scale SEREX (serological identification of antigens by recombinant cDNA expression cloning) screenings have identified anti‐FIR autoantibodies in the sera of cancer patients. In the present study, we revealed the presence and significance of anti‐FIR (FIR/FIRΔexon2) Abs in the sera of patients with esophageal squamous cell carcinoma (ESCC). Our results were validated by an amplified luminescence proximity homogeneous assay using sera of patients with various cancer types. We revealed that anti‐FIRΔexon2 Ab had higher sensitivity than anti‐FIR Ab. Receiver operating characteristic (ROC) analysis was applied for evaluating the use of anti‐FIRΔexon2 Ab as candidate markers such as anti‐p53 Ab and carcinoembryonic antigen, and the highest area under the ROC curve was observed in the combination of anti‐FIRΔexon2 Ab and anti‐p53 Ab. In summary, our results suggest the use of anti‐FIRΔexon2 Ab in combination with the anti‐p53 Ab as a predictive marker for ESCC. The area under the ROC curve was further increased in the advanced stage of ESCC. The value of anti‐FIRΔexon2 autoantibody as novel clinical indicator against ESCC and as a companion diagnostic tool is discussed.
Collapse
Affiliation(s)
- Sohei Kobayashi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Takaki Hiwasa
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayuki Ishige
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Toshinari Minamoto
- Kanazawa University, Cancer Research Institute, Division of Translational and Clinical Oncology, Ishikawa, Japan
| | - Hideaki Shimada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Toho University, Tokyo, Japan
| | - Fumio Nomura
- Divisions of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
28
|
Sun D, Lei W, Hou X, Li H, Ni W. PUF60 accelerates the progression of breast cancer through downregulation of PTEN expression. Cancer Manag Res 2019; 11:821-830. [PMID: 30697074 PMCID: PMC6340502 DOI: 10.2147/cmar.s180242] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background PUF60 is a splicing variant of far upstream element binding protein 1-interacting repressor, which is abnormally expressed in a variety of tumors and is closely involved in their progression. However, whether PUF60 participates in the occurrence and development of breast cancer remains unknown. Therefore, the objective of the current study is to explore the effects and mechanism of PUF60 in the progression of breast cancer. Methods PUF60 expression patterns in breast cancer tissues and cells were determined by RT-PCR and Western blotting. The relationship between PUF60 expression and patients' clinical features and outcome was evaluated to assess the potential of PUF60 as a marker for progression and prognosis prediction. CCK-8, flow cytometry, transwell and in vivo tumor formation assays were used to detect cell proliferation, apoptosis, migration, invasion and tumorigenesis. The effects of PUF60 on the activation of PTEN/PI3K/AKT were also evaluated by Western blotting and immunofluorescence assays. Results The expression of PUF60 was elevated in breast cancer tissue samples and cell lines, and its high expression was closely associated with the high incidence of lymph node metastasis and advanced TNM stage. Besides, upregulation of PUF60 with lentivirus infection significantly increased the growth, migration, and invasion and repressed the apoptosis of breast cancer HCC1937 and MDA-MB-231 cells, while silencing of PUF60 with shRNA showed the opposite results. Moreover, PUF60 upregulation promoted the expression of p-AKT, PI3K, and mTOR, while decreased PTEN expression through inhibiting its stability and enhancing its ubiquitination. Furthermore, upregulation of PUF60 promoted the tumorigenesis in vivo, whereas this effect was impaired when PTEN expression was upregulated in MDA-MB-231 and HCC1937 cells. Conclusion This study demonstrates that PUF60 is highly expressed in breast cancer; upregulation of PUF60 accelerates the progression of breast cancer through PTEN inhibition.
Collapse
Affiliation(s)
- Dongying Sun
- Department of Medical Imaging, Henan University First Affiliated Hospital, Kaifeng, Henan, China,
| | - Wei Lei
- Department of Medical Imaging, Henan University First Affiliated Hospital, Kaifeng, Henan, China,
| | - Xiaodong Hou
- Department of Medical Imaging, Henan University First Affiliated Hospital, Kaifeng, Henan, China,
| | - Hui Li
- Department of Medical Imaging, Henan University First Affiliated Hospital, Kaifeng, Henan, China,
| | - Wenlu Ni
- Department of Medical Imaging, Henan University First Affiliated Hospital, Kaifeng, Henan, China,
| |
Collapse
|
29
|
Genome-wide CRISPR-Cas9 Interrogation of Splicing Networks Reveals a Mechanism for Recognition of Autism-Misregulated Neuronal Microexons. Mol Cell 2018; 72:510-524.e12. [DOI: 10.1016/j.molcel.2018.10.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/27/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
|
30
|
Bérubé-Simard FA, Pilon N. Molecular dissection of CHARGE syndrome highlights the vulnerability of neural crest cells to problems with alternative splicing and other transcription-related processes. Transcription 2018; 10:21-28. [PMID: 30205741 DOI: 10.1080/21541264.2018.1521213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CHARGE syndrome is characterized by co-occurrence of multiple malformations due to abnormal development of neural crest cells. Here, we review the phenotypic and molecular overlap between CHARGE syndrome and similar pathologies, and further discuss the observation that neural crest cells appear especially sensitive to malfunction of the chromatin-transcription-splicing molecular hub.
Collapse
Affiliation(s)
- Félix-Antoine Bérubé-Simard
- a Laboratoire de génétique moléculaire du développement, Département des sciences biologiques , Université du Québec à Montréal (UQAM) , Montréal , QC , Canada.,b Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC) , Université du Québec à Montréal (UQAM) , Montréal , QC , Canada
| | - Nicolas Pilon
- a Laboratoire de génétique moléculaire du développement, Département des sciences biologiques , Université du Québec à Montréal (UQAM) , Montréal , QC , Canada.,b Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC) , Université du Québec à Montréal (UQAM) , Montréal , QC , Canada.,c Département de pédiatrie , Université de Montréal , Montréal , QC , Canada
| |
Collapse
|
31
|
Dominguez D, Freese P, Alexis MS, Su A, Hochman M, Palden T, Bazile C, Lambert NJ, Van Nostrand EL, Pratt GA, Yeo GW, Graveley BR, Burge CB. Sequence, Structure, and Context Preferences of Human RNA Binding Proteins. Mol Cell 2018; 70:854-867.e9. [PMID: 29883606 PMCID: PMC6062212 DOI: 10.1016/j.molcel.2018.05.001] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/20/2018] [Accepted: 05/01/2018] [Indexed: 01/03/2023]
Abstract
RNA binding proteins (RBPs) orchestrate the production, processing, and function of mRNAs. Here, we present the affinity landscapes of 78 human RBPs using an unbiased assay that determines the sequence, structure, and context preferences of these proteins in vitro by deep sequencing of bound RNAs. These data enable construction of "RNA maps" of RBP activity without requiring crosslinking-based assays. We found an unexpectedly low diversity of RNA motifs, implying frequent convergence of binding specificity toward a relatively small set of RNA motifs, many with low compositional complexity. Offsetting this trend, however, we observed extensive preferences for contextual features distinct from short linear RNA motifs, including spaced "bipartite" motifs, biased flanking nucleotide composition, and bias away from or toward RNA structure. Our results emphasize the importance of contextual features in RNA recognition, which likely enable targeting of distinct subsets of transcripts by different RBPs that recognize the same linear motif.
Collapse
Affiliation(s)
| | - Peter Freese
- Program in Computational and Systems Biology, MIT, Cambridge, MA, USA
| | - Maria S Alexis
- Program in Computational and Systems Biology, MIT, Cambridge, MA, USA
| | - Amanda Su
- Department of Biology, MIT, Cambridge, MA, USA
| | | | | | | | | | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Gabriel A Pratt
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Molecular Engineering Laboratory, A(∗)STAR, Singapore, Singapore
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health, Farmington, CT, USA
| | - Christopher B Burge
- Department of Biology, MIT, Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA.
| |
Collapse
|
32
|
Ogura Y, Hoshino T, Tanaka N, Ailiken G, Kobayashi S, Kitamura K, Rahmutulla B, Kano M, Murakami K, Akutsu Y, Nomura F, Itoga S, Matsubara H, Matsushita K. Disturbed alternative splicing of FIR (PUF60) directed cyclin E overexpression in esophageal cancers. Oncotarget 2018; 9:22929-22944. [PMID: 29796163 PMCID: PMC5955432 DOI: 10.18632/oncotarget.25149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 03/22/2018] [Indexed: 02/06/2023] Open
Abstract
Overexpression of alternative splicing of far upstream element binding protein 1 (FUBP1) interacting repressor (FIR; poly(U) binding splicing factor 60 [PUF60]) and cyclin E were detected in esophageal squamous cell carcinomas (ESCC). Accordingly, the expression of FBW7 was examined by which cyclin E is degraded as a substrate via the proteasome system. Expectedly, FBW7 expression was decreased significantly in ESCC. Conversely, c-myc gene transcriptional repressor FIR (alias PUF60; U2AF-related protein) and its alternative splicing variant form (FIRΔexon2) were overexpressed in ESCC. Further, anticancer drugs (cis-diaminedichloroplatinum/cisplatin [CDDP] or 5-fluorouracil [5-FU]) and knockdown of FIR by small interfering RNA (siRNA) increased cyclin E while knockdown of FIRΔexon2 by siRNA decreased cyclin E expression in ESCC cell lines (TE1, TE2, and T.Tn) or cervical SCC cells (HeLa cells). Especially, knockdown of SAP155 (SF3b1), a splicing factor required for proper alternative splicing of FIR pre-mRNA, decreased cyclin E. Therefore, disturbed alternative splicing of FIR generated FIR/FIRΔexon2 with cyclin E overexpression in esophageal cancers, indicating that SAP155 siRNA potentially rescued FBW7 function by reducing expression of FIR and/or FIRΔexon2. Remarkably, Three-dimensional structure analysis revealed the hypothetical inhibitory mechanism of FBW7 function by FIR/FIRΔexon2, a novel mechanism of cyclin E overexpression by FIR/FIRΔexon2-FBW7 interaction was discussed. Clinically, elevated FIR expression potentially is an indicator of the number of lymph metastases and anti-FIR/FIRΔexon2 antibodies in sera as cancer diagnosis, indicating chemical inhibitors of FIR/FIRΔexon2-FBW7 interaction could be potential candidate drugs for cancer therapy. In conclusion, elevated cyclin E expression was, in part, induced owing to potential FIR/FIRΔexon2–FBW7 interaction in ESCC.
Collapse
Affiliation(s)
- Yukiko Ogura
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Nobuko Tanaka
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Guzhanuer Ailiken
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sohei Kobayashi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Kouichi Kitamura
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan.,Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kentarou Murakami
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasunori Akutsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumio Nomura
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Sakae Itoga
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
33
|
Zaytseva O, Quinn LM. DNA Conformation Regulates Gene Expression: The MYC Promoter and Beyond. Bioessays 2018; 40:e1700235. [PMID: 29504137 DOI: 10.1002/bies.201700235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/29/2018] [Indexed: 01/07/2023]
Abstract
Emerging evidence suggests that DNA topology plays an instructive role in cell fate control through regulation of gene expression. Transcription produces torsional stress, and the resultant supercoiling of the DNA molecule generates an array of secondary structures. In turn, local DNA architecture is harnessed by the cell, acting within sensory feedback mechanisms to mediate transcriptional output. MYC is a potent oncogene, which is upregulated in the majority of cancers; thus numerous studies have focused on detailed understanding of its regulation. Dissection of regulatory regions within the MYC promoter provided the first hint that intimate feedback between DNA topology and associated DNA remodeling proteins is critical for moderating transcription. As evidence of such regulation is also found in the context of many other genes, here we expand on the prototypical example of the MYC promoter, and also explore DNA architecture in a genome-wide context as a global mechanism of transcriptional control.
Collapse
Affiliation(s)
- Olga Zaytseva
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT 2600, Canberra City, Australia.,School of Biomedical Sciences, University of Melbourne, 3010, Parkville, Australia
| | - Leonie M Quinn
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT 2600, Canberra City, Australia.,School of Biomedical Sciences, University of Melbourne, 3010, Parkville, Australia
| |
Collapse
|
34
|
Kobayashi S, Hoshino T, Hiwasa T, Satoh M, Rahmutulla B, Tsuchida S, Komukai Y, Tanaka T, Matsubara H, Shimada H, Nomura F, Matsushita K. Anti-FIRs (PUF60) auto-antibodies are detected in the sera of early-stage colon cancer patients. Oncotarget 2018; 7:82493-82503. [PMID: 27756887 PMCID: PMC5347708 DOI: 10.18632/oncotarget.12696] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/12/2016] [Indexed: 01/09/2023] Open
Abstract
Anti-PUF60, poly(U)-binding-splicing factor, autoantibodies are reported to be detected in the sera of dermatomyositis and Sjogren's syndrome that occasionally associated with malignancies. PUF60 is identical with far-upstream element-binding protein-interacting repressor (FIR) that is a transcriptional repressor of c-myc gene. In colorectal cancers, a splicing variant of FIR that lacks exon2 (FIRΔexon2) is overexpressed as a dominant negative form of FIR. In this study, to reveal the presence and the significance of anti-FIRs (FIR/FIRΔexon2) antibodies in cancers were explored in the sera of colorectal and other cancer patients. Anti-FIRs antibodies were surely detected in the preoperative sera of 28 colorectal cancer patients (32.2% of positive rates), and the detection rate was significantly higher than that in healthy control sera (Mann-Whitney U test, p < 0.01). The level of anti-FIRs antibodies significantly decreased after the operation (p < 0.01). Anti-FIRs antibodies were detected in the sera of early-stage and/or recurrent colon cancer patients in which anti-p53 antibodies, CEA, and CA19-9 were not detected as well as in the sera of other cancer patients. Furthermore, the area under the curve of receiver operating characteristic for anti-FIRs antibodies was significantly larger (0.85) than that for anti-p53 antibodies or CA19-9. In conclusions, the combination of anti-FIRs antibodies with other clinically available tumor markers further improved the specificity and accuracy of cancer diagnosis.
Collapse
Affiliation(s)
- Sohei Kobayashi
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Takaki Hiwasa
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Mamoru Satoh
- Divisions of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba 260-8670, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan
| | - Sachio Tsuchida
- Divisions of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba 260-8670, Japan
| | - Yuji Komukai
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan
| | - Hisahiro Matsubara
- Department of Academic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hideaki Shimada
- Department of Gastroenterological Surgery, Toho University Omori Medical Center, Tokyo 143-8541, Japan
| | - Fumio Nomura
- Divisions of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba 260-8670, Japan
| | - Kazuyuki Matsushita
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan.,Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics Chiba University Hospital, Chiba 260-8670, Japan
| |
Collapse
|
35
|
Sun S, Nakashima K, Ito M, Li Y, Chida T, Takahashi H, Watashi K, Sawasaki T, Wakita T, Suzuki T. Involvement of PUF60 in Transcriptional and Post-transcriptional Regulation of Hepatitis B Virus Pregenomic RNA Expression. Sci Rep 2017; 7:12874. [PMID: 28993636 PMCID: PMC5634508 DOI: 10.1038/s41598-017-12497-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
Here we identified PUF60, a splicing factor and a U2 small nuclear ribonucleoprotein auxiliary factor, as a versatile regulator of transcriptional and post-transcriptional steps in expression of hepatitis B virus (HBV) 3.5 kb, precore plus pregenomic RNA. We demonstrate that PUF60 is involved in: 1) up-regulation of core promoter activity through its interaction with transcription factor TCF7L2, 2) promotion of 3.5 kb RNA degradation and 3) suppression of 3.5 kb RNA splicing. When the 1.24-fold HBV genome was introduced into cells with the PUF60-expression plasmid, the 3.5 kb RNA level was higher at days 1–2 post-transfection but declined thereafter in PUF60-expressing cells compared to viral replication control cells. Deletion analyses showed that the second and first RNA recognition motifs (RRMs) within PUF60 are responsible for core promoter activation and RNA degradation, respectively. Expression of PUF60 mutant deleting the first RRM led to higher HBV production. To our knowledge, this is the first to identify a host factor involved in not only positively regulating viral gene expression but also negative regulation of the same viral life cycle. Functional linkage between transcriptional and post-transcriptional controls during viral replication might be involved in mechanisms for intracellular antiviral defense and viral persistence.
Collapse
Affiliation(s)
- Suofeng Sun
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka, 431-3192, Japan
| | - Kenji Nakashima
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka, 431-3192, Japan
| | - Masahiko Ito
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka, 431-3192, Japan
| | - Yuan Li
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka, 431-3192, Japan
| | - Takeshi Chida
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka, 431-3192, Japan
| | | | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | | | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Tetsuro Suzuki
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka, 431-3192, Japan.
| |
Collapse
|
36
|
Loerch S, Kielkopf CL. Unmasking the U2AF homology motif family: a bona fide protein-protein interaction motif in disguise. RNA (NEW YORK, N.Y.) 2016; 22:1795-1807. [PMID: 27852923 PMCID: PMC5113200 DOI: 10.1261/rna.057950.116] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
U2AF homology motifs (UHM) that recognize U2AF ligand motifs (ULM) are an emerging family of protein-protein interaction modules. UHM-ULM interactions recur in pre-mRNA splicing factors including U2AF1 and SF3b1, which are frequently mutated in myelodysplastic syndromes. The core topology of the UHM resembles an RNA recognition motif and is often mistakenly classified within this large family. Here, we unmask the charade and review recent discoveries of UHM-ULM modules for protein-protein interactions. Diverse polypeptide extensions and selective phosphorylation of UHM and ULM family members offer new molecular mechanisms for the assembly of specific partners in the early-stage spliceosome.
Collapse
Affiliation(s)
- Sarah Loerch
- Center for RNA Biology and Department for Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Clara L Kielkopf
- Center for RNA Biology and Department for Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| |
Collapse
|
37
|
Andersen CL, Nielsen HM, Kristensen LS, Søgaard A, Vikeså J, Jønson L, Nielsen FC, Hasselbalch H, Bjerrum OW, Punj V, Grønbæk K. Whole-exome sequencing and genome-wide methylation analyses identify novel disease associated mutations and methylation patterns in idiopathic hypereosinophilic syndrome. Oncotarget 2016; 6:40588-97. [PMID: 26497854 PMCID: PMC4747354 DOI: 10.18632/oncotarget.5845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023] Open
Abstract
A thorough understanding of the idiopathic hypereosinophilic syndrome (IHES) and further optimization of diagnostic work-up procedures are warranted. We analyzed purified eosinophils from patients with IHES by next-generation whole-exome sequencing and compared DNA methylation profiles from reactive eosinophilic conditions to known clonal and suspected clonal eosinophilia. Somatic missense mutations in cancer-related genes were detected in three IHES patients. These included the spliceosome gene PUF60 and the cadherin gene CDH17. Furthermore, reactive eosinophilia samples could be differentiated from known- and suspected clonal eosinophilia samples based on 285 differentially methylated CpG sites corresponding to 128 differentially methylated genes. Using Ingenuity pathway analysis, we found that differentially methylated genes were highly enriched in functional pathways such as cancer, cell death and survival, and hematological disease. Our data show that a subset of IHES may be of clonal origin not related to the classical molecular aberrations of FGFR, PDGFRA/B, or T-cells, and that the initiating hits could be point mutations in a variety of genes, including spliceosome mutations or hypermethylated tumor suppressor genes. In addition, we identified a DNA methylation signature that is relevant for distinguishing clonal and suspected clonal eosinophilia from reactive eosinophilia per se, which may be useful in daily clinical work.
Collapse
Affiliation(s)
- Christen Lykkegaard Andersen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Hematology, Roskilde University Hospital, Roskilde, Denmark
| | - Helene Myrtue Nielsen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lasse Sommer Kristensen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Alexandra Søgaard
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jonas Vikeså
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars Jønson
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Finn Cilius Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hans Hasselbalch
- Department of Hematology, Roskilde University Hospital, Roskilde, Denmark
| | - Ole Weis Bjerrum
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vasu Punj
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
38
|
Kralovicova J, Vorechovsky I. Alternative splicing of U2AF1 reveals a shared repression mechanism for duplicated exons. Nucleic Acids Res 2016; 45:417-434. [PMID: 27566151 PMCID: PMC5224494 DOI: 10.1093/nar/gkw733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/30/2022] Open
Abstract
The auxiliary factor of U2 small nuclear ribonucleoprotein (U2AF) facilitates branch point (BP) recognition and formation of lariat introns. The gene for the 35-kD subunit of U2AF gives rise to two protein isoforms (termed U2AF35a and U2AF35b) that are encoded by alternatively spliced exons 3 and Ab, respectively. The splicing recognition sequences of exon 3 are less favorable than exon Ab, yet U2AF35a expression is higher than U2AF35b across tissues. We show that U2AF35b repression is facilitated by weak, closely spaced BPs next to a long polypyrimidine tract of exon Ab. Each BP lacked canonical uridines at position -2 relative to the BP adenines, with efficient U2 base-pairing interactions predicted only for shifted registers reminiscent of programmed ribosomal frameshifting. The BP cluster was compensated by interactions involving unpaired cytosines in an upstream, EvoFold-predicted stem loop (termed ESL) that binds FUBP1/2. Exon Ab inclusion correlated with predicted free energies of mutant ESLs, suggesting that the ESL operates as a conserved rheostat between long inverted repeats upstream of each exon. The isoform-specific U2AF35 expression was U2AF65-dependent, required interactions between the U2AF-homology motif (UHM) and the α6 helix of U2AF35, and was fine-tuned by exon Ab/3 variants. Finally, we identify tandem homologous exons regulated by U2AF and show that their preferential responses to U2AF65-related proteins and SRSF3 are associated with unpaired pre-mRNA segments upstream of U2AF-repressed 3′ss. These results provide new insights into tissue-specific subfunctionalization of duplicated exons in vertebrate evolution and expand the repertoire of exon repression mechanisms that control alternative splicing.
Collapse
Affiliation(s)
- Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
39
|
Fiorentino DF, Presby M, Baer AN, Petri M, Rieger KE, Soloski M, Rosen A, Mammen AL, Christopher-Stine L, Casciola-Rosen L. PUF60: a prominent new target of the autoimmune response in dermatomyositis and Sjögren's syndrome. Ann Rheum Dis 2016; 75:1145-51. [PMID: 26253095 PMCID: PMC4828328 DOI: 10.1136/annrheumdis-2015-207509] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/13/2015] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Autoantibodies are used clinically to phenotype and subset patients with autoimmune rheumatic diseases. We detected a novel 60 kDa autoantibody specificity by immunoblotting using a dermatomyositis (DM) patient's serum. Our objective was to identify the targeted autoantigen and to evaluate disease specificity and clinical significance of this new autoantibody. METHODS A new 60 kDa specificity was detected by immunoblotting HeLa cell lysates. The targeted autoantigen was identified as poly(U)-binding-splicing factor 60 kDa (PUF60) using (i) a human protein array and (ii) two-dimensional gel electrophoresis and liquid chromatography tandem mass spectrometry peptide sequencing. Anti-PUF60 antibodies were assayed by ELISA using sera from patients with primary Sjögren's syndrome (SS; n=84), systemic lupus erythematosus (SLE; n=71), DM (n=267), polymyositis (n=45), inclusion body myositis (n=45) and healthy controls (n=38). RESULTS PUF60 was identified as a new autoantigen. Anti-PUF60 antibodies were present in 25/84 (30%) patients with SS, 6/71 (8.5%) patients with SLE and 2/38 (5.0%) control subjects (SS vs controls, p=0.002; SLE vs controls, p=0.711). Anti-PUF60 antibodies were present in 48/267 (18.0%) patients with DM versus 4/45 (8.9%) and 5/45 (11.1%) patients with inclusion body myositis and polymyositis, respectively. The antibody was significantly associated with anti-Ro52 antibodies, rheumatoid factor and hyperglobulinemia in the patients with primary SS. In patients with DM, the antibody was associated with anti-transcription intermediary factor 1 gamma seropositivity and Caucasian race. CONCLUSIONS PUF60 represents a novel autoantigen in patients with SS and DM. PUF60 antibodies are associated with distinct clinical features and different immune responses in different diseases.
Collapse
Affiliation(s)
- David F. Fiorentino
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA, USA
| | - Matthew Presby
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan N. Baer
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle Petri
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kerri E. Rieger
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark Soloski
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Andrew L. Mammen
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Lisa Christopher-Stine
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Livia Casciola-Rosen
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
40
|
Stepanyuk GA, Serrano P, Peralta E, Farr CL, Axelrod HL, Geralt M, Das D, Chiu HJ, Jaroszewski L, Deacon AM, Lesley SA, Elsliger MA, Godzik A, Wilson IA, Wüthrich K, Salomon DR, Williamson JR. UHM-ULM interactions in the RBM39-U2AF65 splicing-factor complex. Acta Crystallogr D Struct Biol 2016; 72:497-511. [PMID: 27050129 PMCID: PMC4822562 DOI: 10.1107/s2059798316001248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/19/2016] [Indexed: 01/14/2023] Open
Abstract
RNA-binding protein 39 (RBM39) is a splicing factor and a transcriptional co-activator of estrogen receptors and Jun/AP-1, and its function has been associated with malignant progression in a number of cancers. The C-terminal RRM domain of RBM39 belongs to the U2AF homology motif family (UHM), which mediate protein-protein interactions through a short tryptophan-containing peptide known as the UHM-ligand motif (ULM). Here, crystal and solution NMR structures of the RBM39-UHM domain, and the crystal structure of its complex with U2AF65-ULM, are reported. The RBM39-U2AF65 interaction was confirmed by co-immunoprecipitation from human cell extracts, by isothermal titration calorimetry and by NMR chemical shift perturbation experiments with the purified proteins. When compared with related complexes, such as U2AF35-U2AF65 and RBM39-SF3b155, the RBM39-UHM-U2AF65-ULM complex reveals both common and discriminating recognition elements in the UHM-ULM binding interface, providing a rationale for the known specificity of UHM-ULM interactions. This study therefore establishes a structural basis for specific UHM-ULM interactions by splicing factors such as U2AF35, U2AF65, RBM39 and SF3b155, and a platform for continued studies of intermolecular interactions governing disease-related alternative splicing in eukaryotic cells.
Collapse
Affiliation(s)
- Galina A. Stepanyuk
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pedro Serrano
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, http://www.jcsg.org
| | - Eigen Peralta
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Carol L. Farr
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, http://www.jcsg.org
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Herbert L. Axelrod
- Joint Center for Structural Genomics, http://www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Michael Geralt
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, http://www.jcsg.org
| | - Debanu Das
- Joint Center for Structural Genomics, http://www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Hsiu-Ju Chiu
- Joint Center for Structural Genomics, http://www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Lukasz Jaroszewski
- Joint Center for Structural Genomics, http://www.jcsg.org
- Program on Bioinformatics and Systems Biology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA 92093-0446, USA
| | - Ashley M. Deacon
- Joint Center for Structural Genomics, http://www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Scott A. Lesley
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, http://www.jcsg.org
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Marc-André Elsliger
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, http://www.jcsg.org
| | - Adam Godzik
- Joint Center for Structural Genomics, http://www.jcsg.org
- Program on Bioinformatics and Systems Biology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA 92093-0446, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, http://www.jcsg.org
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kurt Wüthrich
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, http://www.jcsg.org
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel R. Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James R. Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
41
|
Abstract
The U2AF heterodimer is generally accepted to play a vital role in defining functional 3' splice sites in pre-mRNA splicing. Given prevalent mutations in U2AF, particularly in the U2AF1 gene (which encodes for the U2AF35 subunit) in blood disorders and other human cancers, there are renewed interests in these classic splicing factors to further understand their regulatory functions in RNA metabolism in both physiological and disease settings. We recently reported that U2AF has a maximal capacity to directly bind ˜88% of functional 3' splice sites in the human genome and that numerous U2AF binding events also occur in various exonic and intronic locations, thus providing additional mechanisms for the regulation of alternative splicing besides their traditional role in titrating weak splice sites in the cell. These findings, coupled with the existence of multiple related proteins to both U2AF65 and U2AF35, beg a series of questions on the universal role of U2AF in functional 3' splice site definition, their binding specificities in vivo, potential mechanisms to bypass their requirement for certain intron removal events, contribution of splicing-independent functions of U2AF to important cellular functions, and the mechanism for U2AF mutations to invoke specific diseases in humans.
Collapse
Affiliation(s)
- Tongbin Wu
- a Department of Medicine ; University of California, San Diego ; La Jolla , CA USA
| | | |
Collapse
|
42
|
Kralovicova J, Knut M, Cross NCP, Vorechovsky I. Exon-centric regulation of ATM expression is population-dependent and amenable to antisense modification by pseudoexon targeting. Sci Rep 2016; 6:18741. [PMID: 26732650 PMCID: PMC4702124 DOI: 10.1038/srep18741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/25/2015] [Indexed: 01/10/2023] Open
Abstract
ATM is an important cancer susceptibility gene that encodes a critical apical kinase of the DNA damage response (DDR) pathway. We show that a key nonsense-mediated RNA decay switch exon (NSE) in ATM is repressed by U2AF, PUF60 and hnRNPA1. The NSE activation was haplotype-specific and was most promoted by cytosine at rs609621 in the NSE 3' splice-site (3'ss), which is predominant in high cancer risk populations. NSE levels were deregulated in leukemias and were influenced by the identity of U2AF35 residue 34. We also identify splice-switching oligonucleotides (SSOs) that exploit competition of adjacent pseudoexons to modulate NSE levels. The U2AF-regulated exon usage in the ATM signalling pathway was centred on the MRN/ATM-CHEK2-CDC25-cdc2/cyclin-B axis and preferentially involved transcripts implicated in cancer-associated gene fusions and chromosomal translocations. These results reveal important links between 3'ss control and ATM-dependent responses to double-strand DNA breaks, demonstrate functional plasticity of intronic variants and illustrate versatility of intronic SSOs that target pseudo-3'ss to modify gene expression.
Collapse
Affiliation(s)
- Jana Kralovicova
- University of Southampton Faculty of Medicine Southampton SO16 6YD United Kingdom
| | - Marcin Knut
- University of Southampton Faculty of Medicine Southampton SO16 6YD United Kingdom
| | - Nicholas C. P. Cross
- University of Southampton Faculty of Medicine Southampton SO16 6YD United Kingdom
- Wessex Regional Genetics Laboratory Salisbury Hospital Salisbury SP2 8BJ United Kingdom
| | - Igor Vorechovsky
- University of Southampton Faculty of Medicine Southampton SO16 6YD United Kingdom
| |
Collapse
|
43
|
Ren C, Chen T, Sun H, Jiang X, Hu C, Qian J, Wang Y. The first echinoderm poly-U-binding factor 60 kDa (PUF60) from sea cucumber (Stichopus monotuberculatus): Molecular characterization, inducible expression and involvement of apoptosis. FISH & SHELLFISH IMMUNOLOGY 2015; 47:196-204. [PMID: 26362209 DOI: 10.1016/j.fsi.2015.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/25/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Poly-U-binding factor 60 kDa (PUF60), also known as Ro RNA binding protein (RoBPI) and FBP interacting repressor (FIR), is a multifunctional protein that is involved in a variety of nuclear processes including pre-mRNA splicing, apoptosis and transcription regulation. In this study, the first echinoderm PUF60 named StmPUF60 was identified from sea cucumber (Stichopus monotuberculatus). The StmPUF60 cDNA is 4503 bp in length, containing a 5'-untranslated region (UTR) of 34 bp, a 3'-UTR of 2963 bp and an open reading frame (ORF) of 1506 bp that encoding a protein of 501 amino acids with a deduced molecular weight of 54.15 kDa and a predicted isoelectric point of 5.15. The putative StmPUF60 protein possesses all the main characteristics of known PUF60 proteins, including two RNA recognition motifs (RRM1 and RRM2), a C-terminal PUMP domain and two conserved nucleic acid-binding ribonucleoprotein sequences (RNP1 and RNP2). For the gene structure, StmPUF60 contains nine exons separated by eight introns. In addition, the highest level of StmPUF60 mRNA expression was noticed in the gonad, followed by coelomocytes, intestine, respiratory tree and body wall. In in vivo experiments, the expression of StmPUF60 mRNA in coelomocytes and intestine was significantly up-regulated by lipopolysaccharides (LPS) challenge, suggesting that the sea cucumber PUF60 might play critical roles in the innate immune defense against bacterial infections. Moreover, we further confirmed that overexpressed StmPUF60 could induce apoptosis, and this function of StmPUF60 may be one of the innate immune defense mechanisms for sea cucumber against pathogen infections.
Collapse
Affiliation(s)
- Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, PR China.
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, PR China.
| | - Hongyan Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China.
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China.
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, PR China.
| | - Jing Qian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China.
| | - Yanhong Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China.
| |
Collapse
|
44
|
Kowalski MP, Krude T. Functional roles of non-coding Y RNAs. Int J Biochem Cell Biol 2015; 66:20-9. [PMID: 26159929 PMCID: PMC4726728 DOI: 10.1016/j.biocel.2015.07.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 12/20/2022]
Abstract
Non-coding RNAs are involved in a multitude of cellular processes but the biochemical function of many small non-coding RNAs remains unclear. The family of small non-coding Y RNAs is conserved in vertebrates and related RNAs are present in some prokaryotic species. Y RNAs are also homologous to the newly identified family of non-coding stem-bulge RNAs (sbRNAs) in nematodes, for which potential physiological functions are only now emerging. Y RNAs are essential for the initiation of chromosomal DNA replication in vertebrates and, when bound to the Ro60 protein, they are involved in RNA stability and cellular responses to stress in several eukaryotic and prokaryotic species. Additionally, short fragments of Y RNAs have recently been identified as abundant components in the blood and tissues of humans and other mammals, with potential diagnostic value. While the number of functional roles of Y RNAs is growing, it is becoming increasingly clear that the conserved structural domains of Y RNAs are essential for distinct cellular functions. Here, we review the biochemical functions associated with these structural RNA domains, as well as the functional conservation of Y RNAs in different species. The existing biochemical and structural evidence supports a domain model for these small non-coding RNAs that has direct implications for the modular evolution of functional non-coding RNAs.
Collapse
Affiliation(s)
- Madzia P Kowalski
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom.
| |
Collapse
|
45
|
Wang J, Liu Q, Shyr Y. Dysregulated transcription across diverse cancer types reveals the importance of RNA-binding protein in carcinogenesis. BMC Genomics 2015; 16 Suppl 7:S5. [PMID: 26100984 PMCID: PMC4474540 DOI: 10.1186/1471-2164-16-s7-s5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background It is well known that carcinogenesis is in part dictated by dysregulated transcription events and signal pathways. Large-scale transcriptional profiling studies in each cancer type have reported aberrant gene expression associated with cancer development. However, common and specific patterns altered across cancer types, especially the contribution of transcriptional and post-transcriptional regulators, are rarely explored. Results Using transcriptional profiles from matched tumor and normal samples in the Cancer Genome Atlas pan-cancer dataset, we performed a comprehensive analysis on the altered expression across 9 cancer types, focusing on transcriptional and post-transcriptional regulators and cancer-related genes. As we expected, the transcription of cancer-related genes was significantly deregulated in tumor vs. normal across all cancer types. Surprisingly, the expression of RNA-binding proteins (RBPs), master regulators of post-transcriptional gene expression, was also significantly changed across most studied cancer types. Although the expression of RBPs was not as strongly deregulated as cancer-related genes, their direct interaction partners are enriched by cancer-related genes, suggesting the cascade regulation effect of RBPs. Integrating genetic and epigenetic profiles found that deregulated RBPs were frequently caused by genetic rather than epigenetic alterations. Furthermore, tissue-specific genes were under-expressed in tumor vs. normal across all cancer types except prostate cancer. Conclusions Dysregulated transcription across cancer types reveals the importance of RBPs in carcinogenesis. The aberrant expression of RBPs is caused by genetic alterations and spreads their effect to cancer-related genes. In addition, disruption of tissue-specific genes contributes to the corresponding cancer pathology.
Collapse
|
46
|
Hrossova D, Sikorsky T, Potesil D, Bartosovic M, Pasulka J, Zdrahal Z, Stefl R, Vanacova S. RBM7 subunit of the NEXT complex binds U-rich sequences and targets 3'-end extended forms of snRNAs. Nucleic Acids Res 2015; 43:4236-48. [PMID: 25852104 PMCID: PMC4417160 DOI: 10.1093/nar/gkv240] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 01/09/2023] Open
Abstract
The Nuclear Exosome Targeting (NEXT) complex is a key cofactor of the mammalian nuclear exosome in the removal of Promoter Upstream Transcripts (PROMPTs) and potentially aberrant forms of other noncoding RNAs, such as snRNAs. NEXT is composed of three subunits SKIV2L2, ZCCHC8 and RBM7. We have recently identified the NEXT complex in our screen for oligo(U) RNA-binding factors. Here, we demonstrate that NEXT displays preference for U-rich pyrimidine sequences and this RNA binding is mediated by the RNA recognition motif (RRM) of the RBM7 subunit. We solved the structure of RBM7 RRM and identified two phenylalanine residues that are critical for interaction with RNA. Furthermore, we showed that these residues are required for the NEXT interaction with snRNAs in vivo. Finally, we show that depletion of components of the NEXT complex alone or together with exosome nucleases resulted in the accumulation of mature as well as extended forms of snRNAs. Thus, our data suggest a new scenario in which the NEXT complex is involved in the surveillance of snRNAs and/or biogenesis of snRNPs.
Collapse
Affiliation(s)
- Dominika Hrossova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Tomas Sikorsky
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - David Potesil
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Marek Bartosovic
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Josef Pasulka
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Zbynek Zdrahal
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Richard Stefl
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Stepanka Vanacova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| |
Collapse
|
47
|
Kralovicova J, Knut M, Cross NCP, Vorechovsky I. Identification of U2AF(35)-dependent exons by RNA-Seq reveals a link between 3' splice-site organization and activity of U2AF-related proteins. Nucleic Acids Res 2015; 43:3747-63. [PMID: 25779042 PMCID: PMC4402522 DOI: 10.1093/nar/gkv194] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/24/2015] [Indexed: 01/05/2023] Open
Abstract
The auxiliary factor of U2 small nuclear RNA (U2AF) is a heterodimer consisting of 65- and 35-kD proteins that bind the polypyrimidine tract (PPT) and AG dinucleotides at the 3′ splice site (3′ss). The gene encoding U2AF35 (U2AF1) is alternatively spliced, giving rise to two isoforms U2AF35a and U2AF35b. Here, we knocked down U2AF35 and each isoform and characterized transcriptomes of HEK293 cells with varying U2AF35/U2AF65 and U2AF35a/b ratios. Depletion of both isoforms preferentially modified alternative RNA processing events without widespread failure to recognize 3′ss or constitutive exons. Over a third of differentially used exons were terminal, resulting largely from the use of known alternative polyadenylation (APA) sites. Intronic APA sites activated in depleted cultures were mostly proximal whereas tandem 3′UTR APA was biased toward distal sites. Exons upregulated in depleted cells were preceded by longer AG exclusion zones and PPTs than downregulated or control exons and were largely activated by PUF60 and repressed by CAPERα. The U2AF(35) repression and activation was associated with a significant interchange in the average probabilities to form single-stranded RNA in the optimal PPT and branch site locations and sequences further upstream. Although most differentially used exons were responsive to both U2AF subunits and their inclusion correlated with U2AF levels, a small number of transcripts exhibited distinct responses to U2AF35a and U2AF35b, supporting the existence of isoform-specific interactions. These results provide new insights into function of U2AF and U2AF35 in alternative RNA processing.
Collapse
Affiliation(s)
- Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Marcin Knut
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Nicholas C P Cross
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
48
|
Matsushita K, Kitamura K, Rahmutulla B, Tanaka N, Ishige T, Satoh M, Hoshino T, Miyagi S, Mori T, Itoga S, Shimada H, Tomonaga T, Kito M, Nakajima-Takagi Y, Kubo S, Nakaseko C, Hatano M, Miki T, Matsuo M, Fukuyo M, Kaneda A, Iwama A, Nomura F. Haploinsufficiency of the c-myc transcriptional repressor FIR, as a dominant negative-alternative splicing model, promoted p53-dependent T-cell acute lymphoblastic leukemia progression by activating Notch1. Oncotarget 2015; 6:5102-17. [PMID: 25671302 PMCID: PMC4467136 DOI: 10.18632/oncotarget.3244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/27/2014] [Indexed: 12/22/2022] Open
Abstract
FUSE-binding protein (FBP)-interacting repressor (FIR) is a c-myc transcriptional suppressor. A splice variant of FIR that lacks exon 2 in the transcriptional repressor domain (FIRΔexon2) upregulates c-myc transcription by inactivating wild-type FIR. The ratio of FIRΔexon2/FIR mRNA was increased in human colorectal cancer and hepatocellular carcinoma tissues. Because FIRΔexon2 is considered to be a dominant negative regulator of FIR, FIR heterozygous knockout (FIR⁺/⁻) C57BL6 mice were generated. FIR complete knockout (FIR⁻/⁻) was embryonic lethal before E9.5; therefore, it is essential for embryogenesis. This strongly suggests that insufficiency of FIR is crucial for carcinogenesis. FIR⁺/⁻ mice exhibited prominent c-myc mRNA upregulation, particularly in the peripheral blood (PB), without any significant pathogenic phenotype. Furthermore, elevated FIRΔexon2/FIR mRNA expression was detected in human leukemia samples and cell lines. Because the single knockout of TP53 generates thymic lymphoma, FIR⁺/⁻TP53⁻/⁻ generated T-cell type acute lymphocytic/lymphoblastic leukemia (T-ALL) with increased organ or bone marrow invasion with poor prognosis. RNA-sequencing analysis of sorted thymic lymphoma cells revealed that the Notch signaling pathway was activated significantly in FIR⁺/⁻TP53⁻/⁻ compared with that in FIR⁺/⁺TP53⁻/⁻ mice. Notch1 mRNA expression in sorted thymic lymphoma cells was confirmed using qRT-PCR. In addition, flow cytometry revealed that c-myc mRNA was negatively correlated with FIR but positively correlated with Notch1 in sorted T-ALL/thymic lymphoma cells. Moreover, the knockdown of TP53 or c-myc using siRNA decreased Notch1 expression in cancer cells. In addition, an adenovirus vector encoding FIRΔexon2 cDNA increased bleomycin-induced DNA damage. Taken together, these data suggest that the altered expression of FIRΔexon2 increased Notch1 at least partially by activating c-Myc via a TP53-independent pathway. In conclusion, the alternative splicing of FIR, which generates FIRΔexon2, may contribute to both colorectal carcinogenesis and leukemogenesis.
Collapse
Affiliation(s)
- Kazuyuki Matsushita
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| | - Kouichi Kitamura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Nobuko Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Takayuki Ishige
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| | - Mamoru Satoh
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana, Chiba, Japan
| | - Satoru Miyagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Takeshi Mori
- Department of Pediatrics, Graduate School of Medicine, Kobe University, Kusunoki-cho, Kobe, Japan
| | - Sakae Itoga
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Omori-nishi, Ota-ku, Tokyo, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Saito-Asagi, Ibaraki, Osaka, Japan
| | - Minoru Kito
- Oriental Yeast Co., Ltd. Azusawa, Itabashi-ku, Tokyo, Japan
| | - Yaeko Nakajima-Takagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Shuji Kubo
- Department of Genetics, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo Prefecture, Japan
| | - Chiaki Nakaseko
- Department of Haematology, Chiba University Hospital, Inohana, Chiba, Japan
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Takashi Miki
- Department of Medical Physiology, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Masafumi Matsuo
- Department of Pediatrics, Graduate School of Medicine, Kobe University, Kusunoki-cho, Kobe, Japan
- Department of Medical Rehabilitation, Faculty of Rehabilitation, Kobegakuin University, Arise, Ikawadani, Nishi, Kobe, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Fumio Nomura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| |
Collapse
|
49
|
Shao C, Yang B, Wu T, Huang J, Tang P, Zhou Y, Zhou J, Qiu J, Jiang L, Li H, Chen G, Sun H, Zhang Y, Denise A, Zhang DE, Fu XD. Mechanisms for U2AF to define 3' splice sites and regulate alternative splicing in the human genome. Nat Struct Mol Biol 2014; 21:997-1005. [PMID: 25326705 PMCID: PMC4429597 DOI: 10.1038/nsmb.2906] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/25/2014] [Indexed: 12/24/2022]
Abstract
The U2AF heterodimer has been well studied for its role in defining functional 3' splice sites in pre-mRNA splicing, but many fundamental questions still remain unaddressed regarding the function of U2AF in mammalian genomes. Through genome-wide analysis of U2AF-RNA interactions, we report that U2AF has the capacity to directly define ~88% of functional 3' splice sites in the human genome, but numerous U2AF binding events also occur in intronic locations. Mechanistic dissection reveals that upstream intronic binding events interfere with the immediate downstream 3' splice site associated either with the alternative exon, to cause exon skipping, or with the competing constitutive exon, to induce exon inclusion. We further demonstrate partial functional impairment with leukemia-associated mutations in U2AF35, but not U2AF65, in regulated splicing. These findings reveal the genomic function and regulatory mechanism of U2AF in both normal and disease states.
Collapse
Affiliation(s)
- Changwei Shao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bo Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Laboratoire de Recherche en Informatique, Institut de Génétique et Microbiologie I, Université Paris-Sud and Centre National de la Recherche Scientifique, Orsay, France
| | - Tongbin Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peng Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jie Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jinsong Qiu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Li Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Geng Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Alain Denise
- Laboratoire de Recherche en Informatique, Institut de Génétique et Microbiologie I, Université Paris-Sud and Centre National de la Recherche Scientifique, Orsay, France
| | - Dong-Er Zhang
- UC San Diego Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - Xiang-Dong Fu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
50
|
Shao C, Yang B, Wu T, Huang J, Tang P, Zhou Y, Zhou J, Qiu J, Jiang L, Li H, Chen G, Sun H, Zhang Y, Denise A, Zhang DE, Fu XD. Mechanisms for U2AF to define 3' splice sites and regulate alternative splicing in the human genome. Nat Struct Mol Biol 2014. [PMID: 25326705 DOI: 10.1038/nsmb2906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The U2AF heterodimer has been well studied for its role in defining functional 3' splice sites in pre-mRNA splicing, but many fundamental questions still remain unaddressed regarding the function of U2AF in mammalian genomes. Through genome-wide analysis of U2AF-RNA interactions, we report that U2AF has the capacity to directly define ~88% of functional 3' splice sites in the human genome, but numerous U2AF binding events also occur in intronic locations. Mechanistic dissection reveals that upstream intronic binding events interfere with the immediate downstream 3' splice site associated either with the alternative exon, to cause exon skipping, or with the competing constitutive exon, to induce exon inclusion. We further demonstrate partial functional impairment with leukemia-associated mutations in U2AF35, but not U2AF65, in regulated splicing. These findings reveal the genomic function and regulatory mechanism of U2AF in both normal and disease states.
Collapse
Affiliation(s)
- Changwei Shao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bo Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Laboratoire de Recherche en Informatique, Institut de Génétique et Microbiologie I, Université Paris-Sud and Centre National de la Recherche Scientifique, Orsay, France
| | - Tongbin Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peng Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jie Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jinsong Qiu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Li Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Geng Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Alain Denise
- Laboratoire de Recherche en Informatique, Institut de Génétique et Microbiologie I, Université Paris-Sud and Centre National de la Recherche Scientifique, Orsay, France
| | - Dong-Er Zhang
- UC San Diego Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - Xiang-Dong Fu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|