1
|
Gross IP, Wilson AE, Wolak ME. The fitness consequences of wildlife conservation translocations: a meta-analysis. Biol Rev Camb Philos Soc 2024; 99:348-371. [PMID: 37844577 DOI: 10.1111/brv.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
Conservation translocation is a common strategy to offset mounting rates of population declines through the transfer of captive- or wild-origin organisms into areas where conspecific populations are imperilled or completely extirpated. Translocations that supplement existing populations are referred to as reinforcements and can be conducted using captive-origin animals [ex situ reinforcement (ESR)] or wild-origin animals without any captive ancestry [in situ reinforcement (ISR)]. These programs have been criticized for low success rates and husbandry practices that produce individuals with genetic and performance deficits, but the post-release performance of captive-origin or wild-origin translocated groups has not been systematically reviewed to quantify success relative to wild-resident control groups. To assess the disparity in post-release performance of translocated organisms relative to wild-resident conspecifics and examine the association of performance disparity with organismal and methodological factors across studies, we conducted a systematic review and meta-analysis of 821 performance comparisons from 171 studies representing nine animal classes (101 species). We found that translocated organisms have 64% decreased odds of out-performing their wild-resident counterparts, supporting claims of systemic issues hampering conservation translocations. To help identify translocation practices that could maximize program success in the future, we further quantified the impact of broad organismal and methodological factors on the disparity between translocated and wild-resident conspecific performance. Pre-release animal enrichment significantly reduced performance disparities, whereas our results suggest no overall effects of taxonomic group, sex, captive generation time, or the type of fitness surrogate measured. This work is the most comprehensive systematic review to date of animal conservation translocations in which wild conspecifics were used as comparators, thereby facilitating an evaluation of the overall impact of this conservation strategy and identifying specific actions to increase success. Our review highlights the need for conservation managers to include both sympatric and allopatric wild-reference groups to ensure the post-release performance of translocated animals can be evaluated. Further, our analyses identify pre-release animal enrichment as a particular strategy for improving the outcomes of animal conservation translocations, and demonstrate how meta-analysis can be used to identify implementation choices that maximize translocated animal contributions to recipient population growth and viability.
Collapse
Affiliation(s)
- Iwo P Gross
- Department of Biological Sciences, Auburn University, 120 W. Samford Avenue, Auburn, AL, 36849, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, 382 Mell Street, Auburn, AL, 36849, USA
| | - Matthew E Wolak
- Department of Biological Sciences, Auburn University, 120 W. Samford Avenue, Auburn, AL, 36849, USA
| |
Collapse
|
2
|
Ficetola GF, Manenti R, Lo Parrino E, Muraro M, Barzaghi B, Messina V, Giachello S, Melotto A, Falaschi M. Decline and Extinction of the Italian Agile Frog Rana latastei from Core Areas of Its Range. Animals (Basel) 2023; 13:3187. [PMID: 37893911 PMCID: PMC10603640 DOI: 10.3390/ani13203187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Detecting the trends of species and populations is fundamental to identifying taxa with high conservation priority. Unfortunately, long-term monitoring programs are challenging and often lacking. The Italian agile frog Rana latastei is endemic to Northern Italy and adjacent countries, is considered vulnerable by the IUCN, and is protected at the European level. However, quantitative estimates of its decline are extremely scarce. In this study, we document the trends in abundance and distribution of Rana latastei within Monza Park, which currently represents the area closer to the type locality of the species and holds unique genetic features. Wetlands within the park were monitored from 2000 to 2023; counts of egg clutches were taken as a measure of reproductive output and the abundance of breeding females. In 2000, the species occurred over a significant proportion of the park. Total abundance showed strong yearly variation but remained rather constant from 2000 to 2019. However, Rana latastei disappeared from the park around 2021 and was never detected in 2022-2023. The decline is probably related to the joint effect of multiple factors, including the conversion of breeding sites for farming, inappropriate water management, invasive alien species, and severe drought. The local extinction of Rana latastei occurred despite legal protection, highlighting the need for more effective and stringent tools for the conservation of European biodiversity.
Collapse
Affiliation(s)
- Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (R.M.); (E.L.P.); (M.M.); (B.B.); (V.M.); (S.G.); (A.M.); (M.F.)
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LECA, Laboratoire d’Écologie Alpine, F-38000 Grenoble, France
| | - Raoul Manenti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (R.M.); (E.L.P.); (M.M.); (B.B.); (V.M.); (S.G.); (A.M.); (M.F.)
| | - Elia Lo Parrino
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (R.M.); (E.L.P.); (M.M.); (B.B.); (V.M.); (S.G.); (A.M.); (M.F.)
| | - Martina Muraro
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (R.M.); (E.L.P.); (M.M.); (B.B.); (V.M.); (S.G.); (A.M.); (M.F.)
- Department of Biological, Geological and Environmental Sciences, Università di Bologna, Via Irnerio, 42, 40126 Bologna, Italy
| | - Benedetta Barzaghi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (R.M.); (E.L.P.); (M.M.); (B.B.); (V.M.); (S.G.); (A.M.); (M.F.)
| | - Valeria Messina
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (R.M.); (E.L.P.); (M.M.); (B.B.); (V.M.); (S.G.); (A.M.); (M.F.)
| | - Simone Giachello
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (R.M.); (E.L.P.); (M.M.); (B.B.); (V.M.); (S.G.); (A.M.); (M.F.)
- University School for Advanced Studies IUSS Pavia, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Andrea Melotto
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (R.M.); (E.L.P.); (M.M.); (B.B.); (V.M.); (S.G.); (A.M.); (M.F.)
| | - Mattia Falaschi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (R.M.); (E.L.P.); (M.M.); (B.B.); (V.M.); (S.G.); (A.M.); (M.F.)
| |
Collapse
|
3
|
Yu W, Zhu Z, Zhao X, Cui S, Liu Z, Zeng Z. Altitudinal variation in life-history features of a Qinghai-Tibetan Plateau lizard. Curr Zool 2023; 69:284-293. [PMID: 37351291 PMCID: PMC10284057 DOI: 10.1093/cz/zoac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 09/18/2023] Open
Abstract
Environmental changes along an altitudinal gradient can facilitate the differentiation of life-history features in ectothermic species, but little attention has been devoted to the reciprocal influence of altitude and alpine slope directionality on life-history variation. According to life-history theory, increased environmental stress causes a change in reproductive allocation from number to quality of offspring, as well as a stronger trade-off between size and number of offspring. To clarify the influence of environmental pressures on the life-history features of the Qinghai toad-headed lizard Phrynocephalus vlangalii along an altitudinal cline, we surveyed late pregnant females from 3 populations of low (2,600 m), middle (3,400 m), and high (3,600 m) elevations in the Dangjin Mountain of Gansu, China from July to October 2019, and compared their inter-population differences in maternal body size, reproductive characteristics, offspring growth, and locomotor performance. Because of lower temperatures, higher humidity, and lower light intensity caused by slope aspect and altitude, the middle-altitude region experienced stronger environmental stress than the high- and low-altitude regions. Our results showed that females were larger at middle- and high-altitude sites and smaller at the low-altitude site, following Bergmann's rule. We also found that females from low-altitude population gave birth earlier than those from the middle and high altitudes. Our results showed a shift in the offspring size-number trade-off of P. vlangalii in response to colder and harsher environments, with lizards from the alpine steppe (i.e. the middle- and high-altitude habitats) producing fewer but larger offspring than those from the warm steppe (i.e. the low-altitude habitat). Low-altitude juveniles grew faster than high-altitude ones, but at the same rates as middle-altitude juveniles. This result demonstrates that the growth of P. vlangalii was associated with temperature and light intensity. Our findings contribute to enhancing our understanding of the altitudinal variation in life-history features of plateau ectotherms and their phenotypic plasticity or local adaptation.
Collapse
Affiliation(s)
- Wei Yu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zeyu Zhu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaolong Zhao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - Shuang Cui
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, China
| | - Zhensheng Liu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Conservation Biology, State Forestry Administration, Harbin 150040, China
| | - Zhigao Zeng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Manenti R, Kristensen N, Cogliati P, Barzaghi B, Melotto A, Ficetola GF. Larval development and poor trophic resource availability: Local adaptations and plasticity in a widespread amphibian species. J Evol Biol 2023; 36:529-541. [PMID: 36759955 DOI: 10.1111/jeb.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/13/2022] [Accepted: 12/13/2022] [Indexed: 02/11/2023]
Abstract
Theory predicts that, in organisms with complex life cycles, if the earlier-stage limiting factor induces weak later-stage phenotypes, the development of the later-stage trait should evolve to reduce carry-over effects. Local adaptations could thus favour decoupling of later stages. However, decoupling is not always possible. In this study, we used a widespread amphibian, the European fire salamander (Salamandra salamandra), to assess the role of local adaptations to environmental stressful conditions experienced at the larval stage. We exposed 150 larvae from different altitudes to two conditions: rich food and poor food condition. Conditions in early life stages can affect an individual's traits, either as a direct effect or mediated through outcomes in successive life stages. To distinguish between effects of rearing conditions and local adaptation, we searched for a causal model. The causal model detected effects of both food treatment and population origin (altitude) on all life stages. Larvae reared under rich food condition metamorphosed earlier, had higher growth rates and reached smaller size at metamorphosis. Significant differences occurred between larvae of different origin: low-altitude individuals performed poorly under the poor food treatment. Moreover, larvae from higher altitudes were slower with rich food and faster with poor food compared to those from lower altitudes. Our results underline that environmental conditions and local adaptation can interplay in determining the plasticity of larval stages, still adaptations can maximize the growth efficiency of early stages in oligotrophic environments, leading to divergent pathways across populations and environmental conditions.
Collapse
Affiliation(s)
- Raoul Manenti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy
| | - Nadiah Kristensen
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Paola Cogliati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy
| | - Benedetta Barzaghi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy
| | - Andrea Melotto
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy.,Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | | |
Collapse
|
5
|
Phenotypic variation in Xenopus laevis tadpoles from contrasting climatic regimes is the result of adaptation and plasticity. Oecologia 2022; 200:37-50. [PMID: 35996029 DOI: 10.1007/s00442-022-05240-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Phenotypic variations between populations often correlate with climatic variables. Determining the presence of phenotypic plasticity and local adaptation of a species to different environments over a large spatial scale can provide insight on the persistence of a species across its range. Amphibians, and in particular their larvae, are good models for studies of phenotypic variation as they are especially sensitive to their immediate environment. Few studies have attempted to determine the mechanisms that drive phenotypic variation between populations of a single amphibian species over a large spatial scale especially across contrasting climatic regimes. The African clawed frog, Xenopus laevis, occurs in two regions with contrasting rainfall regimes in southern Africa. We hypothesised that the phenotypic variation of life-history traits of X. laevis tadpoles emerges from a combination of plastic and genetic responses. We predicted that plasticity would allow the development of tadpoles from both regions in each environment. We also predicted that local adaptation of larval traits would drive the differentiation of reaction norms between populations and lower survival in tadpoles reared away from their home environment. We measured growth, time to metamorphosis, and survival in a reciprocal transplant experiment using outdoor mesocosms. Supporting our prediction, we found that the measured variation of all traits was explained by both adaptation and plasticity. However, the reaction norms differed between populations suggesting adaptive and asymmetric plasticity. All tadpoles experienced lower survival when translocated, but only translocated tadpoles from the winter rainfall region matched survival of local tadpoles. This has implications for the dynamics of translocated X. laevis into novel environments, especially from the winter rainfall region. Our discovery of their asymmetric capacity to overcome novel environmental conditions by phenotypic plasticity alone provides insight into their invasion success.
Collapse
|
6
|
Muraro M, Romagnoli S, Barzaghi B, Falaschi M, Manenti R, Ficetola GF. Invasive predators induce plastic and adaptive responses during embryo development in a threatened frog. NEOBIOTA 2021. [DOI: 10.3897/neobiota.70.65454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive predators can strongly affect native populations. If alien predator pressure is strong enough, it can induce anti-predator responses, including phenotypic plasticity of exposed individuals and local adaptations of impacted populations. Furthermore, maternal investment is an additional pathway that could provide resources and improve performance in the presence of alien predators. We investigated the potential responses to an alien predator crayfish (Procambarus clarkii) in a threatened frog (Rana latastei) by combining field observations with laboratory measurements of embryo development rate, to assess the importance of parental investment, origin and exposure to the crayfish cues. We detected a strong variation in parental investment amongst frog populations, but this variation was not related to the invasion status of the site of origin, suggesting that mothers did not modulate parental investment in relation to the presence of alien predators. However, cues of the invasive crayfish elicited plastic responses in clutches and tadpoles development: embryos developed faster when exposed to the predator. Furthermore, embryos from invaded sites reached Gosner’s development stage 25 faster than those from non-invaded sites. This ontogenetic shift can be interpreted as a local adaptation to the alien predator and suggests that frogs are able to recognise the predatory risk. If these plastic responses and local adaptation are effective escape strategies against the invasive predator, they may improve the persistence of native frog populations.
Collapse
|
7
|
Arietta AZA, Skelly DK. Rapid microgeographic evolution in response to climate change. Evolution 2021; 75:2930-2943. [PMID: 34519355 DOI: 10.1111/evo.14350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 01/30/2023]
Abstract
Environmental change is predicted to accelerate into the future and will exert strong selection pressure on biota. Although many species may be fated to extinction, others may survive through their capacity to evolve rapidly at highly localized (i.e., microgeographic) scales. Yet, even as new examples have been discovered, the limits to such evolutionary responses have not often been evaluated. One of the first examples of microgeographic variation involved pond populations of wood frogs (Rana sylvatica). Although separated by just tens to hundreds of meters, these populations exhibited countergradient variation in intrinsic embryonic development rates when reared in a common garden. We repeated this experiment 17 years (approximately six to nine generations) later and found that microgeographic variation persists in contemporary populations. Furthermore, we found that contemporary embryos have evolved to develop 14-19% faster than those in 2001. Structural equation models indicate that the predominant cause for this response is likely due to changes in climate over the intervening 17 years. Despite potential for rapid and fine-scale evolution, demographic declines in populations experiencing the greatest changes in climate and habitat imply a limit to the species' ability to mitigate extreme environmental change.
Collapse
Affiliation(s)
- A Z Andis Arietta
- School of the Environment, Yale University, New Haven, Connecticut, 06520
| | - David K Skelly
- School of the Environment, Yale University, New Haven, Connecticut, 06520
| |
Collapse
|
8
|
Raised by aliens: constant exposure to an invasive predator triggers morphological but not behavioural plasticity in a threatened species tadpoles. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02603-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractDuring biotic invasions, native communities are abruptly exposed to novel and often severe selective pressures. The lack of common evolutionary history with invasive predators can hamper the expression of effective anti-predator responses in native prey, potentially accelerating population declines. Nonetheless, rapid adaptation and phenotypic plasticity may allow native species to cope with the new ecological pressures. We tested the hypothesis that phenotypic plasticity is fostered when facing invasive species and evaluated whether plasticity offers a pool of variability that might help the fixation of adaptive phenotypes. We assessed behavioural and morphological trait variation in tadpoles of the Italian agile frog (Rana latastei) in response to the invasive crayfish predator, Procambarus clarkii, by rearing tadpoles under different predation-risk regimes: non-lethal crayfish presence and crayfish absence. After two-month rearing, crayfish-exposed tadpoles showed a plastic shift in their body shape and increased tail muscle size, while behavioural tests showed no effect of crayfish exposure on tadpole behaviour. Furthermore, multivariate analyses revealed weak divergence in morphology between invaded and uninvaded populations, while plasticity levels were similar between invaded and uninvaded populations. Even if tadpoles displayed multiple plastic responses to the novel predator, none of these shifts underwent fixation after crayfish arrival (10–15 years). Overall, these findings highlight that native prey can finely tune their responses to invasive predators through plasticity, but the adaptive value of these responses in whitstanding the novel selective pressures, and the long-term consequences they can entail remain to be ascertained.
Collapse
|
9
|
Melotto A, Manenti R, Ficetola GF. Rapid adaptation to invasive predators overwhelms natural gradients of intraspecific variation. Nat Commun 2020; 11:3608. [PMID: 32681028 PMCID: PMC7368066 DOI: 10.1038/s41467-020-17406-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/29/2020] [Indexed: 11/08/2022] Open
Abstract
Invasive predators can exert strong selection on native populations. If selection is strong enough, populations could lose the phenotypic variation caused by adaptation to heterogeneous environments. We compare frog tadpoles prior to and 14 years following invasion by crayfish. Prior to the invasion, populations differed in their intrinsic developmental rate, with tadpoles from cold areas reaching metamorphosis sooner than those from warm areas. Following the invasion, tadpoles from invaded populations develop faster than those from non-invaded populations. This ontogenetic shift overwhelmed the intraspecific variation between populations in a few generations, to the point where invaded populations develop at a similar rate regardless of climate. Rapid development can have costs, as fast-developing froglets have a smaller body size and poorer jumping performance, but compensatory growth counteracts some costs of development acceleration. Strong selection by invasive species can disrupt local adaptations by dampening intraspecific phenotypic variation, with complex consequences on lifetime fitness.
Collapse
Affiliation(s)
- Andrea Melotto
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy.
- Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape, South Africa.
| | - Raoul Manenti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy.
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA - Laboratoire d'Écologie Alpine, F-38000, Grenoble, France
| |
Collapse
|
10
|
Algiriyage DPH, Jayaweera H, Wijesinghe MR. Inter-population variation in thermal sensitivity of the tropical toad Duttaphrynus melanostictus, across a small spatial scale in Sri Lanka. J Therm Biol 2020; 89:102568. [PMID: 32364998 DOI: 10.1016/j.jtherbio.2020.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 11/25/2022]
Abstract
Inter-population disparities in a species have been shown to occur as an adaptation to different thermal regimes in the environment. We investigated the thermal sensitivities of the tropical toad Duttaphrynus melanostictus (Asia Common Toad) from two populations at different altitudes: Nuwara-Eliya - 1870 m, and Polonnaruwa - 25 m, above mean sea level. The two locations were separated by what may be considered a short direct distance - 110 km. Thermal sensitivity trials were conducted at six temperatures between 12 and 39 °C. Assessments were made using the performance indicators jump distance, jump force, contact time on the test plate following stimulus to jump, and righting time after being overturned. Optimum performance is taken to be the greatest jump distance and jump force, the least contact time on the test plate, and the least righting time. The populations at the two altitudes had markedly different thermal sensitivities - toads in the cool area (Nuwara-Eliya) performed at an optimal level under low temperatures, whereas the toads in the warm area (Polonnaruwa) performed optimally under high temperatures. The finding that the thermal optima (i.e., the temperatures at which the optimal performance for the four performance indicators was recorded) of the toads in Polonnaruwa were below the mean maximum ambient temperature at this location suggests that these toads would be more susceptible to global warming than those in Nuwara-Eliya whose thermal optima were above the mean maximum ambient temperature in that location. This was consistent with the narrower thermal safety margin (i.e., difference between the mean optimum temperature and mean ambient temperature) of toads in Polonnaruwa, compared to those in Nuwara-Eliya. Importantly, these findings demonstrate that, although thermal sensitivity is considered a conservative trait, differentiation does occur even over a small spatial scale presumably because it offers an adaptive advantage to the population concerned.
Collapse
Affiliation(s)
- D P H Algiriyage
- Department of Zoology and Environment Sciences, University of Colombo, Cumaratunga Munidasa Mawatha, Colombo, 03, Sri Lanka
| | - H Jayaweera
- Department of Physics, University of Colombo, Cumaratunga Munidasa Mawatha, Colombo, 03, Sri Lanka
| | - M R Wijesinghe
- Department of Zoology and Environment Sciences, University of Colombo, Cumaratunga Munidasa Mawatha, Colombo, 03, Sri Lanka.
| |
Collapse
|
11
|
Byrne PG, Silla AJ. An experimental test of the genetic consequences of population augmentation in an amphibian. CONSERVATION SCIENCE AND PRACTICE 2020. [DOI: 10.1111/csp2.194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Phillip G. Byrne
- School of Earth, Atmospheric and Life Sciences University of Wollongong Wollongong New South Wales Australia
| | - Aimee J. Silla
- School of Earth, Atmospheric and Life Sciences University of Wollongong Wollongong New South Wales Australia
| |
Collapse
|
12
|
Abstract
Environmental change is rapidly accelerating, and many species will need to adapt to survive1. Ensuring that protected areas cover populations across a broad range of environmental conditions could safeguard the processes that lead to such adaptations1-3. However, international conservation policies have largely neglected these considerations when setting targets for the expansion of protected areas4. Here we show that-of 19,937 vertebrate species globally5-8-the representation of environmental conditions across their habitats in protected areas (hereafter, niche representation) is inadequate for 4,836 (93.1%) amphibian, 8,653 (89.5%) bird and 4,608 (90.9%) terrestrial mammal species. Expanding existing protected areas to cover these gaps would encompass 33.8% of the total land surface-exceeding the current target of 17% that has been adopted by governments. Priority locations for expanding the system of protected areas to improve niche representation occur in global biodiversity hotspots9, including Colombia, Papua New Guinea, South Africa and southwest China, as well as across most of the major land masses of the Earth. Conversely, we also show that planning for the expansion of protected areas without explicitly considering environmental conditions would marginally reduce the land area required to 30.7%, but that this would lead to inadequate niche representation for 7,798 (39.1%) species. As the governments of the world prepare to renegotiate global conservation targets, policymakers have the opportunity to help to maintain the adaptive potential of species by considering niche representation within protected areas1,2.
Collapse
|
13
|
Improving conservation policy with genomics: a guide to integrating adaptive potential into U.S. Endangered Species Act decisions for conservation practitioners and geneticists. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1096-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
DeMay SM, Becker PA, Rachlow JL, Waits LP. Genetic monitoring of an endangered species recovery: demographic and genetic trends for reintroduced pygmy rabbits (Brachylagus idahoensis). J Mammal 2017. [DOI: 10.1093/jmammal/gyw197] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
Ficetola GF, Colleoni E, Renaud J, Scali S, Padoa-Schioppa E, Thuiller W. Morphological variation in salamanders and their potential response to climate change. GLOBAL CHANGE BIOLOGY 2016; 22:2013-2024. [PMID: 26910389 PMCID: PMC4972144 DOI: 10.1111/gcb.13255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 01/09/2016] [Accepted: 02/04/2016] [Indexed: 05/30/2023]
Abstract
Despite the recognition that some species might quickly adapt to new conditions under climate change, demonstrating and predicting such a fundamental response is challenging. Morphological variations in response to climate may be caused by evolutionary changes or phenotypic plasticity, or both, but teasing apart these processes is difficult. Here, we built on the number of thoracic vertebrae (NTV) in ectothermic vertebrates, a known genetically based feature, to establish a link with body size and evaluate how climate change might affect the future morphological response of this group of species. First, we show that in old-world salamanders, NTV variation is strongly related to changes in body size. Secondly, using 22 salamander species as a case study, we found support for relationships between the spatial variation in selected bioclimatic variables and NTV for most of species. For 44% of species, precipitation and aridity were the predominant drivers of geographical variation of the NTV. Temperature features were dominant for 31% of species, while for 19% temperature and precipitation played a comparable role. This two-step analysis demonstrates that ectothermic vertebrates may evolve in response to climate change by modifying the number of thoracic vertebrae. These findings allow to develop scenarios for potential morphological evolution under future climate change and to identify areas and species in which the most marked evolutionary responses are expected. Resistance to climate change estimated from species distribution models was positively related to present-day species morphological response, suggesting that the ability of morphological evolution may play a role for species' persistence under climate change. The possibility that present-day capacity for local adaptation might help the resistance response to climate change can be integrated into analyses of the impact of global changes and should also be considered when planning management actions favouring species persistence.
Collapse
Affiliation(s)
- Gentile Francesco Ficetola
- Laboratoire d’Ecologie Alpine (LECA), Université Grenoble-Alpes. Grenoble 38000, France
- LECA, CNRS, Grenoble 38000, France
- Dipartimento di Scienze dell’Ambiente e del Territorio, e di Scienze della Terra, Università degli Studi di Milano-Bicocca. 20126 Milano, Italy
| | - Emiliano Colleoni
- Dipartimento di Scienze dell’Ambiente e del Territorio, e di Scienze della Terra, Università degli Studi di Milano-Bicocca. 20126 Milano, Italy
| | - Julien Renaud
- Laboratoire d’Ecologie Alpine (LECA), Université Grenoble-Alpes. Grenoble 38000, France
- LECA, CNRS, Grenoble 38000, France
| | - Stefano Scali
- Museo Civico di Storia Naturale di Milano, 20121 Milano, Italy
| | - Emilio Padoa-Schioppa
- Dipartimento di Scienze dell’Ambiente e del Territorio, e di Scienze della Terra, Università degli Studi di Milano-Bicocca. 20126 Milano, Italy
| | - Wilfried Thuiller
- Laboratoire d’Ecologie Alpine (LECA), Université Grenoble-Alpes. Grenoble 38000, France
- LECA, CNRS, Grenoble 38000, France
| |
Collapse
|
16
|
Oomen RA, Hutchings JA. Genetic variation in plasticity of life-history traits between Atlantic cod (Gadus morhua) populations exposed to contrasting thermal regimes. CAN J ZOOL 2016. [DOI: 10.1139/cjz-2015-0186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We employed common-garden experiments to test for genetic variation in responses of larval life-history traits to temperature between two populations of Atlantic cod (Gadus morhua L., 1758) that naturally experience contrasting thermal environments during early life due to spatial and temporal differences in spawning. Southern Gulf of St. Lawrence cod larvae experienced faster growth in warmer water and low, uniform survival across all experimental temperatures (3, 7, 11 °C), consistent with previous studies on this spring-spawning population. In contrast, larvae from fall-spawning Southwestern Scotian Shelf cod collected near Sambro, Nova Scotia, lacked plasticity for growth but experienced much lower survival at higher temperatures. Phenotypes that are positively associated with fitness were observed at temperatures closest to those experienced in the wild, consistent with the hypothesis that these populations are adapted to local thermal regimes. The lack of growth plasticity observed in Sambro cod might be due to costly maintenance of plasticity in stable environments or energy savings at cold temperatures. However, additional experiments need to be conducted on Sambro cod and other fall-spawning marine fishes to determine to what extent responses to projected changes in climate will differ among populations.
Collapse
Affiliation(s)
- Rebekah A. Oomen
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Jeffrey A. Hutchings
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0371 Oslo, Norway
- Department of Natural Sciences, University of Agder, 4604 Kristiansand, Norway
| |
Collapse
|
17
|
McCartney-Melstad E, Shaffer HB. Amphibian molecular ecology and how it has informed conservation. Mol Ecol 2015; 24:5084-109. [PMID: 26437125 DOI: 10.1111/mec.13391] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 02/02/2023]
Abstract
Molecular ecology has become one of the key tools in the modern conservationist's kit. Here we review three areas where molecular ecology has been applied to amphibian conservation: genes on landscapes, within-population processes, and genes that matter. We summarize relevant analytical methods, recent important studies from the amphibian literature, and conservation implications for each section. Finally, we include five in-depth examples of how molecular ecology has been successfully applied to specific amphibian systems.
Collapse
Affiliation(s)
- Evan McCartney-Melstad
- Department of Ecology and Evolutionary Biology, La Kretz Center for California Conservation Science, and Institute of the Environment and Sustainability, University of California, Los Angeles, 610 Charles E Young Drive South, Los Angeles, CA, USA
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, La Kretz Center for California Conservation Science, and Institute of the Environment and Sustainability, University of California, Los Angeles, 610 Charles E Young Drive South, Los Angeles, CA, USA
| |
Collapse
|
18
|
Oomen RA, Hutchings JA. Variation in spawning time promotes genetic variability in population responses to environmental change in a marine fish. CONSERVATION PHYSIOLOGY 2015; 3:cov027. [PMID: 27293712 PMCID: PMC4778481 DOI: 10.1093/conphys/cov027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/03/2015] [Accepted: 05/09/2015] [Indexed: 05/29/2023]
Abstract
The level of phenotypic plasticity displayed within a population (i.e. the slope of the reaction norm) reflects the short-term response of a population to environmental change, while variation in reaction norm slopes among populations reflects spatial variation in these responses. Thus far, studies of thermal reaction norm variation have focused on geographically driven adaptation among different latitudes, altitudes or habitats. Yet, thermal variability is a function of both space and time. For organisms that reproduce at different times of year, such variation has the potential to promote adaptive variability in thermal responses for critical early life stages. Using common-garden experiments, we examined the spatial scale of genetic variation in thermal plasticity for early life-history traits among five populations of endangered Atlantic cod (Gadus morhua) that spawn at different times of year. Patterns of plasticity for larval growth and survival suggest that population responses to climate change will differ substantially, with increasing water temperatures posing a considerably greater threat to autumn-spawning cod than to those that spawn in winter or spring. Adaptation to seasonal cooling or warming experienced during the larval stage is suggested as a possible cause. Furthermore, populations that experience relatively cold temperatures during early life might be more sensitive to changes in temperature. Substantial divergence in adaptive traits was evident at a smaller spatial scale than has previously been shown for a marine fish with no apparent physical barriers to gene flow (∼200 km). Our findings highlight the need to consider the impact of intraspecific variation in reproductive timing on thermal adaptation when forecasting the effects of climate change on animal populations.
Collapse
Affiliation(s)
- Rebekah A Oomen
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo 0371, Norway
| | - Jeffrey A Hutchings
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo 0371, Norway
- Department of Natural Sciences, University of Agder, Kristiansand 4630, Norway
| |
Collapse
|
19
|
González MP, Bonaccorso E, Papeş M. Applications of geographic information systems and remote sensing techniques to conservation of amphibians in northwestern Ecuador. Glob Ecol Conserv 2015. [DOI: 10.1016/j.gecco.2015.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
20
|
Phenotypic divergence of the common toad (Bufo bufo) along an altitudinal gradient: evidence for local adaptation. Heredity (Edinb) 2014; 114:69-79. [PMID: 25074572 DOI: 10.1038/hdy.2014.71] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 06/05/2014] [Accepted: 06/25/2014] [Indexed: 01/31/2023] Open
Abstract
Variation in the environment can induce different patterns of genetic and phenotypic differentiation among populations. Both neutral processes and selection can influence phenotypic differentiation. Altitudinal phenotypic variation is of particular interest in disentangling the interplay between neutral processes and selection in the dynamics of local adaptation processes but remains little explored. We conducted a common garden experiment to study the phenotypic divergence in larval life-history traits among nine populations of the common toad (Bufo bufo) along an altitudinal gradient in France. We further used correlation among population pairwise estimates of quantitative trait (QST) and neutral genetic divergence (FST from neutral microsatellite markers), as well as altitudinal difference, to estimate the relative role of divergent selection and neutral genetic processes in phenotypic divergence. We provided evidence for a neutral genetic differentiation resulting from both isolation by distance and difference in altitude. We found evidence for phenotypic divergence along the altitudinal gradient (faster development, lower growth rate and smaller metamorphic size). The correlation between pairwise QSTs-FSTs and altitude differences suggested that this phenotypic differentiation was most likely driven by altitude-mediated selection rather than by neutral genetic processes. Moreover, we found different divergence patterns for larval traits, suggesting that different selective agents may act on these traits and/or selection on one trait may constrain the evolution on another through genetic correlation. Our study highlighted the need to design more integrative studies on the common toad to unravel the underlying processes of phenotypic divergence and its selective agents in the context of environmental clines.
Collapse
|
21
|
Urban MC, Richardson JL, Freidenfelds NA. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change. Evol Appl 2013; 7:88-103. [PMID: 24454550 PMCID: PMC3894900 DOI: 10.1111/eva.12114] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/05/2013] [Indexed: 12/13/2022] Open
Abstract
Phenotypic plasticity and genetic adaptation are predicted to mitigate some of the negative biotic consequences of climate change. Here, we evaluate evidence for plastic and evolutionary responses to climate variation in amphibians and reptiles via a literature review and meta-analysis. We included studies that either document phenotypic changes through time or space. Plasticity had a clear and ubiquitous role in promoting phenotypic changes in response to climate variation. For adaptive evolution, we found no direct evidence for evolution of amphibians or reptiles in response to climate change over time. However, we found many studies that documented adaptive responses to climate along spatial gradients. Plasticity provided a mixture of adaptive and maladaptive responses to climate change, highlighting that plasticity frequently, but not always, could ameliorate climate change. Based on our review, we advocate for more experiments that survey genetic changes through time in response to climate change. Overall, plastic and genetic variation in amphibians and reptiles could buffer some of the formidable threats from climate change, but large uncertainties remain owing to limited data.
Collapse
Affiliation(s)
- Mark C Urban
- Department of Ecology and Evolutionary Biology, University of Connecticut Storrs, CT, USA
| | - Jonathan L Richardson
- Department of Ecology and Evolutionary Biology, University of Connecticut Storrs, CT, USA
| | - Nicole A Freidenfelds
- Department of Ecology and Evolutionary Biology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
22
|
Keller I, Alexander JM, Holderegger R, Edwards PJ. Widespread phenotypic and genetic divergence along altitudinal gradients in animals. J Evol Biol 2013; 26:2527-43. [PMID: 24128377 DOI: 10.1111/jeb.12255] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/13/2022]
Abstract
Altitudinal gradients offer valuable study systems to investigate how adaptive genetic diversity is distributed within and between natural populations and which factors promote or prevent adaptive differentiation. The environmental clines along altitudinal gradients tend to be steep relative to the dispersal distance of many organisms, providing an opportunity to study the joint effects of divergent natural selection and gene flow. Temperature is one variable showing consistent altitudinal changes, and altitudinal gradients can therefore provide spatial surrogates for some of the changes anticipated under climate change. Here, we investigate the extent and patterns of adaptive divergence in animal populations along altitudinal gradients by surveying the literature for (i) studies on phenotypic variation assessed under common garden or reciprocal transplant designs and (ii) studies looking for signatures of divergent selection at the molecular level. Phenotypic data show that significant between-population differences are common and taxonomically widespread, involving traits such as mass, wing size, tolerance to thermal extremes and melanization. Several lines of evidence suggest that some of the observed differences are adaptively relevant, but rigorous tests of local adaptation or the link between specific phenotypes and fitness are sorely lacking. Evidence for a role of altitudinal adaptation also exists for a number of candidate genes, most prominently haemoglobin, and for anonymous molecular markers. Novel genomic approaches may provide valuable tools for studying adaptive diversity, also in species that are not amenable to experimentation.
Collapse
Affiliation(s)
- I Keller
- Institute of Integrative Biology, ETH Zentrum CHN, ETH Zürich, Universitätsstrasse 16, Zürich, Switzerland; Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Kastanienbaum, Switzerland; Department of Aquatic Ecology and Macroevolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
23
|
Iraeta P, Salvador A, Díaz JA. Life-history traits of two Mediterranean lizard populations: a possible example of countergradient covariation. Oecologia 2012; 172:167-76. [DOI: 10.1007/s00442-012-2492-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 09/27/2012] [Indexed: 11/24/2022]
|
24
|
Extremely low genetic diversity indicating the endangered status of Ranodon sibiricus (Amphibia: Caudata) and implications for phylogeography. PLoS One 2012; 7:e33378. [PMID: 22428037 PMCID: PMC3299782 DOI: 10.1371/journal.pone.0033378] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/08/2012] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND The Siberian salamander (Ranodon sibiricus), distributed in geographically isolated areas of Central Asia, is an ideal alpine species for studies of conservation and phylogeography. However, there are few data regarding the genetic diversity in R. sibiricus populations. METHODOLOGY/PRINCIPAL FINDINGS We used two genetic markers (mtDNA and microsatellites) to survey all six populations of R. sibiricus in China. Both of the markers revealed extreme genetic uniformity among these populations. There were only three haplotypes in the mtDNA, and the overall nucleotide diversity in the mtDNA was 0.00064, ranging from 0.00000 to 0.00091 for the six populations. Although we recovered 70 sequences containing microsatellite repeats, there were only two loci that displayed polymorphism. We used the approximate Bayesian computation (ABC) method to study the demographic history of the populations. This analysis suggested that the extant populations diverged from the ancestral population approximately 120 years ago and that the historical population size was much larger than the present population size; i.e., R. sibiricus has experienced dramatic population declines. CONCLUSION/SIGNIFICANCE Our findings suggest that the genetic diversity in the R. sibiricus populations is the lowest among all investigated amphibians. We conclude that the isolation of R. sibiricus populations occurred recently and was a result of recent human activity and/or climatic changes. The Pleistocene glaciation oscillations may have facilitated intraspecies genetic homogeneity rather than enhanced divergence. A low genomic evolutionary rate and elevated inbreeding frequency may have also contributed to the low genetic variation observed in this species. Our findings indicate the urgency of implementing a protection plan for this endangered species.
Collapse
|
25
|
Abstract
Genetic variation supplies the raw material for adaptation, evolution and survival of populations and has therefore been a key focus of conservation biology ever since its foundation (Soulé 1985). In previous decades, the neutral component of genetic diversity (generated by mutation and shaped by drift) has been the subject of intense scientific research, fuelled by the increasing availability of molecular markers. On the other hand, the adaptive component of genetic diversity, which is shaped by the action of natural selection, has long remained elusive and difficult to assess, especially at small spatial or temporal scales (Ouborg et al. 2010). Fortunately, new technological and methodological developments now make it possible to identify loci in the genome that are influenced by selection, and thus to get a more complete view of genetic diversity. One article featured in this issue of Molecular Ecology is a good example of this recent breakthrough. Richter-Boix et al. (2011) examined a network of moor frog populations breeding in contrasting habitats in order to understand how landscape features influence patterns of genetic variation. They combined information from both neutral markers and loci putatively under selection to quantify the relative roles of selection and isolation in the evolution of fine-scale local adaptations in these populations. This study nicely illustrates how data on polymorphisms of neutral and adaptive loci can now be judiciously synthesized to help identify the best strategies for preserving adaptive variation, and more generally to enlighten conservation and population-management plans.
Collapse
Affiliation(s)
- Gentile Francesco Ficetola
- Dipartimento di Scienze dell'Ambiente e del Territorio, Università degli Studi di Milano Bicocca. Piazza della Scienza 1, 20126 Milano, Italy.
| | | |
Collapse
|
26
|
Rogell B, Berglund A, Laurila A, Höglund J. Population divergence of life history traits in the endangered green toad: implications for a support release programme. J Zool (1987) 2011. [DOI: 10.1111/j.1469-7998.2011.00843.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Ficetola GF, Visaggi B, Bonardi A, Padoa-Schioppa E, De Bernardi F. Starting size and tadpole performance in the frog Rana latastei. J Zool (1987) 2010. [DOI: 10.1111/j.1469-7998.2010.00770.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Ficetola GF, Padoa-Schioppa E, Wang J, Garner TWJ. Polygyny, census and effective population size in the threatened frog, Rana latastei. Anim Conserv 2010. [DOI: 10.1111/j.1469-1795.2009.00306.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Combining demography and genetic analysis to assess the population structure of an amphibian in a human-dominated landscape. CONSERV GENET 2010. [DOI: 10.1007/s10592-010-0129-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Ficetola GF, Garner TWJ, Wang J, De Bernardi F. Rapid selection against inbreeding in a wild population of a rare frog. Evol Appl 2010; 4:30-8. [PMID: 25567951 PMCID: PMC3352519 DOI: 10.1111/j.1752-4571.2010.00130.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 12/01/2022] Open
Abstract
Populations that are small and isolated can be threatened through loss of fitness due to inbreeding. Nevertheless, an increased frequency of recessive homozygotes could increase the efficiency of selection against deleterious mutants, thus reducing inbreeding depression. In wild populations, observations of evolutionary changes determined by selection against inbreeding are few. We used microsatellite DNA markers to compare the genetic features of tadpoles immediately after hatch with those of metamorphosing froglets belonging to the same cohort in a small, isolated population of the threatened frog Rana latastei. Within a generation, the inbreeding coefficient (FIS) decreased: at hatch, FIS was significantly >0, whereas FIS was <0 after metamorphosis. Furthermore, heterozygosity increased and allelic frequencies changed over time, resulting in the loss of genotypes at metamorphosis that were present in hatchlings. One microsatellite locus exhibited atypically large FST values, suggesting it might be linked to a locus under selection. These results support the hypothesis that strong selection against the most inbred genotypes occurred among early life-history stages in our population. Selective forces can promote changes that can affect population dynamics and should be considered in conservation planning.
Collapse
Affiliation(s)
- Gentile Francesco Ficetola
- Dipartimento di Biologia, Università degli Studi di Milano Milano, Italy ; Dipartimento di Scienze dell'Ambiente e del Territorio, Università degli Studi di Milano-Bicocca Milano, Italy
| | | | - Jinliang Wang
- Institute of Zoology, Zoological Society of London London, UK
| | | |
Collapse
|
31
|
Richter-Boix A, Teplitsky C, Rogell B, Laurila A. Local selection modifies phenotypic divergence amongRana temporariapopulations in the presence of gene flow. Mol Ecol 2010; 19:716-31. [PMID: 20089126 DOI: 10.1111/j.1365-294x.2009.04502.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alex Richter-Boix
- Population Biology and Conservation Biology/Department of Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden.
| | | | | | | |
Collapse
|
32
|
FICETOLA GENTILEFRANCESCO, DE BERNARDI FIORENZA. Offspring size and survival in the frog Rana latastei: from among-population to within-clutch variation. Biol J Linn Soc Lond 2009. [DOI: 10.1111/j.1095-8312.2009.01229.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Conover DO, Duffy TA, Hice LA. The covariance between genetic and environmental influences across ecological gradients: reassessing the evolutionary significance of countergradient and cogradient variation. Ann N Y Acad Sci 2009; 1168:100-29. [PMID: 19566705 DOI: 10.1111/j.1749-6632.2009.04575.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Patterns of phenotypic change across environmental gradients (e.g., latitude, altitude) have long captivated the interest of evolutionary ecologists. The pattern and magnitude of phenotypic change is determined by the covariance between genetic and environmental influences across a gradient. Cogradient variation (CoGV) occurs when covariance is positive: that is, genetic and environmental influences on phenotypic expression are aligned and their joint influence accentuates the change in mean trait value across the gradient. Conversely, countergradient variation (CnGV) occurs when covariance is negative: that is, genetic and environmental influences on phenotypes oppose one another, thereby diminishing the change in mean trait expression across the gradient. CnGV has so far been found in at least 60 species, with most examples coming from fishes, amphibians, and insects across latitudinal or altitudinal gradients. Traits that display CnGV most often involve metabolic compensation, that is, the elevation of various physiological rates processes (development, growth, feeding, metabolism, activity) to counteract the dampening effect of reduced temperature, growing season length, or food supply. Far fewer examples of CoGV have been identified (11 species), and these most often involve morphological characters. Increased knowledge of spatial covariance patterns has furthered our understanding of Bergmann size clines, phenotypic plasticity, species range limits, tradeoffs in juvenile growth rate, and the design of conservation strategies for wild species. Moreover, temporal CnGV explains some cases of an apparent lack of phenotypic response to directional selection and provides a framework for predicting evolutionary responses to climate change.
Collapse
Affiliation(s)
- David O Conover
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, USA.
| | | | | |
Collapse
|
34
|
A case of reproductive character displacement in female palmate newts (Lissotriton helveticus). C R Biol 2009; 332:548-57. [DOI: 10.1016/j.crvi.2009.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/02/2009] [Accepted: 02/02/2009] [Indexed: 11/20/2022]
|
35
|
Morgan MJ, Hunter D, Pietsch R, Osborne W, Keogh JS. Assessment of genetic diversity in the critically endangered Australian corroboree frogs, Pseudophryne corroboree and Pseudophryne pengilleyi, identifies four evolutionarily significant units for conservation. Mol Ecol 2009; 17:3448-63. [PMID: 19160475 DOI: 10.1111/j.1365-294x.2008.03841.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The iconic and brightly coloured Australian northern corroboree frog, Pseudophryne pengilleyi, and the southern corroboree frog, Pseudophryne corroboree are critically endangered and may be extinct in the wild within 3 years. We have assembled samples that cover the current range of both species and applied hypervariable microsatellite markers and mitochondrial DNA sequences to assess the levels and patterns of genetic variation. The four loci used in the study were highly variable, the total number of alleles observed ranged from 13 to 30 and the average number of alleles per locus was 19. Expected heterozygosity of the four microsatellite loci across all populations was high and varied between 0.830 and 0.935. Bayesian clustering analyses in STRUCTURE strongly supported four genetically distinct populations, which correspond exactly to the four main allopatric geographical regions in which the frogs are currently found. Individual analyses performed on the separate regions showed that breeding sites within these four regions could not be separated into distinct populations. Twelve mtND2 haplotypes were identified from 66 individuals from throughout the four geographical regions. A statistical parsimony network of mtDNA haplotypes shows two distinct groups, which correspond to the two species of corroboree frog, but with most of the haplotype diversity distributed in P. pengilleyi. These results demonstrate an unexpectedly high level of genetic diversity in both species. Our data have important implications for how the genetic diversity is managed in the future. The four evolutionarily significant units must be protected and maintained in captive breeding programmes for as long as it is possible to do.
Collapse
Affiliation(s)
- Matthew J Morgan
- School of Botany and Zoology, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | |
Collapse
|
36
|
Rodríguez-Robles JA, Jezkova T, Leal M. Genetic structuring in the threatened “Lagartijo del Bosque Seco” (Anolis cooki) from Puerto Rico. Mol Phylogenet Evol 2008; 46:503-14. [DOI: 10.1016/j.ympev.2007.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 11/02/2007] [Accepted: 11/14/2007] [Indexed: 11/16/2022]
|
37
|
McGowan A, Wright LI, Hunt J. Inbreeding and population dynamics: implications for conservation strategies. Anim Conserv 2007. [DOI: 10.1111/j.1469-1795.2007.00132.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Meier P. Fine spatial scale phenotypic divergence in wood frogs (Lithobates sylvaticus). CAN J ZOOL 2007. [DOI: 10.1139/z07-071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
I studied local divergence in growth, a trait previously shown to be both phenotypically plastic and heritable, among wood frog (Lithobates sylvaticus (LeConte, 1825)) tadpoles inhabiting four ponds within a continuous woodland. Mark–recapture results revealed very low levels of migration among ponds as close as 35 m and no more than 185 m apart. Common garden experiments conducted at two temperatures revealed consistent year-to-year patterns of phenotypic divergence in tadpole growth performance among the four pond populations. The divergence in growth performance was conserved when controlling for parental effects via half-sibling experiments. Results of cross-transplant experiments suggest that the divergence in tadpole growth reflected either genetic drift or adaptation to local pond conditions. Taken together, the results suggest that divergence in growth performance among the tadpoles from the four ponds is the result of selection or genetic drift reinforced by low levels of gene flow among pond populations.
Collapse
Affiliation(s)
- P.T. Meier
- Biology Department, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, USA (e-mail: )
| |
Collapse
|
39
|
Ficetola GF, Garner TWJ, De Bernardi F. Genetic diversity, but not hatching success, is jointly affected by postglacial colonization and isolation in the threatened frog, Rana latastei. Mol Ecol 2007; 16:1787-97. [PMID: 17444892 DOI: 10.1111/j.1365-294x.2006.03198.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both postglacial colonization and habitat fragmentation can reduce the genetic diversity of populations, which in turn can affect fitness. However, since these processes occur at different spatial and temporal scales, the consequences of either process may differ. To disentangle the relative role of isolation and postglacial colonization in determining genetic diversity and fitness, we studied microsatellite diversity of 295 individuals from 10 populations and measured the hatch rate of 218 clutches from eight populations of a threatened frog, R. latastei. The populations that were affected by fragmentation to a greater extent suffered higher embryo mortality and reduced hatch rate, while no effects of distance from glacial refugium on hatch rate were detected. Altogether, distance from glacial refugium and isolation explained > 90% of variation in genetic diversity. We found that the genetic diversity was lowest in populations both isolated and far from the glacial refugium, and that distance from refugium seems to have the primary role in determining genetic diversity. The relationship between genetic diversity and hatch rate was not significant. However, the proportion of genetic diversity lost through recent isolation had a significant, negative effect on fitness. It is possible that selection at least partially purged the negative effects of the ancestral loss of genetic diversity.
Collapse
|
40
|
Denoël M. Priority areas of intraspecific diversity: Larzac, a global hotspot for facultative paedomorphosis in amphibians. Anim Conserv 2007. [DOI: 10.1111/j.1469-1795.2006.00081.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Trade-off between larval development rate and Post-metamorphic Traits in the Frog Rana latastei. Evol Ecol 2006. [DOI: 10.1007/s10682-005-5508-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Ficetola GF, Bernardi FD. Interspecific Social Interactions and Breeding Success of the Frog Rana latastei: A Field Study. Ethology 2005. [DOI: 10.1111/j.1439-0310.2005.01089.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|