1
|
Taylor H, Spruill L, Jensen-Smith H, Rujchanarong D, Hulahan T, Ivey A, Siougiannis A, Bethard JR, Ball LE, Sandusky GE, Hollingsworth MA, Barth JL, Mehta AS, Drake RR, Marks JR, Nakshatri H, Ford M, Angel PM. Spatial localization of collagen hydroxylated proline site variation as an ancestral trait in the breast cancer microenvironment. Matrix Biol 2025; 136:71-86. [PMID: 39863086 DOI: 10.1016/j.matbio.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/27/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Collagen stroma interactions within the extracellular microenvironment of breast tissue play a significant role in breast cancer, including risk, progression, and outcomes. Hydroxylation of proline (HYP) is a common post-translational modification directly linked to breast cancer survival and progression. Changes in HYP status lead to alterations in epithelial cell signaling, extracellular matrix remodeling, and immune cell recruitment. In the present study, we test the hypothesis that the breast cancer microenvironment presents unique PTMs of collagen, which form bioactive domains at these sites that are associated with spatial histopathological characteristics and influence breast epithelial cell signaling. Mass spectrometry imaging proteomics targeting collagens were paired with comprehensive proteomic methods to identify novel breast cancer-related collagen domains based on spatial localization and regulation in 260 breast tissue samples. As ancestry plays a significant role in breast cancer outcomes, these methods were performed on ancestry diverse breast cancer tissues. Lumpectomies from the Cancer Genome Atlas (TCGA; n=10) reported increased levels of prolyl 4-hydroxylase subunit alpha-3 (P4HA3) accompanied by spatial regulation of fibrillar collagen protein sequences. A concise set of triple negative breast cancer lumpectomies (n=10) showed spatial regulation of specific domain sites from collagen alpha-1(I) chain. Tissue microarrays identified proteomic alterations around post-translationally modified collagen sites in healthy breast (n=81) and patient matched normal adjacent (NAT; n=76) and invasive ductal carcinoma (n=83). A collagen alpha-1(I) chain domain encompassing amino acids 506-514 with site-specific proline hydroxylation reported significant alteration between patient matched normal adjacent tissue and invasive breast cancer. Functional testing of domain 506-514 on breast cancer epithelial cells showed proliferation, chemotaxis and cell signaling response dependent on site localization of proline hydroxylation within domain 506-514 variants. These findings support site localized collagen HYP forms novel bioactive domains that are spatially distributed within the breast cancer microenvironment and may play a role in ancestral traits of breast cancer.
Collapse
Affiliation(s)
- Harrison Taylor
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Heather Jensen-Smith
- Eppley Institute for Cancer Research & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Denys Rujchanarong
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Taylor Hulahan
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Ashlyn Ivey
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Alex Siougiannis
- College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jennifer R Bethard
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Lauren E Ball
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - George E Sandusky
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States; Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - M A Hollingsworth
- Eppley Institute for Cancer Research & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Anand S Mehta
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Richard R Drake
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Jeffrey R Marks
- Department of Surgery, Duke Cancer Institute, Duke University, Durham, NC, United States
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States; Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Marvella Ford
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Peggi M Angel
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
2
|
Maiques O, Sallan MC, Laddach R, Pandya P, Varela A, Crosas-Molist E, Barcelo J, Courbot O, Liu Y, Graziani V, Arafat Y, Sewell J, Rodriguez-Hernandez I, Fanshawe B, Jung-Garcia Y, Imbert PR, Grasset EM, Albrengues J, Santacana M, Macià A, Tarragona J, Matias-Guiu X, Marti RM, Tsoka S, Gaggioli C, Orgaz JL, Fruhwirth GO, Wallberg F, Betteridge K, Reyes-Aldasoro CC, Haider S, Braun A, Karagiannis SN, Elosegui-Artola A, Sanz-Moreno V. Matrix mechano-sensing at the invasive front induces a cytoskeletal and transcriptional memory supporting metastasis. Nat Commun 2025; 16:1394. [PMID: 39952917 PMCID: PMC11829002 DOI: 10.1038/s41467-025-56299-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/13/2025] [Indexed: 02/17/2025] Open
Abstract
The extracellular matrix (ECM) controls tumour dissemination. We characterise ECM organization in human and mouse tumours, identifying three regions: tumour body, proximal invasive front and distal invasive front. Invasive areas show increased matrix density, fibre thickness, length, and alignment, with unique radial fibre orientation at the distal invasive front correlating with amoeboid invasive features. Using patient samples and murine models, we find that metastases recapitulate ECM features of the primary tumour. Ex vivo culture of murine cancer cells isolated from the different tumour regions reveals a spatial cytoskeletal and transcriptional memory. Several in vitro models recapitulate the in vivo ECM organisation showing that increased matrix induces 3D confinement supporting Rho-ROCK-Myosin II activity, while radial orientation enhances directional invasion. Spatial transcriptomics identifies a mechano-inflammatory program associated with worse prognosis across multiple tumour types. These findings provide mechanistic insights into how ECM organization shapes local invasion and distant metastasis.
Collapse
Affiliation(s)
- Oscar Maiques
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Marta C Sallan
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Roman Laddach
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, SE1 9RT, London, UK
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, Bush House, London, WC2B 4BG, UK
| | - Pahini Pandya
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Adrian Varela
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Eva Crosas-Molist
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Jaume Barcelo
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Olivia Courbot
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Yanbo Liu
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
| | - Vittoria Graziani
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Youssef Arafat
- Department of Computer Science, City St George's, University of London, London, UK
| | - Joanne Sewell
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Irene Rodriguez-Hernandez
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Bruce Fanshawe
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK
| | - Yaiza Jung-Garcia
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Paul Rc Imbert
- CMR Advanced Bio-imaging Facility, Centre for Microvascular Research, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Eloise M Grasset
- University Cote d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Jean Albrengues
- University Cote d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Maria Santacana
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, CIBERONC, Lleida, 25198, Spain
| | - Anna Macià
- Oncologic Pathology Group, IRBLleida, Departments of Experimental Medicine and Basic Medical Sciences, University of Lleida, Lleida, 25198, Spain
| | - Jordi Tarragona
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, CIBERONC, Lleida, 25198, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, CIBERONC, Lleida, 25198, Spain
- Oncologic Pathology Group, IRBLleida, Departments of Experimental Medicine and Basic Medical Sciences, University of Lleida, Lleida, 25198, Spain
- Department of Pathology, Hospital Universitari de Bellvitge University of Barcelona, IDIBELL, CIBERONC, L'Hospitalet-, Barcelona, 08907, Spain
| | - Rosa M Marti
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, CIBERONC, University of Lleida, CIBERONC, IRB Lleida, Lleida, 25198, Spain
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, Bush House, London, WC2B 4BG, UK
| | - Cedric Gaggioli
- University Cote d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Jose L Orgaz
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, 28029, Madrid, Spain
| | - Gilbert O Fruhwirth
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK
| | - Fredrik Wallberg
- Quell Therapeutics, Translation & Innovation Hub, 84 Wood Ln, London, W12 0BZ, UK
- Light Microscopy Facility, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
| | - Kai Betteridge
- Light Microscopy Facility, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
| | - Constantino Carlos Reyes-Aldasoro
- Department of Computer Science, City St George's, University of London, London, UK
- Integrated Pathology Unit, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, UK
| | - Syed Haider
- Breast Cancer Research Bioinformatics Group, Chester Beatty Laboratories, London, SW3 6JB, UK
| | - Andrejs Braun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, SE1 9RT, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, SE1 9RT, UK
| | | | - Victoria Sanz-Moreno
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK.
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK.
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
3
|
Macdonald JK, Mehta AS, Drake RR, Angel PM. Molecular analysis of the extracellular microenvironment: from form to function. FEBS Lett 2024; 598:602-620. [PMID: 38509768 PMCID: PMC11049795 DOI: 10.1002/1873-3468.14852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
The extracellular matrix (ECM) proteome represents an important component of the tissue microenvironment that controls chemical flux and induces cell signaling through encoded structure. The analysis of the ECM represents an analytical challenge through high levels of post-translational modifications, protease-resistant structures, and crosslinked, insoluble proteins. This review provides a comprehensive overview of the analytical challenges involved in addressing the complexities of spatially profiling the extracellular matrix proteome. A synopsis of the process of synthesizing the ECM structure, detailing inherent chemical complexity, is included to present the scope of the analytical challenge. Current chromatographic and spatial techniques addressing these challenges are detailed. Capabilities for multimodal multiplexing with cellular populations are discussed with a perspective on developing a holistic view of disease processes that includes both the cellular and extracellular microenvironment.
Collapse
Affiliation(s)
- Jade K Macdonald
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
4
|
Schnelldorfer T, Gnanatheepam E, Trout R, Gado A, Pelletier JE, Dinh LT, Hunter M, Georgakoudi I. Evaluation of a polarization-enhanced laparoscopy prototype for improved intra-operative visualization of peritoneal metastases. Sci Rep 2023; 13:14892. [PMID: 37689765 PMCID: PMC10492843 DOI: 10.1038/s41598-023-41361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/25/2023] [Indexed: 09/11/2023] Open
Abstract
Despite careful staging, the accuracy for preoperative detection of small distant metastases remains poor, creating a clinical need for enhanced operative staging to detect occult peritoneal metastases. This study evaluates a polarization-enhanced laparoscopy (PEL) prototype and assesses its potential for label-free contrast enhancement of peritoneal metastases. This is a first-in-human feasibility study, including 10 adult patients who underwent standard staging laparoscopy (SSL) for gastrointestinal malignancy along with PEL. Image frames of all detectable peritoneal lesions underwent analysis. Using Monte Carlo simulations, contrast enhancement based on the color dependence of PEL (mPEL) was assessed. The prototype performed safely, yet with limitations in illumination, fogging of the distal window, and image co-registration. Sixty-five lesions (56 presumed benign and 9 presumed malignant) from 3 patients represented the study sample. While most lesions were visible under human examination of both SSL and PEL videos, more lesions were apparent using SSL. However, this was likely due to reduced illumination under PEL. When controlling for such effects through direct comparisons of integrated (WLL) vs differential (PEL) polarization laparoscopy images, we found that PEL imaging yielded an over twofold Weber contrast enhancement over WLL. Further, enhancements in the discrimination between malignant and benign lesions were achieved by exploiting the PEL color contrast to enhance sensitivity to tissue scattering, influenced primarily by collagen. In conclusion, PEL appears safe and easy to integrate into the operating room. When controlling for the degree of illumination, image analysis suggested a potential for mPEL to provide improved visualization of metastases.
Collapse
Affiliation(s)
- Thomas Schnelldorfer
- Division of Surgical Oncology, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
- Department of Translational Research, Lahey Hospital and Medical Center, 31 Mall Road, Burlington, MA, 01805, USA.
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA.
| | - Einstein Gnanatheepam
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | - Robert Trout
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC, 27708, USA
| | - Ahmed Gado
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
- Google LLC, San Francisco, CA, 94105-1673, USA
| | - Joyce-Ellen Pelletier
- Department of Translational Research, Lahey Hospital and Medical Center, 31 Mall Road, Burlington, MA, 01805, USA
| | - Long T Dinh
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | - Martin Hunter
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
- Department of Biomedical Engineering, S684 LSL, University of Massachusetts at Amherst, 240 Thatcher Road, Amherst, MA, 01003, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
- Genetics, Molecular and Cellular Biology Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| |
Collapse
|
5
|
Gavgiotaki E, Filippidis G, Tsafas V, Bovasianos S, Kenanakis G, Georgoulias V, Tzardi M, Agelaki S, Athanassakis I. Third Harmonic Generation microscopy distinguishes malignant cell grade in human breast tissue biopsies. Sci Rep 2020; 10:11055. [PMID: 32632110 PMCID: PMC7338369 DOI: 10.1038/s41598-020-67857-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 06/10/2020] [Indexed: 11/25/2022] Open
Abstract
The ability to distinguish and grade malignant cells during surgical procedures in a fast, non-invasive and staining-free manner is of high importance in tumor management. To this extend, Third Harmonic Generation (THG), Second Harmonic Generation (SHG) and Fourier-Transform Infrared (FTIR) spectroscopy were applied to discriminate malignant from healthy cells in human breast tissue biopsies. Indeed, integration of non-linear processes into a single, unified microscopy platform offered complementary structural information within individual cells at the submicron level. Using a single laser beam, label-free THG imaging techniques provided important morphological information as to the mean nuclear and cytoplasmic area, cell volume and tissue intensity, which upon quantification could not only distinguish cancerous from benign breast tissues but also define disease severity. Simultaneously, collagen fibers that could be detected by SHG imaging showed a well structured continuity in benign tumor tissues, which were gradually disoriented along with disease severity. Combination of THG imaging with FTIR spectroscopy could provide a clearer distinction among the different grades of breast cancer, since FTIR analysis showed increased lipid concentrations in malignant tissues. Thus, the use of non-linear optical microscopy can be considered as powerful and harmless tool for tumor cell diagnostics even during real time surgery procedures.
Collapse
Affiliation(s)
- Evangelia Gavgiotaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology, 70013, Heraklion, Crete, Greece.,Medical School, University of Crete, 70013, Heraklion, Crete, Greece
| | - George Filippidis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology, 70013, Heraklion, Crete, Greece.
| | - Vassilis Tsafas
- Institute of Electronic Structure and Laser, Foundation for Research and Technology, 70013, Heraklion, Crete, Greece.,Department of Physics, University of Crete, 70013, Heraklion, Crete, Greece
| | - Savvas Bovasianos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology, 70013, Heraklion, Crete, Greece.,Department of Physics, University of Crete, 70013, Heraklion, Crete, Greece
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology, 70013, Heraklion, Crete, Greece
| | | | - Maria Tzardi
- Medical School, University of Crete, 70013, Heraklion, Crete, Greece
| | - Sofia Agelaki
- Medical School, University of Crete, 70013, Heraklion, Crete, Greece
| | - Irene Athanassakis
- Department of Biology, University of Crete, 70013, Heraklion, Crete, Greece.
| |
Collapse
|
6
|
Li L, Han Z, Qiu L, Kang D, Zhan Z, Tu H, Chen J. Evaluation of breast carcinoma regression after preoperative chemotherapy by label-free multiphoton imaging and image analysis. JOURNAL OF BIOPHOTONICS 2020; 13:e201900216. [PMID: 31587512 DOI: 10.1002/jbio.201900216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/24/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Neoadjuvant chemotherapy is increasingly being used in breast carcinoma as it significantly improves the prognosis and consistently leads to an increased rate of breast preservation. How to accurately assess tumor response after treatment is a crucial factor for developing reasonable therapeutic strategy. In this study, we were in an attempt to monitor tumor response by multimodal multiphoton imaging including two-photon excitation fluorescence and second-harmonic generation imaging. We found that multiphoton imaging can identify different degrees of tumor response such as a slight, significant, or complete response and can detect morphological alteration associated with extracellular matrix during the progression of breast carcinoma following preoperative chemotherapy. Two quantitative optical biomarkers including tumor cellularity and collagen content were extracted based on automatic image analysis to help monitor changes in tumor and its microenvironment. Furthermore, tumor regression grade diagnosis was tried to evaluate by multiphoton microscopy. These results may offer a basic framework for using multiphoton microscopic imaging techniques as a helpful diagnostic tool for assessing breast carcinoma response after presurgical treatment.
Collapse
Affiliation(s)
- Lianhuang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, People's Republic of China
| | - Zhonghua Han
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Lida Qiu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, People's Republic of China
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, People's Republic of China
| | - Deyong Kang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Zhenlin Zhan
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, People's Republic of China
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, People's Republic of China
| |
Collapse
|
7
|
van Huizen LM, Kuzmin NV, Barbé E, van der Velde S, te Velde EA, Groot ML. Second and third harmonic generation microscopy visualizes key structural components in fresh unprocessed healthy human breast tissue. JOURNAL OF BIOPHOTONICS 2019; 12:e201800297. [PMID: 30684312 PMCID: PMC7065644 DOI: 10.1002/jbio.201800297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 05/04/2023]
Abstract
Real-time assessment of excised tissue may help to improve surgical results in breast tumor surgeries. Here, as a step towards this purpose, the potential of second and third harmonic generation (SHG, THG) microscopy is explored. SHG and THG are nonlinear optical microscopic techniques that do not require labeling of tissue to generate 3D images with intrinsic depth-sectioning at sub-cellular resolution. Until now, this technique had been applied on fixated breast tissue or to visualize the stroma only, whereas most tumors start in the lobules and ducts. Here, SHG/THG images of freshly excised unprocessed healthy human tissue are shown to reveal key breast components-lobules, ducts, fat tissue, connective tissue and blood vessels, in good agreement with hematoxylin and eosin histology. DNA staining of fresh unprocessed mouse breast tissue was performed to aid in the identification of cell nuclei in label-free THG images. Furthermore, 2- and 3-photon excited auto-fluorescence images of mouse and human tissue are collected for comparison. The SHG/THG imaging modalities generate high quality images of freshly excised tissue in less than a minute with an information content comparable to that of the gold standard, histopathology. Therefore, SHG/THG microscopy is a promising tool for real-time assessment of excised tissue during surgery.
Collapse
Affiliation(s)
- Laura M.G. van Huizen
- Department of PhysicsLaserLab, Faculty of Science, VU AmsterdamAmsterdamThe Netherlands
| | - Nikolay V. Kuzmin
- Department of PhysicsLaserLab, Faculty of Science, VU AmsterdamAmsterdamThe Netherlands
| | - Ellis Barbé
- Department of PathologyAmsterdam UMC/VU University Medical CenterAmsterdamThe Netherlands
| | - Susanne van der Velde
- Department of SurgeryAmsterdam UMC/VU University Medical CenterAmsterdamThe Netherlands
| | - Elisabeth A. te Velde
- Department of SurgeryAmsterdam UMC/VU University Medical CenterAmsterdamThe Netherlands
| | - Marie Louise Groot
- Department of PhysicsLaserLab, Faculty of Science, VU AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
8
|
Wang J, Koelbl J, Boddupalli A, Yao Z, Bratlie KM, Schneider IC. Transfer of assembled collagen fibrils to flexible substrates for mechanically tunable contact guidance cues. Integr Biol (Camb) 2018; 10:705-718. [PMID: 30320857 PMCID: PMC6267882 DOI: 10.1039/c8ib00127h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Contact guidance or bidirectional migration along aligned fibers modulates many physiological and pathological processes such as wound healing and cancer invasion. Aligned 2D collagen fibrils epitaxially grown on mica substrates replicate many features of contact guidance seen in aligned 3D collagen fiber networks. However, these 2D collagen self-assembled substrates are difficult to image through, do not have known or tunable mechanical properties and cells degrade and mechanically detach collagen fibrils from the surface, leading to an inability to assess contact guidance over long times. Here, we describe the transfer of aligned collagen fibrils from mica substrates to three different functionalized target substrates: glass, polydimethylsiloxane (PDMS) and polyacrylamide (PA). Aligned collagen fibrils can be efficiently transferred to all three substrates. This transfer resulted in substrates that were to varying degrees resistant to cell-mediated collagen fibril deformation that resulted in detachment of the collagen fibril field, allowing for contact guidance to be observed over longer time periods. On these transferred substrates, cell speed is lowest on softer contact guidance cues for both MDA-MB-231 and MTLn3 cells. Intermediate stiffness resulted in the fastest migration. MTLn3 cell directionality was low on soft contact guidance cues, whereas MDA-MB-231 cell directionality marginally increased. It appears that the stiffness of the contact guidance cue regulates contact guidance differently between cell types. The development of this collagen fibril transfer method allows for the attachment of aligned collagen fibrils on substrates, particularly flexible substrates, that do not normally promote aligned collagen fibril growth, increasing the utility of this collagen self-assembly system for the fundamental examination of mechanical regulation of contact guidance.
Collapse
Affiliation(s)
- Juan Wang
- Department of Chemical and Biological Engineering, Iowa State University, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Dravid U A, Mazumder N. Types of advanced optical microscopy techniques for breast cancer research: a review. Lasers Med Sci 2018; 33:1849-1858. [PMID: 30311083 DOI: 10.1007/s10103-018-2659-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
A cancerous cell is characterized by morphological and metabolic changes which are the key features of carcinogenesis. Adenosine triphosphate (ATP) in cancer cells is primarily produced by aerobic glycolysis rather than oxidative phosphorylation. In normal cellular metabolism, nicotinamide adenine dinucleotide (NADH) is considered as a principle electron donor and flavin adenine dinucleotide (FAD) as an electron acceptor. During metabolism in a cancerous cell, a net increase in NADH is found as the pathway switched from oxidative phosphorylation to aerobic glycolysis. Often during initiation and progression of cancer, the developmental regulation of extracellular matrix (ECM) is restricted and becomes disorganized. Tumor cell behavior is regulated by the ECM in the tumor micro environment. Collagen, which forms the scaffold of tumor micro-environment also influences its behavior. Advanced optical microscopy techniques are useful for determining the metabolic characteristics of cancerous, normal cells and tissues. They can be used to identify the collagen microstructure and the function of NADH, FAD, and lipids in living system. In this review article, various optical microscopy techniques applied for breast cancer research are discussed including fluorescence, confocal, second harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS), and fluorescence lifetime imaging (FLIM).
Collapse
Affiliation(s)
- Aparna Dravid U
- Department of Biophysics, School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nirmal Mazumder
- Department of Biophysics, School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
10
|
Abstract
Recent evidence has implicated collagen, particularly fibrillar collagen, in a number of diseases ranging from osteogenesis imperfecta and asthma to breast and ovarian cancer. A key property of collagen that has been correlated with disease has been the alignment of collagen fibers. Collagen can be visualized using a variety of imaging techniques including second-harmonic generation (SHG) microscopy, polarized light microscopy, and staining with dyes or antibodies. However, there exists a great need to easily and robustly quantify images from these modalities for individual fibers in specified regions of interest and with respect to relevant boundaries. Most currently available computational tools rely on calculation of pixel-wise orientation or global window-wise orientation that do not directly calculate or give visible fiber-wise information and do not provide relative orientation against boundaries. We describe and detail how to use a freely available, open-source MATLAB software framework that includes two separate but linked packages "CurveAlign" and "CT-FIRE" that can address this need by either directly extracting individual fibers using an improved fiber tracking algorithm or directly finding optimal representation of fiber edges using the curvelet transform. This curvelet-based framework allows the user to measure fiber alignment on a global, region of interest, and fiber basis. Additionally, users can measure fiber angle relative to manually or automatically segmented boundaries. This tool does not require prior experience of programming or image processing and can handle multiple files, enabling efficient quantification of collagen organization from biological datasets.
Collapse
|
11
|
Zaimenko I, Lisec J, Stein U, Brenner W. Approaches and techniques to characterize cancer metabolism in vitro and in vivo. Biochim Biophys Acta Rev Cancer 2017; 1868:412-419. [PMID: 28887205 DOI: 10.1016/j.bbcan.2017.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 02/02/2023]
Abstract
Cancer metabolism is wired to sustain uncontrollable cell proliferation and ensure cell survival. Given the multitude of available approaches to study metabolic alterations it remains a challenging task to select the most appropriate method. In this mini-review we describe how cancer metabolism can be studied in vitro and in vivo providing an overview of available approaches and techniques, discussing their advantages and drawbacks and guiding through selection of an appropriate method to address particular research needs. This work is particularly intended to those cancer researchers who are new in the field but want to investigate metabolic alterations in their cancer model systems.
Collapse
Affiliation(s)
- Inna Zaimenko
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Max-Delbrück-Center for Molecular Medicine Berlin, Germany; Berlin School of Integrative Oncology, Charité - Universitätsmedizin Berlin, Germany
| | - Jan Lisec
- Metabolomics Unit at Charité - Universitätsmedizin Berlin, Medical Department of Hematology, Oncology, and Tumor Immunology, Molekulares Krebsforschungszentrum (MKFZ), Berlin, Germany; German Cancer Consortium, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Max-Delbrück-Center for Molecular Medicine Berlin, Germany; German Cancer Consortium, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Winfried Brenner
- German Cancer Consortium, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Germany; Berlin Experimental Radionuclide Imaging Center (BERIC), Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
12
|
Barcus CE, O'Leary KA, Brockman JL, Rugowski DE, Liu Y, Garcia N, Yu M, Keely PJ, Eliceiri KW, Schuler LA. Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res 2017; 19:9. [PMID: 28103936 PMCID: PMC5244528 DOI: 10.1186/s13058-017-0801-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 12/24/2016] [Indexed: 12/26/2022] Open
Abstract
Background The development and progression of estrogen receptor alpha positive (ERα+) breast cancer has been linked epidemiologically to prolactin. However, activation of the canonical mediator of prolactin, STAT5, is associated with more differentiated cancers and better prognoses. We have reported that density/stiffness of the extracellular matrix potently modulates the repertoire of prolactin signals in human ERα + breast cancer cells in vitro: stiff matrices shift the balance from the Janus kinase (JAK)2/STAT5 cascade toward pro-tumor progressive extracellular regulated kinase (ERK)1/2 signals, driving invasion. However, the consequences for behavior of ERα + cancers in vivo are not known. Methods In order to investigate the importance of matrix density/stiffness in progression of ERα + cancers, we examined tumor development and progression following orthotopic transplantation of two clonal green fluorescent protein (GFP) + ERα + tumor cell lines derived from prolactin-induced tumors to 8-week-old wild-type FVB/N (WT) or collagen-dense (col1a1tm1Jae/+) female mice. The latter express a mutant non-cleavable allele of collagen 1a1 “knocked-in” to the col1a1 gene locus, permitting COL1A1 accumulation. We evaluated the effect of the collagen environment on tumor progression by examining circulating tumor cells and lung metastases, activated signaling pathways by immunohistochemistry analysis and immunoblotting, and collagen structure by second harmonic generation microscopy. Results ERα + primary tumors did not differ in growth rate, histologic type, ERα, or prolactin receptor (PRLR) expression between col1a1tm1Jae/+ and WT recipients. However, the col1a1tm1Jae/+ environment significantly increased circulating tumor cells and the number and size of lung metastases at end stage. Tumors in col1a1tm1Jae/+ recipients displayed reduced STAT5 activation, and higher phosphorylation of ERK1/2 and AKT. Moreover, intratumoral collagen fibers in col1a1tm1Jae/+ recipients were aligned with tumor projections into the adjacent fat pad, perpendicular to the bulk of the tumor, in contrast to the collagen fibers wrapped around the more uniformly expansive tumors in WT recipients. Conclusions A collagen-dense extracellular matrix can potently interact with hormonal signals to drive metastasis of ERα + breast cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0801-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Craig E Barcus
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, USA.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathleen A O'Leary
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jennifer L Brockman
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Debra E Rugowski
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuming Liu
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI, USA
| | - Nancy Garcia
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Menggang Yu
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Wisconsin, USA
| | - Patricia J Keely
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Wisconsin, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Wisconsin, USA
| | - Linda A Schuler
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA. .,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Wisconsin, USA.
| |
Collapse
|
13
|
Brancato V, Garziano A, Gioiella F, Urciuolo F, Imparato G, Panzetta V, Fusco S, Netti PA. 3D is not enough: Building up a cell instructive microenvironment for tumoral stroma microtissues. Acta Biomater 2017; 47:1-13. [PMID: 27721010 DOI: 10.1016/j.actbio.2016.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/05/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022]
Abstract
We fabricated three-dimensional microtissues with the aim to replicate in vitro the composition and the functionalities of the tumor microenvironment. By arranging either normal fibroblasts (NF) or cancer-activated fibroblasts (CAF) in two different three dimensional (3D) configurations, two kinds of micromodules were produced: spheroids and microtissues. Spheroids were obtained by means of the traditional cell aggregation technique resulting in a 3D model characterized by high cell density and low amount of extracellular proteins. The microtissues were obtained by culturing cells into porous gelatin microscaffolds. In this latter configuration, cells assembled an intricate network of collagen, fibronectin and hyaluronic acid. We investigated the biophysical properties of both 3D models in terms of cell growth, metabolic activity, texture and composition of the extracellular matrix (via histological analysis and multiphoton imaging) and cell mechanical properties (via Particle Tracking Microrheology). In the spheroid models such biophysical properties remained unchanged regardless to the cell type used. In contrast, normal-microtissues and cancer-activated-microtissues displayed marked differences. CAF-microtissues possessed higher proliferation rate, superior contraction capability, different micro-rheological properties and an extracellular matrix richer in collagen fibronectin and hyaluronic acid. At last, multiphoton investigation revealed differences in the collagen network architecture. Taken together, these results suggested that despite to cell spheroids, microtissues better recapitulate the important differences existing in vivo between normal and cancer-activated stroma representing a more suitable system to mimic in vitro the stromal element of the tumor tissues. STATEMENT OF SIGNIFICANCE This work concerns the engineering of tumor tissue in vitro. Tumor models serve as biological equivalent to study pathologic progression and to screen or validate the drugs efficacy. Tumor tissue is composed by malignant cells surviving in a microenvironment, or stroma. Stroma plays a pivotal role in cancer progression. Current in vitro models, i.e. spheroids, can't replicate the phenomena related to the tumor stroma remodeling. For this reason, to better replicate the tumor physiology in vitro that include functional and morphological changes, a novel 3D cancer model is proposed.
Collapse
Affiliation(s)
- Virginia Brancato
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Napoli, Italy
| | - Alessandro Garziano
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Napoli, Italy
| | - Filomena Gioiella
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Napoli, Italy
| | - Francesco Urciuolo
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy.
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
| | - Valeria Panzetta
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
| | - Sabato Fusco
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
| | - Paolo A Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Napoli, Italy; Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy; Department of Chemical, Materials and Industrial Production (DICMAPI), University of Naples Federico II, P.le Tecchio 80, Napoli, Italy
| |
Collapse
|
14
|
Gioiella F, Urciuolo F, Imparato G, Brancato V, Netti PA. An Engineered Breast Cancer Model on a Chip to Replicate ECM-Activation In Vitro during Tumor Progression. Adv Healthc Mater 2016; 5:3074-3084. [PMID: 27925458 DOI: 10.1002/adhm.201600772] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/08/2016] [Indexed: 11/09/2022]
Abstract
In this work, a new model of breast cancer is proposed featuring both epithelial and stromal tissues arranged on a microfluidic chip. The main task of the work is the in vitro replication of the stromal activation during tumor epithelial invasion. The activation of tumor stroma and its morphological/compositional changes play a key role in tumor progression. Despite emerging evidences, to date the activation of tumor stroma in vitro has not been achieved yet. The tumor-on-chip proposed in this work is built in order to replicate the features of its native counterpart: multicellularity (tumor epithelial cell and stromal cell); 3D engineered stroma compartment composed of cell-assembled extracellular matrix (ECM); reliable 3D tumor architecture. During tumor epithelial invasion the stroma displayed an activation process at both cellular and ECM level. Similarly of what repeated in vivo, ECM remodeling is found in terms of hyaluronic acid and fibronectin overexpression in the stroma compartment. Furthermore, the cell-assembled ECM featuring the stromal tissue, allowed on-line monitoring of collagen remodeling during stroma activation process via real time multiphoton microscopy. Also, trafficking of macromolecules within the stromal compartment has been monitored in real time.
Collapse
Affiliation(s)
- Filomena Gioiella
- Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II; P.le Tecchio 80 80125 Napoli Italy
- Center for Advanced Biomaterials for Health Care@CRIB; Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 80125 Napoli Italy
| | - Francesco Urciuolo
- Center for Advanced Biomaterials for Health Care@CRIB; Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 80125 Napoli Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for Health Care@CRIB; Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 80125 Napoli Italy
| | - Virginia Brancato
- Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II; P.le Tecchio 80 80125 Napoli Italy
| | - Paolo A. Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II; P.le Tecchio 80 80125 Napoli Italy
- Center for Advanced Biomaterials for Health Care@CRIB; Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 80125 Napoli Italy
- Department of Chemical, Materials and Industrial Production (DICMAPI); University of Naples Federico II; P.le Tecchio 80 80125 Napoli Italy
| |
Collapse
|
15
|
Abstract
In this work, we constructed a Collagen I-Matrigel composite extracellular matrix (ECM). The composite ECM was used to determine the influence of the local collagen fiber orientation on the collective intravasation ability of tumor cells. We found that the local fiber alignment enhanced cell-ECM interactions. Specifically, metastatic MDA-MB-231 breast cancer cells followed the local fiber alignment direction during the intravasation into rigid Matrigel (∼10 mg/mL protein concentration).
Collapse
|
16
|
Abstract
Much progress in understanding cell migration has been determined by using classic two-dimensional (2D) tissue culture platforms. However, increasingly, it is appreciated that certain properties of cell migration
in vivo are not represented by strictly 2D assays. There is much interest in creating relevant three-dimensional (3D) culture environments and engineered platforms to better represent features of the extracellular matrix and stromal microenvironment that are not captured in 2D platforms. Important to this goal is a solid understanding of the features of the extracellular matrix—composition, stiffness, topography, and alignment—in different tissues and disease states and the development of means to capture these features
Collapse
Affiliation(s)
- Patricia Keely
- Department of Cell and Regenerative Biology, UW Carbone Cancer Center, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Amrinder Nain
- 2Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
17
|
Wu Y, Fu F, Lian Y, Nie Y, Zhuo S, Wang C, Chen J. Monitoring the progression from intraductal carcinoma to invasive ductal carcinoma based on multiphoton microscopy. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:096007. [PMID: 26358820 DOI: 10.1117/1.jbo.20.9.096007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/20/2015] [Indexed: 06/05/2023]
Abstract
Intraductal carcinoma is a precancerous lesion of the breast and the immediate precursor of invasive ductal carcinoma. Multiphoton microscopy (MPM) was used to monitor the progression from intraductal carcinoma to invasive ductal carcinoma, which can improve early detection of precursor lesions and halt progression to invasive neoplastic disease. It was found that MPM has the capability to reveal the qualitative changes in features of cells, structure of basement membranes, and architecture of collagens during the development from intraductal carcinoma to invasive ductal carcinoma, as well as the quantitative alterations in nuclear area, circle length of basement membrane, and collagen density. Combined with intra-fiberoptic ductoscopy or transdermal biopsy needle, MPM has the potential to provide immediate histological diagnosis of tumor progression in the field of breast carcinoma.
Collapse
Affiliation(s)
- Yan Wu
- Fujian Normal University, Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, No. 8, Shangsan Road, Ca
| | - Fangmeng Fu
- Affiliated Union Hospital of Fujian Medical University, Department of Breast Surgery, No. 29, Xinquan Road, Gulou, Fuzhou 350001, China
| | - Yuane Lian
- Affiliated Union Hospital of Fujian Medical University, Department of Pathology, No. 29, Xinquan Road, Gulou, Fuzhou 350001, China
| | - Yuting Nie
- Fujian Normal University, Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, No. 8, Shangsan Road, Ca
| | - Shuangmu Zhuo
- Fujian Normal University, Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, No. 8, Shangsan Road, Ca
| | - Chuan Wang
- Affiliated Union Hospital of Fujian Medical University, Department of Breast Surgery, No. 29, Xinquan Road, Gulou, Fuzhou 350001, China
| | - Jianxin Chen
- Fujian Normal University, Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, No. 8, Shangsan Road, Ca
| |
Collapse
|
18
|
Thimm TN, Squirrell JM, Liu Y, Eliceiri KW, Ogle BM. Endogenous Optical Signals Reveal Changes of Elastin and Collagen Organization During Differentiation of Mouse Embryonic Stem Cells. Tissue Eng Part C Methods 2015; 21:995-1004. [PMID: 25923353 DOI: 10.1089/ten.tec.2014.0699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Components of the extracellular matrix (ECM) have recently been shown to influence stem cell specification. However, it has been challenging to assess the spatial and temporal dynamics of stem cell-ECM interactions because most methodologies utilized to date require sample destruction or fixation. We examined the efficacy of utilizing the endogenous optical signals of two important ECM proteins, elastin (Eln), through autofluorescence, and type I collagen (ColI), through second harmonic generation (SHG), during mouse embryonic stem cell differentiation. After finding favorable overlap between antibody labeling and the endogenous fluorescent signal of Eln, we used this endogenous signal to map temporal changes in Eln and ColI during murine embryoid body differentiation and found that Eln increases until day 9 and then decreases slightly by day 12, while Col1 steadily increases over the 12-day period. Furthermore, we combined endogenous fluorescence imaging and SHG with antibody labeling of cardiomyocytes to examine the spatial relationship between Eln and ColI accumulation and cardiomyocyte differentiation. Eln was ubiquitously present, with enrichment in regions with cardiomyocyte differentiation, while there was an inverse correlation between ColI and cardiomyocyte differentiation. This work provides an important first step for utilizing endogenous optical signals, which can be visualized in living cells, to understand the relationship between the ECM and cardiomyocyte development and sets the stage for future studies of stem cell-ECM interactions and dynamics relevant to stem cells as well as other cell and tissue types.
Collapse
Affiliation(s)
- Terra N Thimm
- 1 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - Jayne M Squirrell
- 1 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - Yuming Liu
- 1 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - Kevin W Eliceiri
- 1 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin.,2 Morgridge Institute for Research, University of Wisconsin-Madison , Madison, Wisconsin
| | - Brenda M Ogle
- 3 Department of Biomedical Engineering, University of Minnesota-Twin Cities , Minneapolis, Minnesota
| |
Collapse
|
19
|
Tilbury K, Campagnola PJ. Applications of second-harmonic generation imaging microscopy in ovarian and breast cancer. PERSPECTIVES IN MEDICINAL CHEMISTRY 2015; 7:21-32. [PMID: 25987830 PMCID: PMC4403703 DOI: 10.4137/pmc.s13214] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/01/2015] [Accepted: 03/03/2015] [Indexed: 11/23/2022]
Abstract
In this perspective, we discuss how the nonlinear optical technique of second-harmonic generation (SHG) microscopy has been used to greatly enhance our understanding of the tumor microenvironment (TME) of breast and ovarian cancer. Striking changes in collagen architecture are associated with these epithelial cancers, and SHG can image these changes with great sensitivity and specificity with submicrometer resolution. This information has not historically been exploited by pathologists but has the potential to enhance diagnostic and prognostic capabilities. We summarize the utility of image processing tools that analyze fiber morphology in SHG images of breast and ovarian cancer in human tissues and animal models. We also describe methods that exploit the SHG physical underpinnings that are effective in delineating normal and malignant tissues. First we describe the use of polarization-resolved SHG that yields metrics related to macromolecular and supramolecular structures. The coherence and corresponding phase-matching process of SHG results in emission directionality (forward to backward), which is related to sub-resolution fibrillar assembly. These analyses are more general and more broadly applicable than purely morphology-based analyses; however, they are more computationally intensive. Intravital imaging techniques are also emerging that incorporate all of these quantitative analyses. Now, all these techniques can be coupled with rapidly advancing miniaturization of imaging systems to afford their use in clinical situations including enhancing pathology analysis and also in assisting in real-time surgical determination of tumor margins.
Collapse
Affiliation(s)
- Karissa Tilbury
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul J Campagnola
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA. ; Medical Physics Department, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
20
|
Filippidis G, Mari M, Kelegkouri L, Philippidis A, Selimis A, Melessanaki K, Sygletou M, Fotakis C. Assessment of in-depth degradation of artificially aged triterpenoid paint varnishes using nonlinear microscopy techniques. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:510-517. [PMID: 25403929 DOI: 10.1017/s1431927614013580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The present work investigates the applicability of nonlinear imaging microscopy for the precise assessment of degradation of the outer protective layers of painted artworks as a function of depth due to aging. Two fresh and artificially aged triterpenoid varnishes, dammar and mastic, were tested. Nonlinear imaging techniques have been employed as a new diagnostic tool for determination of the exact thickness of the affected region due to artificial aging of the natural varnishes. The measured thicknesses differ from the calculated mean penetration depths of the samples. These nondestructive, high resolution modalities are valuable analytical tools for aging studies and they have the potential to provide unique in-depth information. Single photon laser induced fluorescence measurements and Raman spectroscopy were used for the integrated investigation and analysis of aging effects in varnishes.
Collapse
Affiliation(s)
- George Filippidis
- 1Institute of Electronic Structure and Laser,Foundation for Research and Technology Hellas,PO Box 1527,Heraklion 71110,Crete,Greece
| | - Meropi Mari
- 1Institute of Electronic Structure and Laser,Foundation for Research and Technology Hellas,PO Box 1527,Heraklion 71110,Crete,Greece
| | - Lambrini Kelegkouri
- 1Institute of Electronic Structure and Laser,Foundation for Research and Technology Hellas,PO Box 1527,Heraklion 71110,Crete,Greece
| | - Aggelos Philippidis
- 1Institute of Electronic Structure and Laser,Foundation for Research and Technology Hellas,PO Box 1527,Heraklion 71110,Crete,Greece
| | - Aleksandros Selimis
- 1Institute of Electronic Structure and Laser,Foundation for Research and Technology Hellas,PO Box 1527,Heraklion 71110,Crete,Greece
| | - Kristallia Melessanaki
- 1Institute of Electronic Structure and Laser,Foundation for Research and Technology Hellas,PO Box 1527,Heraklion 71110,Crete,Greece
| | - Maria Sygletou
- 1Institute of Electronic Structure and Laser,Foundation for Research and Technology Hellas,PO Box 1527,Heraklion 71110,Crete,Greece
| | - Costas Fotakis
- 1Institute of Electronic Structure and Laser,Foundation for Research and Technology Hellas,PO Box 1527,Heraklion 71110,Crete,Greece
| |
Collapse
|
21
|
Monitoring morphological alterations during invasive ductal breast carcinoma progression using multiphoton microscopy. Lasers Med Sci 2015; 30:1109-15. [DOI: 10.1007/s10103-015-1712-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/09/2015] [Indexed: 11/28/2022]
|
22
|
NIE Y, WU Y, FU F, LIAN Y, ZHUO S, WANG C, CHEN J. Differentiating the two main histologic categories of fibroadenoma tissue from normal breast tissue by using multiphoton microscopy. J Microsc 2015; 258:79-85. [DOI: 10.1111/jmi.12219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/17/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Y.T. NIE
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education; Fujian Normal University; Fuzhou 350007 China
| | - Y. WU
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education; Fujian Normal University; Fuzhou 350007 China
- School of Science; Jimei University; Xiamen 361021 China
| | - F.M. FU
- Department of Breast Surgery, The Affiliated Union Hospital; Fujian Medical University; Fuzhou 350001 China
| | - Y.E. LIAN
- Department of Pathology, The Affiliated Union Hospital; Fujian Medical University; Fuzhou 350001 China
| | - S.M. ZHUO
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education; Fujian Normal University; Fuzhou 350007 China
| | - C. WANG
- Department of Breast Surgery, The Affiliated Union Hospital; Fujian Medical University; Fuzhou 350001 China
| | - J.X. CHEN
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education; Fujian Normal University; Fuzhou 350007 China
| |
Collapse
|
23
|
Barcus CE, Holt EC, Keely PJ, Eliceiri KW, Schuler LA. Dense collagen-I matrices enhance pro-tumorigenic estrogen-prolactin crosstalk in MCF-7 and T47D breast cancer cells. PLoS One 2015; 10:e0116891. [PMID: 25607819 PMCID: PMC4301649 DOI: 10.1371/journal.pone.0116891] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/16/2014] [Indexed: 02/07/2023] Open
Abstract
Breast cancers that express estrogen receptor alpha (ERα+) constitute the majority of breast tumors. Estrogen is a major driver of their growth, and targeting ER-mediated signals is a largely successful primary therapeutic strategy. Nonetheless, ERα+ tumors also result in the most breast cancer mortalities. Other factors, including altered characteristics of the extracellular matrix such as density and orientation and consequences for estrogen crosstalk with other hormones such as prolactin (PRL), may contribute to these poor outcomes. Here we employed defined three dimensional low density/compliant and high density/stiff collagen-I matrices to investigate the effects on 17β-estradiol (E2) activity and PRL/E2 interactions in two well-characterized ERα+/PRLR+ luminal breast cancer cell lines in vitro. We demonstrate that matrix density modulated E2-induced transcripts, but did not alter the growth response. However, matrix density was a potent determinant of the behavioral outcomes of PRL/E2 crosstalk. High density/stiff matrices enhanced PRL/E2-induced growth mediated by increased activation of Src family kinases and insensitivity to the estrogen antagonist, 4-hydroxytamoxifen. It also permitted these hormones in combination to drive invasion and modify the alignment of collagen fibers. In contrast, low density/compliant matrices allowed modest if any cooperation between E2 and PRL to growth and did not permit hormone-induced invasion or collagen reorientation. Our studies demonstrate the power of matrix density to determine the outcomes of hormone actions and suggest that stiff matrices are potent collaborators of estrogen and PRL in progression of ERα+ breast cancer. Our evidence for bidirectional interactions between these hormones and the extracellular matrix provides novel insights into the regulation of the microenvironment of ERα+ breast cancer and suggests new therapeutic approaches.
Collapse
Affiliation(s)
- Craig E Barcus
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elizabeth C Holt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Patricia J Keely
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kevin W Eliceiri
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
24
|
Shamir ER, Ewald AJ. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 2014; 15:647-64. [PMID: 25237826 PMCID: PMC4352326 DOI: 10.1038/nrm3873] [Citation(s) in RCA: 517] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mammalian organs are challenging to study as they are fairly inaccessible to experimental manipulation and optical observation. Recent advances in three-dimensional (3D) culture techniques, coupled with the ability to independently manipulate genetic and microenvironmental factors, have enabled the real-time study of mammalian tissues. These systems have been used to visualize the cellular basis of epithelial morphogenesis, to test the roles of specific genes in regulating cell behaviours within epithelial tissues and to elucidate the contribution of microenvironmental factors to normal and disease processes. Collectively, these novel models can be used to answer fundamental biological questions and generate replacement human tissues, and they enable testing of novel therapeutic approaches, often using patient-derived cells.
Collapse
Affiliation(s)
- Eliah R Shamir
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, 855 North Wolfe Street, Baltimore, Maryland 21205, USA
| | - Andrew J Ewald
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, 855 North Wolfe Street, Baltimore, Maryland 21205, USA
| |
Collapse
|
25
|
Bredfeldt JS, Liu Y, Conklin MW, Keely PJ, Mackie TR, Eliceiri KW. Automated quantification of aligned collagen for human breast carcinoma prognosis. J Pathol Inform 2014; 5:28. [PMID: 25250186 PMCID: PMC4168643 DOI: 10.4103/2153-3539.139707] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/08/2014] [Indexed: 11/23/2022] Open
Abstract
Background: Mortality in cancer patients is directly attributable to the ability of cancer cells to metastasize to distant sites from the primary tumor. This migration of tumor cells begins with a remodeling of the local tumor microenvironment, including changes to the extracellular matrix and the recruitment of stromal cells, both of which facilitate invasion of tumor cells into the bloodstream. In breast cancer, it has been proposed that the alignment of collagen fibers surrounding tumor epithelial cells can serve as a quantitative image-based biomarker for survival of invasive ductal carcinoma patients. Specific types of collagen alignment have been identified for their prognostic value and now these tumor associated collagen signatures (TACS) are central to several clinical specimen imaging trials. Here, we implement the semi-automated acquisition and analysis of this TACS candidate biomarker and demonstrate a protocol that will allow consistent scoring to be performed throughout large patient cohorts. Methods: Using large field of view high resolution microscopy techniques, image processing and supervised learning methods, we are able to quantify and score features of collagen fiber alignment with respect to adjacent tumor-stromal boundaries. Results: Our semi-automated technique produced scores that have statistically significant correlation with scores generated by a panel of three human observers. In addition, our system generated classification scores that accurately predicted survival in a cohort of 196 breast cancer patients. Feature rank analysis reveals that TACS positive fibers are more well-aligned with each other, are of generally lower density, and terminate within or near groups of epithelial cells at larger angles of interaction. Conclusion: These results demonstrate the utility of a supervised learning protocol for streamlining the analysis of collagen alignment with respect to tumor stromal boundaries.
Collapse
Affiliation(s)
- Jeremy S Bredfeldt
- Laboratory for Optical and Computational Instrumentation, Madison, WI 53715, USA ; Morgridge Institute for Research, Madison, WI 53715, USA
| | - Yuming Liu
- Laboratory for Optical and Computational Instrumentation, Madison, WI 53715, USA
| | - Matthew W Conklin
- Laboratory for Optical and Computational Instrumentation, Madison, WI 53715, USA ; Laboratory for Cell and Molecular Biology, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Patricia J Keely
- Laboratory for Optical and Computational Instrumentation, Madison, WI 53715, USA ; Laboratory for Cell and Molecular Biology, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Thomas R Mackie
- Laboratory for Optical and Computational Instrumentation, Madison, WI 53715, USA ; Morgridge Institute for Research, Madison, WI 53715, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, Madison, WI 53715, USA ; Morgridge Institute for Research, Madison, WI 53715, USA ; Laboratory for Cell and Molecular Biology, University of Wisconsin at Madison, Madison, WI 53706, USA
| |
Collapse
|
26
|
Adur J, Carvalho HF, Cesar CL, Casco VH. Nonlinear optical microscopy signal processing strategies in cancer. Cancer Inform 2014; 13:67-76. [PMID: 24737930 PMCID: PMC3981479 DOI: 10.4137/cin.s12419] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/02/2014] [Accepted: 03/03/2014] [Indexed: 02/06/2023] Open
Abstract
This work reviews the most relevant present-day processing methods used to improve the accuracy of multimodal nonlinear images in the detection of epithelial cancer and the supporting stroma. Special emphasis has been placed on methods of non linear optical (NLO) microscopy image processing such as: second harmonic to autofluorescence ageing index of dermis (SAAID), tumor-associated collagen signatures (TACS), fast Fourier transform (FFT) analysis, and gray level co-occurrence matrix (GLCM)-based methods. These strategies are presented as a set of potential valuable diagnostic tools for early cancer detection. It may be proposed that the combination of NLO microscopy and informatics based image analysis approaches described in this review (all carried out on free software) may represent a powerful tool to investigate collagen organization and remodeling of extracellular matrix in carcinogenesis processes.
Collapse
Affiliation(s)
- Javier Adur
- Microscopy Laboratory Applied to Molecular and Cellular Studies, Bioengineering School, National University of Entre Rios, Oro Verde, Entre Rios, Argentina. ; INFABiC-National Institute of Science and Technology on Photonics Applied to Cell Biology, Campinas, São Paulo, Brazil
| | - Hernandes F Carvalho
- INFABiC-National Institute of Science and Technology on Photonics Applied to Cell Biology, Campinas, São Paulo, Brazil
| | - Carlos L Cesar
- INFABiC-National Institute of Science and Technology on Photonics Applied to Cell Biology, Campinas, São Paulo, Brazil
| | - Víctor H Casco
- Microscopy Laboratory Applied to Molecular and Cellular Studies, Bioengineering School, National University of Entre Rios, Oro Verde, Entre Rios, Argentina
| |
Collapse
|
27
|
Bredfeldt JS, Liu Y, Pehlke CA, Conklin MW, Szulczewski JM, Inman DR, Keely PJ, Nowak RD, Mackie TR, Eliceiri KW. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:16007. [PMID: 24407500 PMCID: PMC3886580 DOI: 10.1117/1.jbo.19.1.016007] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 09/08/2013] [Accepted: 10/17/2013] [Indexed: 05/18/2023]
Abstract
Second-harmonic generation (SHG) imaging can help reveal interactions between collagen fibers and cancer cells. Quantitative analysis of SHG images of collagen fibers is challenged by the heterogeneity of collagen structures and low signal-to-noise ratio often found while imaging collagen in tissue. The role of collagen in breast cancer progression can be assessed post acquisition via enhanced computation. To facilitate this, we have implemented and evaluated four algorithms for extracting fiber information, such as number, length, and curvature, from a variety of SHG images of collagen in breast tissue. The image-processing algorithms included a Gaussian filter, SPIRAL-TV filter, Tubeness filter, and curvelet-denoising filter. Fibers are then extracted using an automated tracking algorithm called fiber extraction (FIRE). We evaluated the algorithm performance by comparing length, angle and position of the automatically extracted fibers with those of manually extracted fibers in twenty-five SHG images of breast cancer. We found that the curvelet-denoising filter followed by FIRE, a process we call CT-FIRE, outperforms the other algorithms under investigation. CT-FIRE was then successfully applied to track collagen fiber shape changes over time in an in vivo mouse model for breast cancer.
Collapse
Affiliation(s)
- Jeremy S. Bredfeldt
- University of Wisconsin at Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, Wisconsin 53706
- Morgridge Institute for Research, 330 North Orchard Street, Madison, Wisconsin 53715
| | - Yuming Liu
- University of Wisconsin at Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, Wisconsin 53706
| | - Carolyn A. Pehlke
- University of Wisconsin at Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, Wisconsin 53706
| | - Matthew W. Conklin
- University of Wisconsin at Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, Wisconsin 53706
- University of Wisconsin at Madison, Laboratory for Cell and Molecular Biology, 1525 Linden Drive, Madison, Wisconsin 53706
| | - Joseph M. Szulczewski
- University of Wisconsin at Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, Wisconsin 53706
- University of Wisconsin at Madison, Laboratory for Cell and Molecular Biology, 1525 Linden Drive, Madison, Wisconsin 53706
| | - David R. Inman
- University of Wisconsin at Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, Wisconsin 53706
- University of Wisconsin at Madison, Laboratory for Cell and Molecular Biology, 1525 Linden Drive, Madison, Wisconsin 53706
| | - Patricia J. Keely
- University of Wisconsin at Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, Wisconsin 53706
- University of Wisconsin at Madison, Laboratory for Cell and Molecular Biology, 1525 Linden Drive, Madison, Wisconsin 53706
| | - Robert D. Nowak
- University of Wisconsin at Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, Wisconsin 53706
- University of Wisconsin at Madison, Department of Electrical and Computer Engineering, 1415 Engineering Drive, Madison, Wisconsin 53706
| | - Thomas R. Mackie
- University of Wisconsin at Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, Wisconsin 53706
- Morgridge Institute for Research, 330 North Orchard Street, Madison, Wisconsin 53715
| | - Kevin W. Eliceiri
- University of Wisconsin at Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, Wisconsin 53706
- Morgridge Institute for Research, 330 North Orchard Street, Madison, Wisconsin 53715
- University of Wisconsin at Madison, Laboratory for Cell and Molecular Biology, 1525 Linden Drive, Madison, Wisconsin 53706
- Address all correspondence to: Kevin W. Eliceiri, E-mail:
| |
Collapse
|
28
|
Adur J, Pelegati VB, de Thomaz AA, Baratti MO, Andrade LALA, Carvalho HF, Bottcher-Luiz F, Cesar CL. Second harmonic generation microscopy as a powerful diagnostic imaging modality for human ovarian cancer. JOURNAL OF BIOPHOTONICS 2014; 7:37-48. [PMID: 23024013 DOI: 10.1002/jbio.201200108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/03/2012] [Accepted: 08/22/2012] [Indexed: 05/11/2023]
Abstract
In this study we showed that second-harmonic generation (SHG) microscopy combined with precise methods for images evaluation can be used to detect structural changes in the human ovarian stroma. Using a set of scoring methods (alignment of collagen fibers, anisotropy, and correlation), we found significant differences in the distribution and organization of collagen fibers in the stroma component of serous, mucinous, endometrioid and mixed ovarian tumors as compared with normal ovary tissue. This methodology was capable to differentiate between cancerous and healthy tissue, with clear cut distinction between normal, benign, borderline, and malignant tumors of serous type. Our results indicated that the combination of different image-analysis approaches presented here represent a powerful tool to investigate collagen organization and extracellular matrix remodeling in ovarian tumors.
Collapse
Affiliation(s)
- Javier Adur
- Biomedical Lasers Application Laboratory, Optics and Photonics Research Center, "Gleb Wataghin" Institute of Physics, State University of Campinas UNICAMP, Brazil; Microscopy Laboratory Applied to Molecular and Cellular Studies, School of Bioengineering, National University of Entre Ríos UNER, Ruta 11 Km10, Oro Verde 3101, Entre Ríos, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ding L, Zhao Y, Warren CL, Sullivan R, Eliceiri KW, Shull JD. Association of cellular and molecular responses in the rat mammary gland to 17β-estradiol with susceptibility to mammary cancer. BMC Cancer 2013; 13:573. [PMID: 24304664 PMCID: PMC3924185 DOI: 10.1186/1471-2407-13-573] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We are using ACI and BN rats, which differ markedly in their susceptibility to 17β-estradiol (E2)-induced mammary cancer, to identify genetic variants and environmental factors that determine mammary cancer susceptibility. The objective of this study was to characterize the cellular and molecular responses to E2 in the mammary glands of ACI and BN rats to identify qualitative and quantitative phenotypes that associate with and/or may confer differences in susceptibility to mammary cancer. METHODS Female ACI and BN rats were treated with E2 for 1, 3 or 12 weeks. Mammary gland morphology and histology were examined by whole mount and hematoxylin and eosin (H&E) staining. Cell proliferation and epithelial density were evaluated by quantitative immunohistochemistry. Apoptosis was evaluated by quantitative western blotting and flow cytometry. Mammary gland differentiation was examined by immunohistochemistry. Gene expression was evaluated by microarray, qRT-PCR and quantitative western blotting assays. Extracellular matrix (ECM) associated collagen was evaluated by Picrosirius Red staining and Second Harmonic Generation (SHG) microscopy. RESULTS The luminal epithelium of ACI rats exhibited a rapid and sustained proliferative response to E2. By contrast, the proliferative response exhibited by the mammary epithelium of BN rats was restrained and transitory. Moreover, the epithelium of BN rats appeared to undergo differentiation in response to E2, as evidenced by production of milk proteins as well as luminal ectasia and associated changes in the ECM. Marked differences in expression of genes that encode proteins with well-defined roles in mammary gland development (Pgr, Wnt4, Tnfsf11, Prlr, Stat5a, Areg, Gata3), differentiation and milk production (Lcn2, Spp1), regulation of extracellular environment (Mmp7, Mmp9), and cell-cell or cell-ECM interactions (Cd44, Cd24, Cd52) were observed. CONCLUSIONS We propose that these cellular and molecular phenotypes are heritable and may underlie, at least in part, the differences in mammary cancer susceptibility exhibited by ACI and BN rats.
Collapse
Affiliation(s)
| | | | | | | | | | - James D Shull
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin Madison, 1400 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
30
|
The Number of Lines a Cell Contacts and Cell Contractility Drive the Efficiency of Contact Guidance. Cell Mol Bioeng 2013. [DOI: 10.1007/s12195-013-0299-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
31
|
Johnson MD, Mueller SC. Three dimensional multiphoton imaging of fresh and whole mount developing mouse mammary glands. BMC Cancer 2013; 13:373. [PMID: 23919456 PMCID: PMC3750743 DOI: 10.1186/1471-2407-13-373] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 07/22/2013] [Indexed: 02/04/2023] Open
Abstract
Background The applications of multiphoton microscopy for deep tissue imaging in basic and clinical research are ever increasing, supplementing confocal imaging of the surface layers of cells in tissue. However, imaging living tissue is made difficult by the light scattering properties of the tissue, and this is extraordinarily apparent in the mouse mammary gland which contains a stroma filled with fat cells surrounding the ductal epithelium. Whole mount mammary glands stained with Carmine Alum are easily archived for later reference and readily viewed using bright field microscopy to observe branching architecture of the ductal network. Here, we report on the advantages of multiphoton imaging of whole mount mammary glands. Chief among them is that optical sectioning of the terminal end bud (TEB) and ductal epithelium allows the appreciation of abnormalities in structure that are very difficult to ascertain using either bright field imaging of the stained gland or the conventional approach of hematoxylin and eosin staining of fixed and paraffin-embedded sections. A second advantage is the detail afforded by second harmonic generation (SHG) in which collagen fiber orientation and abundance can be observed. Methods GFP-mouse mammary glands were imaged live or after whole mount preparation using a Zeiss LSM510/META/NLO multiphoton microscope with the purpose of obtaining high resolution images with 3D content, and evaluating any structural alterations induced by whole mount preparation. We describe a simple means for using a commercial confocal/ multiphoton microscope equipped with a Ti-Sapphire laser to simultaneously image Carmine Alum fluorescence and collagen fiber networks by SHG with laser excitation set to 860 nm. Identical terminal end buds (TEBs) were compared before and after fixation, staining, and whole mount preparation and structure of collagen networks and TEB morphologies were determined. Flexibility in excitation and emission filters was explored using the META detector for spectral emission scanning. Backward scattered or reflected SHG (SHG-B) was detected using a conventional confocal detector with maximum aperture and forward scattered or transmitted SHG (SHG-F) detected using a non-descanned detector. Results We show here that the developing mammary gland is encased in a thin but dense layer of collagen fibers. Sparse collagen layers are also interspersed between stromal layers of fat cells surrounding TEBs. At the margins, TEBs approach the outer collagen layer but do not penetrate it. Abnormal mammary glands from an HAI-1 transgenic FVB mouse model were found to contain TEBs with abnormal pockets of cells forming extra lumens and zones of continuous lateral bud formation interspersed with sparse collagen fibers. Parameters influencing live imaging and imaging of fixed unstained and Carmine Alum stained whole mounts were evaluated. Artifacts induced by light scattering of GFP and Carmine Alum signals from epithelial cells were identified in live tissue as primarily due to fat cells and in whole mount tissue as due to dense Carmine Alum staining of epithelium. Carmine Alum autofluorescence was detected at excitation wavelengths from 750 to 950 nm with a peak of emission at 623 nm (~602-656 nm). Images of Carmine Alum fluorescence differed dramatically at emission wavelengths of 565–615 nm versus 650–710 nm. In the latter, a mostly epithelial (nuclear) visualization of Carmine Alum predominates. Autofluorescence with a peak emission of 495 nm was derived from the fixed and processed tissue itself as it was present in the unstained whole mount. Contribution of autofluorescence to the image decreases with increasing laser excitation wavelengths. SHG-B versus SHG-F signals revealed collagen fibers and could be found within single fibers, or in different fibers within the same layer. These differences presumably reflected different states of collagen fiber maturation. Loss of SHG signals from layer to layer could be ascribed to artifacts rendered by light scattering from the dense TEB structures, and unless bandpass emissions were selected, contained unfiltered non-SHG fluorescence and autofluorescent emissions. Flexibility in imaging can be increased using spectral emission imaging to optimize emission bandwidths and to separate SHG-B, GFP, and Carmine Alum signals, although conventional filters were also useful. Conclusions Collagen fibril arrangement and TEB structure is well preserved during the whole mount procedure and light scattering is reduced dramatically by extracting fat resulting in improved 3D structure, particularly for SHG signals originating from collagen. In addition to providing a bright signal, Carmine Alum stained whole mount slides can be imaged retrospectively such as performed for the HAI-1 mouse gland revealing new aspects of abnormal TEB morphology. These studies demonstrated the intimate contact, but relatively sparse abundance of collagen fibrils adjacent to normal and abnormal TEBS in the developing mammary gland and the ability to obtain these high resolution details subject to the discussed limitations. Our studies demonstrated that the TEB architecture is essentially unchanged after processing.
Collapse
|
32
|
Adur J, DSouza-Li L, Pedroni MV, Steiner CE, Pelegati VB, de Thomaz AA, Carvalho HF, Cesar CL. The severity of Osteogenesis imperfecta and type I collagen pattern in human skin as determined by nonlinear microscopy: proof of principle of a diagnostic method. PLoS One 2013; 8:e69186. [PMID: 23869235 PMCID: PMC3711916 DOI: 10.1371/journal.pone.0069186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 06/09/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The confirmatory diagnosis of Osteogenesis Imperfecta (OI) requires invasive, commonly bone biopsy, time consuming and destructive methods. This paper proposes an alternative method using a combination of two-photon excitation fluorescence (TPEF) and second-harmonic generation (SHG) microscopies from easily obtained human skin biopsies. We show that this method can distinguish subtypes of human OI. METHODOLOGY/PRINCIPAL FINDINGS Different aspects of collagen microstructure of skin fresh biopsies and standard H&E-stained sections of normal and OI patients (mild and severe forms) were distinguished by TPEF and SHG images. Moreover, important differences between subtypes of OI were identified using different methods of quantification such as collagen density, ratio between collagen and elastic tissue, and gray-level co-occurrence matrix (GLCM) image-pattern analysis. Collagen density was lower in OI dermis, while the SHG/autofluorescence index of the dermis was significantly higher in OI as compared to that of the normal skin. We also showed that the energy value of GLCM texture analysis is useful to discriminate mild from severe OI and from normal skin. CONCLUSIONS/SIGNIFICANCE This work demonstrated that nonlinear microscopy techniques in combination with image-analysis approaches represent a powerful tool to investigate the collagen organization in skin dermis in patients with OI and has the potential to distinguish the different types of OI. The procedure outlined in this paper requires a skin biopsy, which is almost painless as compared to the bone biopsy commonly used in conventional methods. The data presented here complement existing clinical diagnostic techniques and can be used as a diagnostic procedure to confirm the disease, evaluate its severity and treatment efficacy.
Collapse
Affiliation(s)
- Javier Adur
- Biophotonic Group, Optics and Photonics Research Center (CEPOF), Institute of Physics "Gleb Wataghin," State University of Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ponik SM, Trier SM, Wozniak MA, Eliceiri KW, Keely PJ. RhoA is down-regulated at cell-cell contacts via p190RhoGAP-B in response to tensional homeostasis. Mol Biol Cell 2013; 24:1688-99, S1-3. [PMID: 23552690 PMCID: PMC3667722 DOI: 10.1091/mbc.e12-05-0386] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
p190RhoGAP-B mediates Rho activity and ductal morphogenesis in response to 3D collagen stiffness. p190B associates with p120-catenin at cell–cell contacts, where RhoA activity is decreased compared to cell–ECM adhesions. This suggests that Rho is in an inactive pool at cell–cell contacts and is recruited to cell–ECM contacts in stiff matrices. Breast epithelial cells cultured in three-dimensional (3D) collagen gels undergo ductal morphogenesis when the gel is compliant and they can achieve tensional homeostasis. We previously showed that this process requires down-regulation of Rho in compliant collagen gels, but the mechanism remains undefined. In this study, we find that p190RhoGAP-B, but not p190RhoGAP-A, mediates down-regulation of RhoA activity and ductal morphogenesis in T47D cells cultured in compliant 3D collagen gels. In addition, both RhoA and p190RhoGAP-B colocalize with p120-catenin at sites of cell–cell contact. The association between p190RhoGAP-B and p120-catenin is regulated by matrix compliance such that it increases in compliant vs. rigid collagen gels. Furthermore, knockdown of p120-catenin disrupts ductal morphogenesis, disregulates RhoA activity, and results in loss of p190B at cell–cell contacts. Consistent with these findings, using a RhoA-specific FRET biosensor (RhoA-FLARE.sc), we determined spatial RhoA activity to be significantly decreased at cell–cell contacts versus cell–ECM adhesions, and, of importance, spatial RhoA activity is regulated by p190B. This finding suggests that RhoA exists as an inactive pool at cell–cell contacts and is recruited to cell–ECM contacts within stiff matrices. Overall, these results demonstrate that RhoA is down-regulated at cell–cell contacts through p190RhoGAP-B, which is localized to cell–cell contacts by association with p120-catenin that is regulated by tensional homeostasis.
Collapse
Affiliation(s)
- Suzanne M Ponik
- Department of Cellular and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
34
|
Adur J, Pelegati VB, de Thomaz AA, Baratti MO, Almeida DB, Andrade LALA, Bottcher-Luiz F, Carvalho HF, Cesar CL. Optical biomarkers of serous and mucinous human ovarian tumor assessed with nonlinear optics microscopies. PLoS One 2012; 7:e47007. [PMID: 23056557 PMCID: PMC3466244 DOI: 10.1371/journal.pone.0047007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/11/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Nonlinear optical (NLO) microscopy techniques have potential to improve the early detection of epithelial ovarian cancer. In this study we showed that multimodal NLO microscopies, including two-photon excitation fluorescence (TPEF), second-harmonic generation (SHG), third-harmonic generation (THG) and fluorescence lifetime imaging microscopy (FLIM) can detect morphological and metabolic changes associated with ovarian cancer progression. METHODOLOGY/PRINCIPAL FINDINGS We obtained strong TPEF + SHG + THG signals from fixed samples stained with Hematoxylin & Eosin (H&E) and robust FLIM signal from fixed unstained samples. Particularly, we imaged 34 ovarian biopsies from different patients (median age, 49 years) including 5 normal ovarian tissue, 18 serous tumors and 11 mucinous tumors with the multimodal NLO platform developed in our laboratory. We have been able to distinguish adenomas, borderline, and adenocarcinomas specimens. Using a complete set of scoring methods we found significant differences in the content, distribution and organization of collagen fibrils in the stroma as well as in the morphology and fluorescence lifetime from epithelial ovarian cells. CONCLUSIONS/SIGNIFICANCE NLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns for serous and mucinous ovarian tumors. The results provide a basis to interpret future NLO images of ovarian tissue and lay the foundation for future in vivo optical evaluation of premature ovarian lesions.
Collapse
MESH Headings
- Adenocarcinoma, Mucinous/diagnosis
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/pathology
- Biomarkers, Tumor/metabolism
- Carcinoma, Ovarian Epithelial
- Female
- Humans
- Microscopy
- Microscopy, Fluorescence, Multiphoton
- Middle Aged
- Neoplasms, Glandular and Epithelial/diagnosis
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Ovarian Neoplasms/diagnosis
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Ovary/metabolism
- Ovary/pathology
- Serum/metabolism
Collapse
Affiliation(s)
- Javier Adur
- Biophotonic Group, Optics and Photonics Research Center (CEPOF), Institute of Physics Gleb Wataghin, State University of Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Adur J, Pelegati VB, de Thomaz AA, D'Souza-Li L, Assunção MDC, Bottcher-Luiz F, Andrade LALA, Cesar CL. Quantitative changes in human epithelial cancers and osteogenesis imperfecta disease detected using nonlinear multicontrast microscopy. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:081407-1. [PMID: 23224168 DOI: 10.1117/1.jbo.17.8.081407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We show that combined multimodal nonlinear optical (NLO) microscopies, including two-photon excitation fluorescence, second-harmonic generation (SHG), third harmonic generation, and fluorescence lifetime imaging microscopy (FLIM) can be used to detect morphological and metabolic changes associated with stroma and epithelial transformation during the progression of cancer and osteogenesis imperfecta (OI) disease. NLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns for different types of human breast cancer, mucinous ovarian tumors, and skin dermis of patients with OI. Using a set of scoring methods (anisotropy, correlation, uniformity, entropy, and lifetime components), we found significant differences in the content, distribution and organization of collagen fibrils in the stroma of breast and ovary as well as in the dermis of skin. We suggest that our results provide a framework for using NLO techniques as a clinical diagnostic tool for human cancer and OI. We further suggest that the SHG and FLIM metrics described could be applied to other connective or epithelial tissue disorders that are characterized by abnormal cells proliferation and collagen assembly.
Collapse
Affiliation(s)
- Javier Adur
- State University of Campinas (UNICAMP), "Gleb Wataghin" Institute of Physics, Optics and Photonics Research Center, Biomedical Lasers Application Laboratory, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Perry SW, Burke RM, Brown EB. Two-photon and second harmonic microscopy in clinical and translational cancer research. Ann Biomed Eng 2012; 40:277-91. [PMID: 22258888 DOI: 10.1007/s10439-012-0512-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/09/2012] [Indexed: 11/30/2022]
Abstract
Application of two-photon microscopy (TPM) to translational and clinical cancer research has burgeoned over the last several years, as several avenues of pre-clinical research have come to fruition. In this review, we focus on two forms of TPM-two-photon excitation fluorescence microscopy, and second harmonic generation microscopy-as they have been used for investigating cancer pathology in ex vivo and in vivo human tissue. We begin with discussion of two-photon theory and instrumentation particularly as applicable to cancer research, followed by an overview of some of the relevant cancer research literature in areas that include two-photon imaging of human tissue biopsies, human skin in vivo, and the rapidly developing technology of two-photon microendoscopy. We believe these and other evolving two-photon methodologies will continue to help translate cancer research from the bench to the bedside, and ultimately bring minimally invasive methods for cancer diagnosis and treatment to therapeutic reality.
Collapse
Affiliation(s)
- Seth W Perry
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA.
| | | | | |
Collapse
|
37
|
Cox G. Biological applications of second harmonic imaging. Biophys Rev 2011; 3:131. [PMID: 28510062 DOI: 10.1007/s12551-011-0052-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 07/04/2011] [Indexed: 11/26/2022] Open
Abstract
Second Harmonic Generation (SHG) microscopy dates back to 1974, but effective biological use of the technique has a history of barely 10 years. It is now widely used to image collagen in many different applications, and is becoming useful for imaging myosin and some polysaccharides. A separate line on research has focussed on SHG dyes, which can provide high-speed indication of membrane potential and are now in use in neurobiology. This review looks at the progress to date in these different fields.
Collapse
Affiliation(s)
- Guy Cox
- Australian Centre for Microscopy and Microanalysis, University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
38
|
Breast cancer: the matrix is the message. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:966-8. [PMID: 21356348 DOI: 10.1016/j.ajpath.2010.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 12/14/2010] [Indexed: 11/23/2022]
|
39
|
Xylas J, Alt-Holland A, Garlick J, Hunter M, Georgakoudi I. Intrinsic optical biomarkers associated with the invasive potential of tumor cells in engineered tissue models. BIOMEDICAL OPTICS EXPRESS 2010; 1:1387-1400. [PMID: 21258557 PMCID: PMC3018132 DOI: 10.1364/boe.1.001387] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/26/2010] [Accepted: 11/08/2010] [Indexed: 05/20/2023]
Abstract
This report assesses the ability of intrinsic two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) imaging to characterize features associated with the motility and invasive potential of epithelial tumor cells engineered in tissues. Distinct patterns of organization are found both within the cells and the matrix that depend on the adhesive properties of the cells as well as factors attributed to adjacent fibroblasts. TPEF images are analyzed using automated algorithms that reveal unique features in subcellular organization and cell spacing that correlate with the invasive potential. We expect that such features have significant diagnostic potential for basic in vitro studies that aim to improve our understanding of cancer development or response to treatments, and, ultimately can be applied in prognostic evaluation.
Collapse
Affiliation(s)
- Joanna Xylas
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - Addy Alt-Holland
- Division of Cancer Biology and Tissue Engineering, Department of Oral and Maxillofocial Pathology, School of Dental Medicine Tufts University, Boston, Massachusetts 02111, USA
| | - Jonathan Garlick
- Division of Cancer Biology and Tissue Engineering, Department of Oral and Maxillofocial Pathology, School of Dental Medicine Tufts University, Boston, Massachusetts 02111, USA
- Department of Endodontics, School of Dental Medicine Tufts University, Boston, Massachusetts 02111, USA
| | - Martin Hunter
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| |
Collapse
|
40
|
Raja AM, Xu S, Sun W, Zhou J, Tai DCS, Chen CS, Rajapakse JC, So PTC, Yu H. Pulse-modulated second harmonic imaging microscope quantitatively demonstrates marked increase of collagen in tumor after chemotherapy. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:056016. [PMID: 21054110 DOI: 10.1117/1.3497565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pulse-modulated second harmonic imaging microscopes (PM-SHIMs) exhibit improved signal-to-noise ratio (SNR) over conventional SHIMs on sensitive imaging and quantification of weak collagen signals inside tissues. We quantify the spatial distribution of sparse collagen inside a xenograft model of human acute myeloid leukemia (AML) tumor specimens treated with a new drug against receptor tyrosine kinase (ABT-869), and observe a significant increase in collagen area percentage, collagen fiber length, fiber width, and fiber number after chemotherapy. This finding reveals new insights into tumor responses to chemotherapy and suggests caution in developing new drugs and therapeutic regimens against cancers.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Collagen/metabolism
- Female
- Humans
- Image Interpretation, Computer-Assisted
- Indazoles/therapeutic use
- Lasers
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, SCID
- Microscopy/instrumentation
- Microscopy/methods
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Neoplasms/pathology
- Optical Phenomena
- Phenylurea Compounds/therapeutic use
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Anju M Raja
- A*STAR, Institute of Bioengineering and Nanotechnology, Singapore 138669
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Powe AM, Das S, Lowry M, El-Zahab B, Fakayode SO, Geng ML, Baker GA, Wang L, McCarroll ME, Patonay G, Li M, Aljarrah M, Neal S, Warner IM. Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry. Anal Chem 2010; 82:4865-94. [DOI: 10.1021/ac101131p] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Aleeta M. Powe
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Susmita Das
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Mark Lowry
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Bilal El-Zahab
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Sayo O. Fakayode
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Maxwell L. Geng
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Gary A. Baker
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Lin Wang
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Matthew E. McCarroll
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Gabor Patonay
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Min Li
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Mohannad Aljarrah
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Sharon Neal
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Isiah M. Warner
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| |
Collapse
|
42
|
Rueden CT, Conklin MW, Provenzano PP, Keely PJ, Eliceiri KW. Nonlinear optical microscopy and computational analysis of intrinsic signatures in breast cancer. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:4077-80. [PMID: 19964821 DOI: 10.1109/iembs.2009.5334523] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recently, new non-invasive imaging methods have been developed and applied to cellular and animal mammary models that have enabled breast cancer researchers to track key players and events in mammary metastasis. Noninvasive nonlinear optical methods such as multiphoton laser scanning microscopy (MPLSM), Fluorescence Lifetime Microscopy (FLIM) and second harmonic generation (SHG) imaging provide an unrivaled ability for obtaining high-resolution images from deep within tissue that can be exploited in the quest to understand breast cancer progression. These optical methods can add greatly to our knowledge of cancer progression by allowing key processes to be non-invasively imaged such as metabolism (on the basis of free and bound NADH detection via FLIM) and interactions with the extracellular matrix (SHG imaging of collagen). In this short application note we present a survey of our latest optical and computational efforts to study intrinsic fluorescence in breast cancer models. In particular we present the latest development in our SLIM Plotter application, an open source visualization program for interactive visualization and inspection of combined spectral lifetime (SLIM) data.
Collapse
Affiliation(s)
- Curtis T Rueden
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI 53706 USA.
| | | | | | | | | |
Collapse
|
43
|
Provenzano PP, Eliceiri KW, Keely PJ. Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin Exp Metastasis 2008; 26:357-70. [PMID: 18766302 DOI: 10.1007/s10585-008-9204-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Accepted: 08/03/2008] [Indexed: 12/12/2022]
Abstract
Cancer metastasis involves complex cell behavior and interaction with the extracellular matrix by metabolically active cells. To observe invasion and metastasis with sub-cellular resolution in vivo, multiphoton microscopy (MPM) allows imaging more deeply into tissues with less toxicity, compared with other optical imaging methods. MPM can be combined with second harmonic generation (SHG), fluorescent lifetime imaging microscopy (FLIM), and spectral-lifetime imaging microscopy (SLIM). SHG facilitates imaging of stromal collagen and tumor-stroma interactions, including the architecture and remodeling of the tumor microenvironment. FLIM allows characterization of exogenous and endogenous fluorophores, such as the metabolites FAD and NADH to score for metabolic state and provide optical biomarkers. SLIM permits additional identification and separation of endogenous and exogenous fluorophores by simultaneously collecting their spectra and lifetime, producing an optical molecular "fingerprint". Both FLIM and SLIM also serve as an improved method for the assessment of Förster (or fluorescence) resonance energy transfer (FRET). Hence, the use and further development of these approaches strongly enhances the visualization and quantification of tumor progression, invasion, and metastasis. Herein, we review recent developments of multiphoton FLIM and SLIM to study 2D and 3D cell migration, invasion into the tumor microenvironment, and metastasis.
Collapse
Affiliation(s)
- Paolo P Provenzano
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
44
|
Provenzano PP, Alejandro-Osorio AL, Grorud KW, Martinez DA, Vailas AC, Grindeland RE, Vanderby R. Systemic administration of IGF-I enhances healing in collagenous extracellular matrices: evaluation of loaded and unloaded ligaments. BMC PHYSIOLOGY 2007; 7:2. [PMID: 17386107 PMCID: PMC1851714 DOI: 10.1186/1472-6793-7-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 03/26/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND Insulin-like growth factor-I (IGF-I) plays a crucial role in wound healing and tissue repair. We tested the hypotheses that systemic administration of IGF-I, or growth hormone (GH), or both (GH+IGF-I) would improve healing in collagenous connective tissue, such as ligament. These hypotheses were examined in rats that were allowed unrestricted activity after injury and in animals that were subjected to hindlimb disuse. Male rats were assigned to three groups: ambulatory sham-control, ambulatory-healing, and hindlimb unloaded-healing. Ambulatory and hindlimb unloaded animals underwent surgical disruption of their knee medial collateral ligaments (MCLs), while sham surgeries were performed on control animals. Healing animals subcutaneously received systemic doses of either saline, GH, IGF-I, or GH+IGF-I. After 3 weeks, mechanical properties, cell and matrix morphology, and biochemical composition were examined in control and healing ligaments. RESULTS Tissues from ambulatory animals receiving only saline had significantly greater strength than tissue from saline receiving hindlimb unloaded animals. Addition of IGF-I significantly improved maximum force and ultimate stress in tissues from both ambulatory and hindlimb unloaded animals with significant increases in matrix organization and type-I collagen expression. Addition of GH alone did not have a significant effect on either group, while addition of GH+IGF-I significantly improved force, stress, and modulus values in MCLs from hindlimb unloaded animals. Force, stress, and modulus values in tissues from hindlimb unloaded animals receiving IGF-I or GH+IGF-I exceeded (or were equivalent to) values in tissues from ambulatory animals receiving only saline with greatly improved structural organization and significantly increased type-I collagen expression. Furthermore, levels of IGF-receptor were significantly increased in tissues from hindlimb unloaded animals treated with IGF-I. CONCLUSION These results support two of our hypotheses that systemic administration of IGF-I or GH+IGF-I improve healing in collagenous tissue. Systemic administration of IGF-I improves healing in collagenous extracellular matrices from loaded and unloaded tissues. Growth hormone alone did not result in any significant improvement contrary to our hypothesis, while GH + IGF-I produced remarkable improvement in hindlimb unloaded animals.
Collapse
Affiliation(s)
- Paolo P Provenzano
- Dept. of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | | | - Kelley W Grorud
- Dept. of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Dept. of Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI, USA
| | - Daniel A Martinez
- Dept. Health and Human Performance, University of Houston, Houston, TX, USA
- Dept. of Mechanical Engineering and The Biomedical Engineering Program, University of Houston, Houston, TX, USA
| | - Arthur C Vailas
- Dept. of Mechanical Engineering and The Biomedical Engineering Program, University of Houston, Houston, TX, USA
| | - Richard E Grindeland
- Life Sciences Research Division, NASA-Ames Research Center, Moffett Field, CA, USA
| | - Ray Vanderby
- Dept. of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Dept. of Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
45
|
Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 2006; 4:38. [PMID: 17190588 PMCID: PMC1781458 DOI: 10.1186/1741-7015-4-38] [Citation(s) in RCA: 1280] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Accepted: 12/26/2006] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Stromal-epithelial interactions are of particular significance in breast tissue as misregulation of these interactions can promote tumorigenesis and invasion. Moreover, collagen-dense breast tissue increases the risk of breast carcinoma, although the relationship between collagen density and tumorigenesis is not well understood. As little is known about epithelial-stromal interactions in vivo, it is necessary to visualize the stroma surrounding normal epithelium and mammary tumors in intact tissues to better understand how matrix organization, density, and composition affect tumor formation and progression. METHODS Epithelial-stromal interactions in normal mammary glands, mammary tumors, and tumor explants in three-dimensional culture were studied with histology, electron microscopy, and nonlinear optical imaging methodologies. Imaging of the tumor-stromal interface in live tumor tissue ex vivo was performed with multiphoton laser-scanning microscopy (MPLSM) to generate multiphoton excitation (MPE) of endogenous fluorophores and second harmonic generation (SHG) to image stromal collagen. RESULTS We used both laser-scanning multiphoton and second harmonic generation microscopy to determine the organization of specific collagen structures around ducts and tumors in intact, unfixed and unsectioned mammary glands. Local alterations in collagen density were clearly seen, allowing us to obtain three-dimensional information regarding the organization of the mammary stroma, such as radiating collagen fibers that could not have been obtained using classical histological techniques. Moreover, we observed and defined three tumor-associated collagen signatures (TACS) that provide novel markers to locate and characterize tumors. In particular, local cell invasion was found predominantly to be oriented along certain aligned collagen fibers, suggesting that radial alignment of collagen fibers relative to tumors facilitates invasion. Consistent with this observation, primary tumor explants cultured in a randomly organized collagen matrix realigned the collagen fibers, allowing individual tumor cells to migrate out along radially aligned fibers. CONCLUSION The presentation of these tumor-associated collagen signatures allowed us to identify pre-palpable tumors and see cells at the tumor-stromal boundary invading into the stroma along radially aligned collagen fibers. As such, TACS should provide indications that a tumor is, or could become, invasive, and may serve as part of a strategy to help identify and characterize breast tumors in animal and human tissues.
Collapse
Affiliation(s)
- Paolo P Provenzano
- Department of Pharmacology, University of Wisconsin, Madison, WI, USA
- Molecular Biology Program, Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI, USA
| | - Kevin W Eliceiri
- Molecular Biology Program, Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI, USA
| | - Jay M Campbell
- Molecular Biology Program, Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI, USA
| | - David R Inman
- Department of Pharmacology, University of Wisconsin, Madison, WI, USA
| | - John G White
- Molecular Biology Program, Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI, USA
| | - Patricia J Keely
- Department of Pharmacology, University of Wisconsin, Madison, WI, USA
- Molecular Biology Program, Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI, USA
| |
Collapse
|