1
|
Conn KA, Zou S, Das J, Alexander S, Burne TH, Kesby JP. Activating the dorsomedial and ventral midbrain projections to the striatum differentially impairs goal-directed action in male mice. Neuropharmacology 2023; 234:109550. [PMID: 37085011 DOI: 10.1016/j.neuropharm.2023.109550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/29/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
The cognitive symptoms of schizophrenia are wide ranging and include impaired goal-directed action. This could be driven by an increase in dopamine transmission in the dorsomedial striatum, a pathophysiological hallmark of schizophrenia. Although commonly associated with psychotic symptoms, dopamine signalling in this region also modulates associative learning that aids in the execution of actions. To gain a better understanding of the role of subcortical dopamine in learning and decision-making, we assessed goal-directed action in male mice using the cross-species outcome-specific devaluation task (ODT). First, we administered systemic amphetamine during training to determine the impact of altered dopaminergic signaling on associative learning. Second, we used pathway-specific chemogenetic approaches to activate the dorsomedial and ventral striatal pathways (that originate in the midbrain) to separately assess learning and performance. Amphetamine treatment during learning led to a dose-dependent impairment in goal-directed action. Activation of both striatal pathways during learning also impaired performance. However, when these pathways were activated during choice, only activation of the ventral pathway impaired goal-directed action. This suggests that elevated transmission in the dorsomedial striatal pathway impairs associative learning processes that guide the goal-directed execution of actions. By contrast, elevated transmission of the ventral striatal pathway disrupts the encoding of outcome values that are important for both associative learning and choice performance. These findings highlight the differential roles of the dorsomedial and ventral inputs into the striatum in goal-directed action and provides insight into how striatal dopamine signaling may contribute to the cognitive problems in those with schizophrenia.
Collapse
Affiliation(s)
- Kyna-Anne Conn
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Simin Zou
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Joyosmita Das
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Suzy Alexander
- Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia
| | - Thomas Hj Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia; Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia
| | - James P Kesby
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia; Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia; QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.
| |
Collapse
|
2
|
Jovita-Farias C, Follett ME, Dias-Junior BC, Serra YA, Kisaki ND, Barros-Santos T, de Jesus NMS, Rodrigues IRS, Macedo LEL, Malpezzi-Marinho ELA, Oliveira-Lima AJ, Marinho EAV, Rowlett JK, Berro LF. Individual differences in the effects of midazolam on anxiety-like behavior, learning, reward, and choice behavior in male mice. Front Psychiatry 2023; 14:1122568. [PMID: 36937711 PMCID: PMC10021295 DOI: 10.3389/fpsyt.2023.1122568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction The aim of the present study was to investigate the behavioral effects of the benzodiazepine midazolam in male mice, in models of anxiolysis, learning, and abuse-related effects. Methods In a first set of experiments, male Swiss mice were submitted to the training session of a discriminative avoidance (DA) task on the elevated plus maze to evaluate anxiety-like behavior and learning after vehicle or midazolam (1, 2 or 5 mg/kg, i.g.) administration. The same animals were submitted to a conditioned place preference (CPP) protocol with midazolam (1, 2 or 5 mg/kg, i.g.). In a second experiment, outbred (Swiss) and inbred (C57BL/6) male mice were submitted to a two-bottle choice (TBC) oral midazolam drinking procedure. Animals were exposed to one sucrose bottle and one midazolam (0.008, 0.016 or 0.032 mg/ml) plus sucrose bottle. Results Midazolam (1 and 2 mg/kg) induced anxiolytic-like effects, and all doses of midazolam prevented animals from learning to avoid the aversive closed arm during the DA training session. Assessment of midazolam reward via the CPP procedure and choice via the TBC procedure showed notable variability. A 2-step cluster analysis for the CPP data showed that midazolam data were well-fitted to 2 separate clusters (preference vs. aversion), albeit with the majority of mice showing preference (75%). Correlational and regression analyses showed no relationship between midazolam reward and anxiolytic-like effects (time spent in the open arms in the DA test) or learning/memory. Two-step cluster analysis of the TBC data also demonstrated that, regardless of strain, mice overall fell into two clusters identified as midazolam-preferring or midazolam-avoiding groups. Both midazolam preference and avoidance were concentration-dependent in a subset of mice. Discussion Our findings show that midazolam preference is a multifactorial behavior, and is not dependent solely on the emergence of therapeutic (anxiolytic-like) effects, learning impairments, or on genetic factors (inbred vs. outbred animals).
Collapse
Affiliation(s)
- Caio Jovita-Farias
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Meagan E. Follett
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Behaim C. Dias-Junior
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Yasmim A. Serra
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Natali D. Kisaki
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Thaísa Barros-Santos
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | | | - Isa R. S. Rodrigues
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Larissa E. L. Macedo
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | | | | | | | - James K. Rowlett
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lais F. Berro
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
3
|
Liu Y, Pan Y, Curtis TJ, Wang Z. Amphetamine exposure alters behaviors, and neuronal and neurochemical activation in the brain of female prairie voles. Neuroscience 2022; 498:73-84. [PMID: 35798262 PMCID: PMC9420825 DOI: 10.1016/j.neuroscience.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Previous studies have shown that 3-day d-amphetamine (AMPH) treatment effectively induced conditioned place preferences (CPP) and impaired pair bonding behaviors in prairie voles (Microtus ochrogaster). Using this established animal model and treatment regimen, we examined the effects of the demonstrated threshold rewarding dose of AMPH on various behaviors and their potential underlying neurochemical systems in the brain of female prairie voles. Our data show that 3-day AMPH injections (0.2 mg/kg/day) impaired social recognition and decreased depressive-like behavior in females without affecting their locomotion and anxiety-like behaviors. AMPH treatment also decreased neuronal activation indicated by the labeling of the early growth response protein 1 (Egr-1) as well as the number of neurons double-labeled for Egr-1 and corticotrophin-releasing hormone (CRH) in the dentate gyrus (DG) of the hippocampus and paraventricular nucleus of the hypothalamus (PVN) in the brain. Further, AMPH treatment decreased the number of neurons double-labeled for Egr-1 and tyrosine hydroxylase (TH) but did not affect oxytocinergic neurons in the PVN or cell proliferation and neurogenesis markers in the DG. These data not only demonstrate potential roles of the brain CRH and dopamine systems in mediating disrupted social recognition and depressive-like behaviors by AMPH in female prairie voles, but also further confirm the utility of the prairie vole model for studying interactions between psychostimulants and social behaviors.
Collapse
Affiliation(s)
- Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Yongliang Pan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China
| | - Thomas J Curtis
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
4
|
Squire H, Youn J, Ellenbroek BA, Harper DN. The role of dopamine D1 receptors in MDMA-induced memory impairments. Neurobiol Learn Mem 2020; 176:107322. [DOI: 10.1016/j.nlm.2020.107322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/15/2020] [Accepted: 09/30/2020] [Indexed: 11/24/2022]
|
5
|
Zarrindast MR, Khakpai F. State-dependent memory and its modulation by different brain areas and neurotransmitters. EXCLI JOURNAL 2020; 19:1081-1099. [PMID: 33013265 PMCID: PMC7527511 DOI: 10.17179/excli2020-2612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/27/2020] [Indexed: 11/10/2022]
Abstract
The state-dependent memory defines as a state that the retrieval of recently obtained information may be potential if the subject exists in a similar physiological situation as for the period of the encoding stage. Studies revealed that exogenous and endogenous compounds could induce state-dependent memory. The state-dependent memory made it probable to differentiate the effects of drugs per se on learning from the effects due to alterations in drug state during the task. Studies proposed the role of regions beyond the limbic formation and illustrated that state-dependent memory produced by various neurotransmitter systems and pharmacological compounds. Our review of the literature revealed that: (a) re-administration of drugs on the same state induce state-dependent memory; (b) many neurotransmitters induce endogenous state-dependent memory; (c) there are cross state-dependent learning and memory between some drugs; (d) some sites of the brain including the CA1 areas of the hippocampus, central nucleus of the amygdala (CeA), septum, ventral tegmental area (VTA), and nucleus accumbens (NAC) are involved in state-dependent memory. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Mergy MA, Gowrishankar R, Davis GL, Jessen TN, Wright J, Stanwood GD, Hahn MK, Blakely RD. Genetic targeting of the amphetamine and methylphenidate-sensitive dopamine transporter: on the path to an animal model of attention-deficit hyperactivity disorder. Neurochem Int 2014; 73:56-70. [PMID: 24332984 PMCID: PMC4177817 DOI: 10.1016/j.neuint.2013.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 11/20/2013] [Accepted: 11/23/2013] [Indexed: 12/20/2022]
Abstract
Alterations in dopamine (DA) signaling underlie the most widely held theories of molecular and circuit level perturbations that lead to risk for attention-deficit hyperactivity disorder (ADHD). The DA transporter (DAT), a presynaptic reuptake protein whose activity provides critical support for DA signaling by limiting DA action at pre- and postsynaptic receptors, has been consistently associated with ADHD through pharmacological, behavioral, brain imaging and genetic studies. Currently, the animal models of ADHD exhibit significant limitations, stemming in large part from their lack of construct validity. To remedy this situation, we have pursued the creation of a mouse model derived from a functional nonsynonymous variant in the DAT gene (SLC6A3) of ADHD probands. We trace our path from the identification of these variants to in vitro biochemical and physiological studies to the production of the DAT Val559 mouse model. We discuss our initial findings with these animals and their promise in the context of existing rodent models of ADHD.
Collapse
Affiliation(s)
- Marc A Mergy
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Raajaram Gowrishankar
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gwynne L Davis
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tammy N Jessen
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jane Wright
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gregg D Stanwood
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Maureen K Hahn
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Randy D Blakely
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
7
|
Talhati F, Patti CL, Zanin KA, Lopes-Silva LB, Ceccon LMB, Hollais AW, Bizerra CS, Santos R, Tufik S, Frussa-Filho R. Food restriction increases long-term memory persistence in adult or aged mice. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:125-36. [PMID: 24361378 DOI: 10.1016/j.pnpbp.2013.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 12/30/2022]
Abstract
Food restriction (FR) seems to be the unique experimental manipulation that leads to a remarkable increase in lifespan in rodents. Evidences have suggested that FR can enhance memory in distinct animal models mainly during aging. However, only few studies systemically evaluated the effects FR on memory formation in both adult (3-month-old) and aged (18-24-month-old) mice. Thus, the aim of the present study was to investigate the effects of acute (12h) or repeated (12h/day for 2days) FR protocols on learning and memory of adult and aged mice evaluated in the plus-maze discriminative avoidance task (PM-DAT), an animal model that concurrently (but independently) evaluates learning and memory, anxiety and locomotion. We also investigated the possible role of FR-induced stress by the corticosterone concentration in adult mice. Male mice were kept at home cage with food ad libitum (CTRL-control condition) or subjected to FR during the dark phase of the cycle for 12h/day or 12h/2days. The FR protocols were applied before training, immediately after it or before testing. Our results demonstrated that only FR for 2days enhanced memory persistence when applied before training in adults and before testing in aged mice. Conversely, FR for 2days impaired consolidation and exerted no effects on retrieval irrespective of age. These effects do not seem to be related to corticosterone concentration. Collectively, these results indicate that FR for 2days can promote promnestic effects not only in aged mice but also in adults.
Collapse
Affiliation(s)
- F Talhati
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062, São Paulo, SP, Brazil
| | - C L Patti
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062, São Paulo, SP, Brazil.
| | - K A Zanin
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062, São Paulo, SP, Brazil; Departamento de Psicobiologia, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04024002, São Paulo, SP, Brazil
| | - L B Lopes-Silva
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062, São Paulo, SP, Brazil; Departamento de Psicobiologia, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04024002, São Paulo, SP, Brazil
| | - L M B Ceccon
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062, São Paulo, SP, Brazil
| | - A W Hollais
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062, São Paulo, SP, Brazil
| | - C S Bizerra
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062, São Paulo, SP, Brazil
| | - R Santos
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062, São Paulo, SP, Brazil
| | - S Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04024002, São Paulo, SP, Brazil
| | - R Frussa-Filho
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Takatsu-Coleman AL, Zanin KA, Patti CL, Zager A, Lopes-Silva LB, Longo BM, Tufik S, Andersen ML, Frussa-Filho R. Short-term sleep deprivation reinstates memory retrieval in mice: the role of corticosterone secretion. Psychoneuroendocrinology 2013; 38:1967-78. [PMID: 23545263 DOI: 10.1016/j.psyneuen.2013.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/23/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
Abstract
While the effects of sleep deprivation (SD) on the acquisition and consolidation phases of memory have been extensively characterized, its effects on memory retrieval remain overlooked. SD alone is a stressor, and stress-activated glucocorticoids promote bimodal effects on memory. Because we have recently demonstrated that 72h SD impairs memory retrieval in the plus-maze discriminative avoidance task (PM-DAT) in mice, this study investigated whether shorter SD periods would facilitate retrieval. In Experiment I, the temporal forgetting curve of the PM-DAT was determined and an interval between training/testing in which retrieval was no longer present was used in all subsequent experiments. In Experiments II and III, retrieval performance and corticosterone concentration, respectively, were quantified in mice that were sleep deprived for 12 or 24h before testing. In Experiments IV and V, the effects of the corticosterone synthesis inhibitor metyrapone were evaluated on 12h SD-induced retrieval reinstatement and corticosterone concentration enhancement, respectively. Experiment VI determined whether pre-test acute administration of exogenous corticosterone would mimic the facilitatory effects of 12h SD on retrieval. Thirty days after training, mice presented poor performance of the task; however, SD for 12h (but not for 24) before testing reinstated memory retrieval. This facilitatory effect was accompanied by increased corticosterone concentration, abolished by metyrapone, and mimicked by pre-test acute corticosterone administration. Collectively, short-term SD can facilitate memory retrieval by enhancing corticosterone secretion. This facilitatory effect is abolished by longer periods of SD.
Collapse
Affiliation(s)
- André L Takatsu-Coleman
- Departamento de Farmacologia, Universidade Federal de São Paulo, Rua Botucatu 862, Ed. Leal Prado, 1(o) andar, 04023062 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zanin KA, Patti CL, Sanday L, Fernandes-Santos L, Oliveira LC, Poyares D, Tufik S, Frussa-Filho R. Effects of zolpidem on sedation, anxiety, and memory in the plus-maze discriminative avoidance task. Psychopharmacology (Berl) 2013; 226:459-74. [PMID: 22729271 DOI: 10.1007/s00213-012-2756-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/21/2012] [Indexed: 01/01/2023]
Abstract
RATIONALE Zolpidem (Zolp), a hypnotic drug prescribed to treat insomnia, may have negative effects on memory, but reports are inconsistent. OBJECTIVES We examined the effects of acute doses of Zolp (2, 5, or 10 mg/kg, i.p.) on memory formation (learning, consolidation, and retrieval) using the plus-maze discriminative avoidance task. METHODS Mice were acutely treated with Zolp 30 min before training or testing. In addition, the effects of Zolp and midazolam (Mid; a classic benzodiazepine) on consolidation at different time points were examined. The possible role of state dependency was investigated using combined pre-training and pre-test treatments. RESULTS Zolp produced a dose-dependent sedative effect, without modifying anxiety-like behavior. The pre-training administration of 5 or 10 mg/kg resulted in retention deficits. When administered immediately after training or before testing, memory was preserved. Zolp post-training administration (2 or 3 h) impaired subsequent memory. There was no participation of state dependency phenomenon in the amnestic effects of Zolp. Similar to Zolp, Mid impaired memory consolidation when administered 1 h after training. CONCLUSIONS Amnestic effects occurred when Zolp was administered either before or 2-3 h after training. These memory deficits are not related to state dependency. Moreover, Zolp did not impair memory retrieval. Notably, the memory-impairing effects of Zolp are similar to those of Mid, with the exception of the time point at which the drug can modify consolidation. Finally, the memory effects were unrelated to sedation or anxiolysis.
Collapse
Affiliation(s)
- Karina A Zanin
- Departamento de Psicobiologia, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04024002 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|