1
|
Hart DA. Lithium Ions as Modulators of Complex Biological Processes: The Conundrum of Multiple Targets, Responsiveness and Non-Responsiveness, and the Potential to Prevent or Correct Dysregulation of Systems during Aging and in Disease. Biomolecules 2024; 14:905. [PMID: 39199293 PMCID: PMC11352090 DOI: 10.3390/biom14080905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Lithium is one of the lightest elements on Earth and it has been in the environment since the formation of the galaxy. While a common element, it has not been found to be an essential element in biological processes, ranging from single cell organisms to Homo sapiens. Instead, at an early stage of evolution, organisms committed to a range of elements such as sodium, potassium, calcium, magnesium, zinc, and iron to serve essential functions. Such ions serve critical functions in ion channels, as co-factors in enzymes, as a cofactor in oxygen transport, in DNA replication, as a storage molecule in bone and liver, and in a variety of other roles in biological processes. While seemingly excluded from a major essential role in such processes, lithium ions appear to be able to modulate a variety of biological processes and "correct" deviation from normal activity, as a deficiency of lithium can have biological consequences. Lithium salts are found in low levels in many foods and water supplies, but the effectiveness of Li salts to affect biological systems came to recent prominence with the work of Cade, who reported that administrating Li salts calmed guinea pigs and was subsequently effective at relatively high doses to "normalize" a subset of patients with bipolar disorders. Because of its ability to modulate many biological pathways and processes (e.g., cyclic AMP, GSK-3beta, inositol metabolism, NaK ATPases, neuro processes and centers, immune-related events, respectively) both in vitro and in vivo and during development and adult life, Li salts have become both a useful tool to better understand the molecular regulation of such processes and to also provide insights into altered biological processes in vivo during aging and in disease states. While the range of targets for lithium action supports its possible role as a modulator of biological dysregulation, it presents a conundrum for researchers attempting to elucidate its specific primary target in different tissues in vivo. This review will discuss aspects of the state of knowledge regarding some of the systems that can be influenced, focusing on those involving neural and autoimmunity as examples, some of the mechanisms involved, examples of how Li salts can be used to study model systems, as well as suggesting areas where the use of Li salts could lead to additional insights into both disease mechanisms and natural processes at the molecular and cell levels. In addition, caveats regarding lithium doses used, the strengths and weaknesses of rodent models, the background genetics of the strain of mice or rats employed, and the sex of the animals or the cells used, are discussed. Low-dose lithium may have excellent potential, alone or in combination with other interventions to prevent or alleviate aging-associated conditions and disease progression.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
2
|
Moon YK, Kim H, Kim S, Lim SW, Kim DK. Influence of antidepressant treatment on SLC6A4 methylation in Korean patients with major depression. Am J Med Genet B Neuropsychiatr Genet 2023; 192:28-37. [PMID: 36094099 DOI: 10.1002/ajmg.b.32921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/07/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Genetic variation of the serotonin transporter gene (SLC6A4) has been suggested as potential mediator for antidepressant response in patients with depression. This study aimed to determine whether DNA methylation in SLC6A4 changes after antidepressant treatment and whether it affects treatment response in patients with depression. Overall, 221 Korean patients with depression completed 6 weeks of selective serotonin reuptake inhibitor (SSRI) monotherapy. DNA was extracted from venous blood pre- and post-treatment, and DNA methylation was analyzed using polymerase chain reaction. We used Wilcoxon's signed-rank test to verify the difference in methylation after treatment. Treatment response was assessed using the 17-item Hamilton Depression Rating Scale, and mRNA levels were quantified. After adjusting for relevant covariates, DNA methylation was significantly altered in specific CpG sites in SLC6A4 (p < .001 in CpG3, CpG4, and CpG5) following 6 weeks of treatment. Methylation change's magnitude (ΔDNA methylation) after drug treatment was not associated with treatment response or mRNA level change. SSRI antidepressants can influence SLC6A4 methylation in patients with depression. However, ΔDNA methylation at CpG3, CpG4, and CpG5 in SLC6A4 was not associated with treatment response. Future studies should investigate the integrative effect of other genetic variants and CpG methylation on gene transcription and antidepressant treatment response.
Collapse
Affiliation(s)
- Young Kyung Moon
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyeseung Kim
- Statistics and Data Center, Samsung Medical Center, Seoul, South Korea
| | - Seonwoo Kim
- Statistics and Data Center, Samsung Medical Center, Seoul, South Korea
| | - Shinn-Won Lim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Doh Kwan Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Alameda L, Trotta G, Quigley H, Rodriguez V, Gadelrab R, Dwir D, Dempster E, Wong CCY, Forti MD. Can epigenetics shine a light on the biological pathways underlying major mental disorders? Psychol Med 2022; 52:1645-1665. [PMID: 35193719 PMCID: PMC9280283 DOI: 10.1017/s0033291721005559] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/30/2021] [Accepted: 12/29/2021] [Indexed: 12/27/2022]
Abstract
A significant proportion of the global burden of disease can be attributed to mental illness. Despite important advances in identifying risk factors for mental health conditions, the biological processing underlying causal pathways to disease onset remain poorly understood. This represents a limitation to implement effective prevention and the development of novel pharmacological treatments. Epigenetic mechanisms have emerged as mediators of environmental and genetic risk factors which might play a role in disease onset, including childhood adversity (CA) and cannabis use (CU). Particularly, human research exploring DNA methylation has provided new and promising insights into the role of biological pathways implicated in the aetio-pathogenesis of psychiatric conditions, including: monoaminergic (Serotonin and Dopamine), GABAergic, glutamatergic, neurogenesis, inflammatory and immune response and oxidative stress. While these epigenetic changes have been often studied as disease-specific, similarly to the investigation of environmental risk factors, they are often transdiagnostic. Therefore, we aim to review the existing literature on DNA methylation from human studies of psychiatric diseases (i) to identify epigenetic modifications mapping onto biological pathways either transdiagnostically or specifically related to psychiatric diseases such as Eating Disorders, Post-traumatic Stress Disorder, Bipolar and Psychotic Disorder, Depression, Autism Spectrum Disorder and Anxiety Disorder, and (ii) to investigate a convergence between some of these epigenetic modifications and the exposure to known risk factors for psychiatric disorders such as CA and CU, as well as to other epigenetic confounders in psychiatry research.
Collapse
Affiliation(s)
- Luis Alameda
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Departamento de Psiquiatría, Centro Investigación Biomedica en Red de Salud Mental (CIBERSAM), Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, Spain
| | - Giulia Trotta
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
| | - Harriet Quigley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Victoria Rodriguez
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Romayne Gadelrab
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniella Dwir
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Emma Dempster
- University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, UK
| | - Chloe C. Y. Wong
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
| | - Marta Di Forti
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
4
|
Pisanu C, Meloni A, Severino G, Squassina A. Genetic and Epigenetic Markers of Lithium Response. Int J Mol Sci 2022; 23:1555. [PMID: 35163479 PMCID: PMC8836013 DOI: 10.3390/ijms23031555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 01/25/2023] Open
Abstract
The mood stabilizer lithium represents a cornerstone in the long term treatment of bipolar disorder (BD), although with substantial interindividual variability in clinical response. This variability appears to be modulated by genetics, which has been significantly investigated in the last two decades with some promising findings. In addition, recently, the interest in the role of epigenetics has grown significantly, since the exploration of these mechanisms might allow the elucidation of the gene-environment interactions and explanation of missing heritability. In this article, we provide an overview of the most relevant findings regarding the pharmacogenomics and pharmacoepigenomics of lithium response in BD. We describe the most replicated findings among candidate gene studies, results from genome-wide association studies (GWAS) as well as post-GWAS approaches supporting an association between high genetic load for schizophrenia, major depressive disorder or attention deficit/hyperactivity disorder and poor lithium response. Next, we describe results from studies investigating epigenetic mechanisms, such as changes in methylation or noncoding RNA levels, which play a relevant role as regulators of gene expression. Finally, we discuss challenges related to the search for the molecular determinants of lithium response and potential future research directions to pave the path towards a biomarker guided approach in lithium treatment.
Collapse
Affiliation(s)
- Claudia Pisanu
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.M.); (G.S.); (A.S.)
- Section of Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, 75124 Uppsala, Sweden
| | - Anna Meloni
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.M.); (G.S.); (A.S.)
| | - Giovanni Severino
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.M.); (G.S.); (A.S.)
| | - Alessio Squassina
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.M.); (G.S.); (A.S.)
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2E2, Canada
| |
Collapse
|
5
|
Du J, Nakachi Y, Kiyono T, Fujii S, Kasai K, Bundo M, Iwamoto K. Comprehensive DNA Methylation Analysis of Human Neuroblastoma Cells Treated With Haloperidol and Risperidone. Front Mol Neurosci 2021; 14:792874. [PMID: 34938161 PMCID: PMC8687450 DOI: 10.3389/fnmol.2021.792874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence suggests that the epigenetic alterations induced by antipsychotics contribute to the therapeutic efficacy. However, global and site-specific epigenetic changes by antipsychotics and those shared by different classes of antipsychotics remain poorly understood. We conducted a comprehensive DNA methylation analysis of human neuroblastoma cells cultured with antipsychotics. The cells were cultured with low and high concentrations of haloperidol or risperidone for 8 days. DNA methylation assay was performed with the Illumina HumanMethylation450 BeadChip. We found that both haloperidol and risperidone tended to cause hypermethylation changes and showed similar DNA methylation changes closely related to neuronal functions. A total of 294 differentially methylated probes (DMPs), including 197 hypermethylated and 97 hypomethylated DMPs, were identified with both haloperidol and risperidone treatment. Gene ontology analysis of the hypermethylated probe-associated genes showed enrichment of genes related to the regulation of neurotransmitter receptor activity and lipoprotein lipase activity. Pathway analysis identified that among the DMP-associated genes, SHANK1 and SHANK2 were the major genes in the neuropsychiatric disorder-related pathways. Our data would be valuable for understanding the mechanisms of action of antipsychotics from an epigenetic viewpoint.
Collapse
Affiliation(s)
- Jianbin Du
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoki Kiyono
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinya Fujii
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan.,University of Tokyo Center for Integrative Science of Human Behavior (CiSHuB), Tokyo, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Mini review: Recent advances on epigenetic effects of lithium. Neurosci Lett 2021; 761:136116. [PMID: 34274436 DOI: 10.1016/j.neulet.2021.136116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022]
Abstract
Lithium (Li) remains the first line long-term treatment of bipolar disorders notwithstanding a high inter-individual variability of response. Significant research effort has been undertaken to understand the molecular mechanisms underlying Li cellular and clinical effects in order to identify predictive biomarkers of response. Li response has been shown to be partly heritable, however mechanisms that do not rely on DNA variants could also be involved. In recent years, modulation of epigenetic marks in relation with the level of Li response has appeared increasingly plausible. Recent results in this field of research have provided new insights into the molecular processes involved in Li effects. In this review, we examined the literature investigating the involvement of three epigenetic mechanisms (DNA methylation, noncoding RNAs and histone modifications) in Li clinical efficacy in bipolar disorder.
Collapse
|
7
|
Bundo M, Ueda J, Nakachi Y, Kasai K, Kato T, Iwamoto K. Decreased DNA methylation at promoters and gene-specific neuronal hypermethylation in the prefrontal cortex of patients with bipolar disorder. Mol Psychiatry 2021; 26:3407-3418. [PMID: 33875800 PMCID: PMC8505249 DOI: 10.1038/s41380-021-01079-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/06/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Abstract
Bipolar disorder (BD) is a severe mental disorder characterized by repeated mood swings. Although genetic factors are collectively associated with the etiology of BD, the underlying molecular mechanisms, particularly how environmental factors affect the brain, remain largely unknown. We performed promoter-wide DNA methylation analysis of neuronal and nonneuronal nuclei in the prefrontal cortex of patients with BD (N = 34) and controls (N = 35). We found decreased DNA methylation at promoters in both cell types in the BD patients. Gene Ontology (GO) analysis of differentially methylated region (DMR)-associated genes revealed enrichment of molecular motor-related genes in neurons, chemokines in both cell types, and ion channel- and transporter-related genes in nonneurons. Detailed GO analysis further revealed that growth cone- and dendrite-related genes, including NTRK2 and GRIN1, were hypermethylated in neurons of BD patients. To assess the effect of medication, neuroblastoma cells were cultured under therapeutic concentrations of three mood stabilizers. We observed that up to 37.9% of DMRs detected in BD overlapped with mood stabilizer-induced DMRs. Interestingly, mood stabilizer-induced DMRs showed the opposite direction of changes in DMRs, suggesting the therapeutic effects of mood stabilizers. Among the DMRs, 12 overlapped with loci identified in a genome-wide association study (GWAS) of BD. We also found significant enrichment of neuronal DMRs in the loci reported in another GWAS of BD. Finally, we performed qPCR of DNA methylation-related genes and found that DNMT3B was overexpressed in BD. The cell-type-specific DMRs identified in this study will be useful for understanding the pathophysiology of BD.
Collapse
Affiliation(s)
- Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junko Ueda
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan.
- Department of Psychiatry and Behavioral Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
8
|
Dada O, Adanty C, Dai N, Jeremian R, Alli S, Gerretsen P, Graff A, Strauss J, De Luca V. Biological aging in schizophrenia and psychosis severity: DNA methylation analysis. Psychiatry Res 2021; 296:113646. [PMID: 33444986 DOI: 10.1016/j.psychres.2020.113646] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/10/2020] [Indexed: 01/08/2023]
Abstract
The physiological changes associated with normal aging are known to occur earlier in individuals with schizophrenia (SCZ). One of the phenomena linked with normal aging is the change in patterns of epigenetic modifications. We recruited 138 individuals with SCZ spectrum disorders and extracted DNA from white blood cells. The combinations of pre-selected DNA methylation sites were utilized to estimate the 'methylation age' (DNAm age) and evaluate evidence of epigenetic age acceleration. We investigated the correlation between the epigenetic age acceleration measures and psychosis severity; furthermore, we estimated blood cell counts based on DNA methylation levels. The extrinsic epigenetic age acceleration showed a significant correlation with the Brief Psychiatric Rating Scale (BPRS) disorganization subscale(r=0.222, p=0.039).Both Horvath age acceleration and Hannum age acceleration showed a significant correlation (r=0.221, p=0.029; r=0.242, p=0.017 respectively) with the Symptom Checklist 90 (SCL-90) psychotic domain. Overall, this study shows some evidence of epigenetic age acceleration associated with psychosis severity using two different algorithms for DNAm age analysis.
Collapse
Affiliation(s)
- Oluwagbenga Dada
- CAMH, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Christopher Adanty
- CAMH, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Nasia Dai
- CAMH, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Richie Jeremian
- CAMH, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Sauliha Alli
- CAMH, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Philip Gerretsen
- CAMH, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ariel Graff
- CAMH, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - John Strauss
- CAMH, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Vincenzo De Luca
- CAMH, Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Legrand A, Iftimovici A, Khayachi A, Chaumette B. Epigenetics in bipolar disorder: a critical review of the literature. Psychiatr Genet 2021; 31:1-12. [PMID: 33290382 DOI: 10.1097/ypg.0000000000000267] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Bipolar disorder (BD) is a chronic, disabling disease characterised by alternate mood episodes, switching through depressive and manic/hypomanic phases. Mood stabilizers, in particular lithium salts, constitute the cornerstone of the treatment in the acute phase as well as for the prevention of recurrences. The pathophysiology of BD and the mechanisms of action of mood stabilizers remain largely unknown but several pieces of evidence point to gene x environment interactions. Epigenetics, defined as the regulation of gene expression without genetic changes, could be the molecular substrate of these interactions. In this literature review, we summarize the main epigenetic findings associated with BD and response to mood stabilizers. METHODS We searched PubMed, and Embase databases and classified the articles depending on the epigenetic mechanisms (DNA methylation, histone modifications and non-coding RNAs). RESULTS We present the different epigenetic modifications associated with BD or with mood-stabilizers. The major reported mechanisms were DNA methylation, histone methylation and acetylation, and non-coding RNAs. Overall, the assessments are poorly harmonized and the results are more limited than in other psychiatric disorders (e.g. schizophrenia). However, the nature of BD and its treatment offer excellent opportunities for epigenetic research: clear impact of environmental factors, clinical variation between manic or depressive episodes resulting in possible identification of state and traits biomarkers, documented impact of mood-stabilizers on the epigenome. CONCLUSION Epigenetic is a growing and promising field in BD that may shed light on its pathophysiology or be useful as biomarkers of response to mood-stabilizer.
Collapse
Affiliation(s)
- Adrien Legrand
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris
| | - Anton Iftimovici
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris
- Neurospin, CEA, Gif-sur-Yvette, France
| | - Anouar Khayachi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Boris Chaumette
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
10
|
Wu X, Xu FL, Xia X, Wang BJ, Yao J. MicroRNA-15a, microRNA-15b and microRNA-16 inhibit the human dopamine D1 receptor expression in four cell lines by targeting 3'UTR -12 bp to + 154 bp. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:276-287. [PMID: 31858826 DOI: 10.1080/21691401.2019.1703729] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background: The abnormal expression Dopamine D1 receptor (DRD1) gives rise to the dysfunction of dopaminergic neurotransmitter and may be associated with the occurrence of schizophrenia. MicroRNAs (miRNAs) can regulate the DRD1 expression by binding 3'UTR and be involved in the post-transcriptional regulation.Methods: We first constructed the pmirGLO-recombined vectors of series of DRD1 gene 3'UTR-truncated fragments and performed the luciferase receptor assay to screen the underlying 3'UTR sequence targeted by miRNAs. Then, we predicted the potential miRNAs binding the target sequence and confirmed their effects using luciferase receptor assay after transfection of the miRNA mimics/inhibitors. We also examined the effects of the miRNA on the endogenous DRD1 expression.Results: We found that the DRD1 3'UTR ranging from -12 to +1135 bp was essential for the post-transcriptional regulation of miRNAs. The deletion of -12 to +154 bp fragment significantly increased the luciferase expression but not the mRNA expression. The miRNA-15a, miRNA-15b and miRNA 16 affected DRD1 expression in HEK293, U87, SK-N-SH and SH-SY5Y cell lines.Conclusion: The miRNA-15a, miRNA-15b and miRNA-16 inhibit the human dopamine D1 receptor expression by targeting 3'UTR -12 to +154 bp.HighlightsDRD1 3'UTR ranging from -12 to +1135 bp was essential for the post-transcriptional regulation of miRNAs.The deletion of -12 to +154 bp fragment significantly increased the luciferase expression but not the mRNA expression.The miRNA-15a, miRNA-15b and miRNA 16 affected DRD1 expression in different cell lines, respectively.
Collapse
Affiliation(s)
- Xue Wu
- School of Forensic Medicine, China Medical University, Shenyang, P.R. China
| | - Feng-Ling Xu
- School of Forensic Medicine, China Medical University, Shenyang, P.R. China
| | - Xi Xia
- School of Forensic Medicine, China Medical University, Shenyang, P.R. China
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, Shenyang, P.R. China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, P.R. China
| |
Collapse
|
11
|
Krause BJ, Artigas R, Sciolla AF, Hamilton J. Epigenetic mechanisms activated by childhood adversity. Epigenomics 2020; 12:1239-1255. [PMID: 32706263 DOI: 10.2217/epi-2020-0042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adverse childhood experiences (ACE) impair health and life expectancy and may result in an epigenetic signature that drives increased morbidity primed during early stages of life. This literature review focuses on the current evidence for epigenetic-mediated programming of brain and immune function resulting from ACE. To address this aim, a total of 88 articles indexed in PubMed before August 2019 concerning ACE and epigenetics were surveyed. Current evidence partially supports epigenetic programming of the hypothalamic-pituitary-adrenal axis, but convincingly shows that ACE impairs immune function. Additionally, the needs and challenges that face this area are discussed in order to provide a framework that may help to clarify the role of epigenetics in the long-lasting effects of ACE.
Collapse
Affiliation(s)
- Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O''Higgins, Rancagua, Chile.,CUIDA - Centro de Investigación del Abuso y la Adversidad Temprana, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Rocio Artigas
- CUIDA - Centro de Investigación del Abuso y la Adversidad Temprana, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Andres F Sciolla
- Department of Psychiatry & Behavioral Sciences, University of California, Davis, CA 95834, USA
| | - James Hamilton
- CUIDA - Centro de Investigación del Abuso y la Adversidad Temprana, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile.,Fundación Para la Confianza, Pérez Valenzuela 1264, Providencia, Santiago, Chile
| |
Collapse
|
12
|
Marie-Claire C, Lejeune FX, Mundwiller E, Ulveling D, Moszer I, Bellivier F, Etain B. A DNA methylation signature discriminates between excellent and non-response to lithium in patients with bipolar disorder type 1. Sci Rep 2020; 10:12239. [PMID: 32699220 PMCID: PMC7376060 DOI: 10.1038/s41598-020-69073-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Lithium (Li) is the cornerstone maintenance treatment for bipolar disorders (BD), but response rates are highly variable. To date, no clinical or biological marker is available to reliably define eligibility criteria for a maintenance treatment with Li. We examined whether the prophylactic response to Li (assessed retrospectively) is associated with distinct blood DNA methylation profiles. Bisulfite-treated total blood DNA samples from individuals with BD type 1 (15 excellent-responders (LiERs) versus 11 non-responders (LiNRs)) were used for targeted enrichment of CpG rich genomic regions followed by high-resolution next-generation sequencing to identify differentially methylated regions (DMRs). After controlling for potential confounders we identified 111 DMRs that significantly differ between LiERs and LiNRs with a significant enrichment in neuronal cell components. Logistic regression and receiver operating curves identified a combination of 7 DMRs with a good discriminatory power for response to Li (Area Under the Curve 0.806). Annotated genes associated with these DMRs include Eukaryotic Translation Initiation Factor 2B Subunit Epsilon (EIF2B5), Von Willebrand Factor A Domain Containing 5B2 (VWA5B2), Ral GTPase Activating Protein Catalytic Alpha Subunit 1 (RALGAPA1). Although preliminary and deserving replication, these results suggest that biomarkers of response to Li may be identified through peripheral epigenetic measures.
Collapse
Affiliation(s)
- C Marie-Claire
- Optimisation thérapeutique en Neurospsychopharmacologie, INSERM U1144, Université de Paris, Paris, France.
| | - F X Lejeune
- Bioinformatics and Biostatistics Core Facility iCONICS, Inserm U 1127, CNRS UMR 7225, Sorbonne Université UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, Paris, France
| | - E Mundwiller
- IGenSeq, Institut du Cerveau Et de La Moelle Épinière, Paris, France
| | - D Ulveling
- Bioinformatics and Biostatistics Core Facility iCONICS, Inserm U 1127, CNRS UMR 7225, Sorbonne Université UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, Paris, France
| | - I Moszer
- Bioinformatics and Biostatistics Core Facility iCONICS, Inserm U 1127, CNRS UMR 7225, Sorbonne Université UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, Paris, France
| | - F Bellivier
- Optimisation thérapeutique en Neurospsychopharmacologie, INSERM U1144, Université de Paris, Paris, France.,AP-HP, GH Saint-Louis-Lariboisière-F. Widal, Pole de Psychiatrie Et de Médecine Addictologique, Paris, France.,Fondation FondaMental, Créteil, France.,Faculté de Médecine, Université de Paris, Paris, France
| | - B Etain
- Optimisation thérapeutique en Neurospsychopharmacologie, INSERM U1144, Université de Paris, Paris, France.,AP-HP, GH Saint-Louis-Lariboisière-F. Widal, Pole de Psychiatrie Et de Médecine Addictologique, Paris, France.,Fondation FondaMental, Créteil, France.,Faculté de Médecine, Université de Paris, Paris, France
| |
Collapse
|
13
|
Ikegame T, Bundo M, Okada N, Murata Y, Koike S, Sugawara H, Saito T, Ikeda M, Owada K, Fukunaga M, Yamashita F, Koshiyama D, Natsubori T, Iwashiro N, Asai T, Yoshikawa A, Nishimura F, Kawamura Y, Ishigooka J, Kakiuchi C, Sasaki T, Abe O, Hashimoto R, Iwata N, Yamasue H, Kato T, Kasai K, Iwamoto K. Promoter Activity-Based Case-Control Association Study on SLC6A4 Highlighting Hypermethylation and Altered Amygdala Volume in Male Patients With Schizophrenia. Schizophr Bull 2020; 46:1577-1586. [PMID: 32556264 PMCID: PMC7846196 DOI: 10.1093/schbul/sbaa075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Associations between altered DNA methylation of the serotonin transporter (5-HTT)-encoding gene SLC6A4 and early life adversity, mood and anxiety disorders, and amygdala reactivity have been reported. However, few studies have examined epigenetic alterations of SLC6A4 in schizophrenia (SZ). We examined CpG sites of SLC6A4, whose DNA methylation levels have been reported to be altered in bipolar disorder, using 3 independent cohorts of patients with SZ and age-matched controls. We found significant hypermethylation of a CpG site in SLC6A4 in male patients with SZ in all 3 cohorts. We showed that chronic administration of risperidone did not affect the DNA methylation status at this CpG site using common marmosets, and that in vitro DNA methylation at this CpG site diminished the promoter activity of SLC6A4. We then genotyped the 5-HTT-linked polymorphic region (5-HTTLPR) and investigated the relationship among 5-HTTLPR, DNA methylation, and amygdala volume using brain imaging data. We found that patients harboring low-activity 5-HTTLPR alleles showed hypermethylation and they showed a negative correlation between DNA methylation levels and left amygdala volumes. These results suggest that hypermethylation of the CpG site in SLC6A4 is involved in the pathophysiology of SZ, especially in male patients harboring low-activity 5-HTTLPR alleles.
Collapse
Affiliation(s)
- Tempei Ikegame
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan,PRESTO, Japan Science and Technology Agency, Tokyo, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Yui Murata
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,UTokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Tokyo, Japan
| | - Hiroko Sugawara
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Keiho Owada
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Aichi, Japan
| | - Fumio Yamashita
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsunobu Natsubori
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norichika Iwashiro
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuro Asai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akane Yoshikawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Schizophrenia Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Fumichika Nishimura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - Chihiro Kakiuchi
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Sasaki
- Laboratory of Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan,Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Hidenori Yamasue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Psychiatry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN CBS, Saitama, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan,To whom correspondence should be addressed; Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; tel: +81-96-373-5062, fax: +81-96-373-5062, e-mail:
| |
Collapse
|
14
|
Okazaki S, Numata S, Otsuka I, Horai T, Kinoshita M, Sora I, Ohmori T, Hishimoto A. Decelerated epigenetic aging associated with mood stabilizers in the blood of patients with bipolar disorder. Transl Psychiatry 2020; 10:129. [PMID: 32366819 PMCID: PMC7198548 DOI: 10.1038/s41398-020-0813-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
There is high mortality among patients with bipolar disorder (BD). Studies have reported accelerated biological aging in patients with BD. Recently, Horvath and Hannum et al. independently developed DNA methylation (DNAm) profiles as "epigenetic clocks," which are the most accurate biological age estimate. This led to the development of two accomplished measures of epigenetic age acceleration (EAA) using blood samples, namely, intrinsic and extrinsic EAA (IEAA and EEAA, respectively). IEAA, which is based on Horvath's clock, is independent of blood cell counts and indicates cell-intrinsic aging. On the other hand, EEAA, which is based on Hannum's clock, is associated with age-dependent changes in blood cell counts and indicates immune system aging. Further, Lu et al. developed the "GrimAge" clock, which can strongly predict the mortality risk, and DNAm-based telomere length (DNAmTL). We used a DNAm dataset from whole blood samples obtained from 30 patients with BD and 30 healthy controls. We investigated Horvath EAA, IEAA, Hannum EAA, EEAA, Grim EAA, DNAmTL, and DNAm-based blood cell composition. Compared with controls, there was a decrease in Horvath EAA and IEAA in patients with BD. Further, there was a significant decrease in Horvath EAA and IEAA in patients with BD taking medication combinations of mood stabilizers (including lithium carbonate, sodium valproate, and carbamazepine) than in those taking no medication/monotherapy. This study provides novel evidence indicating decelerated epigenetic aging associated with mood stabilizers in patients with BD.
Collapse
Affiliation(s)
- Satoshi Okazaki
- grid.31432.370000 0001 1092 3077Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shusuke Numata
- grid.267335.60000 0001 1092 3579Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Ikuo Otsuka
- grid.31432.370000 0001 1092 3077Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tadasu Horai
- grid.31432.370000 0001 1092 3077Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Makoto Kinoshita
- grid.267335.60000 0001 1092 3579Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Ichiro Sora
- grid.31432.370000 0001 1092 3077Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tetsuro Ohmori
- grid.267335.60000 0001 1092 3579Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
15
|
Boehm I, Walton E, Alexander N, Batury VL, Seidel M, Geisler D, King JA, Weidner K, Roessner V, Ehrlich S. Peripheral serotonin transporter DNA methylation is linked to increased salience network connectivity in females with anorexia nervosa. J Psychiatry Neurosci 2020; 45:206-213. [PMID: 31823595 PMCID: PMC7828979 DOI: 10.1503/jpn.190016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Epigenetic variation in the serotonin transporter gene (SLC6A4) has been shown to modulate the functioning of brain circuitry associated with the salience network and may heighten the risk for mental illness. This study is, to our knowledge, the first to test this epigenome–brain–behaviour pathway in patients with anorexia nervosa. METHODS We obtained resting-state functional connectivity (rsFC) data and blood samples from 55 acutely underweight female patients with anorexia nervosa and 55 age-matched female healthy controls. We decomposed imaging data using independent component analysis. We used bisulfite pyrosequencing to analyze blood DNA methylation within the promoter region of SLC6A4. We then explored salience network rsFC patterns in the group × methylation interaction. RESULTS We identified a positive relationship between SLC6A4 methylation levels and rsFC between the dorsolateral prefrontal cortex and the salience network in patients with anorexia nervosa compared to healthy controls. Increased rsFC in the salience network mediated the link between SLC6A4 methylation and eating disorder symptoms in patients with anorexia nervosa. We confirmed findings of rsFC alterations for CpG-specific methylation at a locus with evidence of methylation correspondence between brain and blood tissue. LIMITATIONS This study was cross-sectional in nature, the sample size was modest for the method and methylation levels were measured peripherally, so findings cannot be fully generalized to brain tissue. CONCLUSION This study sheds light on the neurobiological process of how epigenetic variation in the SLC6A4 gene may relate to rsFC in the salience network that is linked to psychopathology in anorexia nervosa.
Collapse
Affiliation(s)
- Ilka Boehm
- From the Division of Psychological and Social Medicine and Developmental Neurosciences, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Boehm, Walton, Batury, Seidel, Geisler, King, Ehrlich); the Department of Psychology, University of Bath, Bath, UK (Walton); the Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany (Alexander); the Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Weidner); the Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Roessner); and the Eating Disorders Research and Treatment Center at the Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ehrlich)
| | - Esther Walton
- From the Division of Psychological and Social Medicine and Developmental Neurosciences, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Boehm, Walton, Batury, Seidel, Geisler, King, Ehrlich); the Department of Psychology, University of Bath, Bath, UK (Walton); the Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany (Alexander); the Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Weidner); the Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Roessner); and the Eating Disorders Research and Treatment Center at the Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ehrlich)
| | - Nina Alexander
- From the Division of Psychological and Social Medicine and Developmental Neurosciences, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Boehm, Walton, Batury, Seidel, Geisler, King, Ehrlich); the Department of Psychology, University of Bath, Bath, UK (Walton); the Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany (Alexander); the Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Weidner); the Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Roessner); and the Eating Disorders Research and Treatment Center at the Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ehrlich)
| | - Victoria-Luise Batury
- From the Division of Psychological and Social Medicine and Developmental Neurosciences, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Boehm, Walton, Batury, Seidel, Geisler, King, Ehrlich); the Department of Psychology, University of Bath, Bath, UK (Walton); the Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany (Alexander); the Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Weidner); the Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Roessner); and the Eating Disorders Research and Treatment Center at the Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ehrlich)
| | - Maria Seidel
- From the Division of Psychological and Social Medicine and Developmental Neurosciences, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Boehm, Walton, Batury, Seidel, Geisler, King, Ehrlich); the Department of Psychology, University of Bath, Bath, UK (Walton); the Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany (Alexander); the Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Weidner); the Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Roessner); and the Eating Disorders Research and Treatment Center at the Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ehrlich)
| | - Daniel Geisler
- From the Division of Psychological and Social Medicine and Developmental Neurosciences, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Boehm, Walton, Batury, Seidel, Geisler, King, Ehrlich); the Department of Psychology, University of Bath, Bath, UK (Walton); the Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany (Alexander); the Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Weidner); the Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Roessner); and the Eating Disorders Research and Treatment Center at the Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ehrlich)
| | - Joseph A. King
- From the Division of Psychological and Social Medicine and Developmental Neurosciences, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Boehm, Walton, Batury, Seidel, Geisler, King, Ehrlich); the Department of Psychology, University of Bath, Bath, UK (Walton); the Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany (Alexander); the Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Weidner); the Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Roessner); and the Eating Disorders Research and Treatment Center at the Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ehrlich)
| | - Kerstin Weidner
- From the Division of Psychological and Social Medicine and Developmental Neurosciences, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Boehm, Walton, Batury, Seidel, Geisler, King, Ehrlich); the Department of Psychology, University of Bath, Bath, UK (Walton); the Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany (Alexander); the Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Weidner); the Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Roessner); and the Eating Disorders Research and Treatment Center at the Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ehrlich)
| | - Veit Roessner
- From the Division of Psychological and Social Medicine and Developmental Neurosciences, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Boehm, Walton, Batury, Seidel, Geisler, King, Ehrlich); the Department of Psychology, University of Bath, Bath, UK (Walton); the Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany (Alexander); the Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Weidner); the Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Roessner); and the Eating Disorders Research and Treatment Center at the Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ehrlich)
| | - Stefan Ehrlich
- From the Division of Psychological and Social Medicine and Developmental Neurosciences, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Boehm, Walton, Batury, Seidel, Geisler, King, Ehrlich); the Department of Psychology, University of Bath, Bath, UK (Walton); the Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany (Alexander); the Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Weidner); the Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Roessner); and the Eating Disorders Research and Treatment Center at the Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ehrlich)
| |
Collapse
|
16
|
Gardea-Resendez M, Kucuker MU, Blacker CJ, Ho AMC, Croarkin PE, Frye MA, Veldic M. Dissecting the Epigenetic Changes Induced by Non-Antipsychotic Mood Stabilizers on Schizophrenia and Affective Disorders: A Systematic Review. Front Pharmacol 2020; 11:467. [PMID: 32390836 PMCID: PMC7189731 DOI: 10.3389/fphar.2020.00467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Epimutations secondary to gene-environment interactions have a key role in the pathophysiology of major psychiatric disorders. In vivo and in vitro evidence suggest that mood stabilizers can potentially reverse epigenetic deregulations found in patients with schizophrenia or mood disorders through mechanisms that are not yet fully understood. However, their activity on epigenetic processes has made them a research target for therapeutic approaches. METHODS We conducted a comprehensive literature search of PubMed and EMBASE for studies investigating the specific epigenetic changes induced by non-antipsychotic mood stabilizers (valproate, lithium, lamotrigine, and carbamazepine) in animal models, human cell lines, or patients with schizophrenia, bipolar disorder, or major depressive disorder. Each paper was reviewed for the nature of research, the species and tissue examined, sample size, mood stabilizer, targeted gene, epigenetic changes found, and associated psychiatric disorder. Every article was appraised for quality using a modified published process and those who met a quality score of moderate or high were included. RESULTS A total of 2,429 records were identified; 1,956 records remained after duplicates were removed and were screened via title, abstract and keywords; 129 records were selected for full-text screening and a remaining of 38 articles were included in the qualitative synthesis. Valproate and lithium were found to induce broader epigenetic changes through different mechanisms, mainly DNA demethylation and histones acetylation. There was less literature and hence smaller effects attributable to lamotrigine and carbamazepine could be associated overall with the small number of studies on these agents. Findings were congruent across sample types. CONCLUSIONS An advanced understanding of the specific epigenetic changes induced by classic mood stabilizers in patients with major psychiatric disorders will facilitate personalized interventions. Further related drug discovery should target the induction of selective chromatin remodeling and gene-specific expression effects.
Collapse
Affiliation(s)
| | - Mehmet Utku Kucuker
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| | - Caren J. Blacker
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| | - Ada M.-C. Ho
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
17
|
Delacrétaz A, Glatard A, Dubath C, Gholam-Rezaee M, Sanchez-Mut JV, Gräff J, von Gunten A, Conus P, Eap CB. Psychotropic drug-induced genetic-epigenetic modulation of CRTC1 gene is associated with early weight gain in a prospective study of psychiatric patients. Clin Epigenetics 2019; 11:198. [PMID: 31878957 PMCID: PMC6933694 DOI: 10.1186/s13148-019-0792-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Metabolic side effects induced by psychotropic drugs represent a major health issue in psychiatry. CREB-regulated transcription coactivator 1 (CRTC1) gene plays a major role in the regulation of energy homeostasis and epigenetic mechanisms may explain its association with obesity features previously described in psychiatric patients. This prospective study included 78 patients receiving psychotropic drugs that induce metabolic disturbances, with weight and other metabolic parameters monitored regularly. Methylation levels in 76 CRTC1 probes were assessed before and after 1 month of psychotropic treatment in blood samples. RESULTS Significant methylation changes were observed in three CRTC1 CpG sites (i.e., cg07015183, cg12034943, and cg 17006757) in patients with early and important weight gain (i.e., equal or higher than 5% after 1 month; FDR p value = 0.02). Multivariable models showed that methylation decrease in cg12034943 was more important in patients with early weight gain (≥ 5%) than in those who did not gain weight (p = 0.01). Further analyses combining genetic and methylation data showed that cg12034943 was significantly associated with early weight gain in patients carrying the G allele of rs4808844A>G (p = 0.03), a SNP associated with this methylation site (p = 0.03). CONCLUSIONS These findings give new insights on psychotropic-induced weight gain and underline the need of future larger prospective epigenetic studies to better understand the complex pathways involved in psychotropic-induced metabolic side effects.
Collapse
Affiliation(s)
- Aurélie Delacrétaz
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Anaïs Glatard
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Céline Dubath
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Mehdi Gholam-Rezaee
- Centre of Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Jose Vicente Sanchez-Mut
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Armin von Gunten
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Chin B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland. .,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
18
|
Dyrvig M, Mikkelsen JD, Lichota J. DNA methylation regulates CHRNA7 transcription and can be modulated by valproate. Neurosci Lett 2019; 704:145-152. [PMID: 30974230 DOI: 10.1016/j.neulet.2019.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/03/2019] [Accepted: 04/07/2019] [Indexed: 01/29/2023]
Abstract
The CHRNA7 gene encoding the α7 nicotinic acetylcholine receptor (nAChR) has repeatedly been linked with schizophrenia and the P50 sensory gating deficit. The α7 nAChR is considered a promising drug target for treatment of cognitive dysfunction in schizophrenia and improves memory and executive functions in patients and healthy individuals. However, clinical trials with pro-cognitive drugs are challenged by large inter-individual response variations and these have been linked to genotypic variations reducing CHRNA7 expression and α7 nAChR function. Genetic variants as well as environmental conditions may cause epigenetic dysregulation and it has previously been found that DNA methylation of a region surrounding the transcription start site of CHRNA7 is important for tissue specific regulation and gene silencing. In the present study we identify two additional regions involved in epigenetic regulation of the CHRNA7 promoter. In human temporal cortex we find large variations in expression of CHRNA7 and establish evidence for a significant correlation with DNA methylation levels of one region. We then establish evidence that genotypic variations can influence methylation levels of the CHRNA7 promoter. Epigenetic dysregulation can be reversed by pharmacological intervention and in HeLa cells. Valproate, a commonly used mood stabiliser, caused demethylation and increased CHRNA7 expression in HeLA cells. Similar demethylation effect and increased CHRNA7 expression was obtained in SH-SY5Y cells stimulated concomitantly with valproate and nicotine. In summary, both genetic and epigenetic information could be useful to predict treatment outcomes in patients and epigenetic modulation may serve as a mechanism for potentiating the effects of α7 nAChR agonists.
Collapse
Affiliation(s)
- Mads Dyrvig
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Denmark
| | - Jens D Mikkelsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jacek Lichota
- Laboratory of Metabolism Modifying Medicine, Department of Health Science and Technology, Aalborg University, Denmark.
| |
Collapse
|
19
|
Ruzicka WB, Subburaju S, Coyle JT, Benes FM. Location matters: distinct DNA methylation patterns in GABAergic interneuronal populations from separate microcircuits within the human hippocampus. Hum Mol Genet 2019; 27:254-265. [PMID: 29106556 DOI: 10.1093/hmg/ddx395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/31/2017] [Indexed: 12/31/2022] Open
Abstract
Recent studies describe distinct DNA methylomes among phenotypic subclasses of neurons in the human brain, but variation in DNA methylation between common neuronal phenotypes distinguished by their function within distinct neural circuits remains an unexplored concept. Studies able to resolve epigenetic profiles at the level of microcircuits are needed to illuminate chromatin dynamics in the regulation of specific neuronal populations and circuits mediating normal and abnormal behaviors. The Illumina HumanMethylation450 BeadChip was used to assess genome-wide DNA methylation in stratum oriens GABAergic interneurons sampled by laser-microdissection from two discrete microcircuits along the trisynaptic pathway in postmortem human hippocampus from eight control, eight schizophrenia, and eight bipolar disorder subjects. Data were analysed using the minfi Bioconductor package in R software version 3.3.2. We identified 11 highly significant differentially methylated regions associated with a group of genes with high construct-validity, including multiple zinc finger of the cerebellum gene family members and WNT signaling factors. Genomic locations of differentially methylated regions were highly similar between diagnostic categories, with a greater number of differentially methylated individual cytosine residues between circuit locations in bipolar disorder cases than in schizophrenia or control (42, 7, and 7 differentially methylated positions, respectively). These findings identify distinct DNA methylomes among phenotypically similar populations of GABAergic interneurons functioning within separate hippocampal subfields. These data compliment recent studies describing diverse epigenotypes among separate neuronal subclasses, extending this concept to distinct epigenotypes within similar neuronal phenotypes from separate microcircuits within the human brain.
Collapse
Affiliation(s)
- W Brad Ruzicka
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, MA 02478, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Sivan Subburaju
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, MA 02478, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph T Coyle
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.,Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, MA 02478, USA.,Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Francine M Benes
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, MA 02478, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.,Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
20
|
Navarrete-Modesto V, Orozco-Suárez S, Feria-Romero IA, Rocha L. The molecular hallmarks of epigenetic effects mediated by antiepileptic drugs. Epilepsy Res 2019; 149:53-65. [DOI: 10.1016/j.eplepsyres.2018.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/16/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
|
21
|
Pisanu C, Heilbronner U, Squassina A. The Role of Pharmacogenomics in Bipolar Disorder: Moving Towards Precision Medicine. Mol Diagn Ther 2018; 22:409-420. [PMID: 29790107 DOI: 10.1007/s40291-018-0335-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bipolar disorder (BD) is a common and disabling psychiatric condition with a severe socioeconomic impact. BD is treated with mood stabilizers, among which lithium represents the first-line treatment. Lithium alone or in combination is effective in 60% of chronically treated patients, but response remains heterogenous and a large number of patients require a change in therapy after several weeks or months. Many studies have so far tried to identify molecular and genetic markers that could help us to predict response to mood stabilizers or the risk for adverse drug reactions. Pharmacogenetic studies in BD have been for the most part focused on lithium, but the complexity and variability of the response phenotype, together with the unclear mechanism of action of lithium, limited the power of these studies to identify robust biomarkers. Recent pharmacogenomic studies on lithium response have provided promising findings, suggesting that the integration of genome-wide investigations with deep phenotyping, in silico analyses and machine learning could lead us closer to personalized treatments for BD. Nevertheless, to date none of the genes suggested by pharmacogenetic studies on mood stabilizers have been included in any of the genetic tests approved by the Food and Drug Administration (FDA) for drug efficacy. On the other hand, genetic information has been included in drug labels to test for the safety of carbamazepine and valproate. In this review, we will outline available studies investigating the pharmacogenetics and pharmacogenomics of lithium and other mood stabilizers, with a specific focus on the limitations of these studies and potential strategies to overcome them. We will also discuss FDA-approved pharmacogenetic tests for treatments commonly used in the management of BD.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, sp 6, 09042, Cagliari, Italy
- Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, sp 6, 09042, Cagliari, Italy.
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
22
|
DNA Methylation as a Biomarker of Treatment Response Variability in Serious Mental Illnesses: A Systematic Review Focused on Bipolar Disorder, Schizophrenia, and Major Depressive Disorder. Int J Mol Sci 2018; 19:ijms19103026. [PMID: 30287754 PMCID: PMC6213157 DOI: 10.3390/ijms19103026] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022] Open
Abstract
So far, genetic studies of treatment response in schizophrenia, bipolar disorder, and major depression have returned results with limited clinical utility. A gene × environment interplay has been proposed as a factor influencing not only pathophysiology but also the treatment response. Therefore, epigenetics has emerged as a major field of research to study the treatment of these three disorders. Among the epigenetic marks that can modify gene expression, DNA methylation is the best studied. We performed a systematic search (PubMed) following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA guidelines for preclinical and clinical studies focused on genome-wide and gene-specific DNA methylation in the context of schizophrenia, bipolar disorders, and major depressive disorder. Out of the 112 studies initially identified, we selected 31 studies among them, with an emphasis on responses to the gold standard treatments in each disorder. Modulations of DNA methylation levels at specific CpG sites have been documented for all classes of treatments (antipsychotics, mood stabilizers, and antidepressants). The heterogeneity of the models and methodologies used complicate the interpretation of results. Although few studies in each disorder have assessed the potential of DNA methylation as biomarkers of treatment response, data support this hypothesis for antipsychotics, mood stabilizers and antidepressants.
Collapse
|
23
|
Hammill KM, Fraz S, Lee AH, Wilson JY. The effects of parental carbamazepine and gemfibrozil exposure on sexual differentiation in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1696-1706. [PMID: 29476637 DOI: 10.1002/etc.4120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/20/2017] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
The effects of parental exposure to pharmaceuticals on sexual differentiation in F1 offspring were examined in zebrafish (Danio rerio). Adult zebrafish were exposed to 0 or 10 μg/L of carbamazepine or gemfibrozil for 6 wk and bred in pairwise crosses to generate 7 distinct lineages. Lineages were formed with both parents from the same treatment group or with only one parent exposed, to delineate between maternal and paternal effects. The F1 offspring from each lineage were reared in clean water and sampled at 45 and 60 d post fertilization (dpf). Gonadal differentiation was assessed by histology. The morphological stages of the gonads were converted to a quantitative day-equivalent based on data from offspring of untreated parents sampled from 15 to 75 dpf, which enabled a quantitative statistical analysis on the timing of sexual differentiation. Paternal, but not maternal, exposure to carbamazepine resulted in significantly faster sexual differentiation and a male-biased sex ratio; these effects were not observed when both parents were exposed. Combined paternal and maternal exposure to gemfibrozil resulted in significantly faster sexual differentiation, and paternal, but not maternal, exposure to gemfibrozil led to male-biased sex ratios. The present study demonstrates the ability of parental exposure to pharmaceuticals to disrupt sexual differentiation in the F1 offspring and also shows that effects may be uniquely influenced by which parent was exposed. Environ Toxicol Chem 2018;37:1696-1706. © 2018 SETAC.
Collapse
Affiliation(s)
| | - Shamaila Fraz
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail H Lee
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Joanna Y Wilson
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
24
|
Sugawara H, Murata Y, Ikegame T, Sawamura R, Shimanaga S, Takeoka Y, Saito T, Ikeda M, Yoshikawa A, Nishimura F, Kawamura Y, Kakiuchi C, Sasaki T, Iwata N, Hashimoto M, Kasai K, Kato T, Bundo M, Iwamoto K. DNA methylation analyses of the candidate genes identified by a methylome-wide association study revealed common epigenetic alterations in schizophrenia and bipolar disorder. Psychiatry Clin Neurosci 2018; 72:245-254. [PMID: 29430824 DOI: 10.1111/pcn.12645] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 12/20/2022]
Abstract
AIM Schizophrenia (SZ) and bipolar disorder (BD) have been known to share genetic and environmental risk factors, and complex gene-environmental interactions may contribute to their pathophysiology. In contrast to high genetic overlap between SZ and BD, as revealed by genome-wide association studies, the extent of epigenetic overlap remains largely unknown. In the present study, we explored whether SZ and BD share epigenetic risk factors in the same manner as they share genetic components. METHODS We performed DNA methylation analyses of the CpG sites in the top five candidate regions (FAM63B, ARHGAP26, CTAGE11P, TBC1D22A, and intergenic region [IR] on chromosome 16) reported in a previous methylome-wide association study (MWAS) of SZ, using whole blood samples from subjects with BD and controls. RESULTS Among the five candidate regions, the CpG sites in FAM63B and IR on chromosome 16 were significantly hypomethylated in the samples from subjects with BD as well as those from subjects with SZ. On the other hand, the CpG sites in TBC1D22A were hypermethylated in the samples from subjects with BD, in contrast to hypomethylation in the samples from subjects with SZ. CONCLUSION Hypomethylation of FAM63B and IR on chromosome 16 could be common epigenetic risk factors for SZ and BD. Further comprehensive epigenetic studies for BD, such as MWAS, will uncover the extent of similarity and uniqueness of epigenetic alterations.
Collapse
Affiliation(s)
- Hiroko Sugawara
- Department of Neuropsychiatry, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Support Center for Women Health Care Professionals and Researchers, Tokyo Women's Medical University, Tokyo, Japan
| | - Yui Murata
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tempei Ikegame
- Department of Neuropsychiatry, The University of Tokyo, Tokyo, Japan
| | - Rie Sawamura
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shota Shimanaga
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yusuke Takeoka
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Akane Yoshikawa
- Department of Neuropsychiatry, The University of Tokyo, Tokyo, Japan
| | | | - Yoshiya Kawamura
- Department of Psychiatry, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Chihiro Kakiuchi
- Department of Neuropsychiatry, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Sasaki
- Laboratory of Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Mamoru Hashimoto
- Department of Neuropsychiatry, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, The University of Tokyo, Tokyo, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,PRESTO, Japan Science and Technology Agency, Tokyo, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
25
|
Understanding the molecular mechanisms underlying mood stabilizer treatments in bipolar disorder: Potential involvement of epigenetics. Neurosci Lett 2018; 669:24-31. [DOI: 10.1016/j.neulet.2016.06.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
|
26
|
Pisanu C, Katsila T, Patrinos GP, Squassina A. Recent trends on the role of epigenomics, metabolomics and noncoding RNAs in rationalizing mood stabilizing treatment. Pharmacogenomics 2018; 19:129-143. [DOI: 10.2217/pgs-2017-0111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mood stabilizers are the cornerstone in treatment of mood disorders, but their use is characterized by high interindividual variability. This feature has stimulated intensive research to identify predictive biomarkers of response and disentangle the molecular bases of their clinical efficacy. Nevertheless, findings from studies conducted so far have only explained a small proportion of the observed variability, suggesting that factors other than DNA variants could be involved. A growing body of research has been focusing on the role of epigenetics and metabolomics in response to mood stabilizers, especially lithium salts. Studies from these approaches have provided new insights into the molecular networks and processes involved in the mechanism of action of mood stabilizers, promoting a systems-level multiomics synergy. In this article, we reviewed the literature investigating the involvement of epigenetic mechanisms, noncoding RNAs and metabolomic modifications in bipolar disorder and the mechanism of action and clinical efficacy of mood stabilizers.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Italy
- Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Theodora Katsila
- Department of Pharmacy, University of Patras School of Health Sciences, Patras, Greece
| | - George P Patrinos
- Department of Pharmacy, University of Patras School of Health Sciences, Patras, Greece
- Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Italy
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
27
|
Stevens AJ, Rucklidge JJ, Kennedy MA. Epigenetics, nutrition and mental health. Is there a relationship? Nutr Neurosci 2017; 21:602-613. [PMID: 28553986 DOI: 10.1080/1028415x.2017.1331524] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many aspects of human development and disease are influenced by the interaction between genetic and environmental factors. Understanding how our genes respond to the environment is central to managing health and disease, and is one of the major contemporary challenges in human genetics. Various epigenetic processes affect chromosome structure and accessibility of deoxyribonucleic acid (DNA) to the enzymatic machinery that leads to expression of genes. One important epigenetic mechanism that appears to underlie the interaction between environmental factors, including diet, and our genome, is chemical modification of the DNA. The best understood of these modifications is methylation of cytosine residues in DNA. It is now recognized that the pattern of methylated cytosines throughout our genomes (the 'methylome') can change during development and in response to environmental cues, often with profound effects on gene expression. Many dietary constituents may indirectly influence genomic pathways that methylate DNA, and there is evidence for biochemical links between nutritional quality and mental health. Deficiency of both macro- and micronutrients has been associated with increased behavioural problems, and nutritional supplementation has proven efficacious in treatment of certain neuropsychiatric disorders. In this review we examine evidence from the fields of nutrition, developmental biology, and mental health that supports dietary impacts on epigenetic processes, particularly DNA methylation. We then consider whether such processes could underlie the demonstrated efficacy of dietary supplementation in treatment of mental disorders, and whether targeted manipulation of DNA methylation patterns using controlled dietary supplementation may be of wider clinical value.
Collapse
Affiliation(s)
- Aaron J Stevens
- a Department of Pathology , University of Otago , P.O. Box 4345, Christchurch , New Zealand
| | - Julia J Rucklidge
- b Department of Psychology , University of Canterbury , Christchurch , New Zealand
| | - Martin A Kennedy
- a Department of Pathology , University of Otago , P.O. Box 4345, Christchurch , New Zealand
| |
Collapse
|
28
|
Dyrvig M, Qvist P, Lichota J, Larsen K, Nyegaard M, Børglum AD, Christensen JH. DNA Methylation Analysis of BRD1 Promoter Regions and the Schizophrenia rs138880 Risk Allele. PLoS One 2017; 12:e0170121. [PMID: 28095495 PMCID: PMC5240986 DOI: 10.1371/journal.pone.0170121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/29/2016] [Indexed: 01/19/2023] Open
Abstract
The bromodomain containing 1 gene, BRD1 is essential for embryogenesis and CNS development. It encodes a protein that participates in histone modifying complexes and thereby regulates the expression of a large number of genes. Genetic variants in the BRD1 locus show association with schizophrenia and bipolar disorder and risk alleles in the promoter region correlate with reduced BRD1 expression. Insights into the transcriptional regulation of BRD1 and the pathogenic mechanisms associated with BRD1 risk variants, however, remain sparse. By studying transcripts in human HeLa and SH-SY5Y cells we provide evidence for differences in relative expression of BRD1 transcripts with three alternative 5’ UTRs (exon 1C, 1B, and 1A). We further show that expression of these transcript variants covaries negatively with DNA methylation proportions in their upstream promoter regions suggesting that promoter usage might be regulated by DNA methylation. In line with findings that the risk allele of the rs138880 SNP in the BRD1 promoter region correlates with reduced BRD1 expression, we find that it is also associated with moderate regional BRD1 promoter hypermethylation in both adipose tissue and blood. Importantly, we demonstrate by inspecting available DNA methylation and expression data that these regions undergo changes in methylation during fetal brain development and that differences in their methylation proportions in fetal compared to postnatal frontal cortex correlate significantly with BRD1 expression. These findings suggest that BRD1 may be dysregulated in both the developing and mature brain of risk allele carriers. Finally, we demonstrate that commonly used mood stabilizers Lithium, Valproate, and Carbamazepine affect the expression of BRD1 in SH-SY5Y cells. Altogether this study indicates a link between genetic risk and epigenetic dysregulation of BRD1 which raises interesting perspectives for targeting the mechanisms pharmacologically.
Collapse
Affiliation(s)
- Mads Dyrvig
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Per Qvist
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Jacek Lichota
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Anders D. Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Jane H. Christensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
29
|
Lee SA, Huang KC. Epigenetic profiling of human brain differential DNA methylation networks in schizophrenia. BMC Med Genomics 2016; 9:68. [PMID: 28117656 PMCID: PMC5260790 DOI: 10.1186/s12920-016-0229-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Epigenetics of schizophrenia provides important information on how the environmental factors affect the genetic architecture of the disease. DNA methylation plays a pivotal role in etiology for schizophrenia. Previous studies have focused mostly on the discovery of schizophrenia-associated SNPs or genetic variants. As postmortem brain samples became available, more and more recent studies surveyed transcriptomics of the diseases. In this study, we constructed protein-protein interaction (PPI) network using the disease associated SNP (or genetic variants), differentially expressed disease genes and differentially methylated disease genes (or promoters). By combining the different datasets and topological analyses of the PPI network, we established a more comprehensive understanding of the development and genetics of this devastating mental illness. Results We analyzed the previously published DNA methylation profiles of prefrontal cortex from 335 healthy controls and 191 schizophrenic patients. These datasets revealed 2014 CpGs identified as GWAS risk loci with the differential methylation profile in schizophrenia, and 1689 schizophrenic differential methylated genes (SDMGs) identified with predominant hypomethylation. These SDMGs, combined with the PPIs of these genes, were constructed into the schizophrenic differential methylation network (SDMN). On the SDMN, there are 10 hypermethylated SDMGs, including GNA13, CAPNS1, GABPB2, GIT2, LEFTY1, NDUFA10, MIOS, MPHOSPH6, PRDM14 and RFWD2. The hypermethylation to differential expression network (HyDEN) were constructed to determine how the hypermethylated promoters regulate gene expression. The enrichment analyses of biochemical pathways in HyDEN, including TNF alpha, PDGFR-beta signaling, TGF beta Receptor, VEGFR1 and VEGFR2 signaling, regulation of telomerase, hepatocyte growth factor receptor signaling, ErbB1 downstream signaling and mTOR signaling pathway, suggested that the malfunctioning of these pathways contribute to the symptoms of schizophrenia. Conclusions The epigenetic profiles of DNA differential methylation from schizophrenic brain samples were investigated to understand the regulatory roles of SDMGs. The SDMGs interplays with SCZCGs in a coordinated fashion in the disease mechanism of schizophrenia. The protein complexes and pathways involved in SDMN may be responsible for the etiology and potential treatment targets. The SDMG promoters are predominantly hypomethylated. Increasing methylation on these promoters is proposed as a novel therapeutic approach for schizophrenia. Electronic supplementary material The online version of this article (doi:10.1186/s12920-016-0229-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheng-An Lee
- Department of Information Management, Kainan University, Taoyuan, Taiwan
| | - Kuo-Chuan Huang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. .,Department of Nursing, Ching Kuo Institute of Management and Health, Keelung, Taiwan.
| |
Collapse
|
30
|
Walker RM, Sussmann JE, Whalley HC, Ryan NM, Porteous DJ, McIntosh AM, Evans KL. Preliminary assessment of pre-morbid DNA methylation in individuals at high genetic risk of mood disorders. Bipolar Disord 2016; 18:410-22. [PMID: 27440233 PMCID: PMC5006843 DOI: 10.1111/bdi.12415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Accumulating evidence implicates altered DNA methylation in psychiatric disorders, including bipolar disorder (BD) and major depressive disorder (MDD). It is not clear, however, whether these changes are causative or result from illness progression or treatment. To disentangle these possibilities we profiled genome-wide DNA methylation in well, unrelated individuals at high familial risk of mood disorder. DNA methylation was compared between individuals who subsequently developed BD or MDD [ill later (IL)] and those who remained well [well later (WL)]. METHODS DNA methylation profiles were obtained from whole-blood samples from 22 IL and 23 WL individuals using the Infinium HumanMethylation450 BeadChip. Differential methylation was assessed on a single-locus and regional basis. Pathway analysis was performed to assess enrichment for particular biological processes amongst nominally significantly differentially methylated loci. RESULTS Although no locus withstood correction for multiple testing, uncorrected P-values provided suggestive evidence for altered methylation at sites within genes previously implicated in neuropsychiatric conditions, such as Transcription Factor 4 (TCF4) and Interleukin 1 Receptor Accessory Protein-Like 1 ([IL1RAPL1]; P≤3.11×10(-5) ). Pathway analysis revealed significant enrichment for several neurologically relevant pathways and functions, including Nervous System Development and Function and Behavior; these findings withstood multiple testing correction (q≤0.05). Analysis of differentially methylated regions identified several within the major histocompatibility complex (P≤.000 479), a region previously implicated in schizophrenia and BD. CONCLUSIONS Our data provide provisional evidence for the involvement of altered whole-blood DNA methylation in neurologically relevant genes in the aetiology of mood disorders. These findings are convergent with the findings of genome-wide association studies.
Collapse
Affiliation(s)
- Rosie May Walker
- Medical Genetics SectionCentre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineThe University of EdinburghWestern General HospitalEdinburghUK
| | - Jessika Elizabeth Sussmann
- Division of PsychiatryThe University of EdinburghRoyal Edinburgh HospitalUniversity of EdinburghEdinburghUK
| | - Heather Clare Whalley
- Division of PsychiatryThe University of EdinburghRoyal Edinburgh HospitalUniversity of EdinburghEdinburghUK
| | - Niamh Margaret Ryan
- Medical Genetics SectionCentre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineThe University of EdinburghWestern General HospitalEdinburghUK
| | - David John Porteous
- Medical Genetics SectionCentre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineThe University of EdinburghWestern General HospitalEdinburghUK,Centre for Cognitive Ageing and Cognitive EpidemiologyThe University of EdinburghEdinburghUK
| | - Andrew Mark McIntosh
- Division of PsychiatryThe University of EdinburghRoyal Edinburgh HospitalUniversity of EdinburghEdinburghUK,Centre for Cognitive Ageing and Cognitive EpidemiologyThe University of EdinburghEdinburghUK
| | - Kathryn Louise Evans
- Medical Genetics SectionCentre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineThe University of EdinburghWestern General HospitalEdinburghUK,Centre for Cognitive Ageing and Cognitive EpidemiologyThe University of EdinburghEdinburghUK
| |
Collapse
|
31
|
Breen MS, White CH, Shekhtman T, Lin K, Looney D, Woelk CH, Kelsoe JR. Lithium-responsive genes and gene networks in bipolar disorder patient-derived lymphoblastoid cell lines. THE PHARMACOGENOMICS JOURNAL 2016; 16:446-53. [PMID: 27401222 DOI: 10.1038/tpj.2016.50] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 04/21/2016] [Accepted: 05/18/2016] [Indexed: 12/25/2022]
Abstract
Lithium (Li) is the mainstay mood stabilizer for the treatment of bipolar disorder (BD), although its mode of action is not yet fully understood nor is it effective in every patient. We sought to elucidate the mechanism of action of Li and to identify surrogate outcome markers that can be used to better understand its therapeutic effects in BD patients classified as good (responders) and poor responders (nonresponders) to Li treatment. To accomplish these goals, RNA-sequencing gene expression profiles of lymphoblastoid cell lines (LCLs) were compared between BD Li responders and nonresponders with healthy controls before and after treatment. Several Li-responsive gene coexpression networks were discovered indicating widespread effects of Li on diverse cellular signaling systems including apoptosis and defense response pathways, protein processing and response to endoplasmic reticulum stress. Individual gene markers were also identified, differing in response to Li between BD responders and nonresponders, involved in processes of cell cycle and nucleotide excision repair that may explain part of the heterogeneity in clinical response to treatment. Results further indicated a Li gene expression signature similar to that observed with clonidine treatment, an α2-adrenoceptor agonist. These findings provide a detailed mechanism of Li in LCLs and highlight putative surrogate outcome markers that may permit for advanced treatment decisions to be made and for facilitating recovery in BD patients.
Collapse
Affiliation(s)
- M S Breen
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - C H White
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - T Shekhtman
- Veterans Administration, San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - K Lin
- Department of Affective Disorder, Guangzhou Brain Hospital, Guangzhou Medical University, Guangzhou, China.,Laboratory of Cognition and Emotion, Guangzhou Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - D Looney
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.,Veterans Administration, San Diego Healthcare System, San Diego, CA, USA
| | - C H Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - J R Kelsoe
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.,Veterans Administration, San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
32
|
Fries GR, Li Q, McAlpin B, Rein T, Walss-Bass C, Soares JC, Quevedo J. The role of DNA methylation in the pathophysiology and treatment of bipolar disorder. Neurosci Biobehav Rev 2016; 68:474-488. [PMID: 27328785 DOI: 10.1016/j.neubiorev.2016.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/03/2016] [Accepted: 06/12/2016] [Indexed: 12/31/2022]
Abstract
Bipolar disorder (BD) is a multifactorial illness thought to result from an interaction between genetic susceptibility and environmental stimuli. Epigenetic mechanisms, including DNA methylation, can modulate gene expression in response to the environment, and therefore might account for part of the heritability reported for BD. This paper aims to review evidence of the potential role of DNA methylation in the pathophysiology and treatment of BD. In summary, several studies suggest that alterations in DNA methylation may play an important role in the dysregulation of gene expression in BD, and some actually suggest their potential use as biomarkers to improve diagnosis, prognosis, and assessment of response to treatment. This is also supported by reports of alterations in the levels of DNA methyltransferases in patients and in the mechanism of action of classical mood stabilizers. In this sense, targeting specific alterations in DNA methylation represents exciting new treatment possibilities for BD, and the 'plastic' characteristic of DNA methylation accounts for a promising possibility of restoring environment-induced modifications in patients.
Collapse
Affiliation(s)
- Gabriel R Fries
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), 1941 East Rd, 77054, Houston, TX, USA.
| | - Qiongzhen Li
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), 1941 East Rd, 77054, Houston, TX, USA
| | - Blake McAlpin
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), 1941 East Rd, 77054, Houston, TX, USA
| | - Theo Rein
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Consuelo Walss-Bass
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), 1941 East Rd, 77054, Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Joao Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), 1941 East Rd, 77054, Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
33
|
Starnawska A, Demontis D, Pen A, Hedemand A, Nielsen AL, Staunstrup NH, Grove J, Als TD, Jarram A, O'Brien NL, Mors O, McQuillin A, Børglum AD, Nyegaard M. CACNA1C hypermethylation is associated with bipolar disorder. Transl Psychiatry 2016; 6:e831. [PMID: 27271857 PMCID: PMC4931616 DOI: 10.1038/tp.2016.99] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/05/2016] [Accepted: 04/15/2016] [Indexed: 12/19/2022] Open
Abstract
The CACNA1C gene, encoding a subunit of the L-type voltage-gated calcium channel is one of the best-supported susceptibility genes for bipolar disorder (BD). Genome-wide association studies have identified a cluster of non-coding single-nucleotide polymorphisms (SNPs) in intron 3 to be highly associated with BD and schizophrenia. The mechanism by which these SNPs confer risk of BD appears to be through an altered regulation of CACNA1C expression. The role of CACNA1C DNA methylation in BD has not yet been addressed. The aim of this study was to investigate if CACNA1C DNA methylation is altered in BD. First, the methylation status of five CpG islands (CGIs) across CACNA1C in blood from BD subjects (n=40) and healthy controls (n=38) was determined. Four islands were almost completely methylated or completely unmethylated, while one island (CGI 3) in intron 3 displayed intermediate methylation levels. In the main analysis, the methylation status of CGI 3 was analyzed in a larger sample of BD subjects (n=582) and control individuals (n=319). Out of six CpG sites that were investigated, five sites showed significant hypermethylation in cases (lowest P=1.16 × 10(-7) for CpG35). Nearby SNPs were found to influence the methylation level, and we identified rs2238056 in intron 3 as the strongest methylation quantitative trait locus (P=2.6 × 10(-7)) for CpG35. In addition, we found an increased methylation in females, and no difference between bipolar I and II. In conclusion, we find that CACNA1C methylation is associated with BD and suggest that the regulatory effect of the non-coding risk variants involves a shift in DNA methylation.
Collapse
Affiliation(s)
- A Starnawska
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - D Demontis
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - A Pen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - A Hedemand
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - A L Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - N H Staunstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - J Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - T D Als
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - A Jarram
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - N L O'Brien
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - O Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Research Department P, Aarhus University Hospital, Risskov, Denmark
| | - A McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - A D Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - M Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| |
Collapse
|
34
|
Walker RM, Christoforou AN, McCartney DL, Morris SW, Kennedy NA, Morten P, Anderson SM, Torrance HS, Macdonald A, Sussmann JE, Whalley HC, Blackwood DHR, McIntosh AM, Porteous DJ, Evans KL. DNA methylation in a Scottish family multiply affected by bipolar disorder and major depressive disorder. Clin Epigenetics 2016; 8:5. [PMID: 26798408 PMCID: PMC4721115 DOI: 10.1186/s13148-016-0171-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/11/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a severe, familial psychiatric condition. Progress in understanding the aetiology of BD has been hampered by substantial phenotypic and genetic heterogeneity. We sought to mitigate these confounders by studying a multi-generational family multiply affected by BD and major depressive disorder (MDD), who carry an illness-linked haplotype on chromosome 4p. Within a family, aetiological heterogeneity is likely to be reduced, thus conferring greater power to detect illness-related changes. As accumulating evidence suggests that altered DNA methylation confers risk for BD and MDD, we compared genome-wide methylation between (i) affected carriers of the linked haplotype (ALH) and married-in controls (MIs), (ii) well unaffected haplotype carriers (ULH) and MI, (iii) ALH and ULH and (iv) all haplotype carriers (LH) and MI. RESULTS Nominally significant differences in DNA methylation were observed in all comparisons, with differences withstanding correction for multiple testing when the ALH or LH group was compared to the MIs. In both comparisons, we observed increased methylation at a locus in FANCI, which was accompanied by increased FANCI expression in the ALH group. FANCI is part of the Fanconi anaemia complementation (FANC) gene family, which are mutated in Fanconi anaemia and participate in DNA repair. Interestingly, several FANC genes have been implicated in psychiatric disorders. Regional analyses of methylation differences identified loci implicated in psychiatric illness by genome-wide association studies, including CACNB2 and the major histocompatibility complex. Gene ontology analysis revealed enrichment for methylation differences in neurologically relevant genes. CONCLUSIONS Our results highlight altered DNA methylation as a potential mechanism by which the linked haplotype might confer risk for mood disorders. Differences in the phenotypic outcome of haplotype carriers might, in part, arise from additional changes in DNA methylation that converge on neurologically important pathways. Further work is required to investigate the underlying mechanisms and functional consequences of the observed differences in methylation.
Collapse
Affiliation(s)
- Rosie May Walker
- />Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Andrea Nikie Christoforou
- />Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Daniel L. McCartney
- />Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Stewart W. Morris
- />Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Nicholas A. Kennedy
- />Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Peter Morten
- />Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Susan Maguire Anderson
- />Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Helen Scott Torrance
- />Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Alix Macdonald
- />Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | | | - Heather Clare Whalley
- />Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Douglas H. R. Blackwood
- />Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Andrew Mark McIntosh
- />Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
- />Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ UK
| | - David John Porteous
- />Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
- />Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ UK
| | - Kathryn Louise Evans
- />Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
- />Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ UK
| |
Collapse
|
35
|
Backlund L, Wei YB, Martinsson L, Melas PA, Liu JJ, Mu N, Östenson CG, Ekström TJ, Schalling M, Lavebratt C. Mood Stabilizers and the Influence on Global Leukocyte DNA Methylation in Bipolar Disorder. MOLECULAR NEUROPSYCHIATRY 2015; 1:76-81. [PMID: 27602359 DOI: 10.1159/000430867] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/21/2015] [Indexed: 11/19/2022]
Abstract
Little is known about the relationship between treatments for bipolar disorder (BD), their therapeutic responses and the DNA methylation status. We investigated whether global DNA methylation levels differ between healthy controls and bipolar patients under different treatments. Global DNA methylation was measured in leukocyte DNA from bipolar patients under lithium monotherapy (n = 29) or combination therapy (n = 32) and from healthy controls (n = 26). Lithium response was assessed using the Alda scale. Lithium in monotherapy was associated with hypomethylation (F = 4.63, p = 0.036). Lithium + valproate showed a hypermethylated pattern compared to lithium alone (F = 7.27, p = 0.011). Lithium response was not associated with DNA methylation levels. These data suggest that the choice of treatment in BD may lead to different levels of global DNA methylation. However, further research is needed to understand its clinical significance.
Collapse
Affiliation(s)
- Lena Backlund
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Centre for Psychiatric Research and Education, Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ya Bin Wei
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lina Martinsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Philippe A Melas
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jia Jia Liu
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; School of Nursing, Shandong University, Jinan, China
| | - Ninni Mu
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Claes-Göran Östenson
- Endocrine and Diabetes Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Tomas J Ekström
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Schalling
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Catharina Lavebratt
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
36
|
Ruzicka WB, Subburaju S, Benes FM. Circuit- and Diagnosis-Specific DNA Methylation Changes at γ-Aminobutyric Acid-Related Genes in Postmortem Human Hippocampus in Schizophrenia and Bipolar Disorder. JAMA Psychiatry 2015; 72:541-51. [PMID: 25738424 PMCID: PMC5547581 DOI: 10.1001/jamapsychiatry.2015.49] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE Dysfunction related to γ-aminobutyric acid (GABA)-ergic neurotransmission in the pathophysiology of major psychosis has been well established by the work of multiple groups across several decades, including the widely replicated downregulation of GAD1. Prior gene expression and network analyses within the human hippocampus implicate a broader network of genes, termed the GAD1 regulatory network, in regulation of GAD1 expression. Several genes within this GAD1 regulatory network show diagnosis- and sector-specific expression changes within the circuitry of the hippocampus, influencing abnormal GAD1 expression in schizophrenia and bipolar disorder. OBJECTIVE To investigate the hypothesis that aberrant DNA methylation contributes to circuit- and diagnosis-specific abnormal expression of GAD1 regulatory network genes in psychotic illness. DESIGN, SETTING, AND PARTICIPANTS This epigenetic association study targeting GAD1 regulatory network genes was conducted between July 1, 2012, and June 30, 2014. Postmortem human hippocampus tissue samples were obtained from 8 patients with schizophrenia, 8 patients with bipolar disorder, and 8 healthy control participants matched for age, sex, postmortem interval, and other potential confounds from the Harvard Brain Tissue Resource Center, McLean Hospital, Belmont, Massachusetts. We extracted DNA from laser-microdissected stratum oriens tissue of cornu ammonis 2/3 (CA2/3) and CA1 postmortem human hippocampus, bisulfite modified it, and assessed it with the Infinium HumanMethylation450 BeadChip (Illumina, Inc). The subset of CpG loci associated with GAD1 regulatory network genes was analyzed in R version 3.1.0 software (R Foundation) using the minfi package. Findings were validated using bisulfite pyrosequencing. MAIN OUTCOMES AND MEASURES Methylation levels at 1308 GAD1 regulatory network-associated CpG loci were assessed both as individual sites to identify differentially methylated positions and by sharing information among colocalized probes to identify differentially methylated regions. RESULTS A total of 146 differentially methylated positions with a false detection rate lower than 0.05 were identified across all 6 groups (2 circuit locations in each of 3 diagnostic categories), and 54 differentially methylated regions with P < .01 were identified in single-group comparisons. Methylation changes were enriched in MSX1, CCND2, and DAXX at specific loci within the hippocampus of patients with schizophrenia and bipolar disorder. CONCLUSIONS AND RELEVANCE This work demonstrates diagnosis- and circuit-specific DNA methylation changes at a subset of GAD1 regulatory network genes in the human hippocampus in schizophrenia and bipolar disorder. These genes participate in chromatin regulation and cell cycle control, supporting the concept that the established GABAergic dysfunction in these disorders is related to disruption of GABAergic interneuron physiology at specific circuit locations within the human hippocampus.
Collapse
Affiliation(s)
- W. Brad Ruzicka
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, Massachusetts,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Sivan Subburaju
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, Massachusetts,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Francine M. Benes
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, Massachusetts,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts,Program in Neuroscience, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
37
|
Kaut O, Schmitt I, Hofmann A, Hoffmann P, Schlaepfer TE, Wüllner U, Hurlemann R. Aberrant NMDA receptor DNA methylation detected by epigenome-wide analysis of hippocampus and prefrontal cortex in major depression. Eur Arch Psychiatry Clin Neurosci 2015; 265:331-41. [PMID: 25571874 DOI: 10.1007/s00406-014-0572-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/19/2014] [Indexed: 12/21/2022]
Abstract
Current perspectives on the molecular underpinnings of major depressive disorder (MDD) posit a mechanistic role of epigenetic DNA modifications in mediating the interaction between environmental risk factors and a genetic predisposition. However, conclusive evidence for differential methylation signatures in the brain's epigenome of MDD patients as compared to controls is still lacking. To address this issue, we conducted a pilot study including an epigenome-wide methylation analysis in six individuals diagnosed with recurrent MDD and six control subjects matched for age and gender, with a priori focus on the hippocampus and prefrontal cortex as pathophysiologically relevant candidate regions. Our analysis revealed differential methylation profiles of 11 genes in hippocampus and 20 genes in prefrontal cortex, five of which were selected for replication of the methylation status using pyrosequencing. Among these replicated targets, GRIN2A was found to be hypermethylated in both prefrontal cortex and hippocampus. This finding may be of particular functional relevance as GRIN2A encodes the glutamatergic N-methyl-D-aspartate receptor subunit epsilon-1 (NR2A) and is known to be involved in a plethora of synaptic plasticity-related regulatory processes probably disturbed in MDD.
Collapse
Affiliation(s)
- Oliver Kaut
- Department of Neurology, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany,
| | | | | | | | | | | | | |
Collapse
|
38
|
Abdolmaleky HM, Zhou JR, Thiagalingam S. An update on the epigenetics of psychotic diseases and autism. Epigenomics 2015; 7:427-49. [DOI: 10.2217/epi.14.85] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The examination of potential roles of epigenetic alterations in the pathogenesis of psychotic diseases have become an essential alternative in recent years as genetic studies alone are yet to uncover major gene(s) for psychosis. Here, we describe the current state of knowledge from the gene-specific and genome-wide studies of postmortem brain and blood cells indicating that aberrant DNA methylation, histone modifications and dysregulation of micro-RNAs are linked to the pathogenesis of mental diseases. There is also strong evidence supporting that all classes of psychiatric drugs modulate diverse features of the epigenome. While comprehensive environmental and genetic/epigenetic studies are uncovering the origins, and the key genes/pathways affected in psychotic diseases, characterizing the epigenetic effects of psychiatric drugs may help to design novel therapies in psychiatry.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Departments of Medicine (Biomedical Genetics Section), Genetics & Genomics, Boston University School of Medicine, Boston, MA 02118, USA
- Nutrition/Metabolism Laboratory at Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory at Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Sam Thiagalingam
- Departments of Medicine (Biomedical Genetics Section), Genetics & Genomics, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
39
|
Kaminsky Z, Jones I, Verma R, Saleh L, Trivedi H, Guintivano J, Akman R, Zandi P, Lee RS, Potash JB. DNA methylation and expression of KCNQ3 in bipolar disorder. Bipolar Disord 2015; 17:150-9. [PMID: 25041603 DOI: 10.1111/bdi.12230] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/29/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Accumulating evidence implicates the potassium voltage-gated channel, KQT-like subfamily, member 2 and 3 (KCNQ2 and KCNQ3) genes in the etiology of bipolar disorder (BPD). Reduced KCNQ2 or KCNQ3 gene expression might lead to a loss of inhibitory M-current and an increase in neuronal hyperexcitability in disease. The goal of the present study was to evaluate epigenetic and gene expression associations of the KCNQ2 and KCNQ3 genes with BPD. METHODS DNA methylation and gene expression levels of alternative transcripts of KCNQ2 and KCNQ3 capable of binding the ankyrin G (ANK3) gene were evaluated using bisulfite pyrosequencing and the quantitative real-time polymerase chain reaction in the postmortem prefrontal cortex of subjects with BPD and matched controls from the McLean Hospital. Replication analyses of DNA methylation findings were performed using prefrontal cortical DNA obtained from the Stanley Medical Research Institute. RESULTS Significantly lower expression was observed in KCNQ3, but not KCNQ2. DNA methylation analysis of CpGs within an alternative exonic region of KCNQ3 exon 11 demonstrated significantly lower methylation in BPD, and correlated significantly with KCNQ3 mRNA levels. Lower KCNQ3 exon 11 DNA methylation was observed in the Stanley Medical Research Institute replication cohort, although only after correcting for mood stabilizer status. Mood stabilizer treatment in rats resulted in a slight DNA methylation increase at the syntenic KCNQ3 exon 11 region, which subsequent analyses suggested could be the result of alterations in neuronal proportion. CONCLUSION The results of the present study suggest that epigenetic alterations in the KCNQ3 gene may be important in the etiopathogenesis of BPD and highlight the importance of controlling for medication and cellular composition-induced heterogeneity in psychiatric studies of the brain.
Collapse
Affiliation(s)
- Zachary Kaminsky
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hunsberger JG, Chibane FL, Elkahloun AG, Henderson R, Singh R, Lawson J, Cruceanu C, Nagarajan V, Turecki G, Squassina A, Medeiros CD, Del Zompo M, Rouleau GA, Alda M, Chuang DM. Novel integrative genomic tool for interrogating lithium response in bipolar disorder. Transl Psychiatry 2015; 5:e504. [PMID: 25646593 PMCID: PMC4445744 DOI: 10.1038/tp.2014.139] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022] Open
Abstract
We developed a novel integrative genomic tool called GRANITE (Genetic Regulatory Analysis of Networks Investigational Tool Environment) that can effectively analyze large complex data sets to generate interactive networks. GRANITE is an open-source tool and invaluable resource for a variety of genomic fields. Although our analysis is confined to static expression data, GRANITE has the capability of evaluating time-course data and generating interactive networks that may shed light on acute versus chronic treatment, as well as evaluating dose response and providing insight into mechanisms that underlie therapeutic versus sub-therapeutic doses or toxic doses. As a proof-of-concept study, we investigated lithium (Li) response in bipolar disorder (BD). BD is a severe mood disorder marked by cycles of mania and depression. Li is one of the most commonly prescribed and decidedly effective treatments for many patients (responders), although its mode of action is not yet fully understood, nor is it effective in every patient (non-responders). In an in vitro study, we compared vehicle versus chronic Li treatment in patient-derived lymphoblastoid cells (LCLs) (derived from either responders or non-responders) using both microRNA (miRNA) and messenger RNA gene expression profiling. We present both Li responder and non-responder network visualizations created by our GRANITE analysis in BD. We identified by network visualization that the Let-7 family is consistently downregulated by Li in both groups where this miRNA family has been implicated in neurodegeneration, cell survival and synaptic development. We discuss the potential of this analysis for investigating treatment response and even providing clinicians with a tool for predicting treatment response in their patients, as well as for providing the industry with a tool for identifying network nodes as targets for novel drug discovery.
Collapse
Affiliation(s)
- J G Hunsberger
- Molecular Neurobiology Section, National Institute of Mental Health (NIMH), National Institutes of Health, Bethesda, MD, USA,Molecular Neurobiology Section, National Institute of Mental Health (NIMH), National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA. E-mail: or
| | - F L Chibane
- Molecular Neurobiology Section, National Institute of Mental Health (NIMH), National Institutes of Health, Bethesda, MD, USA
| | - A G Elkahloun
- National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, MD, USA
| | - R Henderson
- Bioinformatics and Computational Biosciences Branch (BCBB), Office of Cyber Infrastructure and Computational Biology (OCICB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - R Singh
- Lockheed Martin Corporation, IS&GS, Bethesda, MD,USA
| | - J Lawson
- KG Science Associates, LLC, San Diego, CA, USA
| | - C Cruceanu
- McGill Group for Suicide Studies, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada,Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - V Nagarajan
- Bioinformatics and Computational Biosciences Branch (BCBB), Office of Cyber Infrastructure and Computational Biology (OCICB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - G Turecki
- McGill Group for Suicide Studies, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - A Squassina
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - C D Medeiros
- McGill Group for Suicide Studies, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - M Del Zompo
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - G A Rouleau
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - M Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - D-M Chuang
- Molecular Neurobiology Section, National Institute of Mental Health (NIMH), National Institutes of Health, Bethesda, MD, USA,Molecular Neurobiology Section, National Institute of Mental Health (NIMH), National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA. E-mail: or
| |
Collapse
|
41
|
Numata S, Ishii K, Tajima A, Iga JI, Kinoshita M, Watanabe S, Umehara H, Fuchikami M, Okada S, Boku S, Hishimoto A, Shimodera S, Imoto I, Morinobu S, Ohmori T. Blood diagnostic biomarkers for major depressive disorder using multiplex DNA methylation profiles: discovery and validation. Epigenetics 2015; 10:135-41. [PMID: 25587773 DOI: 10.1080/15592294.2014.1003743] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Aberrant DNA methylation in the blood of patients with major depressive disorder (MDD) has been reported in several previous studies. However, no comprehensive studies using medication-free subjects with MDD have been conducted. Furthermore, the majority of these previous studies has been limited to the analysis of the CpG sites in CpG islands (CGIs) in the gene promoter regions. The main aim of the present study is to identify DNA methylation markers that distinguish patients with MDD from non-psychiatric controls. Genome-wide DNA methylation profiling of peripheral leukocytes was conducted in two set of samples, a discovery set (20 medication-free patients with MDD and 19 controls) and a replication set (12 medication-free patients with MDD and 12 controls), using Infinium HumanMethylation450 BeadChips. Significant diagnostic differences in DNA methylation were observed at 363 CpG sites in the discovery set. All of these loci demonstrated lower DNA methylation in patients with MDD than in the controls, and most of them (85.7%) were located in the CGIs in the gene promoter regions. We were able to distinguish patients with MDD from the control subjects with high accuracy in the discriminant analysis using the top DNA methylation markers. We also validated these selected DNA methylation markers in the replication set. Our results indicate that multiplex DNA methylation markers may be useful for distinguishing patients with MDD from non-psychiatric controls.
Collapse
Affiliation(s)
- Shusuke Numata
- a Department of Psychiatry; Course of Integrated Brain Sciences; Medical Informatics; Institute of Health Biosciences ; The University of Tokushima Graduate School ; Tokushima , Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
MeCP2 Modulates Sex Differences in the Postsynaptic Development of the Valproate Animal Model of Autism. Mol Neurobiol 2014; 53:40-56. [PMID: 25404090 DOI: 10.1007/s12035-014-8987-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/04/2014] [Indexed: 01/10/2023]
Abstract
Males are predominantly affected by autism spectrum disorders (ASD) with a prevalence ratio of 5:1. However, the underlying pathological mechanisms governing the male preponderance of ASD remain unclear. Recent studies suggested that epigenetic aberrations may cause synaptic dysfunctions, which might be related to the pathophysiology of ASD. In this study, we used rat offspring prenatally exposed to valproic acid (VPA) as an animal model of ASD. We found male-selective abnormalities in the kinetic profile of the excitatory glutamatergic synaptic protein expressions linked to N-methyl-D-aspartate receptor (NMDAR), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and metabotropic glutamate receptor 5 (mGluR5) pathways in the prefrontal cortex of the VPA-exposed offspring at postnatal weeks 1, 2, and 4. Furthermore, VPA exposure showed a male-specific attenuation of the methyl-CpG-binding protein 2 (MeCP2) expressions both in the prefrontal cortex of offspring and in the gender-isolated neural progenitor cells (NPCs). In the gender-isolated NPCs culture, higher concentration of VPA induced an increased glutamatergic synaptic development along with decreased MeCP2 expression in both genders suggesting the role of MeCP2 in the modulation of synaptic development. In the small interfering RNA (siRNA) knock-down study, 50 pmol of Mecp2 siRNA inhibited the MeCP2 expression in male- but not in female-derived NPCs with concomitant induction of postsynaptic proteins such as PSD95. Taken together, we suggest that the male-inclined reduction of MeCP2 expression is involved in the abnormal development of glutamatergic synapse and male preponderance in the VPA animal models of ASD.
Collapse
|
43
|
Croce N, Mathé AA, Gelfo F, Caltagirone C, Bernardini S, Angelucci F. Effects of lithium and valproic acid on BDNF protein and gene expression in an in vitro human neuron-like model of degeneration. J Psychopharmacol 2014; 28:964-72. [PMID: 24699060 DOI: 10.1177/0269881114529379] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the common effects of lithium (Li) and valproic acid (VPA) is their ability to protect against excitotoxic insults. Neurodegenerative and neuropsychiatric diseases may be also associated with altered trophic support of brain-derived neurotrophic factor (BDNF), the most widely distributed neurotrophin in the central nervous system. However, despite these evidences, the effect of Li-VPA combination on BDNF after excitoxic insult has been inadequately investigated. We address this issue by exposing a human neuroblastoma cell line (SH-SY5Y) to neurotoxic concentration of L-glutamate and exploring whether the neuroprotective action of Li-VPA on these cells is associated with changes in BDNF protein and mRNA levels. The results showed that pre-incubation of Li-VPA abolished the toxic effect of glutamate on SH-SY5Y cell survival and this neuroprotective effect was associated with increased synthesis and mRNA expression of BDNF after 24 and 48 h of incubation. In conclusion, this study demonstrates that the neuroprotective effects of Li-VPA against glutamate-induced neurotoxicity in SH-SY5Y neuroblastoma cells is associated with increased synthesis and mRNA expression of BDNF. These data further support the idea that these two drugs can be used for prevention and/or treatment of glutamate-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Nicoletta Croce
- IRCCS Santa Lucia Foundation, Rome, Italy Department of Internal Medicine, Tor Vergata University, Rome, Italy
| | - Aleksander A Mathé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Gelfo
- IRCCS Santa Lucia Foundation, Rome, Italy Department of Systemic Medicine, Tor Vergata University, Rome, Italy
| | - Carlo Caltagirone
- IRCCS Santa Lucia Foundation, Rome, Italy Department of Systemic Medicine, Tor Vergata University, Rome, Italy
| | - Sergio Bernardini
- Department of Internal Medicine, Tor Vergata University, Rome, Italy
| | | |
Collapse
|
44
|
Seo MS, Scarr E, Lai CY, Dean B. Potential molecular and cellular mechanism of psychotropic drugs. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2014; 12:94-110. [PMID: 25191500 PMCID: PMC4153869 DOI: 10.9758/cpn.2014.12.2.94] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/26/2014] [Accepted: 04/06/2014] [Indexed: 12/18/2022]
Abstract
Psychiatric disorders are among the most debilitating of all medical illnesses. Whilst there are drugs that can be used to treat these disorders, they give sub-optimal recovery in many people and a significant number of individuals do not respond to any treatments and remain treatment resistant. Surprisingly, the mechanism by which psychotropic drugs cause their therapeutic benefits remain unknown but likely involves the underlying molecular pathways affected by the drugs. Hence, in this review, we have focused on recent findings on the molecular mechanism affected by antipsychotic, mood stabilizing and antidepressant drugs at the levels of epigenetics, intracellular signalling cascades and microRNAs. We posit that understanding these important interactions will result in a better understanding of how these drugs act which in turn may aid in considering how to develop drugs with better efficacy or increased therapeutic reach.
Collapse
Affiliation(s)
- Myoung Suk Seo
- Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Victoria, Australia
| | - Elizabeth Scarr
- Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Victoria, Australia. ; Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Chi-Yu Lai
- Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Victoria, Australia. ; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Brian Dean
- Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Victoria, Australia. ; Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
45
|
Decreased global methylation in patients with bipolar disorder who respond to lithium. Int J Neuropsychopharmacol 2014; 17:561-9. [PMID: 24345589 DOI: 10.1017/s1461145713001569] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial dysfunction, oxidative stress, and alterations in DNA methylation, are all associated with the pathophysiology of bipolar disorder (BD). We therefore studied the relationship between oxidative stress and DNA methylation in patients with BD with an excellent response to lithium treatment, their affected and unaffected relatives and healthy controls. Transformed lymphoblasts were cultured in the presence or absence of lithium chloride (0.75 mM). DNA and proteins were extracted from the cells to determine levels of 8-hydroxy-2-deoxyguanosine (8-OHdG), 5-methylcytosine (5-mc), mitochondrial complex I and glutathione peroxidase (GPx) activities. Methylation was decreased in BD subjects and their relatives compared to controls and remained so after lithium treatment in BD subjects but not in their relatives. 8-OHdG levels and complex I activity did not differ between groups before and after lithium treatment. Finally, relatives of patients showed increased GPx activity before and after lithium treatment, which negatively correlated with 5-mc levels. Changes in global methylation may be specific for BD and lithium may be involved in glutathione regulation. The present study supports the importance of DNA methylation to the pathophysiology of BD and the therapeutic potential of antioxidants in this illness.
Collapse
|