1
|
Yang BSK, Blackburn SL, Lorenzi PL, Choi HA, Gusdon AM. Metabolomic and lipidomic pathways in aneurysmal subarachnoid hemorrhage. Neurotherapeutics 2025; 22:e00504. [PMID: 39701893 DOI: 10.1016/j.neurot.2024.e00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) results in a complex systemic response that is critical to the pathophysiology of late complications and has important effects on outcomes. Omics techniques have expanded our investigational scope and depth into this phenomenon. In particular, metabolomics-the study of small molecules, such as blood products, carbohydrates, amino acids, and lipids-can provide a snapshot of dynamic subcellular processes and thus broaden our understanding of molecular-level pathologic changes that lead to the systemic response after aSAH. Lipids are especially important due to their abundance in the circulating blood and numerous physiological roles. They are comprised of a wide variety of subspecies and are critical for cellular energy metabolism, the integrity of the blood-brain barrier, the formation of cell membranes, and intercellular signaling including neuroinflammation and ferroptosis. In this review, metabolomic and lipidomic pathways associated with aSAH are summarized, centering on key metabolites from each metabolomic domain.
Collapse
Affiliation(s)
- Bosco Seong Kyu Yang
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, and Memorial Hermann Hospital at the Texas Medical Center, United States
| | - Spiros L Blackburn
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, and Memorial Hermann Hospital at the Texas Medical Center, United States
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center (MDACC), United States
| | - Huimahn A Choi
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, and Memorial Hermann Hospital at the Texas Medical Center, United States
| | - Aaron M Gusdon
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, and Memorial Hermann Hospital at the Texas Medical Center, United States.
| |
Collapse
|
2
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
3
|
Arseni L, Sharma R, Mack N, Nagalla D, Ohl S, Hielscher T, Singhal M, Pilz R, Augustin H, Sandhoff R, Herold-Mende C, Tews B, Lichter P, Seiffert M. Sphingosine-1-Phosphate Recruits Macrophages and Microglia and Induces a Pro-Tumorigenic Phenotype That Favors Glioma Progression. Cancers (Basel) 2023; 15:cancers15020479. [PMID: 36672428 PMCID: PMC9856301 DOI: 10.3390/cancers15020479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Glioblastoma is the most aggressive brain tumor in adults. Treatment failure is predominantly caused by its high invasiveness and its ability to induce a supportive microenvironment. As part of this, a major role for tumor-associated macrophages/microglia (TAMs) in glioblastoma development was recognized. Phospholipids are important players in various fundamental biological processes, including tumor-stroma crosstalk, and the bioactive lipid sphingosine-1-phosphate (S1P) has been linked to glioblastoma cell proliferation, invasion, and survival. Despite the urgent need for better therapeutic approaches, novel strategies targeting sphingolipids in glioblastoma are still poorly explored. Here, we showed that higher amounts of S1P secreted by glioma cells are responsible for an active recruitment of TAMs, mediated by S1P receptor (S1PR) signaling through the modulation of Rac1/RhoA. This resulted in increased infiltration of TAMs in the tumor, which, in turn, triggered their pro-tumorigenic phenotype through the inhibition of NFkB-mediated inflammation. Gene set enrichment analyses showed that such an anti-inflammatory microenvironment correlated with shorter survival of glioblastoma patients. Inhibition of S1P restored a pro-inflammatory phenotype in TAMs and resulted in increased survival of tumor-bearing mice. Taken together, our results establish a crucial role for S1P in fine-tuning the crosstalk between glioma and infiltrating TAMs, thus pointing to the S1P-S1PR axis as an attractive target for glioma treatment.
Collapse
Affiliation(s)
- Lavinia Arseni
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: (L.A.); (M.S.)
| | - Rakesh Sharma
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Mechanisms of Tumor Invasion, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Norman Mack
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Deepthi Nagalla
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Mechanisms of Tumor Invasion, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sibylle Ohl
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mahak Singhal
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Robert Pilz
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Lipid Pathobiochemistry, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hellmut Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Neurosurgery, Division of Experimental Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Björn Tews
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Mechanisms of Tumor Invasion, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: (L.A.); (M.S.)
| |
Collapse
|
4
|
Lusk H, Burdette JE, Sanchez LM. Models for measuring metabolic chemical changes in the metastasis of high grade serous ovarian cancer: fallopian tube, ovary, and omentum. Mol Omics 2021; 17:819-832. [PMID: 34338690 PMCID: PMC8649074 DOI: 10.1039/d1mo00074h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignancy and high grade serous ovarian cancer (HGSOC) is the most common and deadly subtype, accounting for 70-80% of OC deaths. HGSOC has a distinct pattern of metastasis as many believe it originates in the fallopian tube and then it metastasizes first to the ovary, and later to the adipose-rich omentum. Metabolomics has been heavily utilized to investigate metabolite changes in HGSOC tumors and metastasis. Generally, metabolomics studies have traditionally been applied to biospecimens from patients or animal models; a number of recent studies have combined metabolomics with innovative cell-culture techniques to model the HGSOC metastatic microenvironment for the investigation of cell-to-cell communication. The purpose of this review is to serve as a tool for researchers aiming to model the metastasis of HGSOC for metabolomics analyses. It will provide a comprehensive overview of current knowledge on the origin and pattern of metastasis of HGSOC and discuss the advantages and limitations of different model systems to help investigators choose the best model for their research goals, with a special emphasis on compatibility with different metabolomics modalities. It will also examine what is presently known about the role of small molecules in the origin and metastasis of HGSOC.
Collapse
Affiliation(s)
- Hannah Lusk
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA.
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S Ashland Ave., Chicago, IL, 60607, USA
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
5
|
Liu X, Xie Z, Li S, He J, Cao S, Xiao Z. PRG-1 relieves pain and depressive-like behaviors in rats of bone cancer pain by regulation of dendritic spine in hippocampus. Int J Biol Sci 2021; 17:4005-4020. [PMID: 34671215 PMCID: PMC8495398 DOI: 10.7150/ijbs.59032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: Pain and depression, which tend to occur simultaneously and share some common neural circuits and neurotransmitters, are highly prevalent complication in patients with advanced cancer. Exploring the underlying mechanisms is the cornerstone to prevent the comorbidity of chronic pain and depression in cancer patients. Plasticity-related gene 1 (PRG-1) protein regulates synaptic plasticity and brain functional reorganization during neuronal development or after cerebral lesion. Purinergic P2X7 receptor has been proposed as a therapeutic target for various pain and neurological disorders like depression in rodents. In this study, we investigated the roles of PRG-1 in the hippocampus in the comorbidity of pain and depressive-like behaviors in rats with bone cancer pain (BCP). Methods: The bone cancer pain rat model was established by intra-tibial cell inoculation of SHZ-88 mammary gland carcinoma cells. The animal pain behaviors were assessed by measuring the thermal withdrawal latency values by using radiant heat stimulation and mechanical withdrawal threshold by using electronic von Frey anesthesiometer, and depressive-like behavior was assessed by sucrose preference test and forced swim test. Alterations in the expression levels of PRG-1 and P2X7 receptor in hippocampus were separately detected by using western blot, immunofluorescence and immunohistochemistry analysis. The effects of intra-hippocampal injection of FTY720 (a PRG-1/PP2A interaction activator), PRG-1 overexpression or intra-hippocampal injection of A438079 (a selective competitive P2X7 receptor antagonist) were also observed. Results: Carcinoma intra-tibia injection caused thermal hyperalgesia, mechanical allodynia and depressive-like behaviors in rats, and also induced the deactivation of neurons and dendritic spine structural anomalies in the hippocampus. Western blot, immunofluorescence and immunohistochemistry analysis showed an increased expression of PRG-1 and P2X7 receptor in the hippocampus of BCP rats. Intra-hippocampal injection of FTY720 or A438079 attenuated both pain and depressive-like behaviors. Furthermore, overexpression of PRG-1 in hippocampus has similar analgesic efficacy to FTY720. In addition, they rescued neuron deactivation and dendritic spine anomalies. Conclusion: The results suggest that both PRG-1 and P2X7 receptor in the hippocampus play important roles in the development of pain and depressive-like behaviors in bone cancer condition in rats by dendritic spine regulation via P2X7R/PRG-1/PP2A pathway.
Collapse
Affiliation(s)
- Xingfeng Liu
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563000, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563000, China
| | - Zhuo Xie
- Graduate School, Zunyi Medical University, Zunyi 563000, China
| | - Site Li
- Graduate School, Zunyi Medical University, Zunyi 563000, China
| | - Jingxin He
- Graduate School, Zunyi Medical University, Zunyi 563000, China
| | - Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Zhi Xiao
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563000, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
6
|
Synergistic Effect of WTC-Particulate Matter and Lysophosphatidic Acid Exposure and the Role of RAGE: In-Vitro and Translational Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124318. [PMID: 32560330 PMCID: PMC7344461 DOI: 10.3390/ijerph17124318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
World Trade Center particulate matter (WTC-PM)-exposed firefighters with metabolic syndrome (MetSyn) have a higher risk of WTC lung injury (WTC-LI). Since macrophages are crucial innate pulmonary mediators, we investigated WTC-PM/lysophosphatidic acid (LPA) co-exposure in macrophages. LPA, a low-density lipoprotein metabolite, is a ligand of the advanced glycation end-products receptor (AGER or RAGE). LPA and RAGE are biomarkers of WTC-LI. Human and murine macrophages were exposed to WTC-PM, and/or LPA, and compared to controls. Supernatants were assessed for cytokines/chemokines; cell lysate immunoblots were assessed for signaling intermediates after 24 h. To explore the translatability of our in-vitro findings, we assessed serum cytokines/chemokines and metabolites of symptomatic, never-smoking WTC-exposed firefighters. Agglomerative hierarchical clustering identified phenotypes of WTC-PM-induced inflammation. WTC-PM induced GM-CSF, IL-8, IL-10, and MCP-1 in THP-1-derived macrophages and induced IL-1α, IL-10, TNF-α, and NF-κB in RAW264.7 murine macrophage-like cells. Co-exposure induced synergistic elaboration of IL-10 and MCP-1 in THP-1-derived macrophages. Similarly, co-exposure synergistically induced IL-10 in murine macrophages. Synergistic effects were seen in the context of a downregulation of NF-κB, p-Akt, -STAT3, and -STAT5b. RAGE expression after co-exposure increased in murine macrophages compared to controls. In our integrated analysis, the human cytokine/chemokine biomarker profile of WTC-LI was associated with discriminatory metabolites (fatty acids, sphingolipids, and amino acids). LPA synergistically elaborated WTC-PM’s inflammatory effects in vitro and was partly RAGE-mediated. Further research will focus on the intersection of MetSyn/PM exposure.
Collapse
|
7
|
Lysophospholipid Signaling in the Epithelial Ovarian Cancer Tumor Microenvironment. Cancers (Basel) 2018; 10:cancers10070227. [PMID: 29987226 PMCID: PMC6071084 DOI: 10.3390/cancers10070227] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
As one of the important cancer hallmarks, metabolism reprogramming, including lipid metabolism alterations, occurs in tumor cells and the tumor microenvironment (TME). It plays an important role in tumorigenesis, progression, and metastasis. Lipids, and several lysophospholipids in particular, are elevated in the blood, ascites, and/or epithelial ovarian cancer (EOC) tissues, making them not only useful biomarkers, but also potential therapeutic targets. While the roles and signaling of these lipids in tumor cells are extensively studied, there is a significant gap in our understanding of their regulations and functions in the context of the microenvironment. This review focuses on the recent study development in several oncolipids, including lysophosphatidic acid and sphingosine-1-phosphate, with emphasis on TME in ovarian cancer.
Collapse
|
8
|
Genome-wide DNA methylation profiles altered by Helicobacter pylori in gastric mucosa and blood leukocyte DNA. Oncotarget 2018; 7:37132-37144. [PMID: 27206798 PMCID: PMC5095064 DOI: 10.18632/oncotarget.9469] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/24/2016] [Indexed: 01/28/2023] Open
Abstract
Purpose To investigate Helicobacter pylori (H.pylori) associated genome-wide aberrant methylation patterns in gastric mucosa and blood leukocyte DNA, a population-based study was conducted in Linqu County. Results A total of 3000 and 386 CpGs were differentially methylated after successful H.pylori eradication in gastric mucosa and blood leukocyte DNA respectively, and 17 were the same alteration trend in the both tissues. The differentially methylated CpGs were located more frequently in promoters or CpG islands for gastric mucosa and gene body or open sea for blood leukocyte DNA. In eradicated gastric mucosa, the hypermethylated CpGs were enriched across inflammatory pathways, while the hypomethylated CpGs in tube morphogenesis, development and so on. The final validation found lower SPI1, PRIC285 and S1PR4 methylation levels in H.pylori positive subjects by case-control comparison, and increased methylation levels in H.pylori eradicated gastric mucosa by self-comparison. The Cancer Genome Atlas (TCGA) database analysis suggested that the up-regulation of the three genes by hypomethylation might be associated with gastric carcinogenesis. Experimental Design Infinium HumanMethylation 450K BeadChip was used to compare methylation profiles prior to and after eradication treatment. The methylation levels of identified candidate differentially methylated genes before and after H.pylori eradication were further validated by two stages (Stage I: self-comparison of 16 subjects before and after anti-H.pylori treatment; Stage II: case-control comparison of 25 H.pylori positive and 25 negative subjects and self-comparison of 50 anti-H.pylori treated subjects). Conclusions Novel H.pylori associated aberrant methylated genes were identified across the whole genome both in gastric mucosa and blood leukocyte DNA.
Collapse
|
9
|
Federico L, Jeong KJ, Vellano CP, Mills GB. Autotaxin, a lysophospholipase D with pleomorphic effects in oncogenesis and cancer progression. J Lipid Res 2016; 57:25-35. [PMID: 25977291 PMCID: PMC4689343 DOI: 10.1194/jlr.r060020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/07/2015] [Indexed: 12/18/2022] Open
Abstract
The ectonucleotide pyrophosphatase/phosphodiesterase type 2, more commonly known as autotaxin (ATX), is an ecto-lysophospholipase D encoded by the human ENNP2 gene. ATX is expressed in multiple tissues and participates in numerous key physiologic and pathologic processes, including neural development, obesity, inflammation, and oncogenesis, through the generation of the bioactive lipid, lysophosphatidic acid. Overwhelming evidence indicates that altered ATX activity leads to oncogenesis and cancer progression through the modulation of multiple hallmarks of cancer pathobiology. Here, we review the structural and catalytic characteristics of the ectoenzyme, how its expression and maturation processes are regulated, and how the systemic integration of its pleomorphic effects on cells and tissues may contribute to cancer initiation, progression, and therapy. Additionally, the up-to-date spectrum of the most frequent ATX genomic alterations from The Cancer Genome Atlas project is reported for a subset of cancers.
Collapse
Affiliation(s)
- Lorenzo Federico
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Kang Jin Jeong
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Christopher P Vellano
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Gordon B Mills
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
10
|
Targeting the Hippo pathway: Clinical implications and therapeutics. Pharmacol Res 2015; 103:270-8. [PMID: 26678601 DOI: 10.1016/j.phrs.2015.11.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022]
Abstract
The Hippo pathway plays a critical role in tissue and organ size regulation by restraining cell proliferation and apoptosis under homeostatic conditions. Deregulation of this pathway can promote tumorigenesis in multiple malignant human tumor types, including sarcoma, breast, lung and liver cancers. In this review, we summarize the current understanding of Hippo pathway function, it's role in human cancer, and address the potential of Hippo pathway member proteins as therapeutic targets for a variety of tumors.
Collapse
|
11
|
Tveteraas IH, Aasrum M, Brusevold IJ, Ødegård J, Christoffersen T, Sandnes D. Lysophosphatidic acid induces both EGFR-dependent and EGFR-independent effects on DNA synthesis and migration in pancreatic and colorectal carcinoma cells. Tumour Biol 2015; 37:2519-26. [DOI: 10.1007/s13277-015-4010-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/27/2015] [Indexed: 12/19/2022] Open
|
12
|
Weiden MD, Kwon S, Caraher E, Berger KI, Reibman J, Rom WN, Prezant DJ, Nolan A. Biomarkers of World Trade Center Particulate Matter Exposure: Physiology of Distal Airway and Blood Biomarkers that Predict FEV₁ Decline. Semin Respir Crit Care Med 2015; 36:323-33. [PMID: 26024341 DOI: 10.1055/s-0035-1547349] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biomarkers can be important predictors of disease severity and progression. The intense exposure to particulates and other toxins from the destruction of the World Trade Center (WTC) overwhelmed the lung's normal protective barriers. The Fire Department of New York (FDNY) cohort not only had baseline pre-exposure lung function measures but also had serum samples banked soon after their WTC exposure. This well-phenotyped group of highly exposed first responders is an ideal cohort for biomarker discovery and eventual validation. Disease progression was heterogeneous in this group in that some individuals subsequently developed abnormal lung function while others recovered. Airflow obstruction predominated in WTC-exposed patients who were symptomatic. Multiple independent disease pathways may cause this abnormal FEV1 after irritant exposure. WTC exposure activates one or more of these pathways causing abnormal FEV1 in an individual. Our hypothesis was that serum biomarkers expressed within 6 months after WTC exposure reflect active disease pathways and predict subsequent development or protection from abnormal FEV1 below the lower limit of normal known as WTC-Lung Injury (WTC-LI). We utilized a nested case-cohort control design of previously healthy never smokers who sought subspecialty pulmonary evaluation to explore predictive biomarkers of WTC-LI. We have identified biomarkers of inflammation, metabolic derangement, protease/antiprotease balance, and vascular injury expressed in serum within 6 months of WTC exposure that were predictive of their FEV1 up to 7 years after their WTC exposure. Predicting future risk of airway injury after particulate exposures can focus monitoring and early treatment on a subset of patients in greatest need of these services.
Collapse
Affiliation(s)
- Michael D Weiden
- Division of Pulmonary, Critical Care and Sleep, New York University School of Medicine, New York, New York
| | - Sophia Kwon
- Division of Pulmonary, Critical Care and Sleep, New York University School of Medicine, New York, New York
| | - Erin Caraher
- Division of Pulmonary, Critical Care and Sleep, New York University School of Medicine, New York, New York
| | - Kenneth I Berger
- Division of Pulmonary, Critical Care and Sleep, New York University School of Medicine, New York, New York
| | - Joan Reibman
- Division of Pulmonary, Critical Care and Sleep, New York University School of Medicine, New York, New York
| | - William N Rom
- Division of Pulmonary, Critical Care and Sleep, New York University School of Medicine, New York, New York
| | - David J Prezant
- Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, New York
| | - Anna Nolan
- Division of Pulmonary, Critical Care and Sleep, New York University School of Medicine, New York, New York
| |
Collapse
|
13
|
The Src homology 3 binding domain is required for lysophosphatidic acid 3 receptor-mediated cellular viability in melanoma cells. Cancer Lett 2015; 356:589-96. [DOI: 10.1016/j.canlet.2014.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/29/2014] [Accepted: 10/03/2014] [Indexed: 12/29/2022]
|
14
|
Tsukiji J, Cho SJ, Echevarria GC, Kwon S, Joseph P, Schenck EJ, Naveed B, Prezant DJ, Rom WN, Schmidt AM, Weiden MD, Nolan A. Lysophosphatidic acid and apolipoprotein A1 predict increased risk of developing World Trade Center-lung injury: a nested case-control study. Biomarkers 2014; 19:159-65. [PMID: 24548082 DOI: 10.3109/1354750x.2014.891047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
RATIONALE Metabolic syndrome, inflammatory and vascular injury markers measured in serum after World Trade Center (WTC) exposures predict abnormal FEV1. We hypothesized that elevated LPA levels predict FEV₁ < LLN. METHODS Nested case-control study of WTC-exposed firefighters. Cases had FEV₁ < LLN. Controls derived from the baseline cohort. Demographics, pulmonary function, serum lipids, LPA and ApoA1 were measured. RESULTS LPA and ApoA1 levels were higher in cases than controls and predictive of case status. LPA increased the odds by 13% while ApoA1 increased the odds by 29% of an FEV₁ < LLN in a multivariable model. CONCLUSIONS Elevated LPA and ApoA1 are predictive of a significantly increased risk of developing an FEV₁ < LLN.
Collapse
Affiliation(s)
- Jun Tsukiji
- Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, New York University , New York, NY , USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Su SC, Hu X, Kenney PA, Merrill MM, Babaian KN, Zhang XY, Maity T, Yang SF, Lin X, Wood CG. Autotaxin-lysophosphatidic acid signaling axis mediates tumorigenesis and development of acquired resistance to sunitinib in renal cell carcinoma. Clin Cancer Res 2013; 19:6461-72. [PMID: 24122794 DOI: 10.1158/1078-0432.ccr-13-1284] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE Sunitinib is currently considered as the standard treatment for advanced renal cell carcinoma (RCC). We aimed to better understand the mechanisms of sunitinib action in kidney cancer treatment and in the development of acquired resistance. EXPERIMENTAL DESIGN Gene expression profiles of RCC tumor endothelium in sunitinib-treated and -untreated patients were analyzed and verified by quantitative PCR and immunohistochemistry. The functional role of the target gene identified was investigated in RCC cell lines and primary cultures in vitro and in preclinical animal models in vivo. RESULTS Altered expression of autotaxin, an extracellular lysophospholipase D, was detected in sunitinib-treated tumor vasculature of human RCC and in the tumor endothelial cells of RCC xenograft models when adapting to sunitinib. ATX and its catalytic product, lysophosphatidic acid (LPA), regulated the signaling pathways and cell motility of RCC in vitro. However, no marked in vitro effect of ATX-LPA signaling on endothelial cells was observed. Functional blockage of LPA receptor 1 (LPA1) using an LPA1 antagonist, Ki16425, or gene silencing of LPA1 in RCC cells attenuated LPA-mediated intracellular signaling and invasion responses in vitro. Ki16425 treatment also dampened RCC tumorigenesis in vivo. In addition, coadministration of Ki16425 with sunitinib prolonged the sensitivity of RCC to sunitinib in xenograft models, suggesting that ATX-LPA signaling in part mediates the acquired resistance against sunitinib in RCC. CONCLUSIONS Our results reveal that endothelial ATX acts through LPA signaling to promote renal tumorigenesis and is functionally involved in the acquired resistance of RCC to sunitinib.
Collapse
Affiliation(s)
- Shih-Chi Su
- Authors' Affiliations: Departments of Urology and Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; and Institue of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Park HW, Guan KL. Regulation of the Hippo pathway and implications for anticancer drug development. Trends Pharmacol Sci 2013; 34:581-9. [PMID: 24051213 DOI: 10.1016/j.tips.2013.08.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/12/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022]
Abstract
Research in the past decade has revealed key components of the Hippo tumor suppressor pathway and its critical role in organ size regulation and tumorigenesis. Recent progress has identified a wide range of upstream factors that control the Hippo pathway, which include cell-cell contact, various diffusible signals, and cognate receptors. Dysregulation of the Hippo pathway, caused by gene mutation or aberrant expression, promotes cell proliferation and tumorigenesis. Here, we discuss the current state of Hippo pathway research, primarily focusing on upstream regulators and protein-protein interactions as potential therapeutic targets. Consideration of pharmacological intervention of the Hippo pathway may provide novel avenues for future therapeutic treatment of human diseases, particularly in cancer.
Collapse
Affiliation(s)
- Hyun Woo Park
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
17
|
Prevention of ocular scarring after glaucoma filtering surgery using the monoclonal antibody LT1009 (Sonepcizumab) in a rabbit model. J Glaucoma 2013; 22:145-51. [PMID: 21946553 DOI: 10.1097/ijg.0b013e31822e8c83] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Excessive scarring leading to failure of the filtering bleb continues to be a major problem after glaucoma filtration surgery. This study examines the antifibrotic effects of the anti-S1P monoclonal antibody LT1009 (Sonepcizumab) in prolonging bleb survival in a rabbit model of glaucoma filtering surgery. METHODS The frequency of LT1009 dosage was determined initially using an enzyme-linked immunosorbent assay assay measuring LT1009 eye tissue retention in 6 New Zealand White rabbits. A further 21 New Zealand White rabbits underwent glaucoma filtering surgery. Bleb tissues were observed and compared clinically and histologically. The duration of bleb elevation was compared among LT1009, balanced saline solution (BSS) negative control, and mitomycin-C (MMC)-positive control. RESULTS The mean duration of bleb survival was 28.5±8.5 days for rabbits receiving injections of LT1009, 21.0±5.6 days for those receiving injections of BSS, and 33.8±5.6 days for rabbits receiving MMC. Analysis of variance with post hoc testing suggests a statistically significant trend of improvement in bleb duration for LT1009 when compared with BSS controls. Nonpainful, upper eyelid edema was noted after 5 injections of LT1009, which resolved over a 10-day period. MMC eyes developed avascular conjunctivas with areas of thinning and sparse cellularity, whereas the conjunctiva of LT1009 and BSS eyes remained relatively normal. CONCLUSIONS The monoclonal antibody LT1009 demonstrated a longer duration of bleb elevation than BSS control without adverse conjunctival effects associated with MMC. However, after multiple doses LT1009 use was associated with short-term upper eyelid edema.
Collapse
|
18
|
Abstract
The Hippo pathway controls organ size in diverse species, whereas pathway deregulation can induce tumours in model organisms and occurs in a broad range of human carcinomas, including lung, colorectal, ovarian and liver cancer. Despite this, somatic or germline mutations in Hippo pathway genes are uncommon, with only the upstream pathway gene neurofibromin 2 (NF2) recognized as a bona fide tumour suppressor gene. In this Review, we appraise the evidence for the Hippo pathway as a cancer signalling network, and discuss cancer-relevant biological functions, potential mechanisms by which Hippo pathway activity is altered in cancer and emerging therapeutic strategies.
Collapse
Affiliation(s)
- Kieran F Harvey
- Peter MacCallum Cancer Centre, 7 St Andrews Place, East Melbourne, Victoria 3002, Australia.
| | | | | |
Collapse
|
19
|
Seibold LK, Sherwood MB, Kahook MY. Wound modulation after filtration surgery. Surv Ophthalmol 2013; 57:530-50. [PMID: 23068975 DOI: 10.1016/j.survophthal.2012.01.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 01/02/2012] [Accepted: 01/19/2012] [Indexed: 01/26/2023]
Abstract
Filtration surgery is the standard invasive procedure for the management of intraocular pressure in advanced glaucoma. The key to a successful outcome is to modulate the normal wound healing cascade that leads to closure of the newly created aqueous outflow pathway. Antifibrotic agents such as mitomycin C and 5-fluorouracil have been increasingly used to modulate the wound healing process and increase surgical success. Although these agents have proven efficacy, they also increase the risk of complications. Efforts have centered on the identification of novel agents and techniques that can influence wound modulation without these complications. We detail new agents and methods under investigation to control wound healing after filtration surgery.
Collapse
Affiliation(s)
- Leonard K Seibold
- Rocky Mountain Lions Eye Institute, Department of Ophthalmology, University of Colorado at Denver, Aurora, Colorado, USA
| | | | | |
Collapse
|
20
|
Structural Characterization of an LPA1 Second Extracellular Loop Mimetic with a Self-Assembling Coiled-Coil Folding Constraint. Int J Mol Sci 2013; 14:2788-807. [PMID: 23434648 PMCID: PMC3588015 DOI: 10.3390/ijms14022788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/16/2012] [Accepted: 01/24/2013] [Indexed: 12/16/2022] Open
Abstract
G protein-coupled receptor (GPCR) structures are of interest as a means to understand biological signal transduction and as tools for therapeutic discovery. The growing number of GPCR crystal structures demonstrates that the extracellular loops (EL) connecting the membrane-spanning helices show tremendous structural variability relative to the more structurally-conserved seven transmembrane α-helical domains. The EL of the LPA(1) receptor have not yet been conclusively resolved, and bear limited sequence identity to known structures. This study involved development of a peptide to characterize the intrinsic structure of the LPA(1) GPCR second EL. The loop was embedded between two helices that assemble into a coiled-coil, which served as a receptor-mimetic folding constraint (LPA(1)-CC-EL2 peptide). The ensemble of structures from multi-dimensional NMR experiments demonstrated that a robust coiled-coil formed without noticeable deformation due to the EL2 sequence. In contrast, the EL2 sequence showed well-defined structure only near its C-terminal residues. The NMR ensemble was combined with a computational model of the LPA(1) receptor that had previously been validated. The resulting hybrid models were evaluated using docking. Nine different hybrid models interacted with LPA 18:1 as expected, based on prior mutagenesis studies, and one was additionally consistent with antagonist affinity trends.
Collapse
|
21
|
Xiang SY, Dusaban SS, Brown JH. Lysophospholipid receptor activation of RhoA and lipid signaling pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:213-22. [PMID: 22986288 DOI: 10.1016/j.bbalip.2012.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 09/08/2012] [Accepted: 09/08/2012] [Indexed: 01/08/2023]
Abstract
The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) signal through G-protein coupled receptors (GPCRs) which couple to multiple G-proteins and their effectors. These GPCRs are quite efficacious in coupling to the Gα(12/13) family of G-proteins, which stimulate guanine nucleotide exchange factors (GEFs) for RhoA. Activated RhoA subsequently regulates downstream enzymes that transduce signals which affect the actin cytoskeleton, gene expression, cell proliferation and cell survival. Remarkably many of the enzymes regulated downstream of RhoA either use phospholipids as substrates (e.g. phospholipase D, phospholipase C-epsilon, PTEN, PI3 kinase) or are regulated by phospholipid products (e.g. protein kinase D, Akt). Thus lysophospholipids signal from outside of the cell and control phospholipid signaling processes within the cell that they target. Here we review evidence suggesting an integrative role for RhoA in responding to lysophospholipids upregulated in the pathophysiological environment, and in transducing this signal to cellular responses through effects on phospholipid regulatory or phospholipid regulated enzymes. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- Sunny Yang Xiang
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
22
|
Popnikolov NK, Dalwadi BH, Thomas JD, Johannes GJ, Imagawa WT. Association of autotaxin and lysophosphatidic acid receptor 3 with aggressiveness of human breast carcinoma. Tumour Biol 2012; 33:2237-43. [PMID: 22922883 DOI: 10.1007/s13277-012-0485-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 08/02/2012] [Indexed: 01/25/2023] Open
Abstract
In vitro and in vivo experimental studies have demonstrated the role of lysophosphatidic acid (LPA) signaling in tumor proliferation, invasiveness, and metastasis. Among LPA receptors, the overexpression of LPA receptor 3 (LPAR3) in transgenic mice has resulted in the highest rate of breast cancer metastasis. Our goal is to evaluate the LPA-producing enzyme autotaxin and LPAR3 as potential therapeutic targets in breast cancer patients. The expression of autotaxin and LPAR3 was examined by immunohistochemical analysis of 87 invasive human breast carcinomas. Carcinomas were more frequently positive for autotaxin and LPAR3 (24.4 and 43 %, respectively) compared to adjacent normal breast tissue (6.1 and 2.9 %, respectively). Increased stromal autotaxin expression was found in 16.3 % of the tumors. LPAR3 overexpression was associated with less differentiated tumors, human epidermal growth factor receptor 2 expression, and absence of progesterone receptors. The luminal type A carcinomas showed the lowest frequency of autotaxin and LPAR3 expression. Strong desmoplastic stromal reaction was more frequent among the carcinomas with autotaxin-positive tumor cells or autotaxin-positive stroma. Patients with carcinomas overexpressing LPAR3 in epithelial cells or autotaxin in stromal cells were more likely to have larger tumors, nodal involvement, and higher stage disease. Autotaxin overexpression in tumor cells also correlated with tumor size and clinical stage. Our data indicate that the increased expression of LPAR3 and autotaxin in human breast cancer is associated with tumor aggressiveness. They also suggest that LPA mediates tumor metastatic ability and peritumoral desmoplastic reaction through autocrine-paracrine mechanisms. A substantial portion of breast cancer patients might benefit from autotoxin/LPA receptor-targeted therapies.
Collapse
Affiliation(s)
- Nikolay K Popnikolov
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102-1192, USA.
| | | | | | | | | |
Collapse
|
23
|
Strauss U, Bräuer AU. Current views on regulation and function of plasticity-related genes (PRGs/LPPRs) in the brain. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:133-8. [PMID: 23388400 DOI: 10.1016/j.bbalip.2012.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 01/26/2023]
Abstract
Plasticity-related genes (PRGs, Lipid phosphate phosphatase-related proteins LPPRs) are a defined as a subclass of the lipid phosphate phosphatase (LPP) superfamily, comprising so far five brain- and vertebrate-specific membrane-spanning proteins. LPPs interfere with lipid phosphate signaling and are thereby involved in mediating the extracellular concentration and signal transduction of lipid phosphate esters such as lysophosphatidate (LPA) and spingosine-1 phosphate (S1P). LPPs dephosphorylate their substrates through extracellular catalytic domains, thus making them ecto-phosphatases. PRGs/LPPRs are structurally similar to the other LPP family members in general. They are predominantly expressed in the CNS in a subtype specific pattern rather than having a wide tissue distribution. In contrast to LPPs, PRGs/LPPRs may act by modifying bioactive lipids and their signaling pathways, rather than possessing an ecto-phosphatase activity. However, the exact functional roles of PRGs/LPPRs have just begun to be explored. Here, we discuss new findings on the neuron-specific transcriptional regulation of PRG1/LPPR4 and new insights into protein-protein interaction and signaling pathway regulation. Further, we start to shed light on the subcellular localization and the resulting functional modulatory influence of PRG1/LPPR4 expression in excitatory synaptic transmission to the established neural effects such as promotion of filopodia formation, neurite extension, axonal sprouting and reorganization after lesion. This range of effects suggests an involvement in the pathogenesis and/or reparation attempts in disease. Therefore, we summarize available data on the association of PRGs/LPPRs with several neurological and other diseases in humans and experimental animals. Finally we highlight important open questions and emerging future directions of research. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- Ulf Strauss
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
24
|
Lysophosphatidylinositol signalling: New wine from an old bottle. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:694-705. [DOI: 10.1016/j.bbalip.2012.01.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/02/2011] [Accepted: 01/03/2012] [Indexed: 01/29/2023]
|
25
|
Mu H, Calderone TL, Davies MA, Prieto VG, Wang H, Mills GB, Bar-Eli M, Gershenwald JE. Lysophosphatidic acid induces lymphangiogenesis and IL-8 production in vitro in human lymphatic endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2170-81. [PMID: 22465753 DOI: 10.1016/j.ajpath.2012.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2012] [Indexed: 02/06/2023]
Abstract
The bioactive phospholipid lysophosphatidic acid (LPA) and its receptors LPA(1-3) are aberrantly expressed in many types of human cancer. LPA has been reported to induce tumor cell proliferation, migration, and cytokine production. However, whether LPA exerts an effect on lymphatic endothelial cells (LECs) or on lymphangiogenesis, a process of new lymphatic vessel formation that is associated with increased metastasis and poor prognosis in cancer patients, has been unknown. Here, we show that LPA induces cell proliferation, survival, migration, and tube formation, and promotes lymphangiogenesis in vitro in human dermal LECs. In addition, LPA induces IL-8 expression by enhancing IL-8 promoter activity via activation of the NF-κB pathway in LECs. Using IL-8 siRNA and IL-8 neutralizing antibody, we revealed that IL-8 plays an important role in LPA-induced lymphangiogenesis in vitro. Moreover, using siRNA inhibition, we discovered that LPA-induced lymphangiogenesis in vitro and IL-8 production are mediated via the LPA(2) receptor in LECs. Finally, using human sentinel afferent lymphatic vessel explants, we demonstrated that LPA up-regulates IL-8 production in the LECs of lymphatic endothelia. These studies provide the first evidence that LPA promotes lymphangiogenesis and induces IL-8 production in LECs; we also reveal a possible new role of LPA in the promotion of tumor progression, as well as metastasis, in different cancer types.
Collapse
Affiliation(s)
- Hong Mu
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Estrada-Bernal A, Palanichamy K, Ray Chaudhury A, Van Brocklyn JR. Induction of brain tumor stem cell apoptosis by FTY720: a potential therapeutic agent for glioblastoma. Neuro Oncol 2012; 14:405-15. [PMID: 22351749 DOI: 10.1093/neuonc/nos005] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
FTY720 is a sphingosine analogue that down regulates expression of sphingosine-1-phosphate receptors and causes apoptosis of multiple tumor cell types, including glioma cells. This study examined the effect of FTY720 on brain tumor stem cells (BTSCs) derived from human glioblastoma (GBM) tissue. FTY720 treatment of BTSCs led to rapid inactivation of ERK MAP kinase, leading to upregulation of the BH3-only protein Bim and apoptosis. In combination with temozolomide (TMZ), the current standard chemotherapeutic agent for GBM, FTY720 synergistically induced BTSC apoptosis. FTY720 also slowed growth of intracranial xenograft tumors in nude mice and augmented the therapeutic effect of TMZ, leading to enhanced survival. Furthermore, the combination of FTY720 and TMZ decreased the invasiveness of BTSCs in mouse brains. FTY720 is known to cross the blood-brain barrier and recently received Food and Drug Administration approval for treatment of relapsing multiple sclerosis. Thus, FTY720 is an excellent potential therapeutic agent for treatment of GBM.
Collapse
|
27
|
Abstract
Comparative modeling is a powerful technique to generate models of proteins from families already represented by members with experimentally characterized three-dimensional structures. The method is particularly important for modeling membrane-bound receptors in the G Protein-Coupled Receptor (GPCR) family, such as many of the lipid receptors (such as the cannabinoid, prostanoid, lysophosphatidic acid, sphingosine 1-phosphate, and eicosanoid receptor family members), as these represent particularly challenging targets for experimental structural characterization methods. Although challenging modeling targets, these receptors have been linked to therapeutic indications that vary from nociception to cancer, and thus are of interest as therapeutic targets. Accurate models of lipid receptors are therefore valuable tools in the drug discovery and optimization phases of therapeutic development. This chapter describes the construction and evaluation of comparative structural models of lipid receptors beginning with the selection of template structures.
Collapse
Affiliation(s)
- Abby L Parrill
- Department of Chemistry, The University of Memphis, Memphis, TN, USA.
| |
Collapse
|
28
|
Mousseau Y, Mollard S, Faucher-Durand K, Richard L, Nizou A, Cook-Moreau J, Baaj Y, Qiu H, Plainard X, Fourcade L, Funalot B, Sturtz FG. Fingolimod potentiates the effects of sunitinib malate in a rat breast cancer model. Breast Cancer Res Treat 2011; 134:31-40. [PMID: 22160641 DOI: 10.1007/s10549-011-1903-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/24/2011] [Indexed: 02/04/2023]
Abstract
Most of the antiangiogenic strategies used in oncology principally target endothelial cells through the vascular endothelial growth factor (VEGF) pathway. Multiple kinase inhibitors can secondarily reduce mural cell stabilization of the vessels by blocking platelet-derived growth factor receptor (PDGFR) activity. However, sphingosine-1-phosphate (S1P), which is also implicated in mural cell recruitment, has yet to be targeted in clinical practice. We therefore investigated the potential of a simultaneous blockade of the PDGF and S1P pathways on the chemotactic responses of vascular smooth muscle cells (VSMCs) and the resulting effects of this blockade on breast tumor growth. Due to crosstalk between the S1P and PDGF pathways, we used AG1296 and/or VPC-23019 to inhibit PDGFR-β and S1PR1/S1PR3 receptors, respectively. We showed that S1PR1 and S1PR3 are the principal receptors that mediate the S1P chemotactic signal on rat VSMCs and that they act synergistically with PDGFR-β during PDGF-B signaling. We also showed that simultaneous blockade of the PDGFR-β and S1PR1/S1PR3 signals had a synergistic effect, decreasing VSMC migration velocity toward endothelial cell and breast carcinoma cell-secreted cytokines by 65-90%. This blockade also strongly decreased the ability of VSMCs to form a three-dimensional cell network. Similar results were obtained with the combination of sunitinib malate (a VEGFR/PDGFR kinase inhibitor) and fingolimod (an S1P analog). Sunitinib malate is a clinically approved cancer treatment, whereas fingolimod is currently indicated only for treatment of multiple sclerosis. Orally administered, the combination of these drugs greatly decreased rat breast tumor growth in a syngeneic cancer model (Walker 256). This bi-therapy did not exert cumulative toxicity and histological analysis of the tumors revealed normalization of the tumor vasculature. The simultaneous blockade of these signaling pathways with sunitinib malate and fingolimod may provide an effective means of reducing tumor angiogenesis, and may improve the delivery of other chemotherapies.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Aorta, Thoracic/pathology
- Carcinoma 256, Walker/blood supply
- Carcinoma 256, Walker/drug therapy
- Carcinoma 256, Walker/pathology
- Cell Movement
- Cells, Cultured
- Drug Screening Assays, Antitumor
- Drug Synergism
- Female
- Fingolimod Hydrochloride
- Indoles/administration & dosage
- Male
- Mammary Neoplasms, Experimental/blood supply
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Neoplasm Transplantation
- Propylene Glycols/administration & dosage
- Proto-Oncogene Proteins c-sis/pharmacology
- Proto-Oncogene Proteins c-sis/physiology
- Pyrroles/administration & dosage
- Rats
- Rats, Sprague-Dawley
- Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Receptors, Lysosphingolipid/metabolism
- Receptors, Lysosphingolipid/physiology
- Sphingosine/administration & dosage
- Sphingosine/analogs & derivatives
- Sphingosine-1-Phosphate Receptors
- Statistics, Nonparametric
- Sunitinib
- Tumor Burden/drug effects
- Tyrphostins/pharmacology
Collapse
Affiliation(s)
- Yoanne Mousseau
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Limoges, Limoges, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fleming JK, Wojciak JM, Campbell MA, Huxford T. Biochemical and structural characterization of lysophosphatidic Acid binding by a humanized monoclonal antibody. J Mol Biol 2011; 408:462-76. [PMID: 21392506 PMCID: PMC3075315 DOI: 10.1016/j.jmb.2011.02.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/18/2011] [Accepted: 02/28/2011] [Indexed: 01/07/2023]
Abstract
Lysophosphatidic acid (LPA) is a common product of glycerophospholipid metabolism and an important mediator of signal transduction. Aberrantly high LPA concentrations accompany multiple disease states. One potential approach for treatment of these diseases, therefore, is the therapeutic application of antibodies that recognize and bind LPA as their antigen. We have determined the X-ray crystal structure of an anti-LPA antibody (LT3015) Fab fragment in its antigen-free form to 2.15 Å resolution and in complex with two LPA isotypes (14:0 and 18:2) to resolutions of 1.98 and 2.51 Å, respectively. The variable CDR (complementarity-determining region) loops at the antigen binding site adopt nearly identical conformations in the free and antigen-bound crystal structures. The crystallographic models reveal that the LT3015 antibody employs both heavy- and light-chain CDR loops to create a network of eight hydrogen bonds with the glycerophosphate head group of its LPA antigen. The head group is almost completely excluded from contact with solvent, while the hydrocarbon tail is partially solvent-exposed. In general, mutation of amino acid residues at the antigen binding site disrupts LPA binding. However, the introduction of particular mutations chosen strategically on the basis of the structures can positively influence LPA binding affinity. Finally, these structures elucidate the exquisite specificity demonstrated by an anti-lipid antibody for binding a structurally simple and seemingly unconstrained target molecule.
Collapse
Affiliation(s)
- Jonathan K. Fleming
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030
| | | | | | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030,Corresponding author: PHONE: (619) 594-1606, FAX: (619) 594-4634,
| |
Collapse
|
30
|
Abstract
Hundreds of G protein coupled receptor (GPCR) isotypes integrate and coordinate the function of individual cells mediating signaling between different organs in our bodies. As an aberration of the normal relationships that organize cells' coexistence, cancer has to deceive cell-cell communication in order to grow and spread. GPCRs play a critical role in this process. Despite the fact that GPCRs represent one of the most common drug targets, current medical practice includes only a few anticancer compounds directly acting on their signaling. Many approaches can be envisaged to target GPCRs involved in oncology. Beyond interfering with GPCRs signaling by using agonists or antagonists to prevent cell proliferation, favor apoptosis, induce maturation, prevent migration, etc., the high specificity of the interaction between the receptors and their ligands can be exploited to deliver toxins, antineoplastic drugs or isotopes to transformed cells. In this review we describe the strategies that are in use, or appear promising, to act directly on GPCRs in the fight against neoplastic transformation and tumor progression.
Collapse
|
31
|
Li H, Zhang H, Wei G, Cai Q, Yan L, Xu Y. Tumor cell group via phospholipase A₂ is involved in prostate cancer development. Prostate 2011; 71:373-84. [PMID: 20812222 DOI: 10.1002/pros.21251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 07/22/2010] [Indexed: 11/11/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most common malignancies among men in the United States. Further understanding of the molecular mechanisms underlying PCa tumorigenic development is critical for advancing treatment strategies for PCa. The role of Group VIA phospholipase A₂β (iPLA₂β) in cancers has recently emerged. However, the biological functions of iPLA₂β in PCa development have been minimally investigated and only in vitro studies have been reported. METHODS We tested the role of iPLA₂β in host cells using an iPLA₂β deficient mouse model and the role of iPLA₂β in tumor cells by comparing the proliferation, migration, and invasion in vitro and tumorigenesis in vivo. CONCLUSIONS iPLA₂β deficiency did not affect tumor development in C57BL/6 mice injected with syngeneic PCa cell line TRAMP-C1P3 in any of three models (subcutaneous, orthotopic, or intratibia injection) tested, suggesting that host cell iPLA₂β is not required for PCa tumorigenesis and metastasis. In contrast, when iPLA₂β was down-regulated in TRAMP-C1P3 cells, cell proliferation was reduced in vitro and tumor growth was suppressed in vivo compared to control cells. In particular, iPLA₂β was required for lysophosphatidic acid (LPA)-induced migration and invasion in TRAMP-C1P3 cells. We compared human and mouse PCa cells and showed that they shared high similarities in LPA-stimulated effects and signaling pathways. LPA stimulated cell migration and/or invasion via a PI3K-dependent pathway. Together, our results suggest that the tumor cell iPLA₂β-LPA axis may represent a novel target for PCa.
Collapse
Affiliation(s)
- Hui Li
- Department of Obstetrics and Gynecology, Indiana University, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
32
|
Parrill AL. Lysophosphatidic acid receptor agonists and antagonists (WO2010051053). Expert Opin Ther Pat 2011; 21:281-6. [PMID: 21222547 DOI: 10.1517/13543776.2011.539206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid involved in signaling pathways that result in cell survival, proliferation, migration and invasion. These cellular responses are a critical element of both normal development as well as pathophysiology. In particular, dysregulated LPA production and function have been linked with cancer and cardiovascular disease. RxBio, Inc. has generated several series of LPA analogs with varied agonist/antagonist function at the LPA(1-3) GPCR targets of LPA signaling. These analogs are simplified relative to LPA through deletion of the glycerol moiety linking the LPA phosphate and fatty acid groups. One of the example compounds was shown to protect intestinal crypt cells from radiation-induced apoptosis in mice when whole body irradiation occurred 2 h after oral dosing.
Collapse
Affiliation(s)
- Abby L Parrill
- The University of Memphis, Department of Chemistry, Memphis, TN 38152, USA.
| |
Collapse
|
33
|
Hooks SB, Callihan P, Altman MK, Hurst JH, Ali MW, Murph MM. Regulators of G-Protein signaling RGS10 and RGS17 regulate chemoresistance in ovarian cancer cells. Mol Cancer 2010; 9:289. [PMID: 21044322 PMCID: PMC2988731 DOI: 10.1186/1476-4598-9-289] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 11/02/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A critical therapeutic challenge in epithelial ovarian carcinoma is the development of chemoresistance among tumor cells following exposure to first line chemotherapeutics. The molecular and genetic changes that drive the development of chemoresistance are unknown, and this lack of mechanistic insight is a major obstacle in preventing and predicting the occurrence of refractory disease. We have recently shown that Regulators of G-protein Signaling (RGS) proteins negatively regulate signaling by lysophosphatidic acid (LPA), a growth factor elevated in malignant ascites fluid that triggers oncogenic growth and survival signaling in ovarian cancer cells. The goal of this study was to determine the role of RGS protein expression in ovarian cancer chemoresistance. RESULTS In this study, we find that RGS2, RGS5, RGS10 and RGS17 transcripts are expressed at significantly lower levels in cells resistant to chemotherapy compared with parental, chemo-sensitive cells in gene expression datasets of multiple models of chemoresistance. Further, exposure of SKOV-3 cells to cytotoxic chemotherapy causes acute, persistent downregulation of RGS10 and RGS17 transcript expression. Direct inhibition of RGS10 or RGS17 expression using siRNA knock-down significantly reduces chemotherapy-induced cell toxicity. The effects of cisplatin, vincristine, and docetaxel are inhibited following RGS10 and RGS17 knock-down in cell viability assays and phosphatidyl serine externalization assays in SKOV-3 cells and MDR-HeyA8 cells. We further show that AKT activation is higher following RGS10 knock-down and RGS 10 and RGS17 overexpression blocked LPA mediated activation of AKT, suggesting that RGS proteins may blunt AKT survival pathways. CONCLUSIONS Taken together, our data suggest that chemotherapy exposure triggers loss of RGS10 and RGS17 expression in ovarian cancer cells, and that loss of expression contributes to the development of chemoresistance, possibly through amplification of endogenous AKT signals. Our results establish RGS10 and RGS17 as novel regulators of cell survival and chemoresistance in ovarian cancer cells and suggest that their reduced expression may be diagnostic of chemoresistance.
Collapse
Affiliation(s)
- Shelley B Hooks
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, GA, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Brocklyn JRV. Regulation of cancer cell migration and invasion by sphingosine-1-phosphate. World J Biol Chem 2010; 1:307-12. [PMID: 21537464 PMCID: PMC3083934 DOI: 10.4331/wjbc.v1.i10.307] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 07/28/2010] [Accepted: 08/04/2010] [Indexed: 02/05/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that has been implicated in regulation of a number of cancer cell malignant behaviors, including cell proliferation, survival, chemotherapeutic resistance and angiogenesis. However, the effects of S1P on cancer cell migration, invasion and metastasis, are perhaps its most complex, due to the fact that, depending upon the S1P receptors that mediate its responses and the crosstalk with other signaling pathways, S1P can either positively or negatively regulate invasion. This review summarizes the effects of S1P on cancer cell invasion and the mechanisms by which it affects this important aspect of cancer cell behavior.
Collapse
Affiliation(s)
- James R Van Brocklyn
- James R Van Brocklyn, Department of Pathology, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
35
|
Linkous AG, Yazlovitskaya EM, Hallahan DE. Cytosolic phospholipase A2 and lysophospholipids in tumor angiogenesis. J Natl Cancer Inst 2010; 102:1398-412. [PMID: 20729478 PMCID: PMC2943523 DOI: 10.1093/jnci/djq290] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Lung cancer and glioblastoma multiforme are highly angiogenic and, despite advances in treatment, remain resistant to therapy. Cytosolic phospholipase A2 (cPLA2) activation contributes to treatment resistance through transduction of prosurvival signals. We investigated cPLA2 as a novel molecular target for antiangiogenesis therapy. Methods Glioblastoma (GL261) and Lewis lung carcinoma (LLC) heterotopic tumor models were used to study the effects of cPLA2 expression on tumor growth and vascularity in C57/BL6 mice wild type for (cPLA2α+/+) or deficient in (cPLA2α−/−) cPLA2α, the predominant isoform in endothelium (n = 6–7 mice per group). The effect of inhibiting cPLA2 activity on GL261 and LLC tumor growth was studied in mice treated with the chemical cPLA2 inhibitor 4-[2-[5-chloro-1-(diphenylmethyl)-2-methyl-1H-indol-3-yl]-ethoxy]benzoic acid (CDIBA). Endothelial cell proliferation and function were evaluated by Ki-67 immunofluorescence and migration assays in primary cultures of murine pulmonary microvascular endothelial cells (MPMEC) isolated from cPLA2α+/+ and cPLA2α−/− mice. Proliferation, invasive migration, and tubule formation were assayed in mouse vascular endothelial 3B-11 cells treated with CDIBA. Effects of lysophosphatidylcholine, arachidonic acid, and lysophosphatidic acid (lipid mediators of tumorigenesis and angiogenesis) on proliferation and migration were examined in 3B-11 cells and cPLA2α−/− MPMEC. All statistical tests were two-sided. Results GL261 tumor progression proceeded normally in cPLA2α+/+ mice, whereas no GL261 tumors formed in cPLA2α−/− mice. In the LLC tumor model, spontaneous tumor regression was observed in 50% of cPLA2α−/− mice. Immunohistochemical examination of the remaining tumors from cPLA2α−/− mice revealed attenuated vascularity (P ≤ .001) compared with tumors from cPLA2α+/+ mice. Inhibition of cPLA2 activity by CDIBA resulted in a delay in tumor growth (eg, LLC model: average number of days to reach tumor volume of 700 mm3, CDIBA vs vehicle: 16.8 vs 11.8, difference = 5, 95% confidence interval = 3.6 to 6.4, P = .04) and a decrease in tumor size (eg, GL261 model: mean volume on day 21, CDIBA vs vehicle: 40.1 vs 247.4 mm3, difference = 207.3 mm3, 95% confidence interval = 20.9 to 293.7 mm3, P = .021). cPLA2 deficiency statistically significantly reduced MPMEC proliferation and invasive migration (P = .002 and P = .004, respectively). Compared with untreated cells, cPLA2α−/− MPMEC treated with lysophosphatidylcholine and lysophosphatidic acid displayed increased cell proliferation (P = .011) and invasive migration (P < .001). Conclusions In these mouse models of brain and lung cancer, cPLA2 and lysophospholipids have key regulatory roles in tumor angiogenesis. cPLA2 inhibition may be a novel effective antiangiogenic therapy.
Collapse
|
36
|
Altman MK, Gopal V, Jia W, Yu S, Hall H, Mills GB, McGinnis AC, Bartlett MG, Jiang G, Madan D, Prestwich GD, Xu Y, Davies MA, Murph MM. Targeting melanoma growth and viability reveals dualistic functionality of the phosphonothionate analogue of carba cyclic phosphatidic acid. Mol Cancer 2010; 9:140. [PMID: 20529378 PMCID: PMC2895597 DOI: 10.1186/1476-4598-9-140] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 06/09/2010] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Although the incidence of melanoma in the U.S. is rising faster than any other cancer, the FDA-approved chemotherapies lack efficacy for advanced disease, which results in poor overall survival. Lysophosphatidic acid (LPA), autotaxin (ATX), the enzyme that produces LPA, and the LPA receptors represent an emerging group of therapeutic targets in cancer, although it is not known which of these is most effective. RESULTS Herein we demonstrate that thio-ccPA 18:1, a stabilized phosphonothionate analogue of carba cyclic phosphatidic acid, ATX inhibitor and LPA1/3 receptor antagonist, induced a marked reduction in the viability of B16F10 metastatic melanoma cells compared with PBS-treated control by 80-100%. Exogenous LPA 18:1 or D-sn-1-O-oleoyl-2-O-methylglyceryl-3-phosphothioate did not reverse the effect of thio-ccPA 18:1. The reduction in viability mediated by thio-ccPA 18:1 was also observed in A375 and MeWo melanoma cell lines, suggesting that the effects are generalizable. Interestingly, siRNA to LPA3 (siLPA3) but not other LPA receptors recapitulated the effects of thio-ccPA 18:1 on viability, suggesting that inhibition of the LPA3 receptor is an important dualistic function of the compound. In addition, siLPA3 reduced proliferation, plasma membrane integrity and altered morphology of A375 cells. Another experimental compound designed to antagonize the LPA1/3 receptors significantly reduced viability in MeWo cells, which predominantly express the LPA3 receptor. CONCLUSIONS Thus the ability of thio-ccPA 18:1 to inhibit the LPA3 receptor and ATX are key to its molecular mechanism, particularly in melanoma cells that predominantly express the LPA3 receptor. These observations necessitate further exploration and exploitation of these targets in melanoma.
Collapse
Affiliation(s)
- Molly K Altman
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 250 W. Green Street, Athens, Georgia 30602, USA
| | - Vashisht Gopal
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 7455 Fannin, 1 SCRB 2.3019, Houston, TX 77054, USA
| | - Wei Jia
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 250 W. Green Street, Athens, Georgia 30602, USA
| | - Shuangxing Yu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Hassan Hall
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - A Cary McGinnis
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 250 W. Green Street, Athens, Georgia 30602, USA
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 250 W. Green Street, Athens, Georgia 30602, USA
| | - Guowei Jiang
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108, USA
| | - Damian Madan
- Echelon Biosciences Inc., 675 Arapeen Dr., Suite 302, Salt Lake City, UT 84108, USA
| | - Glenn D Prestwich
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108, USA
| | - Yong Xu
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 7455 Fannin, 1 SCRB 2.3019, Houston, TX 77054, USA
| | - Mandi M Murph
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 250 W. Green Street, Athens, Georgia 30602, USA
| |
Collapse
|
37
|
Harper K, Arsenault D, Boulay-Jean S, Lauzier A, Lucien F, Dubois CM. Autotaxin promotes cancer invasion via the lysophosphatidic acid receptor 4: participation of the cyclic AMP/EPAC/Rac1 signaling pathway in invadopodia formation. Cancer Res 2010; 70:4634-43. [PMID: 20484039 DOI: 10.1158/0008-5472.can-09-3813] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ability of cancer cells to invade and metastasize is the major cause of death in cancer patients. Autotaxin (ATX) is a secreted lysophospholipase whose level of expression within tumors correlates strongly with their aggressiveness and invasiveness. ATX is the major enzyme involved in the production of lysophosphatidic acid (LPA), a phospholipid that is known to act mostly through its three first characterized receptors (LPA(1), LPA(2), and LPA(3)). Tumor cell invasion across tissue boundaries and metastasis are dependent on the capacity of invasive cancer cells to breach the basement membrane. This process can be initiated by the formation of the actin-rich cell protrusions, invadopodia. In this study, we show that ATX is implicated in the formation of invadopodia in various cancer cells types and this effect is dependent on the production of LPA. We further provide evidence that LPA(4) signaling in fibrosarcoma cells regulates invadopodia formation downstream of ATX, a process mediated through the activation of EPAC by cyclic AMP and subsequent Rac1 activation. Results using LPA(4) shRNA support the requirement of the LPA(4) receptor for cell invasion and in vivo metastasis formation. This work presents evidence that blocking the LPA receptor, LPA(4), in fibrosarcoma cells could provide an additional tool to improve the efficacy of treatment of metastasis in patients. Because LPA receptors and ATX are currently being targeted in preclinical trials, the current findings should stimulate future studies to evaluate the expression pattern and clinical outcome of LPA(4), together with other LPA receptors, in various cancer patients.
Collapse
Affiliation(s)
- Kelly Harper
- Immunology Division, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
38
|
D'Arrigo P, Servi S. Synthesis of lysophospholipids. Molecules 2010; 15:1354-77. [PMID: 20335986 PMCID: PMC6257299 DOI: 10.3390/molecules15031354] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/04/2010] [Accepted: 03/05/2010] [Indexed: 12/01/2022] Open
Abstract
New synthetic methods for the preparation of biologically active phospholipids and lysophospholipids (LPLs) are very important in solving problems of membrane-chemistry and biochemistry. Traditionally considered just as second-messenger molecules regulating intracellular signalling pathways, LPLs have recently shown to be involved in many physiological and pathological processes such as inflammation, reproduction, angiogenesis, tumorogenesis, atherosclerosis and nervous system regulation. Elucidation of the mechanistic details involved in the enzymological, cell-biological and membrane-biophysical roles of LPLs relies obviously on the availability of structurally diverse compounds. A variety of chemical and enzymatic routes have been reported in the literature for the synthesis of LPLs: the enzymatic transformation of natural glycerophospholipids (GPLs) using regiospecific enzymes such as phospholipases A1 (PLA1), A2 (PLA2) phospholipase D (PLD) and different lipases, the coupling of enzymatic processes with chemical transformations, the complete chemical synthesis of LPLs starting from glycerol or derivatives. In this review, chemo-enzymatic procedures leading to 1- and 2-LPLs will be described.
Collapse
Affiliation(s)
- Paola D'Arrigo
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica Giulio Natta, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy. paola.d'
| | | |
Collapse
|
39
|
Cancer treatment strategies targeting sphingolipid metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:185-205. [PMID: 20919655 DOI: 10.1007/978-1-4419-6741-1_13] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ceramide and sphingosine-1-phosphate are related sphingolipid metabolites that can be generated through a de novo biosynthetic route or derived from the recycling of membrane sphingomyelin. Both these lipids regulate cellular responses to stress, with generally opposing effects. Sphingosine-1-phosphate functions as a growth and survival factor, acting as a ligand for a family of G protein-coupled receptors, whereas ceramide activates intrinsic and extrinsic apoptotic pathways through receptor-independent mechanisms. A growing body of evidence has implicated ceramide, sphingosine-1-phosphate and the genes involved in their synthesis, catabolism and signaling in various aspects of oncogenesis, cancer progression and drug- and radiation resistance. This may be explained in part by the finding that both lipids impinge upon the PI3K/ AKT pathway, which represses apoptosis and autophagy. In addition, sphingolipids influence cell cycle progression, telomerase function, cell migration and stem cell biology. Considering the central role of ceramide in mediating physiological as well as pharmacologically stimulated apoptosis, ceramide can be considered a tumor-suppressor lipid. In contrast, sphingosine-1-phosphate can be considered a tumor-promoting lipid, and the enzyme responsible for its synthesis functions as an oncogene. Not surprisingly, genetic mutations that result in reduced ceramide generation, increased sphingosine-1-phosphate synthesis or which reduce steady state ceramide levels and increase sphingosine-1-phosphate levels have been identified as mechanisms of tumor progression and drug resistance in cancer cells. Pharmacological tools for modulating sphingolipid pathways are being developed and represent novel therapeutic strategies for the treatment of cancer.
Collapse
|
40
|
Kapitonov D, Allegood JC, Mitchell C, Hait NC, Almenara JA, Adams JK, Zipkin RE, Dent P, Kordula T, Milstien S, Spiegel S. Targeting sphingosine kinase 1 inhibits Akt signaling, induces apoptosis, and suppresses growth of human glioblastoma cells and xenografts. Cancer Res 2009; 69:6915-23. [PMID: 19723667 DOI: 10.1158/0008-5472.can-09-0664] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Sphingosine-1-phosphate is a potent sphingolipid mediator of diverse processes important for brain tumors, including cell growth, survival, migration, invasion, and angiogenesis. Sphingosine kinase 1 (SphK1), one of the two isoenzymes that produce sphingosine-1-phosphate, is up-regulated in glioblastoma and has been linked to poor prognosis in patients with glioblastoma multiforme (GBM). In the present study, we found that a potent isotype-specific SphK1 inhibitor, SK1-I, suppressed growth of LN229 and U373 glioblastoma cell lines and nonestablished human GBM6 cells. SK1-I also enhanced GBM cell death and inhibited their migration and invasion. SK1-I rapidly reduced phosphorylation of Akt but had no significant effect on activation of extracellular signal-regulated kinase 1/2, another important survival pathway for GBM. Inhibition of the concomitant activation of the c-Jun-NH(2)-kinase pathway induced by SK1-I attenuated death of GBM cells. Importantly, SK1-I markedly reduced the tumor growth rate of glioblastoma xenografts, inducing apoptosis and reducing tumor vascularization, and enhanced the survival of mice harboring LN229 intracranial tumors. Our results support the notion that SphK1 may be an important factor in GBM and suggest that an isozyme-specific inhibitor of SphK1 deserves consideration as a new therapeutic agent for this disease.
Collapse
Affiliation(s)
- Dmitri Kapitonov
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298-0614, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu S, Murph M, Panupinthu N, Mills GB. ATX-LPA receptor axis in inflammation and cancer. Cell Cycle 2009; 8:3695-701. [PMID: 19855166 PMCID: PMC4166520 DOI: 10.4161/cc.8.22.9937] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lysophosphatidic acid (LPA, 1- or 2-acyl-sn-glycerol 3-phosphate) mediates a plethora of physiological and pathological activities via interactions with a series of high affinity G protein-coupled receptors (GPCR). Both LPA receptor family members and autotaxin (ATX/LysoPLD), the primary LPA-producing enzyme, are aberrantly expressed in many human breast cancers and several other cancer lineages. Using transgenic mice expressing either an LPA receptor or ATX, we recently demonstrated that the ATX-LPA receptor axis plays a causal role in breast tumorigenesis and cancer-related inflammation, further validating the ATX-LPA receptor axis as a rich therapeutic target in cancer.
Collapse
Affiliation(s)
- Shuying Liu
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77230, USA
| | - Mandi Murph
- University of Georgia College of Pharmacy, Athens, GA 30602
| | - Nattapon Panupinthu
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77230, USA
| | - Gordon B. Mills
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77230, USA,Correspondence: Dr. Gordon B. Mills, Department of Systems Biology, Division of Cancer Medicine, 1515 Holcombe Blvd., Houston, TX 77030, USA, , Tel (713) 563-4200, Fax (713) 563-4235
| |
Collapse
|
42
|
Annabi B, Lachambre MP, Plouffe K, Sartelet H, Béliveau R. Modulation of invasive properties of CD133(+) glioblastoma stem cells: A role for MT1-MMP in bioactive lysophospholipid signaling. Mol Carcinog 2009; 48:910-9. [PMID: 19326372 DOI: 10.1002/mc.20541] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
43
|
Song Y, Wu J, Oyesanya RA, Lee Z, Mukherjee A, Fang X. Sp-1 and c-Myc mediate lysophosphatidic acid-induced expression of vascular endothelial growth factor in ovarian cancer cells via a hypoxia-inducible factor-1-independent mechanism. Clin Cancer Res 2009; 15:492-501. [PMID: 19147754 DOI: 10.1158/1078-0432.ccr-08-1945] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE Lysophosphatidic acid (LPA), which is present in ascites of ovarian cancer patients, stimulates expression of vascular endothelial growth factor (VEGF). VEGF is essential for the development and abdominal dissemination of ovarian cancer. We examined how LPA drives VEGF expression to gain a better understanding of tumor angiogenesis under normoxic conditions. EXPERIMENTAL DESIGN ELISA, Northern blotting, immunoblotting, quantitative PCR, and promoter reporter analysis in combination with small interfering RNA and pharmacologic inhibitors were used to examine LPA-induced VEGF expression and the underlying mechanisms. RESULTS LPA stimulated expression of multiple VEGF variants. A 123-bp fragment proximal to the transcriptional initiation site was identified to be functional promoter region responsible for the response to LPA. The fragment harbors consensus sites for several transcription factors including c-Myc and Sp-1 but not hypoxia-inducible factor-1. Blockade of Rho, ROCK, or c-Myc reduced LPA-dependent VEGF production and promoter activation, suggesting that the G12/13-Rho-ROCK-c-Myc cascade partially contributes to VEGF induction by LPA. More significantly, the multiple Sp-1 sites within the responsive region of the VEGF promoter were essential for LPA-mediated transcription. LPA induced Sp-1 phosphorylation and DNA-binding and transcriptional activities. The silencing of Sp-1 expression with small interfering RNA or inhibition of Sp-1 with pharmacologic inhibitors blocked VEGF production induced by LPA. CONCLUSIONS LPA stimulates hypoxia-inducible factor-1-independent VEGF expression to promote tumor angiogenesis through activation of the c-Myc and Sp-1 transcription factors.
Collapse
Affiliation(s)
- Yuanda Song
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | | | | | | | | | | |
Collapse
|
44
|
Meng H, Lee VM. Differential expression of sphingosine-1-phosphate receptors 1-5 in the developing nervous system. Dev Dyn 2009; 238:487-500. [PMID: 19161225 DOI: 10.1002/dvdy.21852] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) binds to G protein-coupled receptors and can regulate a wide range of cellular functions. In a previous study, we isolated two key enzymes in the S1P pathway that were expressed in migrating neural crest cells. To determine if S1P receptors are present in neural crest cells or peripheral nervous system, we examine the expression patterns of S1P receptors (S1pr1-5) in mouse, and s1pr1 and s1pr3 in chick embryos. Here, we present a comprehensive expression analysis of these receptors using in situ hybridizations, which provide spatiotemporal information. We showed that S1pr2 was expressed in migrating cranial neural crest cells and enteric neurons. S1pr1 was prominently expressed in the neuroepithelium whereas S1pr4 and S1pr5 were in neurons at later stages. On the contrary, S1pr3 was predominantly detected in non-neuronal cells within and surrounding neural structures. We also described novel expression sites for S1P receptors in the developing nervous system.
Collapse
Affiliation(s)
- H Meng
- Division of Developmental Biology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
45
|
O'Brien N, Jones ST, Williams DG, Cunningham HB, Moreno K, Visentin B, Gentile A, Vekich J, Shestowsky W, Hiraiwa M, Matteo R, Cavalli A, Grotjahn D, Grant M, Hansen G, Campbell MA, Sabbadini R. Production and characterization of monoclonal anti-sphingosine-1-phosphate antibodies. J Lipid Res 2009; 50:2245-57. [PMID: 19509417 DOI: 10.1194/jlr.m900048-jlr200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid involved in multiple physiological processes. Importantly, dysregulated S1P levels are associated with several pathologies, including cardiovascular and inflammatory diseases and cancer. This report describes the successful production and characterization of a murine monoclonal antibody, LT1002, directed against S1P, using novel immunization and screening methods applied to bioactive lipids. We also report the successful generation of LT1009, the humanized variant of LT1002, for potential clinical use. Both LT1002 and LT1009 have high affinity and specificity for S1P and do not cross-react with structurally related lipids. Using an in vitro bioassay, LT1002 and LT1009 were effective in blocking S1P-mediated release of the pro-angiogenic and prometastatic cytokine, interleukin-8, from human ovarian carcinoma cells, showing that both antibodies can out-compete S1P receptors in binding to S1P. In vivo anti-angiogenic activity of all antibody variants was demonstrated using the murine choroidal neovascularization model. Importantly, intravenous administration of the antibodies showed a marked effect on lymphocyte trafficking. The resulting lead candidate, LT1009, has been formulated for Phase 1 clinical trials in cancer and age-related macular degeneration. The anti-S1P antibody shows promise as a novel, first-in-class therapeutic acting as a "molecular sponge" to selectively deplete S1P from blood and other compartments where pathological S1P levels have been implicated in disease progression or in disorders where immune modulation may be beneficial.
Collapse
|
46
|
Liu S, Umezu-Goto M, Murph M, Lu Y, Liu W, Zhang F, Yu S, Stephens LC, Cui X, Murrow G, Coombes K, Muller W, Hung MC, Perou CM, Lee AV, Fang X, Mills GB. Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell 2009; 15:539-50. [PMID: 19477432 PMCID: PMC4157573 DOI: 10.1016/j.ccr.2009.03.027] [Citation(s) in RCA: 308] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 01/05/2009] [Accepted: 03/26/2009] [Indexed: 02/06/2023]
Abstract
Lysophosphatidic acid (LPA) acts through high-affinity G protein-coupled receptors to mediate a plethora of physiological and pathological activities associated with tumorigenesis. LPA receptors and autotaxin (ATX/LysoPLD), the primary enzyme producing LPA, are aberrantly expressed in multiple cancer lineages. However, the role of ATX and LPA receptors in the initiation and progression of breast cancer has not been evaluated. We demonstrate that expression of ATX or each edg family LPA receptor in mammary epithelium of transgenic mice is sufficient to induce a high frequency of late-onset, estrogen receptor (ER)-positive, invasive, and metastatic mammary cancer. Thus, ATX and LPA receptors can contribute to the initiation and progression of breast cancer.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Adenocarcinoma/secondary
- Animals
- Carcinoma, Adenosquamous/metabolism
- Carcinoma, Adenosquamous/pathology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cloning, Molecular
- Female
- Humans
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Lymphatic Metastasis
- Male
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Transgenic
- Multienzyme Complexes/genetics
- Multienzyme Complexes/metabolism
- Neoplasm Invasiveness
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Phosphodiesterase I/genetics
- Phosphodiesterase I/metabolism
- Phosphoric Diester Hydrolases
- Pyrophosphatases/genetics
- Pyrophosphatases/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Lysophosphatidic Acid/genetics
- Receptors, Lysophosphatidic Acid/physiology
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Shuying Liu
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Makiko Umezu-Goto
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Mandi Murph
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiling Lu
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Wenbin Liu
- Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Fan Zhang
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuangxing Yu
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - L. Clifton Stephens
- Department of Veterinary Medicine & Surgery, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaojiang Cui
- Lester and Sue Smith Breast Center, Baylor College of Medicine; Houston, TX 77030, USA
- Department of Molecular Oncology, John Wayne Cancer Institute Saint John's Health Center, Santa Monica, CA 90404, USA
| | - George Murrow
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin Coombes
- Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrian V. Lee
- Lester and Sue Smith Breast Center, Baylor College of Medicine; Houston, TX 77030, USA
| | - Xianjun Fang
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Gordon B. Mills
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: Dr. Gordon B. Mills, Department of Systems Biology, M D Anderson Cancer Center 1515 Holcombe Blvd., Houston, TX 77030, USA, , Tel (713) 563-4200, Fax (713) 563-4235
| |
Collapse
|
47
|
Murph MM, Liu W, Yu S, Lu Y, Hall H, Hennessy BT, Lahad J, Schaner M, Helland A, Kristensen G, Børresen-Dale AL, Mills GB. Lysophosphatidic acid-induced transcriptional profile represents serous epithelial ovarian carcinoma and worsened prognosis. PLoS One 2009; 4:e5583. [PMID: 19440550 PMCID: PMC2679144 DOI: 10.1371/journal.pone.0005583] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 04/18/2009] [Indexed: 01/03/2023] Open
Abstract
Background Lysophosphatidic acid (LPA) governs a number of physiologic and pathophysiological processes. Malignant ascites fluid is rich in LPA, and LPA receptors are aberrantly expressed by ovarian cancer cells, implicating LPA in the initiation and progression of ovarian cancer. However, there is an absence of systematic data critically analyzing the transcriptional changes induced by LPA in ovarian cancer. Methodology and Principal Findings In this study, gene expression profiling was used to examine LPA-mediated transcription by exogenously adding LPA to human epithelial ovarian cancer cells for 24 h to mimic long-term stimulation in the tumor microenvironment. The resultant transcriptional profile comprised a 39-gene signature that closely correlated to serous epithelial ovarian carcinoma. Hierarchical clustering of ovarian cancer patient specimens demonstrated that the signature is associated with worsened prognosis. Patients with LPA-signature-positive ovarian tumors have reduced disease-specific and progression-free survival times. They have a higher frequency of stage IIIc serous carcinoma and a greater proportion is deceased. Among the 39-gene signature, a group of seven genes associated with cell adhesion recapitulated the results. Out of those seven, claudin-1, an adhesion molecule and phenotypic epithelial marker, is the only independent biomarker of serous epithelial ovarian carcinoma. Knockdown of claudin-1 expression in ovarian cancer cells reduces LPA-mediated cellular adhesion, enhances suspended cells and reduces LPA-mediated migration. Conclusions The data suggest that transcriptional events mediated by LPA in the tumor microenvironment influence tumor progression through modulation of cell adhesion molecules like claudin-1 and, for the first time, report an LPA-mediated expression signature in ovarian cancer that predicts a worse prognosis.
Collapse
Affiliation(s)
- Mandi M Murph
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shepard HM, Brdlik CM, Schreiber H. Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family. J Clin Invest 2009; 118:3574-81. [PMID: 18982164 DOI: 10.1172/jci36049] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human EGFR (HER) family is essential for communication between many epithelial cancer cell types and the tumor microenvironment. Therapeutics targeting the HER family have demonstrated clinical success in the treatment of diverse epithelial cancers. Here we propose that the success of HER family-targeted monoclonal antibodies in cancer results from their ability to interfere with HER family consolidation of signals initiated by a multitude of other receptor systems. Ligand/receptor systems that initiate these signals include cytokine receptors, chemokine receptors, TLRs, GPCRs, and integrins. We further extrapolate that improvements in cancer therapeutics targeting the HER family are likely to incorporate mechanisms that block or reverse stromal support of malignant progression by isolating the HER family from autocrine and stromal influences.
Collapse
|
49
|
Affiliation(s)
- Yan Xu
- Department of Obstetrics and Gynecology, Indiana University, 975 W. Walnut St., IB355A, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
50
|
Murph M, Nguyen G, Radhakrishna H, Mills GB. Sharpening the edges of understanding the structure/function of the LPA1 receptor: expression in cancer and mechanisms of regulation. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1781:547-57. [PMID: 18501205 PMCID: PMC2565514 DOI: 10.1016/j.bbalip.2008.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/11/2008] [Accepted: 04/19/2008] [Indexed: 02/03/2023]
Abstract
Since the molecular cloning of the vzg-1/Edg-2/LPA1 gene, studies have attempted to characterize LPA1 receptor functionality into a single categorical role, different from the other Edg-family LPA receptors. The desire to categorize LPA1 function has highlighted its complexity and demonstrated that the LPA1 receptor does not have one absolute function throughout every system. The central nervous system is highly enriched in the LPA1 receptor, suggesting an integral role in neuronal processes. Metastatic and invasive breast cancer also appears to have LPA-mediated LPA1 receptor functions that enhance phenotypes associated with tumorigenesis. LPA1 possesses a number of motifs conserved among G protein-coupled receptors (GPCRs): a DRY-like motif, a PDZ domain, Ser/Thr predicted sites of phosphorylation, a di-leucine motif, double cysteines in the tail and conserved residues that stabilize structure and determine ligand binding. The third intracellular loop of the LPA1 receptor may be the crux of receptor signaling and attenuation with phosphorylation of Thr-236 potentially a key determinant of basal LPA1 signaling. Mutagenesis data supports the notion that Thr-236 regulates this process since mutating Thr-236 to Ala-236 increased basal and LPA-mediated serum response factor (SRF) signaling activity and Lys-236 further increased this basal signaling. Here we describe progress on defining the major functions of the LPA1 receptor, discuss a context dependent dualistic role as both a negative regulator in cancer and a proto-oncogene, outline its structural components at the molecular amino acid level and present mutagenesis data on the third intracellular loop of the receptor.
Collapse
Affiliation(s)
- Mandi Murph
- Department of Systems Biology, MD Anderson Cancer Center, Houston, Texas 77030
| | - Giang Nguyen
- School of Biology and Petit Institute for Biosciences and Bioengineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332
| | - Harish Radhakrishna
- School of Biology and Petit Institute for Biosciences and Bioengineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332,The Coca-Cola Company, One Coca-Cola Plaza, TEC-437, Atlanta, GA 30301
| | - Gordon B. Mills
- Department of Systems Biology, MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|