1
|
Seddighi S, Qi YA, Brown AL, Wilkins OG, Bereda C, Belair C, Zhang YJ, Prudencio M, Keuss MJ, Khandeshi A, Pickles S, Kargbo-Hill SE, Hawrot J, Ramos DM, Yuan H, Roberts J, Sacramento EK, Shah SI, Nalls MA, Colón-Mercado JM, Reyes JF, Ryan VH, Nelson MP, Cook CN, Li Z, Screven L, Kwan JY, Mehta PR, Zanovello M, Hallegger M, Shantaraman A, Ping L, Koike Y, Oskarsson B, Staff NP, Duong DM, Ahmed A, Secrier M, Ule J, Jacobson S, Reich DS, Rohrer JD, Malaspina A, Dickson DW, Glass JD, Ori A, Seyfried NT, Maragkakis M, Petrucelli L, Fratta P, Ward ME. Mis-spliced transcripts generate de novo proteins in TDP-43-related ALS/FTD. Sci Transl Med 2024; 16:eadg7162. [PMID: 38277467 PMCID: PMC11325748 DOI: 10.1126/scitranslmed.adg7162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Functional loss of TDP-43, an RNA binding protein genetically and pathologically linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leads to the inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote the degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. Here, we show that mRNA transcripts harboring cryptic exons generated de novo proteins in TDP-43-depleted human iPSC-derived neurons in vitro, and de novo peptides were found in cerebrospinal fluid (CSF) samples from patients with ALS or FTD. Using coordinated transcriptomic and proteomic studies of TDP-43-depleted human iPSC-derived neurons, we identified 65 peptides that mapped to 12 cryptic exons. Cryptic exons identified in TDP-43-depleted human iPSC-derived neurons were predictive of cryptic exons expressed in postmortem brain tissue from patients with TDP-43 proteinopathy. These cryptic exons produced transcript variants that generated de novo proteins. We found that the inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Last, we showed that 18 de novo peptides across 13 genes were present in CSF samples from patients with ALS/FTD spectrum disorders. The demonstration of cryptic exon translation suggests new mechanisms for ALS/FTD pathophysiology downstream of TDP-43 dysfunction and may provide a potential strategy to assay TDP-43 function in patient CSF.
Collapse
Affiliation(s)
- Sahba Seddighi
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yue A Qi
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anna-Leigh Brown
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Oscar G Wilkins
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- Francis Crick Institute, London, UK
| | - Colleen Bereda
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cedric Belair
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Matthew J Keuss
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Aditya Khandeshi
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Sarah Pickles
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Sarah E Kargbo-Hill
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - James Hawrot
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Daniel M Ramos
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Hebao Yuan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jessica Roberts
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Erika Kelmer Sacramento
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Syed I Shah
- Data Tecnica International, Washington, DC, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Jennifer M Colón-Mercado
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Joel F Reyes
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Veronica H Ryan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Matthew P Nelson
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Casey N Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Ziyi Li
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Laurel Screven
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Justin Y Kwan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Puja R Mehta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Matteo Zanovello
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Martina Hallegger
- Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
| | | | - Lingyan Ping
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuka Koike
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Björn Oskarsson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Aisha Ahmed
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Maria Secrier
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, UCL, London, UK
| | - Jernej Ule
- Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
| | - Steven Jacobson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Daniel S Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan D Rohrer
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Andrea Malaspina
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Jonathan D Glass
- Department of Neurology, Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, USA
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- Francis Crick Institute, London, UK
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Fukatsu S, Okawa M, Okabe M, Cho M, Isogai M, Yokoi T, Shirai R, Oizumi H, Yamamoto M, Ohbuchi K, Miyamoto Y, Yamauchi J. Modulating Golgi Stress Signaling Ameliorates Cell Morphological Phenotypes Induced by CHMP2B with Frontotemporal Dementia-Associated p.Asp148Tyr. Curr Issues Mol Biol 2024; 46:1398-1412. [PMID: 38392208 PMCID: PMC10888485 DOI: 10.3390/cimb46020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Some charged multivesicular body protein 2B (CHMP2B) mutations are associated with autosomal-dominant neurodegenerative frontotemporal dementia and/or amyotrophic lateral sclerosis type 7 (FTDALS7). The main aim of this study is to clarify the relationship between the expression of mutated CHMP2B protein displaying FTD symptoms and defective neuronal differentiation. First, we illustrate that the expression of CHMP2B with the Asp148Tyr (D148Y) mutation, which preferentially displays FTD phenotypes, blunts neurite process elongation in rat primary cortical neurons. Similar results were observed in the N1E-115 cell line, a model that undergoes neurite elongation. Second, these effects were also accompanied by changes in neuronal differentiation marker protein expression. Third, wild-type CHMP2B protein was indeed localized in the endosomal sorting complexes required to transport (ESCRT)-like structures throughout the cytoplasm. In contrast, CHMP2B with the D148Y mutation exhibited aggregation-like structures and accumulated in the Golgi body. Fourth, among currently known Golgi stress regulators, the expression levels of Hsp47, which has protective effects on the Golgi body, were decreased in cells expressing CHMP2B with the D148Y mutation. Fifth, Arf4, another Golgi stress-signaling molecule, was increased in mutant-expressing cells. Finally, when transfecting Hsp47 or knocking down Arf4 with small interfering (si)RNA, cellular phenotypes in mutant-expressing cells were recovered. These results suggest that CHMP2B with the D148Y mutation, acting through Golgi stress signaling, is negatively involved in the regulation of neuronal cell morphological differentiation, providing evidence that a molecule controlling Golgi stress may be one of the potential FTD therapeutic targets at the molecular and cellular levels.
Collapse
Affiliation(s)
- Shoya Fukatsu
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Maho Okawa
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Miyu Okabe
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Mizuka Cho
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Mikinori Isogai
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Takanori Yokoi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Remina Shirai
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan
| | - Masahiro Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| |
Collapse
|
3
|
Bryce-Smith S, Brown AL, Mehta PR, Mattedi F, Mikheenko A, Barattucci S, Zanovello M, Dattilo D, Yome M, Hill SE, Qi YA, Wilkins OG, Sun K, Ryadnov E, Wan Y, Vargas JNS, Birsa N, Raj T, Humphrey J, Keuss M, Ward M, Secrier M, Fratta P. TDP-43 loss induces extensive cryptic polyadenylation in ALS/FTD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576625. [PMID: 38313254 PMCID: PMC10836071 DOI: 10.1101/2024.01.22.576625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Nuclear depletion and cytoplasmic aggregation of the RNA-binding protein TDP-43 is the hallmark of ALS, occurring in over 97% of cases. A key consequence of TDP-43 nuclear loss is the de-repression of cryptic exons. Whilst TDP-43 regulated cryptic splicing is increasingly well catalogued, cryptic alternative polyadenylation (APA) events, which define the 3' end of last exons, have been largely overlooked, especially when not associated with novel upstream splice junctions. We developed a novel bioinformatic approach to reliably identify distinct APA event types: alternative last exons (ALE), 3'UTR extensions (3'Ext) and intronic polyadenylation (IPA) events. We identified novel neuronal cryptic APA sites induced by TDP-43 loss of function by systematically applying our pipeline to a compendium of publicly available and in house datasets. We find that TDP-43 binding sites and target motifs are enriched at these cryptic events and that TDP-43 can have both repressive and enhancing action on APA. Importantly, all categories of cryptic APA can also be identified in ALS and FTD post mortem brain regions with TDP-43 proteinopathy underlining their potential disease relevance. RNA-seq and Ribo-seq analyses indicate that distinct cryptic APA categories have different downstream effects on transcript and translation. Intriguingly, cryptic 3'Exts occur in multiple transcription factors, such as ELK1, SIX3, and TLX1, and lead to an increase in wild-type protein levels and function. Finally, we show that an increase in RNA stability leading to a higher cytoplasmic localisation underlies these observations. In summary, we demonstrate that TDP-43 nuclear depletion induces a novel category of cryptic RNA processing events and we expand the palette of TDP-43 loss consequences by showing this can also lead to an increase in normal protein translation.
Collapse
Affiliation(s)
- Sam Bryce-Smith
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Anna-Leigh Brown
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Puja R. Mehta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Francesca Mattedi
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Alla Mikheenko
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Simone Barattucci
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Matteo Zanovello
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Dario Dattilo
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Matthew Yome
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Sarah E. Hill
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Yue A. Qi
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Oscar G. Wilkins
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- The Francis Crick Institute, London, UK
| | - Kai Sun
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Eugeni Ryadnov
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Yixuan Wan
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | | | - Jose Norberto S. Vargas
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Nicol Birsa
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Towfique Raj
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Keuss
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Michael Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
4
|
Marzullo M, Romano G, Pellacani C, Riccardi F, Ciapponi L, Feiguin F. Su(var)3-9 mediates age-dependent increase in H3K9 methylation on TDP-43 promoter triggering neurodegeneration. Cell Death Discov 2023; 9:357. [PMID: 37758732 PMCID: PMC10533867 DOI: 10.1038/s41420-023-01643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Aging progressively modifies the physiological balance of the organism increasing susceptibility to both genetic and sporadic neurodegenerative diseases. These changes include epigenetic chromatin remodeling events that may modify the transcription levels of disease-causing genes affecting neuronal survival. However, how these events interconnect is not well understood. Here, we found that Su(var)3-9 causes increased methylation of histone H3K9 in the promoter region of TDP-43, the most frequently altered factor in amyotrophic lateral sclerosis (ALS), affecting the mRNA and protein expression levels of this gene through epigenetic modifications that appear to be conserved in aged Drosophila brains, mouse, and human cells. Remarkably, augmented Su(var)3-9 activity causes a decrease in TDP-43 expression followed by early defects in locomotor activities. In contrast, decreasing Su(var)3-9 action promotes higher levels of TDP-43 expression, improving motility parameters in old flies. The data uncover a novel role of this enzyme in regulating TDP-43 expression and locomotor senescence and indicate conserved epigenetic mechanisms that may play a role in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Marta Marzullo
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Roma, Italy
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, 00185, Roma, Italy
| | - Giulia Romano
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Claudia Pellacani
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Roma, Italy
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, 00185, Roma, Italy
| | - Federico Riccardi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Laura Ciapponi
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, 00185, Roma, Italy.
| | - Fabian Feiguin
- Department of Life and Environmental Sciences, University of Cagliari, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
5
|
Seddighi S, Qi YA, Brown AL, Wilkins OG, Bereda C, Belair C, Zhang Y, Prudencio M, Keuss MJ, Khandeshi A, Pickles S, Hill SE, Hawrot J, Ramos DM, Yuan H, Roberts J, Kelmer Sacramento E, Shah SI, Nalls MA, Colon-Mercado J, Reyes JF, Ryan VH, Nelson MP, Cook C, Li Z, Screven L, Kwan JY, Shantaraman A, Ping L, Koike Y, Oskarsson B, Staff N, Duong DM, Ahmed A, Secrier M, Ule J, Jacobson S, Rohrer J, Malaspina A, Glass JD, Ori A, Seyfried NT, Maragkakis M, Petrucelli L, Fratta P, Ward ME. Mis-spliced transcripts generate de novo proteins in TDP-43-related ALS/FTD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525149. [PMID: 36747793 PMCID: PMC9900763 DOI: 10.1101/2023.01.23.525149] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Functional loss of TDP-43, an RNA-binding protein genetically and pathologically linked to ALS and FTD, leads to inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. However, the possibility of de novo protein synthesis from cryptic exon transcripts has not been explored. Here, we show that mRNA transcripts harboring cryptic exons generate de novo proteins both in TDP-43 deficient cellular models and in disease. Using coordinated transcriptomic and proteomic studies of TDP-43 depleted iPSC-derived neurons, we identified numerous peptides that mapped to cryptic exons. Cryptic exons identified in iPSC models were highly predictive of cryptic exons expressed in brains of patients with TDP-43 proteinopathy, including cryptic transcripts that generated de novo proteins. We discovered that inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Finally, we showed that these de novo peptides were present in CSF from patients with ALS. The demonstration of cryptic exon translation suggests new mechanisms for ALS pathophysiology downstream of TDP-43 dysfunction and may provide a strategy for novel biomarker development.
Collapse
Affiliation(s)
- Sahba Seddighi
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yue A Qi
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Anna-Leigh Brown
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Oscar G Wilkins
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- The Francis Crick Institute, London, UK
| | - Colleen Bereda
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Cedric Belair
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Yongjie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Matthew J Keuss
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Aditya Khandeshi
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Sarah Pickles
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Sarah E Hill
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - James Hawrot
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Daniel M Ramos
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Hebao Yuan
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Jessica Roberts
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | | | - Syed I Shah
- Data Tecnica International, Washington, DC, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Jenn Colon-Mercado
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Joel F Reyes
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Veronica H Ryan
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Matthew P Nelson
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Casey Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Ziyi Li
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Laurel Screven
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Justin Y Kwan
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | | | - Lingyan Ping
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuka Koike
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Björn Oskarsson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Nathan Staff
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Aisha Ahmed
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Maria Secrier
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, UCL, London, UK
| | - Jerneg Ule
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Steven Jacobson
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Jonathan Rohrer
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Andrea Malaspina
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Jonathan D Glass
- Department of Neurology, Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, USA
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Duignan JA, Haughey A, Kinsella JA, Killeen RP. Molecular and Anatomical Imaging of Dementia With Lewy Bodies and Frontotemporal Lobar Degeneration. Semin Nucl Med 2021; 51:264-274. [PMID: 33402272 DOI: 10.1053/j.semnuclmed.2020.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dementia with Lewy bodies (DLB) and frontotemporal lobar degeneration (FTLD) are common causes of dementia. Early diagnosis of both conditions is challenging due to clinical and radiological overlap with other forms of dementia, particularly Alzheimer's disease (AD). Structural and functional imaging combined can aid differential diagnosis and help to discriminate DLB or FTLD from other forms of dementia. Imaging of DLB involves the use of 123I-FP-CIT SPECT and 123I-metaiodobenzylguanidine (123I-MIBG), both of which have an established role distinguishing DLB from AD. AD is also characterised by more pronounced atrophy of the medial temporal lobe structures when compared to DLB and these can be assessed at MR using the Medial Temporal Atrophy Scale. 18F-FDG-PET is used as a supportive biomarker for the diagnoses of DLB and can distinguish DLB from AD with high accuracy. Polysomnography and electroencephalography also have established roles in the diagnoses of DLB. FTLD is a heterogenous group of neurodegenerative disorders characterised pathologically by abnormally aggregated proteins. Clinical subtypes include behavioral variant FTD (bvFTD), primary progressive aphasia (PPA), which can be subdivided into semantic variant PPA (svPPA) or nonfluent agrammatic PPA (nfaPPA) and FTD associated with motor neuron disease (FTD-MND). Structural imaging is often the first step in making an image supported diagnoses of FTLD. Regional patterns of atrophy can be assessed on MR and graded according to the global cortical atrophy scale. FTLD is typically associated with atrophy of the frontal and temporal lobes. The patterns of atrophy are associated with the specific clinical subtypes, underlying neuropathology and genetic mutations although there is significant overlap. 18F-FDG-PET is useful for distinguishing FTLD from other forms of dementia and focal areas of hypometabolism can often precede atrophy identified on structural MR imaging. There are currently no biomarkers with which to unambiguously diagnose DLB or FTLD and both conditions demonstrate a wide range of heterogeneity. A combined approach of structural and functional imaging improves diagnostic accuracy in both conditions.
Collapse
Affiliation(s)
- John A Duignan
- Department of Radiology, St Vincent's University Hospital, Dublin 4, Ireland; UCD - SVUH PET CT Research Centre, St Vincent's University Hospital, Dublin 4, Ireland
| | - Aoife Haughey
- Department of Radiology, St Vincent's University Hospital, Dublin 4, Ireland; UCD - SVUH PET CT Research Centre, St Vincent's University Hospital, Dublin 4, Ireland
| | - Justin A Kinsella
- Department of Neurology, St Vincent's University Hospital, UCD, Dublin 4, Ireland
| | - Ronan P Killeen
- Department of Radiology, St Vincent's University Hospital, Dublin 4, Ireland; UCD - SVUH PET CT Research Centre, St Vincent's University Hospital, Dublin 4, Ireland.
| |
Collapse
|
7
|
Castro M, Venkateswaran N, Peters ST, Deyle DR, Bower M, Koob MD, Boeve BF, Vossel K. Case Report: Early-Onset Behavioral Variant Frontotemporal Dementia in Patient With Retrotransposed Full-Length Transcript of Matrin-3 Variant 5. Front Neurol 2020; 11:600468. [PMID: 33408686 PMCID: PMC7779795 DOI: 10.3389/fneur.2020.600468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Frontotemporal dementia (FTD) rarely occurs in individuals under the age of 30, and genetic causes of early-onset FTD are largely unknown. The current report follows a 27 year-old patient with no significant past medical history presenting with two years of progressive changes in behavior, rushed speech, verbal aggression, and social withdrawal. MRI and FDG-PET imaging of the brain revealed changes maximally in the frontal and temporal lobes, which along with the clinical features, are consistent with behavioral variant FTD. Next generation sequencing of a panel of 28 genes associated with dementia and amyotrophic lateral sclerosis (ALS) initially revealed a duplication of exon 15 in Matrin-3 (MATR3). Whole genome sequencing determined that this genetic anomaly was, in fact, a sequence corresponding with full-length MATR3 variant 5 inserted into chromosome 12, indicating retrotransposition from a messenger RNA intermediate. To our knowledge, this is a novel mutation of MATR3, as the majority of mutations in MATR3 linked to FTD-ALS are point mutations. Genomic DNA analysis revealed that this mutation is also present in one unaffected first-degree relative and one unaffected second-degree relative. This suggests that the mutation is either a disease-causing mutation with incomplete penetrance, which has been observed in heritable FTD, or a benign variant. Retrotransposons are not often implicated in neurodegenerative diseases; thus, it is crucial to clarify the potential role of this MATR3 variant 5 retrotransposition in early-onset FTD.
Collapse
Affiliation(s)
- Madelyn Castro
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, United States
| | - Nisha Venkateswaran
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, United States.,Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Samuel T Peters
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, United States
| | - David R Deyle
- Department of Clinical Genomics, Mayo Clinic Rochester, Rochester, MN, United States
| | - Matthew Bower
- Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN, United States.,Molecular Diagnostics Laboratory, M Health-Fairview, University of Minnesota, Minneapolis, MN, United States
| | - Michael D Koob
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic Rochester, Rochester, MN, United States
| | - Keith Vossel
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, United States.,Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Institute for Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
8
|
Abstract
There is increasing evidence of central nervous system involvement in numerous neuromuscular disorders primarily considered diseases of skeletal muscle. Our knowledge on cerebral affection in myopathies is expanding continuously due to a better understanding of the genetic background and underlying pathophysiological mechanisms. Intriguingly, there is a remarkable overlap of brain pathology in muscular diseases with pathomechanisms involved in neurodegenerative or neurodevelopmental disorders. A rapid progress in advanced neuroimaging techniques results in further detailed insight into structural and functional cerebral abnormalities. The spectrum of clinical manifestations is broad and includes movement disorders, neurovascular complications, paroxysmal neurological symptoms like migraine and epileptic seizures, but also behavioural abnormalities and cognitive dysfunction. Cerebral involvement implies a high socio-economic and personal burden in adult patients sometimes exceeding the everyday challenges associated with muscle weakness. It is especially important to clarify the nature and natural history of brain affection against the background of upcoming specific treatment regimen in hereditary myopathies that should address the brain as a secondary target. This review aims to highlight the character and extent of central nervous system involvement in patients with hereditary myopathies manifesting in adulthood, however also includes some childhood-onset diseases with brain abnormalities that transfer into adult neurological care.
Collapse
Affiliation(s)
- Jens Reimann
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
- Center for Rare Diseases, University Hospital Bonn, Germany
| | - Cornelia Kornblum
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
- Center for Rare Diseases, University Hospital Bonn, Germany
| |
Collapse
|
9
|
Pobran TD, Forgrave LM, Zheng YZ, Lim JG, Mackenzie IR, DeMarco ML. Detection and characterization of TDP-43 in human cells and tissues by multiple reaction monitoring mass spectrometry. CLINICAL MASS SPECTROMETRY 2019; 14 Pt B:66-73. [DOI: 10.1016/j.clinms.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
|
10
|
Erzurumluoglu E, Cilingir O, Ozbabalik Adapinar BD, Bilgic B, Kocagil S, Ozen H, Durak Aras B, Yenilmez C, Artan S. The association between repeat number in C9orf72 and phenotypic variability in Turkish patients with frontotemporal lobar degeneration. Neurobiol Aging 2019; 76:216.e1-216.e7. [DOI: 10.1016/j.neurobiolaging.2018.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 11/16/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
|
11
|
Vatsavayai SC, Nana AL, Yokoyama JS, Seeley WW. C9orf72-FTD/ALS pathogenesis: evidence from human neuropathological studies. Acta Neuropathol 2019; 137:1-26. [PMID: 30368547 DOI: 10.1007/s00401-018-1921-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
What are the most important and treatable pathogenic mechanisms in C9orf72-FTD/ALS? Model-based efforts to address this question are forging ahead at a blistering pace, often with conflicting results. But what does the human neuropathological literature reveal? Here, we provide a critical review of the human studies to date, seeking to highlight key gaps or uncertainties in our knowledge. First, we engage the C9orf72-specific mechanisms, including C9orf72 haploinsufficiency, repeat RNA foci, and dipeptide repeat protein inclusions. We then turn to some of the most prominent C9orf72-associated features, such as TDP-43 loss-of-function, TDP-43 aggregation, and nuclear transport defects. Finally, we review potential disease-modifying epigenetic and genetic factors and the natural history of the disease across the lifespan. Throughout, we emphasize the importance of anatomical precision when studying how candidate mechanisms relate to neuronal, regional, and behavioral findings. We further highlight methodological approaches that may help address lingering knowledge gaps and uncertainties, as well as other logical next steps for the field. We conclude that anatomically oriented human neuropathological studies have a critical role to play in guiding this fast-moving field toward effective new therapies.
Collapse
Affiliation(s)
- Sarat C Vatsavayai
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Alissa L Nana
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA.
- Department of Pathology, University of California, San Francisco, Box 1207, San Francisco, CA, 94143-1207, USA.
| |
Collapse
|
12
|
Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay. Proc Natl Acad Sci U S A 2018; 115:E2849-E2858. [PMID: 29511098 PMCID: PMC5866607 DOI: 10.1073/pnas.1722344115] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in the GRN gene cause frontotemporal dementia, a devastating neurological disease. The majority of these GRN mutations are nonsense and frameshift mutations. Here, we generated a knockin mouse model with a Grn mutation corresponding to the most prevalent human disease mutation, GRNR493X. We show that mice harboring this mutation phenocopy progranulin-deficient mice, and that the mutation triggers mRNA decay and, as a consequence, low production of Grn. However, the truncated mutant protein that would be produced from this allele is functional, suggesting inhibiting mRNA decay as a therapeutic approach for individuals with progranulin-deficient frontotemporal dementia caused by nonsense mutations. Frontotemporal dementia (FTD) is the most common neurodegenerative disorder in individuals under age 60 and has no treatment or cure. Because many cases of FTD result from GRN nonsense mutations, an animal model for this type of mutation is highly desirable for understanding pathogenesis and testing therapies. Here, we generated and characterized GrnR493X knockin mice, which model the most common human GRN mutation, a premature stop codon at arginine 493 (R493X). Homozygous GrnR493X mice have markedly reduced Grn mRNA levels, lack detectable progranulin protein, and phenocopy Grn knockout mice, with CNS microgliosis, cytoplasmic TDP-43 accumulation, reduced synaptic density, lipofuscinosis, hyperinflammatory macrophages, excessive grooming behavior, and reduced survival. Inhibition of nonsense-mediated mRNA decay (NMD) by genetic, pharmacological, or antisense oligonucleotide-based approaches showed that NMD contributes to the reduced mRNA levels in GrnR493X mice and cell lines and in fibroblasts from patients containing the GRNR493X mutation. Moreover, the expressed truncated R493X mutant protein was functional in several assays in progranulin-deficient cells. Together, these findings establish a murine model for in vivo testing of NMD inhibition or other therapies as potential approaches for treating progranulin deficiency caused by the R493X mutation.
Collapse
|
13
|
Mackenzie IRA, Neumann M. Fused in Sarcoma Neuropathology in Neurodegenerative Disease. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024299. [PMID: 28096243 DOI: 10.1101/cshperspect.a024299] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abnormal intracellular accumulation of the fused in sarcoma (FUS) protein is the characteristic pathological feature of cases of familial amyotrophic lateral sclerosis (ALS) caused by FUS mutations (ALS-FUS) and several uncommon disorders that may present with sporadic frontotemporal dementia (FTLD-FUS). Although these findings provide further support for the concept that ALS and FTD are closely related clinical syndromes with an overlapping molecular basis, important differences in the pathological features and results from experimental models indicate that ALS-FUS and FTLD-FUS have distinct pathogenic mechanisms.
Collapse
Affiliation(s)
- Ian R A Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Manuela Neumann
- Department of Neuropathology, University of Tübingen and German Center for Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany
| |
Collapse
|
14
|
Tuning of major signaling networks (TGF-β, Wnt, Notch and Hedgehog) by miRNAs in human stem cells commitment to different lineages: Possible clinical application. Biomed Pharmacother 2017; 91:849-860. [PMID: 28501774 DOI: 10.1016/j.biopha.2017.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/29/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023] Open
Abstract
Two distinguishing characteristics of stem cells, their continuous division in the undifferentiated state and growth into any cell types, are orchestrated by a number of cell signaling pathways. These pathways act as a niche factor in controlling variety of stem cells. The core stem cell signaling pathways include Wingless-type (Wnt), Hedgehog (HH), and Notch. Additionally, they critically regulate the self-renewal and survival of cancer stem cells. Conversely, stem cells' main properties, lineage commitment and stemness, are tightly controlled by epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulatory events. MicroRNAs (miRNAs) are cellular switches that modulate stem cells outcomes in response to diverse extracellular signals. Numerous scientific evidences implicating miRNAs in major signal transduction pathways highlight new crosstalks of cellular processes. Aberrant signaling pathways and miRNAs levels result in developmental defects and diverse human pathologies. This review discusses the crosstalk between the components of main signaling networks and the miRNA machinery, which plays a role in the context of stem cells development and provides a set of examples to illustrate the extensive relevance of potential novel therapeutic targets.
Collapse
|
15
|
Lopez A, Lee SE, Wojta K, Ramos EM, Klein E, Chen J, Boxer AL, Gorno-Tempini ML, Geschwind DH, Schlotawa L, Ogryzko NV, Bigio EH, Rogalski E, Weintraub S, Mesulam MM, Fleming A, Coppola G, Miller BL, Rubinsztein DC. A152T tau allele causes neurodegeneration that can be ameliorated in a zebrafish model by autophagy induction. Brain 2017; 140:1128-1146. [PMID: 28334843 PMCID: PMC5382950 DOI: 10.1093/brain/awx005] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/05/2016] [Indexed: 11/28/2022] Open
Abstract
Mutations in the gene encoding tau (MAPT) cause frontotemporal dementia spectrum disorders. A rare tau variant p.A152T was reported as a risk factor for frontotemporal dementia spectrum and Alzheimer’s disease in an initial case-control study. Such findings need replication in an independent cohort. We analysed an independent multinational cohort comprising 3100 patients with neurodegenerative disease and 4351 healthy control subjects and found p.A152T associated with significantly higher risk for clinically defined frontotemporal dementia and progressive supranuclear palsy syndrome. To assess the functional and biochemical consequences of this variant, we generated transgenic zebrafish models expressing wild-type or A152T-tau, where A152T caused neurodegeneration and proteasome compromise. Impaired proteasome activity may also enhance accumulation of other proteins associated with this variant. We increased A152T clearance kinetics by both pharmacological and genetic upregulation of autophagy and ameliorated the disease pathology observed in A152T-tau fish. Thus, autophagy-upregulating therapies may be a strategy for the treatment for tauopathies.
Collapse
Affiliation(s)
- Ana Lopez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Kevin Wojta
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Eliana Marisa Ramos
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Eric Klein
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jason Chen
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | | | - Daniel H Geschwind
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Lars Schlotawa
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Nikolay V Ogryzko
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Eileen H Bigio
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA
| | - Emily Rogalski
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA
| | - Sandra Weintraub
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA
| | - Marsel M Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA
| | | | - Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Giovanni Coppola
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|
16
|
Vile AR, Atkinson L. Chronic Traumatic Encephalopathy: The cellular sequela to repetitive brain injury. J Clin Neurosci 2017; 41:24-29. [PMID: 28347679 DOI: 10.1016/j.jocn.2017.03.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022]
Abstract
This review aims to integrate current literature on the pathogenic mechanisms of Chronic Traumatic Encephalopathy (CTE) to create a multifactorial understanding of the disease. CTE is a progressive neurodegenerative disease, classed as a tauopathy, although it appears the pathogenic mechanisms are more complex than this. It affects those with a history of repetitive mild traumatic brain injury. Currently, there are no treatments for CTE and the disease can only be affirmatively diagnosed in post mortem. Understanding the pathogenesis of the disease will provide an avenue to explore possible treatment and diagnostic modalities. The pathological hallmarks of CTE have been well characterised and have been linked to the pathophysiologic mechanisms in this review. Human studies are limited due to ethical implications of exposing subjects to head trauma. Phosphorylation of tau, microglial activation, TAR DNA-binding protein 43 and diffuse axonal injury have all been implicated in the pathogenesis of CTE. The neuronal loss and axonal dysfunction mediated by these pathognomonic mechanisms lead to the broad psycho-cognitive symptoms seen in CTE.
Collapse
Affiliation(s)
- Alexander R Vile
- James Cook University College of Medicine and Dentistry, Australia.
| | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW This article reviews the common behavioral and cognitive features of frontotemporal dementia (FTD) and related disorders as well as the distinguishing clinical, genetic, and pathologic features of the most common subtypes. RECENT FINDINGS Advances in clinical phenotyping, genetics, and biomarkers have enabled improved predictions of the specific underlying molecular pathology associated with different presentations of FTD. Evaluation of large international cohorts has led to recent refinements in diagnostic criteria for several of the FTD subtypes. SUMMARY The FTDs are a group of neurodegenerative disorders featuring progressive deterioration of behavior or language and associated pathology in the frontal or temporal lobes. Based on anatomic, genetic, and neuropathologic categorizations, the six clinical subtypes of FTD or related disorders are: (1) behavioral variant of FTD, (2) semantic variant primary progressive aphasia, (3) nonfluent agrammatic variant primary progressive aphasia, (4) corticobasal syndrome, (5) progressive supranuclear palsy, and (6) FTD associated with motor neuron disease. Recognition and accurate diagnoses of FTD subtypes will aid the neurologist in the management of patients with FTD.
Collapse
|
18
|
Metzger FG, Schopp B, Haeussinger FB, Dehnen K, Synofzik M, Fallgatter AJ, Ehlis AC. Brain activation in frontotemporal and Alzheimer's dementia: a functional near-infrared spectroscopy study. ALZHEIMERS RESEARCH & THERAPY 2016; 8:56. [PMID: 27931245 PMCID: PMC5146884 DOI: 10.1186/s13195-016-0224-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/16/2016] [Indexed: 12/12/2022]
Abstract
Background Frontotemporal dementia is an increasingly studied disease, the underlying functional impairments on a neurobiological level of which have not been fully understood. Patients with the behavioral-subtype frontotemporal dementia (bvFTD) are particularly challenging for clinical measurements such as functional imaging due to their behavioral symptoms. Here, an alternative imaging method, functional near-infrared spectroscopy (fNIRS), is introduced to measure task-related cortical brain activation based on blood oxygenation. The current study investigated differences in cortical activation patterns of patients with bvFTD, Alzheimer’s dementia (AD), and healthy elderly subjects measured by fNIRS. Method Eight probable bvFTD patients completed the semantic, phonological, and control conditions of a verbal fluency task. Eight AD patients and eight healthy controls were compared on the same task. Simultaneously, an fNIRS measurement was conducted and analyzed using a correction method based on the expected negative correlation between oxygenated and deoxygenated hemoglobin. Results Healthy controls show an increase in cortical activation measured in frontoparietal areas such as the dorsolateral prefrontal cortex. The activation pattern of patients with AD is similar, but weaker. In contrast, bvFTD patients show a more frontopolar pattern, with activation of Broca’s area, instead of the dorsolateral prefrontal cortex and the superior temporal gyrus. The frontoparietal compensation mechanisms, seen in the healthy elderly, were missing in bvFTD patients. Conclusion Different frontoparietal cortical activation patterns may indicate a correlate of diverse pathophysiological mechanisms of AD and bvFTD during verbal fluency processing. The AD pattern is weaker and more similar to the healthy pattern, whereas the bvFTD pattern is qualitatively different, namely more frontopolar and without frontoparietal compensation activation. It adheres to a change of cortical activation during the course of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s13195-016-0224-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian G Metzger
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Calwerstraße 14, 72076, Tuebingen, Germany. .,Geriatric Center at the University Hospital of Tuebingen, Calwerstraße 14, 72076, Tuebingen, Germany.
| | - Betti Schopp
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Calwerstraße 14, 72076, Tuebingen, Germany
| | - Florian B Haeussinger
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Calwerstraße 14, 72076, Tuebingen, Germany
| | - Katja Dehnen
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Calwerstraße 14, 72076, Tuebingen, Germany
| | - Matthis Synofzik
- Center of Neurology, Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University Hospital of Tuebingen, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany.,German Center of Neurodegenerative Disorders (DZNE), University Hospital of Tuebingen, Otfried-Müller-Straße 23, 72076, Tuebingen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Calwerstraße 14, 72076, Tuebingen, Germany.,German Center of Neurodegenerative Disorders (DZNE), University Hospital of Tuebingen, Otfried-Müller-Straße 23, 72076, Tuebingen, Germany
| | - Ann-Christine Ehlis
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Calwerstraße 14, 72076, Tuebingen, Germany
| |
Collapse
|
19
|
Abstract
Amyloid plaques, along with neurofibrillary tangles, are a neuropathologic hallmark of Alzheimer disease (AD). Recently, amyloid PET radiotracers have been developed and approved for clinical use in the evaluation of suspected neurodegenerative disorders. In both research and clinical settings, amyloid PET imaging has provided important diagnostic and prognostic information for the management of patients with possible AD, mild cognitive impairment (MCI), and other challenging diagnostic presentations. Although the overall impact of amyloid imaging is still being evaluated, the Society of Nuclear Medicine and Molecular Imaging and Alzheimer's Association Amyloid Imaging Task Force have created appropriate use criteria for the standard clinical use of amyloid PET imaging. By the appropriate use criteria, amyloid imaging is appropriate for patients with (1) persistent or unexplained MCI, (2) AD as a possible but still uncertain diagnosis after expert evaluation and (3) atypically early-age-onset progressive dementia. To better understand the clinical and economic effect of amyloid imaging, the Imaging Dementia-Evidence for Amyloid Scanning (IDEAS) study is an ongoing large multicenter study in the United States, which is evaluating how amyloid imaging affects diagnosis, management, and outcomes for cognitively impaired patients who cannot be completely evaluated by clinical assessment alone. Multiple other large-scale studies are evaluating the prognostic role of amyloid PET imaging for predicting MCI progression to AD in general and high-risk populations. At the same time, amyloid imaging is an important tool for evaluating potential disease-modifying therapies for AD. Overall, the increased use of amyloid PET imaging has led to a better understanding of the strengths and limitations of this imaging modality and how it may best be used with other clinical, molecular, and imaging assessment techniques for the diagnosis and management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Atul Mallik
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT.
| | - Alex Drzezga
- Department of Nuclear Medicine, University of Cologne, Cologne, Germany
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT
| |
Collapse
|
20
|
Paholpak P, Carr AR, Barsuglia JP, Barrows RJ, Jimenez E, Lee GJ, Mendez MF. Person-Based Versus Generalized Impulsivity Disinhibition in Frontotemporal Dementia and Alzheimer Disease. J Geriatr Psychiatry Neurol 2016; 29:344-351. [PMID: 27647788 DOI: 10.1177/0891988716666377] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND While much disinhibition in dementia results from generalized impulsivity, in behavioral variant frontotemporal dementia (bvFTD) disinhibition may also result from impaired social cognition. OBJECTIVE To deconstruct disinhibition and its neural correlates in bvFTD vs. early-onset Alzheimer's disease (eAD). METHODS Caregivers of 16 bvFTD and 21 matched-eAD patients completed the Frontal Systems Behavior Scale disinhibition items. The disinhibition items were further categorized into (1) "person-based" subscale which predominantly associated with violating social propriety and personal boundary and (2) "generalized-impulsivity" subscale which included nonspecific impulsive acts. Subscale scores were correlated with grey matter volumes from tensor-based morphometry on magnetic resonance images. RESULTS In comparison to the eAD patients, the bvFTD patients developed greater person-based disinhibition ( P < 0.001) but comparable generalized impulsivity. Severity of person-based disinhibition significantly correlated with the left anterior superior temporal sulcus (STS), and generalized-impulsivity correlated with the right orbitofrontal cortex (OFC) and the left anterior temporal lobe (aTL). CONCLUSIONS Person-based disinhibition was predominant in bvFTD and correlated with the left STS. In both dementia, violations of social propriety and personal boundaries involved fronto-parieto-temporal network of Theory of Mind, whereas nonspecific disinhibition involved the OFC and aTL.
Collapse
Affiliation(s)
- Pongsatorn Paholpak
- 1 Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, CA, USA.,2 Department of Psychiatry, Khon Kaen University, Khon Kaen, Thailand
| | - Andrew R Carr
- 1 Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, CA, USA.,3 Greater Los Angeles VA Healthcare System, West Los Angeles, CA, USA
| | | | - Robin J Barrows
- 1 Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, CA, USA.,3 Greater Los Angeles VA Healthcare System, West Los Angeles, CA, USA
| | - Elvira Jimenez
- 1 Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, CA, USA.,3 Greater Los Angeles VA Healthcare System, West Los Angeles, CA, USA.,4 Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California at Los Angeles, CA, USA
| | - Grace J Lee
- 5 Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, USA
| | - Mario F Mendez
- 1 Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, CA, USA.,3 Greater Los Angeles VA Healthcare System, West Los Angeles, CA, USA.,4 Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California at Los Angeles, CA, USA
| |
Collapse
|
21
|
Koss DJ, Robinson L, Drever BD, Plucińska K, Stoppelkamp S, Veselcic P, Riedel G, Platt B. Mutant Tau knock-in mice display frontotemporal dementia relevant behaviour and histopathology. Neurobiol Dis 2016; 91:105-23. [PMID: 26949217 DOI: 10.1016/j.nbd.2016.03.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022] Open
Abstract
Models of Tau pathology related to frontotemporal dementia (FTD) are essential to determine underlying neurodegenerative pathologies and resulting tauopathy relevant behavioural changes. However, existing models are often limited in their translational value due to Tau overexpression, and the frequent occurrence of motor deficits which prevent comprehensive behavioural assessments. In order to address these limitations, a forebrain-specific (CaMKIIα promoter), human mutated Tau (hTauP301L+R406W) knock-in mouse was generated out of the previously characterised PLB1Triple mouse, and named PLB2Tau. After confirmation of an additional hTau species (~60kDa) in forebrain samples, we identified age-dependent progressive Tau phosphorylation which coincided with the emergence of FTD relevant behavioural traits. In line with the non-cognitive symptomatology of FTD, PLB2Tau mice demonstrated early emerging (~6months) phenotypes of heightened anxiety in the elevated plus maze, depressive/apathetic behaviour in a sucrose preference test and generally reduced exploratory activity in the absence of motor impairments. Investigations of cognitive performance indicated prominent dysfunctions in semantic memory, as assessed by social transmission of food preference, and in behavioural flexibility during spatial reversal learning in a home cage corner-learning task. Spatial learning was only mildly affected and task-specific, with impairments at 12months of age in the corner learning but not in the water maze task. Electroencephalographic (EEG) investigations indicated a vigilance-stage specific loss of alpha power during wakefulness at both parietal and prefrontal recording sites, and site-specific EEG changes during non-rapid eye movement sleep (prefrontal) and rapid eye movement sleep (parietal). Further investigation of hippocampal electrophysiology conducted in slice preparations indicated a modest reduction in efficacy of synaptic transmission in the absence of altered synaptic plasticity. Together, our data demonstrate that the transgenic PLB2Tau mouse model presents with a striking behavioural and physiological face validity relevant for FTD, driven by the low level expression of mutant FTD hTau.
Collapse
Affiliation(s)
- David J Koss
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lianne Robinson
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Benjamin D Drever
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Kaja Plucińska
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Sandra Stoppelkamp
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Peter Veselcic
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gernot Riedel
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Bettina Platt
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
22
|
Sydow A, Hochgräfe K, Könen S, Cadinu D, Matenia D, Petrova O, Joseph M, Dennissen FJ, Mandelkow EM. Age-dependent neuroinflammation and cognitive decline in a novel Ala152Thr-Tau transgenic mouse model of PSP and AD. Acta Neuropathol Commun 2016; 4:17. [PMID: 26916334 PMCID: PMC4766625 DOI: 10.1186/s40478-016-0281-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 01/23/2016] [Indexed: 01/13/2023] Open
Abstract
Introduction Mutations of Tau are associated with several neurodegenerative disorders. Recently, the Tau mutation A152T was described as a novel risk factor for frontotemporal dementia spectrum disorders and Alzheimer disease. In vitro Tau-A152T shows a decreased binding to microtubules and a reduced tendency to form abnormal fibers. Results To study the effects of this mutation we generated a mouse model expressing human full-length Tau with this mutation (hTau40AT). At young age (2–3 months) immunohistological analysis reveals pathological Tau conformation and Tau-hyperphosphorylation combined with Tau missorting into the somatodendritic compartment of neurons. With increasing age there is Tau aggregation including co-aggregates of endogenous mouse Tau and exogenous human Tau, accompanied by loss of synapses (especially presynaptic failure) and neurons. From ~10 months onwards the mice show a prominent neuroinflammatory response as judged by activation of microglia and astrocytes. This progressive neuroinflammation becomes visible by in vivo bioluminescence imaging after crossbreeding of hTau40AT mice and Gfap-luciferase reporter mice. In contrast to other Tau-transgenic models and Alzheimer disease patients with reduced protein clearance, hTau40AT mice show a strong induction of autophagy. Although Tau-hyperphosphorylation and aggregation is also present in spinal cord and motor cortex (due to the Thy1.2 promoter), neuromotor performance is not affected. Deficits in spatial reference memory are manifest at ~16 months and are accompanied by neuronal death. Conclusions The hTau40AT mice mimic pathological hallmarks of tauopathies including a cognitive phenotype combined with pronounced neuroinflammation visible by bioluminescence. Thus the mice are suitable for mechanistic studies of Tau induced toxicity and in vivo validation of neuroprotective compounds. Electronic supplementary material The online version of this article (doi:10.1186/s40478-016-0281-z) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Riedl L, Mackenzie IR, Förstl H, Kurz A, Diehl-Schmid J. Frontotemporal lobar degeneration: current perspectives. Neuropsychiatr Dis Treat 2014; 10:297-310. [PMID: 24600223 PMCID: PMC3928059 DOI: 10.2147/ndt.s38706] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The term frontotemporal lobar degeneration (FTLD) refers to a group of progressive brain diseases, which preferentially involve the frontal and temporal lobes. Depending on the primary site of atrophy, the clinical manifestation is dominated by behavior alterations or impairment of language. The onset of symptoms usually occurs before the age of 60 years, and the mean survival from diagnosis varies between 3 and 10 years. The prevalence is estimated at 15 per 100,000 in the population aged between 45 and 65 years, which is similar to the prevalence of Alzheimer's disease in this age group. There are two major clinical subtypes, behavioral-variant frontotemporal dementia and primary progressive aphasia. The neuropathology underlying the clinical syndromes is also heterogeneous. A common feature is the accumulation of certain neuronal proteins. Of these, the microtubule-associated protein tau (MAPT), the transactive response DNA-binding protein, and the fused in sarcoma protein are most important. Approximately 10% to 30% of FTLD shows an autosomal dominant pattern of inheritance, with mutations in the genes for MAPT, progranulin (GRN), and in the chromosome 9 open reading frame 72 (C9orf72) accounting for more than 80% of familial cases. Although significant advances have been made in recent years regarding diagnostic criteria, clinical assessment instruments, neuropsychological tests, cerebrospinal fluid biomarkers, and brain imaging techniques, the clinical diagnosis remains a challenge. To date, there is no specific pharmacological treatment for FTLD. Some evidence has been provided for serotonin reuptake inhibitors to reduce behavioral disturbances. No large-scale or high-quality studies have been conducted to determine the efficacy of non-pharmacological treatment approaches in FTLD. In view of the limited treatment options, caregiver education and support is currently the most important component of the clinical management.
Collapse
Affiliation(s)
- Lina Riedl
- Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ian R Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Hans Förstl
- Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexander Kurz
- Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Janine Diehl-Schmid
- Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
24
|
Lausted C, Lee I, Zhou Y, Qin S, Sung J, Price ND, Hood L, Wang K. Systems Approach to Neurodegenerative Disease Biomarker Discovery. Annu Rev Pharmacol Toxicol 2014; 54:457-81. [DOI: 10.1146/annurev-pharmtox-011613-135928] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Inyoul Lee
- Institute for Systems Biology, Seattle, Washington 98109; , , , , , ,
| | - Yong Zhou
- Institute for Systems Biology, Seattle, Washington 98109; , , , , , ,
| | - Shizhen Qin
- Institute for Systems Biology, Seattle, Washington 98109; , , , , , ,
| | - Jaeyun Sung
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784, Republic of Korea;
| | - Nathan D. Price
- Institute for Systems Biology, Seattle, Washington 98109; , , , , , ,
| | - Leroy Hood
- Institute for Systems Biology, Seattle, Washington 98109; , , , , , ,
| | - Kai Wang
- Institute for Systems Biology, Seattle, Washington 98109; , , , , , ,
| |
Collapse
|
25
|
Abstract
Schizophrenia is a relatively common disorder diagnosed by the presentation of psychotic symptoms in the absence of identifiable neurologic or other organic cause. Frontotemporal dementia (FTD) is a relatively rare progressive neurodegenerative disorder that can present with a multitude of cognitive and behavioral symptoms including psychosis. At times, this phenotypic overlap can mean that schizophrenia and FTD are 2 possibilities in the differential diagnosis of a psychotic presentation. In this article, we systematically review the literature on the relationship between schizophrenia and FTD including case reports that highlight the potential for diagnostic confusion, clinical studies examining the relationship between the disorders, and the molecular evidence of shared pathophysiologic mechanisms. Although a relationship between the disorders is not definitively supported by the current literature, we identify the characteristics of a psychotic presentation that should alert the clinician to the possibility of FTD and describe the areas where further research is needed to clarify the pathophysiologic relationship.
Collapse
Affiliation(s)
- Joseph J Cooper
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, IL 60637, USA.
| | | |
Collapse
|
26
|
Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN, Topp S, Gkazi AS, Miller J, Shaw CE, Kottlors M, Kirschner J, Pestronk A, Li YR, Ford AF, Gitler AD, Benatar M, King OD, Kimonis VE, Ross ED, Weihl CC, Shorter J, Taylor JP. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 2013; 495:467-73. [PMID: 23455423 PMCID: PMC3756911 DOI: 10.1038/nature11922] [Citation(s) in RCA: 1111] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 01/17/2013] [Indexed: 01/18/2023]
Abstract
Algorithms designed to identify canonical yeast prions predict that around 250 human proteins, including several RNA-binding proteins associated with neurodegenerative disease, harbour a distinctive prion-like domain (PrLD) enriched in uncharged polar amino acids and glycine. PrLDs in RNA-binding proteins are essential for the assembly of ribonucleoprotein granules. However, the interplay between human PrLD function and disease is not understood. Here we define pathogenic mutations in PrLDs of heterogeneous nuclear ribonucleoproteins (hnRNPs) A2B1 and A1 in families with inherited degeneration affecting muscle, brain, motor neuron and bone, and in one case of familial amyotrophic lateral sclerosis. Wild-type hnRNPA2 (the most abundant isoform of hnRNPA2B1) and hnRNPA1 show an intrinsic tendency to assemble into self-seeding fibrils, which is exacerbated by the disease mutations. Indeed, the pathogenic mutations strengthen a 'steric zipper' motif in the PrLD, which accelerates the formation of self-seeding fibrils that cross-seed polymerization of wild-type hnRNP. Notably, the disease mutations promote excess incorporation of hnRNPA2 and hnRNPA1 into stress granules and drive the formation of cytoplasmic inclusions in animal models that recapitulate the human pathology. Thus, dysregulated polymerization caused by a potent mutant steric zipper motif in a PrLD can initiate degenerative disease. Related proteins with PrLDs should therefore be considered candidates for initiating and perhaps propagating proteinopathies of muscle, brain, motor neuron and bone.
Collapse
Affiliation(s)
- Hong Joo Kim
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38120, USA
| | - Nam Chul Kim
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38120, USA
| | - Yong-Dong Wang
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN 38120, USA
| | - Emily A. Scarborough
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Moore
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38120, USA
| | - Zamia Diaz
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyle S. MacLea
- Department of Biochemistry and Molecular Biology, Colorado State University; Fort Collins, CO 80523, USA
| | - Brian Freibaum
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38120, USA
| | - Songqing Li
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38120, USA
| | - Amandine Molliex
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38120, USA
| | - Anderson P. Kanagaraj
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38120, USA
| | - Robert Carter
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38120, USA
| | - Kevin B. Boylan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jack L. Pinkus
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Steven A. Greenberg
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bryan J. Traynor
- Neuromuscular Diseases Research Group, Laboratory of Neurogenetics, Porter Neuroscience Building, NIA, NIH, Bethesda, MD 20892, USA
| | - Bradley N. Smith
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simon Topp
- King’s College London Centre for Neurodegeneration Research, Department of Clinical Neuroscience, Institute of Psychiatry, London SE5 8AF, UK
| | - Athina-Soragia Gkazi
- King’s College London Centre for Neurodegeneration Research, Department of Clinical Neuroscience, Institute of Psychiatry, London SE5 8AF, UK
| | - Jack Miller
- King’s College London Centre for Neurodegeneration Research, Department of Clinical Neuroscience, Institute of Psychiatry, London SE5 8AF, UK
| | - Christopher E. Shaw
- King’s College London Centre for Neurodegeneration Research, Department of Clinical Neuroscience, Institute of Psychiatry, London SE5 8AF, UK
| | - Michael Kottlors
- Division of Neuropediatrics and Muscle Disorders, University Children's Hospital Freiburg, Freiburg, Germany
| | - Janbernd Kirschner
- Division of Neuropediatrics and Muscle Disorders, University Children's Hospital Freiburg, Freiburg, Germany
| | - Alan Pestronk
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yun R. Li
- Medical Scientist Training Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alice Flynn Ford
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Benatar
- Neurology Department, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Oliver D. King
- Boston Biomedical Research Institute, Watertown, MA 02472, USA
| | - Virginia E. Kimonis
- Department of Pediatrics, Division of Genetics and Metabolism, University of California-Irvine, 2501 Hewitt Hall, Irvine, CA, 92696, USA
| | - Eric D. Ross
- Department of Biochemistry and Molecular Biology, Colorado State University; Fort Collins, CO 80523, USA
| | - Conrad C. Weihl
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J. Paul Taylor
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38120, USA
| |
Collapse
|
27
|
Hoffmann M. The human frontal lobes and frontal network systems: an evolutionary, clinical, and treatment perspective. ISRN NEUROLOGY 2013; 2013:892459. [PMID: 23577266 PMCID: PMC3612492 DOI: 10.1155/2013/892459] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/19/2012] [Indexed: 12/27/2022]
Abstract
Frontal lobe syndromes, better termed as frontal network systems, are relatively unique in that they may manifest from almost any brain region, due to their widespread connectivity. The understandings of the manifold expressions seen clinically are helped by considering evolutionary origins, the contribution of the state-dependent ascending monoaminergic neurotransmitter systems, and cerebral connectivity. Hence, the so-called networktopathies may be a better term for the syndromes encountered clinically. An increasing array of metric tests are becoming available that complement that long standing history of qualitative bedside assessments pioneered by Alexander Luria, for example. An understanding of the vast panoply of frontal systems' syndromes has been pivotal in understanding and diagnosing the most common dementia syndrome under the age of 60, for example, frontotemporal lobe degeneration. New treatment options are also progressively becoming available, with recent evidence of dopaminergic augmentation, for example, being helpful in traumatic brain injury. The latter include not only psychopharmacological options but also device-based therapies including mirror visual feedback therapy.
Collapse
Affiliation(s)
- Michael Hoffmann
- Director Stroke and Cognitive Neurology Programs, James A. Haley Veterans' Hospital, 13000 Bruce B. Down's Boulevard, Tampa, FL 33612, USA
- Cognitive Neurologist and Director SciBrain, Roskamp Neurosciences Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| |
Collapse
|
28
|
Abstract
Frontotemporal dementia (FTD) is the second most common type of presenile dementia and is the most common form of dementia with the onset before 60 years of age. Its typical symptoms include behavioral disorders, affective symptoms, and language disorders. The FTD is a genetically and pathologically heterogeneous degenerative disorder. Animal models have provided more insights into the pathogenic mechanisms. There are currently no medications that are specifically approved for the treatment of FTD by the Food and Drug Administration. In this article, we review the recent advances in the molecular pathogenesis, pathology, animal models, and therapy for FTD. Better understanding of the pathogenesis and the use of animal models will help develop novel therapeutic strategies and provide new targets for FTD treatment.
Collapse
Affiliation(s)
- Xinling Wang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Neurobiology of Chinese Ministry of Health, Hangzhou, China
| | - Yuedi Shen
- Center for Cognition and Brain Disorders & The Affiliated Hospital, Hangzhou Normal University School, Hangzhou, China
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Neurobiology of Chinese Ministry of Health, Hangzhou, China
| |
Collapse
|
29
|
Abstract
Neurodegenerative adult-onset dementias are complex and multifactorial diseases that are most commonly caused by environmental, genetic, or mixed environmental and genetic factors. Regarding the genetic causes, a variety of phenotypes may present. This article reviews several of the genetic risk factors for the most common dementias encountered in neurology. Practical implications of genetic testing and pharmacogenomic considerations for clinical practice are also discussed.
Collapse
|
30
|
Cohn-Hokke PE, Elting MW, Pijnenburg YAL, van Swieten JC. Genetics of dementia: update and guidelines for the clinician. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:628-43. [PMID: 22815225 DOI: 10.1002/ajmg.b.32080] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 06/28/2012] [Indexed: 12/12/2022]
Abstract
With increased frequency, clinical geneticists are asked for genetic advice on the heredity of dementia in families. Alzheimer's disease is in most cases a complex disease, but may be autosomal dominant inherited. Mutations in the PSEN1 gene are the most common genetic cause of early onset Alzheimer's disease, whereas APP and PSEN2 gene mutations are less frequent. Familial frontotemporal dementia may be associated with a mutation in the MAPT or GRN gene, or with a repeat expansion in the C9orf72 gene. All these genes show autosomal dominant inheritance with a high penetrance. Although Alzheimer's disease and frontotemporal dementia are clinically distinguishable entities, phenotypical overlap may occur. Rarely, dementia is caused by mutations in other autosomal dominant genes or by genetic defects with autosomal recessive, X-linked dominant or mitochondrial inheritance. The inherited forms of frontotemporal dementia and Alzheimer's disease show a large phenotypic variability also within families, resulting in many remaining uncertainties for mutation carriers. Therefore, genetic counseling before performing genetic testing is essential in both symptomatic individuals and healthy at risk relatives. This review provides an overview of the genetic causes of dementia and discusses all aspects relevant for genetic counseling and testing. Furthermore, based on current knowledge, we provide algorithms for genetic testing in patients with early onset Alzheimer's disease or frontotemporal dementia.
Collapse
Affiliation(s)
- Petra E Cohn-Hokke
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
31
|
Coppola G, Chinnathambi S, Lee JJ, Dombroski BA, Baker MC, Soto-Ortolaza AI, Lee SE, Klein E, Huang AY, Sears R, Lane JR, Karydas AM, Kenet RO, Biernat J, Wang LS, Cotman CW, Decarli CS, Levey AI, Ringman JM, Mendez MF, Chui HC, Le Ber I, Brice A, Lupton MK, Preza E, Lovestone S, Powell J, Graff-Radford N, Petersen RC, Boeve BF, Lippa CF, Bigio EH, Mackenzie I, Finger E, Kertesz A, Caselli RJ, Gearing M, Juncos JL, Ghetti B, Spina S, Bordelon YM, Tourtellotte WW, Frosch MP, Vonsattel JPG, Zarow C, Beach TG, Albin RL, Lieberman AP, Lee VM, Trojanowski JQ, Van Deerlin VM, Bird TD, Galasko DR, Masliah E, White CL, Troncoso JC, Hannequin D, Boxer AL, Geschwind MD, Kumar S, Mandelkow EM, Wszolek ZK, Uitti RJ, Dickson DW, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Ross OA, Rademakers R, Schellenberg GD, Miller BL, Mandelkow E, Geschwind DH. Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases. Hum Mol Genet 2012; 21:3500-12. [PMID: 22556362 DOI: 10.1093/hmg/dds161] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rare mutations in the gene encoding for tau (MAPT, microtubule-associated protein tau) cause frontotemporal dementia-spectrum (FTD-s) disorders, including FTD, progressive supranuclear palsy (PSP) and corticobasal syndrome, and a common extended haplotype spanning across the MAPT locus is associated with increased risk of PSP and Parkinson's disease. We identified a rare tau variant (p.A152T) in a patient with a clinical diagnosis of PSP and assessed its frequency in multiple independent series of patients with neurodegenerative conditions and controls, in a total of 15 369 subjects. Tau p.A152T significantly increases the risk for both FTD-s (n = 2139, OR = 3.0, CI: 1.6-5.6, P = 0.0005) and Alzheimer's disease (AD) (n = 3345, OR = 2.3, CI: 1.3-4.2, P = 0.004) compared with 9047 controls. Functionally, p.A152T (i) decreases the binding of tau to microtubules and therefore promotes microtubule assembly less efficiently; and (ii) reduces the tendency to form abnormal fibers. However, there is a pronounced increase in the formation of tau oligomers. Importantly, these findings suggest that other regions of the tau protein may be crucial in regulating normal function, as the p.A152 residue is distal to the domains considered responsible for microtubule interactions or aggregation. These data provide both the first genetic evidence and functional studies supporting the role of MAPT p.A152T as a rare risk factor for both FTD-s and AD and the concept that rare variants can increase the risk for relatively common, complex neurodegenerative diseases, but since no clear significance threshold for rare genetic variation has been established, some caution is warranted until the findings are further replicated.
Collapse
Affiliation(s)
- Giovanni Coppola
- Department of Neurology, University of California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Looi JCL, Walterfang M, Velakoulis D, Macfarlane MD, Svensson LA, Wahlund LO. Frontotemporal dementia as a frontostriatal disorder: neostriatal morphology as a biomarker and structural basis for an endophenotype. Aust N Z J Psychiatry 2012; 46:422-34. [PMID: 22535292 DOI: 10.1177/0004867411432076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE This article reviews the evidence for a re-conceptualisation of a subtype of frontotemporal lobar degeneration (FTLD), frontotemporal dementia (FTD), as a frontostriatal disorder, working towards an endophenotype. METHOD We provide an overview of the role of frontostriatal circuits relevant to FTLD and FTD, as a subset of larger-scale distributed brain networks. We discuss the role of a strategic structure in these circuits, the neostriatum. Then we review the relationship of the clinical features of FTLD to frontostriatal circuits, correlating this with neuropsychological and neuropathological data. CONCLUSION The unique structure and linkages of the neostriatum make it an ideal structure for in vivo neuroimaging to understand the neuroanatomical basis of FTD. We develop a frontostriatal endophenotypic model for FTD as a platform for further investigation.
Collapse
Affiliation(s)
- Jeffrey C L Looi
- Research Centre for the Neurosciences of Ageing, Academic Unit of Psychological Medicine, Australian National University Medical School, Canberra Hospital, Canberra, Australia.
| | | | | | | | | | | |
Collapse
|
33
|
Frontotemporal Lobar Degeneration: New Understanding Brings New Approaches. Neuroimaging Clin N Am 2012; 22:83-97, viii. [DOI: 10.1016/j.nic.2011.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Mackenzie IRA, Neumann M. FET proteins in frontotemporal dementia and amyotrophic lateral sclerosis. Brain Res 2011; 1462:40-3. [PMID: 22261247 DOI: 10.1016/j.brainres.2011.12.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 12/01/2011] [Accepted: 12/03/2011] [Indexed: 11/18/2022]
Abstract
Mutations in the fused in sarcoma gene (FUS) cause amyotrophic lateral sclerosis (ALS) with TDP-43-negative, FUS-positive pathology. FUS is also the pathological protein in most tau/TDP-43-negative subtypes of frontotemporal lobar degeneration (FTLD-FUS). FUS, together with Ewing's sarcoma protein (EWS) and TATA-binding protein associated factor 15 (TAF15), make up the FET family of DNA/RNA binding proteins that share functional homology and have the potential to interact. We recently investigated the role of the other FET proteins in the clinicopathological spectrum of FUS-opathies. In all FTLD-FUS subtypes, FUS-positive pathology was also labeled for TAF15 and EWS and cells with inclusions showed a reduction in the normal nuclear staining of all FET proteins. In contrast, in cases of ALS-FUS, TAF15 and EWS remained localized to the nucleus and did not label FUS-positive inclusions. Cell culture models replicated the human diseases. These findings indicate that ALS-FUS and FTLD-FUS have different pathomechanisms and add TAF15 and EWS to the growing list of RNA-binding proteins involved in neurodegeneration. This article is part of a Special Issue entitled: RNA-Binding Proteins.
Collapse
Affiliation(s)
- Ian R A Mackenzie
- Department of Pathology, Vancouver General Hospital, 855 West 12th Avenue, Vancouver, BC, Canada V5Z 1M9.
| | | |
Collapse
|
35
|
Gene knockout of tau expression does not contribute to the pathogenesis of prion disease. J Neuropathol Exp Neurol 2011; 70:1036-45. [PMID: 22002429 DOI: 10.1097/nen.0b013e318235b471] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Prion diseases or transmissible spongiform encephalopathies are a group of fatal and transmissible disorders affecting the central nervous system of humans and animals. The principal agent of prion disease transmission and pathogenesis is proposed to be an abnormal protease-resistant isoform of the normal cellular prion protein. The microtubule-associated protein tau is elevated in patients with Creutzfeldt-Jakob disease. To determine whether tau expression contributes to prion disease pathogenesis, tau knockout and control wild-type mice were infected with the M1000 strain of mouse-adapted human prions. Immunohistochemical analysis for total tau expression in prion-infected wild-type mice indicated tau aggregation in the cytoplasm of a subpopulation of neurons in regions associated with spongiform change. Western immunoblot analysis of brain homogenates revealed a decrease in total tau immunoreactivity and epitope-specific changes in tau phosphorylation. No significant difference in incubation period or other disease features were observed between tau knockout and wild-type mice with clinical prion disease. These results demonstrate that, in this model of prion disease, tau does not contribute to the pathogenesis of prion disease and that changes in the tau protein profile observed in mice with clinical prion disease occurs as a consequence of the prion-induced pathogenesis.
Collapse
|
36
|
Abstract
Progranulin mutations result in frontotemporal dementia, but the underlying pathophysiology has remained largely unexplained. New data by Geschwind and colleagues in this issue of Neuron uncovered that the Wnt/FZD2 signaling pathway is an early and critical contributor to disease pathology.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Psychiatry and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA.
| | | |
Collapse
|
37
|
Rosen EY, Wexler EM, Versano R, Coppola G, Gao F, Winden KD, Oldham MC, Martens LH, Zhou P, Farese RV, Geschwind DH. Functional genomic analyses identify pathways dysregulated by progranulin deficiency, implicating Wnt signaling. Neuron 2011; 71:1030-42. [PMID: 21943601 DOI: 10.1016/j.neuron.2011.07.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2011] [Indexed: 11/27/2022]
Abstract
Progranulin (GRN) mutations cause frontotemporal dementia (FTD), but GRN's function in the CNS remains largely unknown. To identify the pathways downstream of GRN, we used weighted gene coexpression network analysis (WGCNA) to develop a systems-level view of transcriptional alterations in a human neural progenitor model of GRN-deficiency. This highlighted key pathways such as apoptosis and ubiquitination in GRN deficient human neurons, while revealing an unexpected major role for the Wnt signaling pathway, which was confirmed by analysis of gene expression data from postmortem FTD brain. Furthermore, we observed that the Wnt receptor Fzd2 was one of only a few genes upregulated at 6 weeks in a GRN knockout mouse, and that FZD2 reduction caused increased apoptosis, while its upregulation promoted neuronal survival in vitro. Together, these in vitro and in vivo data point to an adaptive role for altered Wnt signaling in GRN deficiency-mediated FTD, representing a potential therapeutic target.
Collapse
Affiliation(s)
- Ezra Y Rosen
- Interdepartmental Program for Neuroscience, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ward ME, Miller BL. Potential mechanisms of progranulin-deficient FTLD. J Mol Neurosci 2011; 45:574-82. [PMID: 21892758 DOI: 10.1007/s12031-011-9622-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 08/08/2011] [Indexed: 12/12/2022]
Abstract
Frontotemporal lobar dementia (FTLD) is the most common cause of dementia in patients younger than 60 years of age, and causes progressive neurodegeneration of the frontal and temporal lobes usually accompanied by devastating changes in language or behavior in affected individuals. Mutations in the progranulin (GRN) gene account for a significant fraction of familial FTLD, and in the vast majority of cases, these mutations lead to reduced expression of progranulin via nonsense-mediated mRNA decay. Progranulin is a secreted glycoprotein that regulates a diverse range of cellular functions including cell proliferation, cell migration, and inflammation. Recent fundamental discoveries about progranulin biology, including the findings that sortilin and tumor necrosis factor receptor (TNFR) are high affinity progranulin receptors, are beginning to shed light on the mechanism(s) by which progranulin deficiency causes FTLD. This review will explore how alterations in basic cellular functions due to PGRN deficiency, both intrinsic and extrinsic to neurons, might lead to the development of FTLD.
Collapse
Affiliation(s)
- Michael Emmerson Ward
- Memory and Aging Center, University of California, San Francisco, 350 Parnassus Avenue, Suite 905, San Francisco, CA 94143, USA.
| | | |
Collapse
|
39
|
Ray P, Kar A, Fushimi K, Havlioglu N, Chen X, Wu JY. PSF suppresses tau exon 10 inclusion by interacting with a stem-loop structure downstream of exon 10. J Mol Neurosci 2011; 45:453-66. [PMID: 21881826 DOI: 10.1007/s12031-011-9634-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/17/2011] [Indexed: 01/24/2023]
Abstract
Microtubule binding protein Tau has been implicated in a wide range of neurodegenerative disorders collectively classified as tauopathies. Exon 10 of the human tau gene, which codes for a microtubule binding repeat region, is alternatively spliced to form Tau protein isoforms containing either four or three microtubule binding repeats, Tau4R and Tau3R, respectively. The levels of different Tau splicing isoforms are fine-tuned by alternative splicing with the ratio of Tau4R/Tau3R maintained approximately at one in adult neurons. Mutations that disrupt tau exon 10 splicing regulation cause an imbalance of different tau splicing isoforms and have been associated with tauopathy. To search for factors interacting with tau pre-messenger RNA (pre-mRNA) and regulating tau exon 10 alternative splicing, we performed a yeast RNA-protein interaction screen and identified polypyrimidine tract binding protein associated splicing factor (PSF) as a candidate tau exon 10 splicing regulator. UV crosslinking experiments show that PSF binds to the stem-loop structure at the 5' splice site downstream of tau exon 10. This PSF-interacting RNA element is distinct from known PSF binding sites previously identified in other genes. Overexpression of PSF promotes tau exon 10 exclusion, whereas down-regulation of the endogenous PSF facilitates exon 10 inclusion. Immunostaining shows that PSF is expressed in the human brain regions affected by tauopathy. Our data reveal a new player in tau exon 10 alternative splicing regulation and uncover a previously unknown mechanism of PSF in regulating tau pre-mRNA splicing.
Collapse
Affiliation(s)
- Payal Ray
- Department of Neurology, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
40
|
Medical management of frontotemporal dementias: the importance of the caregiver in symptom assessment and guidance of treatment strategies. J Mol Neurosci 2011; 45:713-23. [PMID: 21647712 DOI: 10.1007/s12031-011-9558-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/16/2011] [Indexed: 01/31/2023]
Abstract
There are no currently Food and Drug Administration-approved or proven off-label treatments for the frontotemporal dementias (FTD). Clinicians, caregivers, and patients struggle regularly to find therapeutic regimens that can alleviate the problematic behavioral and cognitive symptoms associated with these devastating conditions. Success is "hit or miss" and the lessons learned are largely anecdotal to date. Drug discovery in this area has been largely hampered by the heterogeneous clinical presentations and pathological phenotypes of disease that represent significant obstacles to progress in this area. Biologically, plausible treatment strategies include the use of antidepressants (selective serotonin reuptake inhibitors or serotonin-specific reuptake inhibitor and monoamine oxidase inhibitors), acetylcholinesterase inhibitors, N-methyl-D-aspartic acid antagonists, mood stabilizers, antipsychotics, stimulants, antihypertensives, and agents that may ameliorate the symptoms of parkinsonism, pseudobulbar affect, and motor neuron disease that can often coexist with FTD. These medications all carry potential risks as well as possible benefits for the person suffering from FTD, and a clear understanding of these factors is critical in selecting an appropriate therapeutic regimen to maximize cognition and daily functions, reduce behavioral symptoms, and alleviate caregiver burden in an individual patient. The role of the caregiver in tracking and reporting of symptoms and the effects of individual therapeutic interventions is pivotal in this process. This manuscript highlights the importance of establishing an effective therapeutic partnership between the physician and caregiver in the medical management of the person suffering from FTD.
Collapse
|
41
|
Gabryelewicz T, Masellis M, Berdynski M, Bilbao JM, Rogaeva E, St George-Hyslop P, Barczak A, Czyzewski K, Barcikowska M, Wszolek Z, Black SE, Zekanowski C. Intra-familial clinical heterogeneity due to FTLD-U with TDP-43 proteinopathy caused by a novel deletion in progranulin gene (PGRN). J Alzheimers Dis 2011; 22:1123-33. [PMID: 20930269 DOI: 10.3233/jad-2010-101413] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is one of the commonest forms of early-onset dementia, accounting for up to 20% of all dementia patients. Recently, it has been shown that mutations in progranulin gene (PGRN) cause many familial cases of FTD. Members of a family affected by FTD spectrum disorders were ascertained in Poland and Canada. Clinical, radiological, molecular, genetic, and pathological studies were performed. A sequencing analysis of PGRN exons 1-13 was performed in the proband. Genotyping of the identified PGRN mutation and pathological analysis was carried out in the proband's brother. The onset of symptoms of FTD in the proband included bradykinesia, apathy, and somnolence followed by changes in personality, cognitive deficits, and psychotic features. The proband's clinical diagnosis was FTD and parkinsonism (FTDP). DNA sequence analysis of PGRN revealed a novel, heterozygous mutation in exon 11 (g.2988_2989delCA, P439_R440fsX6). The mutation introduced a premature stop codon at position 444. The proband's brother with the same mutation had a different course first presenting as progressive non-fluent aphasia, and later evolving symptoms of behavioral variant of FTD. He also developed parkinsonism late in the disease course evolving into corticobasal syndrome. Pathological analysis in the brother revealed Frontotemporal Lobar Degeneration-Ubiquitin (FTLD-U)/TDP-43 positive pathology. The novel PGRN mutation is a disease-causing mutation and is associated with substantial intra-familial clinical heterogeneity. Although presenting features were different, rapid and substantial deterioration in the disease course was observed in both family members.
Collapse
Affiliation(s)
- Tomasz Gabryelewicz
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Novel types of frontotemporal lobar degeneration: beyond tau and TDP-43. J Mol Neurosci 2011; 45:402-8. [PMID: 21603977 DOI: 10.1007/s12031-011-9551-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 05/09/2011] [Indexed: 12/30/2022]
Abstract
Most cases of frontotemporal lobar degeneration (FTLD) are characterized by the abnormal accumulation of either the microtubule-associated protein tau or the transactive response DNA-binding protein with M(r) 43 kDa, TDP-43 (FTLD-tau and FTLD-TDP, respectively). However, there remain ∼10% of cases, composed of a heterogenous collection of uncommon disorders, for which the molecular basis remains uncertain. In this review, we describe the characteristic genetic, clinical, and pathological features of the major tau/TDP-negative FTLD subtypes, with focus on recent advances in our understanding of their molecular basis. This includes the discovery that the pathological changes in atypical FTLD with ubiquitinated inclusions, neuronal intermediate filament inclusion disease, and basophilic inclusion body disease are immunoreactive for the fused in sarcoma (FUS) protein, resulting in the creation of a new molecular subgroup (FTLD-FUS), and studies clarifying the functional consequences of pathogenic CHMP2B mutations.
Collapse
|
43
|
Jicha GA, Nelson PT. Management of frontotemporal dementia: targeting symptom management in such a heterogeneous disease requires a wide range of therapeutic options. Neurodegener Dis Manag 2011; 1:141-156. [PMID: 21927623 PMCID: PMC3172080 DOI: 10.2217/nmt.11.9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
There are no US FDA-approved therapies for the management of frontotemporal dementia (FTD). Evidence-based medicine that would support a FDA indication for the treatment of FTD requires large-scale, randomized, double-blind, placebo-controlled trials that do not currently exist. Progress in obtaining approval and therapeutic indications for FTD has been severely hampered by the heterogeneity of clinical and pathological phenotypes seen in various FTD disease states. These issues are often misinterpreted by clinicians, caregivers and patients suggesting that potential treatment options are nonexistent for this devastating disease. This article discusses these issues in the context of recent studies and publications investigating therapeutic options in FTD, and further suggests a rationale for individualized therapy in FTD. Targeting the myriad of symptoms seen in FTD requires recognition of such symptoms that may play primary or secondary roles in the spectrum of deficits that lead to functional disability in FTD, and the availability of a wide range of therapeutic options that may be helpful in alleviating such symptomatology. Fortunately, agents targeting the many cognitive, behavioral, psychiatric and motor symptoms that can be seen in FTD are readily available, having been previously developed and approved for symptomatic benefit in other disease states. In contrast to the widespread belief that beneficial treatments are not available for FTD today, our therapeutic armament is stocked with pharmacological tools that may improve quality of life for those suffering from this devastating and incurable class of degenerative diseases.
Collapse
Affiliation(s)
- Gregory A Jicha
- Sanders-Brown Center on Aging, 101 Sanders-Brown Building, University of Kentucky, Lexington, KY 40536-0230, USA
- University of Kentucky Alzheimer’s Disease Center, 101 Sanders-Brown Building, University of Kentucky, Lexington, KY 40536-0230, USA
- Department of Neurology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, 101 Sanders-Brown Building, University of Kentucky, Lexington, KY 40536-0230, USA
- University of Kentucky Alzheimer’s Disease Center, 101 Sanders-Brown Building, University of Kentucky, Lexington, KY 40536-0230, USA
- Department of Neuropathology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
44
|
Anfossi M, Vuono R, Maletta R, Virdee K, Mirabelli M, Colao R, Puccio G, Bernardi L, Frangipane F, Gallo M, Geracitano S, Tomaino C, Curcio SAM, Zannino G, Lamenza F, Duyckaerts C, Spillantini MG, Losso MA, Bruni AC. Compound heterozygosity of 2 novel MAPT mutations in frontotemporal dementia. Neurobiol Aging 2011; 32:757.e1-757.e11. [PMID: 21295377 DOI: 10.1016/j.neurobiolaging.2010.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 11/16/2010] [Accepted: 12/21/2010] [Indexed: 11/17/2022]
Abstract
Intronic MAPT mutations altering exon 10 splicing lead mainly to an increase of 4Rtau. The objective of this study is to report clinical, genetic, and neuropathological data of an apparently sporadic early onset frontotemporal dementia (FTD) case associated with 2 novel intronic MAPT gene mutations IVS10+4A > C and IVS9-15T > C that increase 3Rtau. Methods and subjects used are clinical, neuroradiological, and neuropathological examination; molecular genetics of MAPT, PGRN, and other relevant genes. Exon 10 splicing tested with minigene constructs. Tau deposits detected by immunohistochemistry. Sarkosyl-insoluble and soluble tau investigated by immunoblotting. Two novel MAPT mutations IVS10+4A > C and the IVS9-15T > C transmitted by the unaffected parents were identified. Semiquantitative reverse transcription polymerase chain reaction (RT-PCR) analyses on minigenes and in brain tissue showed that both mutations cause an increase of tau mRNA (messenger ribonucleic acid) transcripts lacking exon 10 only in the patient. Immunohistochemistry and immunoblotting of the patient's brain revealed tau deposits composed mostly of 3Rtau isoforms with a predominance of the shorter 3Rtau isoforms. The compound heterozygosity of the patient increasing 3Rtau seems to be responsible for the disease and furthermore suggests that sporadic cases can be caused by genetic mutations.
Collapse
Affiliation(s)
- Maria Anfossi
- Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme (CZ), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mackenzie IRA, Munoz DG, Kusaka H, Yokota O, Ishihara K, Roeber S, Kretzschmar HA, Cairns NJ, Neumann M. Distinct pathological subtypes of FTLD-FUS. Acta Neuropathol 2011; 121:207-18. [PMID: 21052700 DOI: 10.1007/s00401-010-0764-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 11/27/2022]
Abstract
Most cases of frontotemporal lobar degeneration (FTLD) are characterized by abnormal intracellular accumulation of either tau or TDP-43 protein. However, in ~10% of cases, composed of a heterogenous collection of uncommon disorders, the molecular basis remains to be uncertain. We recently discovered that the pathological changes in several tau/TDP-43-negative FTLD subtypes are immunoreactive (ir) for the fused in sarcoma (FUS) protein. In this study, we directly compared the pattern of FUS-ir pathology in cases of atypical FTLD-U (aFTLD-U, N = 10), neuronal intermediate filament inclusion disease (NIFID, N = 5) and basophilic inclusion body disease (BIBD, N = 8), to determine whether these are discrete entities or represent a pathological continuum. All cases had FUS-ir pathology in the cerebral neocortex, hippocampus and a similar wide range of subcortical regions. Although there was significant overlap, each group showed specific differences that distinguished them from the others. Cases of aFTLD-U consistently had less pathology in subcortical regions. In addition, the neuronal inclusions in aFTLD-U usually had a uniform, round shape, whereas NIFID and BIBD were characterized by a variety of inclusion morphologies. In all cases of aFTLD-U and NIFID, vermiform neuronal intranuclear inclusions (NII) were readily identified in the hippocampus and neocortex. In contrast, only two cases of BIBD had very rare NII in a single subcortical region. These findings support aFTLD-U, NIFID and BIBD as representing closely related, but distinct entities that share a common molecular pathogenesis. Although cases with overlapping pathology may exist, we recommend retaining the terms aFTLD-U, NIFID and BIBD for specific FTLD-FUS subtypes.
Collapse
Affiliation(s)
- Ian R A Mackenzie
- Department of Pathology, Vancouver General Hospital, University of British Columbia, BC, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Alzheimer's disease and frontotemporal dementia are two of the most common neurodegenerative dementias. Here, we review the clinical presentation, genetic causes, typical neuropathology, and current treatments for these disorders. We then review molecules involved in their pathogenesis and protocols for working with these species and conclude with a discussion of experimental systems and outcome measures for studying these disorders.
Collapse
Affiliation(s)
- Erik D Roberson
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
47
|
|
48
|
Abstract
The purpose of this review is to provide a comprehensive update on the genetic causes of frontotemporal lobar degeneration (FTLD). Approximately 40% to 50% of patients diagnosed with FTLD have a family history of a ''related disorder,'' whereas 10% to 40% have an autosomal dominant family history for the disease. At this time, mutations occurring in 2 independent genes located on the same chromosome (MAPT and GRN) have been shown to cause the majority of cases of autosomal dominant FTLD. Specific genetic, molecular, pathological, and phenotypic variations associated with each of these gene mutations are discussed, as well as markers that may help differentiate the 2. In addition, 3 relatively rare, additional genes known to cause familial FTLD are examined in brief. Lastly, genetic counseling issues which may be important to the community clinician are discussed.
Collapse
Affiliation(s)
- Tricia M See
- Memory and Aging Center, University of California San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Motor neurons are large, highly polarised cells with very long axons and a requirement for precise spatial and temporal gene expression. Neurodegenerative disorders characterised by selective motor neuron vulnerability include various forms of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). A rapid expansion in knowledge on the pathophysiology of motor neuron degeneration has occurred in recent years, largely through the identification of genes leading to familial forms of ALS and SMA. The major emerging theme is that motor neuron degeneration can result from mutation in genes that encode factors important for ribonucleoprotein biogenesis and RNA processing, including splicing regulation, transcript stabilisation, translational repression and localisation of mRNA. Complete understanding of how these pathways interact and elucidation of specialised mechanisms for mRNA targeting and processing in motor neurons are likely to produce new targets for therapy in ALS and related disorders.
Collapse
|
50
|
Gouras GK, Tampellini D, Takahashi RH, Capetillo-Zarate E. Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer's disease. Acta Neuropathol 2010; 119:523-41. [PMID: 20354705 PMCID: PMC3183823 DOI: 10.1007/s00401-010-0679-9] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 03/23/2010] [Accepted: 03/23/2010] [Indexed: 01/01/2023]
Abstract
The aberrant accumulation of aggregated beta-amyloid peptides (Abeta) as plaques is a hallmark of Alzheimer's disease (AD) neuropathology and reduction of Abeta has become a leading direction of emerging experimental therapies for the disease. The mechanism(s) whereby Abeta is involved in the pathophysiology of the disease remain(s) poorly understood. Initially fibrils, and subsequently oligomers of extracellular Abeta have been viewed as the most important pathogenic form of Abeta in AD. More recently, the intraneuronal accumulation of Abeta has been described in the brain, although technical considerations and its relevance in AD have made this a controversial topic. Here, we review the emerging evidence linking intraneuronal Abeta accumulation to the development of synaptic pathology and plaques in AD, and discuss the implications of intraneuronal beta-amyloid for AD pathology, biology, diagnosis and therapy.
Collapse
Affiliation(s)
- Gunnar K Gouras
- Department for Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | |
Collapse
|