1
|
Rodriguez-Diaz C, Seyboldt C, Rupnik M. Non-human Clostridioides difficile Reservoirs and Sources: Animals, Food, Environment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:329-350. [PMID: 38175482 DOI: 10.1007/978-3-031-42108-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile is ubiquitous and is found in humans, animals and in variety of environments. The substantial overlap of ribotypes between all three main reservoirs suggests the extensive transmissions. Here we give the overview of European studies investigating farm, companion and wild animals, food and environments including water, soil, sediment, wastewater treatment plants, biogas plants, air, and households. Studies in Europe are more numerous especially in last couple of years, but are still fragmented in terms of countries, animal species, or type of environment covered. Soil seem to be the habitat of divergent unusual lineages of C. difficile. But the most important aspect of animals and environment is their role in C. difficile transmissions and their potential as a source for human infection is discussed.
Collapse
Affiliation(s)
- Cristina Rodriguez-Diaz
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Laboratory of Food Microbiology, Fundamental and Applied Research for Animals and Health (FARAH), Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, NLZOH, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| |
Collapse
|
2
|
Yu S, Zhang L, Wang A, Jin Y, Zhou D. Nanobodies: the Potential Application in Bacterial Treatment and Diagnosis. Biochem Pharmacol 2023:115640. [PMID: 37315818 DOI: 10.1016/j.bcp.2023.115640] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
An infection caused by bacteria is one of the main factors that poses a threat to human health. A recent report from the World Health Organization (WHO) has highlighted that bacteria that cause blood infections have become increasingly drug-resistant. Therefore, it is crucial to research and develop new techniques for detecting and treating these infections. Since their discovery, nanobodies have exhibited numerous outstanding biological properties. They are easy to express, modify, and have high stability, robust permeability and low immunogenicity, all of which indicate their potential as a substitute. Nanobodies have been utilized in a variety of studies on viruses and cancer. This article primarily focuses on nanobodies and introduces their characteristics and application in the diagnosis and treatment of bacterial infections.
Collapse
Affiliation(s)
- Siyuan Yu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Lu Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, China; Department of Animal Engineering, Yangling Vocational&Technical College, Xianyang, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, China.
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| |
Collapse
|
3
|
Grudlewska-Buda K, Bauza-Kaszewska J, Wiktorczyk-Kapischke N, Budzyńska A, Gospodarek-Komkowska E, Skowron K. Antibiotic Resistance in Selected Emerging Bacterial Foodborne Pathogens-An Issue of Concern? Antibiotics (Basel) 2023; 12:antibiotics12050880. [PMID: 37237783 DOI: 10.3390/antibiotics12050880] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Antibiotic resistance (AR) and multidrug resistance (MDR) have been confirmed for all major foodborne pathogens: Campylobacter spp., Salmonella spp., Escherichia coli and Listeria monocytogenes. Of great concern to scientists and physicians are also reports of antibiotic-resistant emerging food pathogens-microorganisms that have not previously been linked to food contamination or were considered epidemiologically insignificant. Since the properties of foodborne pathogens are not always sufficiently recognized, the consequences of the infections are often not easily predictable, and the control of their activity is difficult. The bacteria most commonly identified as emerging foodborne pathogens include Aliarcobacter spp., Aeromonas spp., Cronobacter spp., Vibrio spp., Clostridioides difficile, Escherichia coli, Mycobacterium paratuberculosis, Salmonella enterica, Streptocccus suis, Campylobacter jejuni, Helicobacter pylori, Listeria monocytogenes and Yersinia enterocolitica. The results of our analysis confirm antibiotic resistance and multidrug resistance among the mentioned species. Among the antibiotics whose effectiveness is steadily declining due to expanding resistance among bacteria isolated from food are β-lactams, sulfonamides, tetracyclines and fluoroquinolones. Continuous and thorough monitoring of strains isolated from food is necessary to characterize the existing mechanisms of resistance. In our opinion, this review shows the scale of the problem of microbes related to health, which should not be underestimated.
Collapse
Affiliation(s)
- Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Justyna Bauza-Kaszewska
- Department of Microbiology and Food Technology, Bydgoszcz University of Science and Technology, 85-029 Bydgoszcz, Poland
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Anna Budzyńska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| |
Collapse
|
4
|
The Environment, Farm Animals and Foods as Sources of Clostridioides difficile Infection in Humans. Foods 2023; 12:foods12051094. [PMID: 36900611 PMCID: PMC10000743 DOI: 10.3390/foods12051094] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
The recent discovery of the same Clostridioides difficile ribotypes associated with human infection in a broad range of environments, animals and foods, coupled with an ever-increasing rate of community-acquired infections, suggests this pathogen may be foodborne. The objective of this review was to examine the evidence supporting this hypothesis. A review of the literature found that forty-three different ribotypes, including six hypervirulent strains, have been detected in meat and vegetable food products, all of which carry the genes encoding pathogenesis. Of these, nine ribotypes (002, 003, 012, 014, 027, 029, 070, 078 and 126) have been isolated from patients with confirmed community-associated C. difficile infection (CDI). A meta-analysis of this data suggested there is a higher risk of exposure to all ribotypes when consuming shellfish or pork, with the latter being the main foodborne route for ribotypes 027 and 078, the hypervirulent strains that cause most human illnesses. Managing the risk of foodborne CDI is difficult as there are multiple routes of transmission from the farming and processing environment to humans. Moreover, the endospores are resistant to most physical and chemical treatments. The most effective current strategy is, therefore, to limit the use of broad-spectrum antibiotics while advising potentially vulnerable patients to avoid high-risk foods such as shellfish and pork.
Collapse
|
5
|
Lang V, Gunka K, Ortlepp JR, Zimmermann O, Groß U. Risk Factors of Patients With Diarrhea for Having Clostridioides (Clostridium) difficile Infection. Front Microbiol 2022; 13:840846. [PMID: 35359708 PMCID: PMC8963458 DOI: 10.3389/fmicb.2022.840846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Nosocomial infections with Clostridioides (Clostridium) difficile have become an emergent health threat. We sought to define risk factors for a C. difficile infection (CDI) beyond the widely known ones, such as antibiotic use and prior hospital stay. We therefore focused on a group of patients with diarrhea in order to identify risk factors for C. difficile infection among this symptomatic cohort. A total of 121 hospitalized patients from Seesen/Germany with diarrhea were included who submitted a stool sample and were interviewed about their socio-demographic background, lifestyle and state of health using a standardized questionnaire. Antibiotic potential of diuretics was examined by agar diffusion test. C. difficile was identified in 29 patients resulting in a prevalence of 24.0%. The infection was hospital-acquired in most cases (p < 0.001, 82.1%; n = 23/28, versus 29/91, 31.9%). The generally accepted risk factor previous antibiotic use was confirmed in this study (p = 0.002, n = 23/28 CDI patients, 82.1%, versus n = 44/91 non-CDI patients, 48.4%). The following additional risk factors were identified: regular consumption of proton pump inhibitors; PPI (p = 0.011, n = 24/29, 82.8% vs. n = 52/92, 56.5%), CDI patients ate less vegetables (p = 0.001, n = 12/29, 41.4% vs. 69/92, 75.0%). The intake of the diuretic agent torasemid in patients with CDI (p = 0.005, n = 18/29, 62.1%) was higher than in patients without (n = 30/92, 32.6%). More patients with CDI had to undergo a surgery in the previous year (p = 0.022, n = 13/29, 44.8% vs. n = 21/92, 22.8%) and held more birds (p = 0.056, n = 4/29, 13.8%) than individuals of the negative group (n = 3/92, 3.3%). In conclusion, although no antibiotic potential was detected in diuretics, especially torasemid seems to have significant influence for the occurrence of a CDI as well as a nutrition poor in vegetables. A diet rich in vegetables represented a fourfold lower risk for a CDI (OR 0.240, CI (0.0720 - 0.796]).
Collapse
Affiliation(s)
- Vanessa Lang
- Institute of Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Katrin Gunka
- Institute of Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Ortrud Zimmermann
- Institute of Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Uwe Groß
- Institute of Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
- *Correspondence: Uwe Groß,
| |
Collapse
|
6
|
High Prevalence of Clostridium difficile in Home Gardens in Western Australia. Appl Environ Microbiol 2020; 87:AEM.01572-20. [PMID: 33097511 DOI: 10.1128/aem.01572-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/14/2020] [Indexed: 01/05/2023] Open
Abstract
In recent years, community-associated Clostridium difficile infection (CA-CDI) has emerged as a significant health problem, accounting for ∼50% of all CDI cases. We hypothesized that the home garden environment could contribute to the dissemination of C. difficile spores in the community and investigated 23 homes in 22 suburbs of Perth, Western Australia. We identified a high prevalence of toxigenic C. difficile in this environment. In total, 97 samples consisting of soil (n = 48), compost (n = 15), manure (n = 12), and shoe sole swabs (n = 22) were collected. All samples were cultured anaerobically on C. difficile ChromID agar and enriched in brain heart infusion broth, and isolates were characterized by toxin gene PCR and PCR ribotyping. Two-thirds (67%; 95% confidence interval [CI], 57 to 76%) of home garden samples, including 79% (95% CI, 68 to 91%) of soil, 67% (95% CI, 43 to 90%) of compost, 83% (95% CI, 62% to 100%) of manure, and 32% (95% CI, 12 to 51%) of shoe sole samples, contained C. difficile Of 87 isolates, 38% (95% CI, 28 to 48%) were toxigenic, and 26 PCR ribotypes (RTs), 5 of which were novel, were identified. The toxigenic C. difficile strain RT014/020 was the most prevalent RT. Interestingly, 19 esculin hydrolysis-negative strains giving white colonies were identified on C. difficile ChromID agar, 5 of which were novel toxigenic RTs that produced only toxin A. Clearly, there is the potential for transmission of C. difficile in the community due to the contamination of home gardens. Our findings highlight the importance of a "One Health" approach to dealing with CDI.IMPORTANCE Recently, community-associated Clostridium difficile infection (CA-CDI) has emerged as a significant problem, accounting for ∼50% of all CDI cases and reported to affect a younger population without traditional risk factors. Possible sources of CA-CDI are soil, food, and water contaminated by animal feces, and recent reports show overlapping ribotypes of C. difficile in animals, humans, and the environment; however, the epidemiology of CA-CDI and related risk factors need to be better understood. Our research aimed to determine the prevalence of C. difficile in home gardens and on the shoe soles of homeowners in Perth, Western Australia. There were high rates of contamination with C. difficile in gardens, and some of the ribotypes identified had been isolated from human cases of CDI in Western Australia. This study shows that home gardens and shoes may be a source of C. difficile in CA-CDI.
Collapse
|
7
|
Hernandez BG, Vinithakumari AA, Sponseller B, Tangudu C, Mooyottu S. Prevalence, Colonization, Epidemiology, and Public Health Significance of Clostridioides difficile in Companion Animals. Front Vet Sci 2020; 7:512551. [PMID: 33062657 PMCID: PMC7530174 DOI: 10.3389/fvets.2020.512551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
Clostridioides difficile, previously Clostrdium difficile, is a major cause of antibiotic-associated enteric disease in humans in hospital settings. Increased incidence of C. difficile infection (CDI) in community settings raises concerns over an alternative source of CDI for humans. The detection of genetically similar and toxigenic C. difficile isolates in companion animals, including asymptomatic pets, suggests the potential role of household pets as a source of community-associated CDI. The close association between companion animals and humans, in addition to the use of similar antibiotics in both species, could provide a selective advantage for the emergence of new C. difficile strains and thus increase the incidental transmission of CDI to humans. Therefore, screening household pets for C. difficile is becoming increasingly important from a public health standpoint and may become a part of routine testing in the future, for the benefit of susceptible or infected individuals within a household. In this review, we analyze available information on prevalence, pathophysiology, epidemiology, and molecular genetics of C. difficile infection, focusing on companion animals and evaluate the risk of pet-borne transmission of CDI as an emerging public health concern. Molecular epidemiological characterization of companion animal C. difficile strains could provide further insights into the interspecies transmission of CDI. The mosaic nature of C. difficile genomes and their susceptibility to horizontal gene transfer may facilitate the inter-mixing of genetic material, which could increase the possibility of the emergence of new community-associated CDI strains. However, detailed genome-wide characterization and comparative genome analysis are warranted to confirm this hypothesis.
Collapse
Affiliation(s)
- Belen G. Hernandez
- Department of Veterinary Pathology, Iowa State University, Ames, IA, United States
| | | | - Brett Sponseller
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Chandra Tangudu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Shankumar Mooyottu
- Department of Veterinary Pathology, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Clostridium difficile Infection Epidemiology over a Period of 8 Years—A Single Centre Study. SUSTAINABILITY 2020. [DOI: 10.3390/su12114439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clostridium difficile infection (CDI) is the most common infectious disease related to antibiotic-associated diarrhoea and is a current leading cause of morbidity/mortality, with substantial consequences for healthcare services and overall public health. Thus, we performed a retrospective epidemiological study of CDI for a long period (8 years), in an infectious hospital located in north-western Romania, which serves an entire county of the country (617,827 inhabitants). From 2011 to 2018, 877 patients were diagnosed with CDI; the mean incidence of this disease was 2.76 cases/10,000 patient-days, with an increasing trend in the annual incidence until 2016, at which point there was a decrease. The most commonly afflicted were patients in the 75–84 age group, observed in winter and spring. The results show that the antibiotics were administered in 679 (77.42%) subjects, within the last 3 months before CDI, statistically significant more than proton-pump inhibitors (PPIs)—128 (14.60%) and antidepressant medications—60 (6.84%), which were administered during the same period (p < 0.001). No medication was reported in 10 (6.84%) cases of CDI, in the last 3 months of the study. The fatality rate attained 4.1%, tripling in 2018 vs. 2011. CDI became a significant public health conundrum that can, nevertheless, be combatted through a judicious use of antibiotics.
Collapse
|
9
|
Tkalec V, Jamnikar-Ciglenecki U, Rupnik M, Vadnjal S, Zelenik K, Biasizzo M. Clostridioides difficile in national food surveillance, Slovenia, 2015 to 2017. Euro Surveill 2020; 25:1900479. [PMID: 32347203 PMCID: PMC7189651 DOI: 10.2807/1560-7917.es.2020.25.16.1900479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BackgroundClostridioides difficile is an important human and animal intestinal pathogen. Because of increasing indications of an association between C. difficile and food, in 2015, the Administration of the Republic of Slovenia for Food Safety, Veterinary Sector and Plant Protection (UVHVVR) included C. difficile in its national food surveillance.AimWe aim to report the results and experience with a nationwide and long-term testing of food for C. difficile as a part of a regular national food surveillance programme.MethodsRetail minced meat and meat preparations (beef, pork and poultry) were sampled within a three-year period, 2015 to 2017. Selected raw retail vegetables, leaf salads and root vegetables, and ready-to-eat salads were only sampled during 2016 and 2017. Seafood was only sampled in 2017.ResultsAltogether, 434 samples were tested, with 12 of 336 (3.6%) meat samples and 6 of 98 (6.1%) raw vegetables contaminated with C. difficile. Twelve of 18 recovered food isolates were toxigenic (toxinotypes 0, III, V, XII). The isolates belonged to 13 different PCR ribotypes, 001 being most common (5 isolates). Several food types with an increased potential of being contaminated with C. difficile were detected by surveillance.ConclusionThe three-year C. difficile testing within the national food surveillance revealed a low proportion of C. difficile-contaminated food and high genotype variability. Because the risk of C. difficile infection associated with C. difficile-contaminated food is unknown, no measures were recommended in the case of positive results.
Collapse
Affiliation(s)
- Valerija Tkalec
- National Laboratory for Health, Environment and Food, Maribor, Slovenia,Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Urska Jamnikar-Ciglenecki
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Maribor, Slovenia,Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Stanka Vadnjal
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Zelenik
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
| | - Majda Biasizzo
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
McLure A, Glass K. Some simple rules for estimating reproduction numbers in the presence of reservoir exposure or imported cases. Theor Popul Biol 2020; 134:182-194. [PMID: 32304644 PMCID: PMC7159883 DOI: 10.1016/j.tpb.2020.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 03/29/2020] [Accepted: 04/10/2020] [Indexed: 02/04/2023]
Abstract
For many diseases, the basic reproduction number (R0) is a threshold parameter for disease extinction or survival in isolated populations. However no human population is fully isolated from other human or animal populations. We use compartmental models to derive simple rules for the basic reproduction number in populations where an endemic disease is sustained by a combination of local transmission within the population and exposure from some other source: either a reservoir exposure or imported cases. We introduce the idea of a reservoir-driven or importation-driven disease: diseases that would become extinct in the population of interest without reservoir exposure or imported cases (since R0<1), but nevertheless may be sufficiently transmissible that many or most infections are acquired from humans in that population. We show that in the simplest case, R0<1 if and only if the proportion of infections acquired from the external source exceeds the disease prevalence and explore how population heterogeneity and the interactions of multiple strains affect this rule. We apply these rules in two case studies of Clostridium difficile infection and colonisation: C. difficile in the hospital setting accounting for imported cases, and C. difficile in the general human population accounting for exposure to animal reservoirs. We demonstrate that even the hospital-adapted, highly-transmissible NAP1/RT027 strain of C. difficile had a reproduction number <1 in a landmark study of hospitalised patients and therefore was sustained by colonised and infected admissions to the study hospital. We argue that C. difficile should be considered reservoir-driven if as little as 13.0% of transmission can be attributed to animal reservoirs.
Collapse
Affiliation(s)
- Angus McLure
- Research School of Population Health, Australian National University, 62 Mills Rd, Acton, 0200, ACT, Australia.
| | - Kathryn Glass
- Research School of Population Health, Australian National University, 62 Mills Rd, Acton, 0200, ACT, Australia
| |
Collapse
|
11
|
Viegas FM, Ramos CP, Xavier RGC, Lopes EO, Júnior CAO, Bagno RM, Diniz AN, Lobato FCF, Silva ROS. Fecal shedding of Salmonella spp., Clostridium perfringens, and Clostridioides difficile in dogs fed raw meat-based diets in Brazil and their owners' motivation. PLoS One 2020; 15:e0231275. [PMID: 32287295 PMCID: PMC7156072 DOI: 10.1371/journal.pone.0231275] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to explore the motivations of Brazilian dog owners and their knowledge about the risks related to raw meat-based diets (RMBD) as well as to evaluate important enteropathogens such as Salmonella spp., C. perfringens, and C. difficile, in feces of dogs fed different diets. The majority of the pet owners (69.3%) reported to have chosen this diet for their dogs, considering it to be more “natural”. A large number of owners declared that RMBD do not pose health risks for their animals (87.9%) or humans (98.8%), even though almost one third of the respondents (34.8%) declared having at least one individual at high risk of infection in contact with RMBD-fed dogs. Stool samples from 46 RMBD-fed dogs and 192 dogs fed commercial dry feed were collected. The present study revealed that dogs fed raw meat diets were almost 30 times more likely to be positive for Salmonella spp. than dogs on a conventional diet. Some of the serovars detected were commonly associated with human salmonellosis, such as S. Typhimurium and S. Saintpaul, and were multidrug resistant. RMBD-fed dogs were more likely to be positive for C. perfringens type A (p = 0.008) and one C. perfringens type F was isolated from these animals. Two toxigenic strains (4.3%) of C. difficile were isolated only from raw meat-fed dogs, all of which were under antibiotic therapy. These toxigenic C. difficile isolates were classified as RT106/ST54 and RT600/ST149, previously associated with infection in dogs and humans. The present work revealed that the owners have a tendency to ignore or are unaware of the risks associated with raw meat diets for dogs. Also, the higher fecal shedding of important enteropathogens in dogs fed RMBD suggests that this diet poses a risk for the animals and the people in contact with them.
Collapse
Affiliation(s)
- Flavia Mello Viegas
- Department of Preventive Veterinary Medicine Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Carolina Pantuzza Ramos
- Department of Preventive Veterinary Medicine Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Gariglio Clark Xavier
- Department of Preventive Veterinary Medicine Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Emily Oliveira Lopes
- Department of Preventive Veterinary Medicine Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Augusto Oliveira Júnior
- Department of Preventive Veterinary Medicine Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Renata Marques Bagno
- Department of Preventive Veterinary Medicine Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Amanda Nadia Diniz
- Department of Preventive Veterinary Medicine Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Francisco Carlos Faria Lobato
- Department of Preventive Veterinary Medicine Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Otávio Silveira Silva
- Department of Preventive Veterinary Medicine Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
12
|
Modelling diverse sources of Clostridium difficile in the community: importance of animals, infants and asymptomatic carriers. Epidemiol Infect 2020; 147:e152. [PMID: 31063089 PMCID: PMC6518831 DOI: 10.1017/s0950268819000384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Clostridium difficile infections (CDIs) affect patients in hospitals and in the community, but the relative importance of transmission in each setting is unknown. We developed a mathematical model of C. difficile transmission in a hospital and surrounding community that included infants, adults and transmission from animal reservoirs. We assessed the role of these transmission routes in maintaining disease and evaluated the recommended classification system for hospital- and community-acquired CDIs. The reproduction number in the hospital was <1 (range: 0.16–0.46) for all scenarios. Outside the hospital, the reproduction number was >1 for nearly all scenarios without transmission from animal reservoirs (range: 1.0–1.34). However, the reproduction number for the human population was <1 if a minority (>3.5–26.0%) of human exposures originated from animal reservoirs. Symptomatic adults accounted for <10% transmission in the community. Under conservative assumptions, infants accounted for 17% of community transmission. An estimated 33–40% of community-acquired cases were reported but 28–39% of these reported cases were misclassified as hospital-acquired by recommended definitions. Transmission could be plausibly sustained by asymptomatically colonised adults and infants in the community or exposure to animal reservoirs, but not hospital transmission alone. Under-reporting of community-onset cases and systematic misclassification underplays the role of community transmission.
Collapse
|
13
|
Rodriguez-Palacios A, Mo KQ, Shah BU, Msuya J, Bijedic N, Deshpande A, Ilic S. Global and Historical Distribution of Clostridioides difficile in the Human Diet (1981-2019): Systematic Review and Meta-Analysis of 21886 Samples Reveal Sources of Heterogeneity, High-Risk Foods, and Unexpected Higher Prevalence Toward the Tropic. Front Med (Lausanne) 2020; 7:9. [PMID: 32175321 PMCID: PMC7056907 DOI: 10.3389/fmed.2020.00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/10/2020] [Indexed: 12/21/2022] Open
Abstract
Clostridioides difficile (CD) is a spore-forming bacterium that causes life-threatening intestinal infections in humans. Although formerly regarded as exclusively nosocomial, there is increasing genomic evidence that person-to-person transmission accounts for only <25% of cases, supporting the culture-based hypothesis that foods may be routine sources of CD-spore ingestion in humans. To synthesize the evidence on the risk of CD exposure via foods, we conducted a systematic review and meta-analysis of studies reporting the culture prevalence of CD in foods between January 1981 and November 2019. Meta-analyses, risk-ratio estimates, and meta-regression were used to estimate weighed-prevalence across studies and food types to identify laboratory and geographical sources of heterogeneity. In total, 21886 food samples were tested for CD between 1981 and 2019 (96.4%, n = 21084, 2007–2019; 232 food-sample-sets; 79 studies; 25 countries). Culture methodology, sample size and type, region, and latitude were sources of heterogeneity (p < 0.05). Although non-strictly-anaerobic methods were reported in some studies, and we confirmed experimentally that improper anaerobiosis of media/sample-handling affects CD recovery in agar (Fisher, p < 0.01), most studies (>72%) employed the same (one-of-six) culture strategy. Because the prevalence was also meta-analytically similar across six culture strategies reported, all studies were integrated using three meta-analytical methods. At the study level (n = 79), the four-decade global cumulative-prevalence of CD in the human diet was 4.1% (95%CI = −3.71, 11.91). At the food-set level (n = 232, mean 12.9 g/sample, similar across regions p > 0.2; 95%CI = 9.7–16.2), the weighted prevalence ranged between 4.5% (95%CI = 3–6%; all studies) and 8% (95%CI = 7–8%; only CD-positive-studies). Risk-ratio ranking and meta-regression showed that milk was the least likely source of CD, while seafood, leafy green vegetables, pork, and poultry carried higher risks (p < 0.05). Across regions, the risk of CD in foods for foodborne exposure reproducibly decreased with Earth latitude (p < 0.001). In conclusion, CD in the human diet is a global non-random-source of foodborne exposure that occurs independently of laboratory culture methods, across regions, and at a variable level depending on food type and latitude. The latitudinal trend (high CD-food-prevalence toward tropic) is unexpectedly inverse to the epidemiological observations of CD-infections in humans (frequent in temperate regions). Findings suggest the plausible hypothesis that ecologically-richer microbiomes in the tropic might protect against intestinal CD colonization/infections despite CD ingestion.
Collapse
Affiliation(s)
- Alexander Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Kevin Q Mo
- Human Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH, United States.,College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Bhavan U Shah
- Informatics and Assessment Division, Lorain County General Health District, Elyria, OH, United States.,Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Joan Msuya
- Department of Health and Nutrition, World Vision, Arusha, Tanzania
| | - Nina Bijedic
- Department of Applied Mathematics and Formal Methods, Information Technologies, University Dzemal Bijedic, Mostar, Bosnia and Herzegovina.,Department of Mathematics, University of North Carolina, Charlotte, NC, United States
| | - Abhishek Deshpande
- Medicine Institute Center for Value-Based Care Research, Cleveland Clinic, Cleveland, OH, United States
| | - Sanja Ilic
- Human Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
Clostridioides (Clostridium) Difficile in Food-Producing Animals, Horses and Household Pets: A Comprehensive Review. Microorganisms 2019; 7:microorganisms7120667. [PMID: 31835413 PMCID: PMC6955671 DOI: 10.3390/microorganisms7120667] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
Clostridioides (Clostridium) difficile is ubiquitous in the environment and is also considered as a bacterium of great importance in diarrhea-associated disease for humans and different animal species. Food animals and household pets are frequently found positive for toxigenic C. difficile without exposing clinical signs of infection. Humans and animals share common C. difficile ribotypes (RTs) suggesting potential zoonotic transmission. However, the role of animals for the development of human infection due to C. difficile remains unclear. One major public health issue is the existence of asymptomatic animals that carry and shed the bacterium to the environment, and infect individuals or populations, directly or through the food chain. C. difficile ribotype 078 is frequently isolated from food animals and household pets as well as from their environment. Nevertheless, direct evidence for the transmission of this particular ribotype from animals to humans has never been established. This review will summarize the current available data on epidemiology, clinical presentations, risk factors and laboratory diagnosis of C. difficile infection in food animals and household pets, outline potential prevention and control strategies, and also describe the current evidence towards a zoonotic potential of C. difficile infection.
Collapse
|
15
|
High Clostridium difficile contamination rates of domestic and imported potatoes compared to some other vegetables in Slovenia. Food Microbiol 2019; 78:194-200. [DOI: 10.1016/j.fm.2018.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/06/2018] [Accepted: 10/29/2018] [Indexed: 01/04/2023]
|
16
|
Ferraris L, Couturier J, Eckert C, Delannoy J, Barbut F, Butel MJ, Aires J. Carriage and colonization of C. difficile in preterm neonates: A longitudinal prospective study. PLoS One 2019; 14:e0212568. [PMID: 30785934 PMCID: PMC6382121 DOI: 10.1371/journal.pone.0212568] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/05/2019] [Indexed: 12/15/2022] Open
Abstract
Background Premature neonates (PN) present multiple risk factors for high frequencies and high levels of colonization by C. difficile, yet data is missing about this specific pediatric population. Here, we investigated PN C. difficile carriage and colonization dynamics, analyzed the impact of perinatal determinants on colonization, and characterized the isolates. Methods A one year longitudinal monocentric prospective cohort study was performed on 121 PN. C. difficile strains isolated from fecal samples on selective medium were identified and characterized by PCR (tpi housekeeping gene; tcdA and tcdB, and binary toxin genes), capillary gel-based electrophoresis PCR-ribotyping, and Multi-Locus Variable-number tandem-repeat Analysis (MLVA). Results Of the 379 samples analyzed, 199 (52%) were C. difficile culture positive with the mean levels of C. difficile colonization decreasing significantly (P = .027) over time. During hospitalization, C. difficile colonization frequency increased up to 61% with 95% of the strains belonging to both non-toxigenic PCR-ribotypes (RTs) FR082 (35%) and 032 (60%). After hospital discharge, if a higher diversity in RTs was observed, RTs FR082 and 032 remained predominant (respectively 40% and 28%). MLVA showed clonal relationship within each FR082 and 032 RTs. Ten toxigenic strains (5%) were isolated, all tcdA+/tcdB+ except for one tcdA-/tcdB+, and all being acquired after hospitalization. At 1 week, the only factors found to be linked with a higher frequency of C. difficile colonization were a higher gestational age (P = 0.006) and a higher birth weight (P = 0.016). Conclusion The dynamics of C. difficile colonization in PN followed a specific pattern. C. difficile colonization rapidly occurred after birth with a low diversity of non-toxigenic RTs. After hospitalization, non-toxigenic RTs diversity increased. Sporadic carriage of toxigenic strains was observed after hospitalization.
Collapse
Affiliation(s)
- Laurent Ferraris
- EA 4065, Faculty of Pharmacy, Paris Descartes University, Hospital University Department Risks in pregnancy, Sorbonne Paris Cité, Paris, France
| | - Jeanne Couturier
- EA 4065, Faculty of Pharmacy, Paris Descartes University, Hospital University Department Risks in pregnancy, Sorbonne Paris Cité, Paris, France
- French National Reference Laboratory for C. difficile, CHU Saint-Antoine, Paris, France
| | - Catherine Eckert
- Department of Bacteriology, AP-HP, GH Est Parisien, Paris, France
| | - Johanne Delannoy
- EA 4065, Faculty of Pharmacy, Paris Descartes University, Hospital University Department Risks in pregnancy, Sorbonne Paris Cité, Paris, France
| | - Frédéric Barbut
- EA 4065, Faculty of Pharmacy, Paris Descartes University, Hospital University Department Risks in pregnancy, Sorbonne Paris Cité, Paris, France
- French National Reference Laboratory for C. difficile, CHU Saint-Antoine, Paris, France
| | - Marie-José Butel
- EA 4065, Faculty of Pharmacy, Paris Descartes University, Hospital University Department Risks in pregnancy, Sorbonne Paris Cité, Paris, France
| | - Julio Aires
- EA 4065, Faculty of Pharmacy, Paris Descartes University, Hospital University Department Risks in pregnancy, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
17
|
Andrés Lasheras S, Martín Burriel I, Aspiroz C, Mainar Jaime RC, Robres P, Sevilla E, Kuijper E, Chirino Trejo M, Bolea R. Incidence and characterization of Clostridium difficile in a secondary care hospital in Spain. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2018; 111:338-344. [PMID: 30569726 DOI: 10.17235/reed.2018.5288/2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Clostridium difficile (C. difficile) is a major nosocomial infectious agent in hospitals. Previous studies have addressed the high proportion of infection episodes that are overlooked in health care facilities. OBJECTIVE the main aim of this study was to characterize C. difficile clinical cases that occurred in a secondary care hospital during a five-month period. MATERIAL AND METHODS for this purpose, a total of 137 stool samples from the same number of patients with diarrhea were analyzed for the presence of C. difficile by culture techniques. An enzyme immunoassay (EIA) test for the detection of C. difficile and its toxins was also used in 50 cases (36.5%) for diagnostic purposes. RESULTS a total of 14 (10.2%) C. difficile isolates were obtained, of which nine (64.3%) were toxigenic. A mean incidence of 3.2 episodes of C. difficile infections (CDI) per 10,000 patients-days was estimated for the study period. Around 56% of the CDI cases were determined as hospital-acquired, whereas 44% originated in the community. Among these, only two episodes (22.2%) were detected in the hospital by the EIA test, which indicated that the hospital CDI detection protocol needed to be revised. One unusual C. difficile isolate was negative for all toxin genes examined and also for the non-toxigenic strain assay, which highlights the need to perform genome sequencing to study its pathogenicity locus insertion site organization. A stable metronidazole-resistant C. difficile strain and three strains showing multidrug resistance were detected in this study, suggesting that C. difficile antimicrobial susceptibility surveillance programs should be established in this health-care facility.
Collapse
Affiliation(s)
- Sara Andrés Lasheras
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Canadá
| | - Inma Martín Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria. Universidad de Zaragoza, España
| | - Carmen Aspiroz
- Sección de Microbiología y Parasitología, Hospital Royo Villanova, España
| | | | - Pilar Robres
- Sección de Microbiología y Parasitología, Hospital Royo Villanova, España
| | - Eloísa Sevilla
- Microbiología e Inmunología, Facultad de Veterinaria. Universidad de Zaragoza, España
| | - Ed Kuijper
- Department of Medical Microbiology, Centre of Infe, Leiden University Medical Centre, The Netherlands
| | - Manuel Chirino Trejo
- Department of Veterinary Microbiology, Western College of Veterinary Medicine. University of Saskatchewan, Canadá
| | - Rosa Bolea
- Microbiología e Inmunología, Facultad de Veterinaria. Universidad de Zaragoza, España
| |
Collapse
|
18
|
Affiliation(s)
- James L. Smith
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, Pennsylvania
| | - Pina M. Fratamico
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, Pennsylvania
| |
Collapse
|
19
|
Complete Genome Sequences of Historic Clostridioides difficile Food-Dwelling Ribotype 078 Strains in Canada Identical to That of the Historic Human Clinical Strain M120 in the United Kingdom. Microbiol Resour Announc 2018; 7:MRA00853-18. [PMID: 30533668 PMCID: PMC6256691 DOI: 10.1128/mra.00853-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/28/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridioides (Clostridium) difficile is a spore-forming anaerobic bacterium that causes severe intestinal diseases in humans. Here, we report the complete genome sequence of the first C. difficile foodborne type strain (PCR ribotype 078) isolated from food animals in Canada in 2004, which has 100% similarity to the genome sequence of the historic human clinical strain M120. Clostridioides (Clostridium) difficile is a spore-forming anaerobic bacterium that causes severe intestinal diseases in humans. Here, we report the complete genome sequence of the first C. difficile foodborne type strain (PCR ribotype 078) isolated from food animals in Canada in 2004, which has 100% similarity to the genome sequence of the historic human clinical strain M120.
Collapse
|
20
|
Grześkowiak ŁM, Pieper R, Huynh HA, Cutting SM, Vahjen W, Zentek J. Impact of early-life events on the susceptibility to Clostridium difficile colonisation and infection in the offspring of the pig. Gut Microbes 2018; 10:251-259. [PMID: 30252612 PMCID: PMC6546313 DOI: 10.1080/19490976.2018.1518554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Clostridium difficile has been documented as a major cause of uncontrolled outbreaks of enteritis in neonatal pigs and antibiotic-associated infections in clinical settings. It belongs to the natural cohort of early colonisers of the gastrointestinal tract of pigs and can be detected in faeces up to two weeks post-partum. In older pigs, it often remains under the detection limit. Most neonatal pigs show no clinical signs of disease although C. difficile and its toxins can be detected at high levels in faeces. Increased mortality rates associated with C. difficile on pig farms are, so far, considered "spontaneous" and the predisposing factors are mostly not defined. The infection caused by C. difficile is multifactorial and it is likely that the repertoire of maternal factors, host physiology, the individually developing gut microbiota, co-infections and environmental stress define the conditions for disease development. In this addendum to our recently published work on CDI in neonatal piglets, we discuss the "early-life events" that influence C. difficile spread and infection in neonatal piglets.
Collapse
Affiliation(s)
- Łukasz M. Grześkowiak
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany,CONTACT Łukasz M. Grześkowiak
| | - Robert Pieper
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Hong A. Huynh
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Simon M. Cutting
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Wilfried Vahjen
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
21
|
Grześkowiak Ł, Riedmüller J, de Thomasson H, Bordessoule S, Seyboldt C, Zentek J, Vahjen W. Porcine and bovine Clostridium difficile ribotype 078 isolates demonstrate similar growth and toxigenic properties. Int Microbiol 2018; 21:215-221. [PMID: 30810901 DOI: 10.1007/s10123-018-0018-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 02/08/2023]
Abstract
Clostridioides (C.) difficile are found in cows, pigs and poultry suggesting that this pathogen is present and more importantly animals could act as a reservoir, via food or environment, of human C. difficile infection. Molecular methods together with phenotypical characterisation bring integrated and important tools to describe diversity and nature of bacteria including C. difficile. Moreover, similar or identical C. difficile types are found in different farm animals. This study aimed to phenotypically characterise C. difficile isolates belonging to ribotype 078 and to identify differences such as growth and toxicity between porcine and bovine isolates. C. difficile isolates were assessed for the growth behaviour (turbidimetry), metabolic potential (Biolog AN) and toxin production (ELISA method) in vitro. The concentration of released either toxin A (TcdA) or toxin B (TcdB) varied greatly between the isolates tested; however, it did not differ between the porcine and bovine ribotypes. Also, the TcdA/TcdB ratio of the isolates did not show a difference either. The most common metabolised substrates were pyruvic acid followed by α-ketobutyric acid. The results show that both porcine and bovine C. difficile RT 078 share similar phenotypical characteristics including growth and production of toxins. The findings may help understand the virulence of C. difficile RT 078 in porcine and bovine species.
Collapse
Affiliation(s)
- Łukasz Grześkowiak
- Freie Universität Berlin, Institute of Animal Nutrition, Königin-Luise-Str. 49, 14195, Berlin, Germany.
| | - Jonathan Riedmüller
- Freie Universität Berlin, Institute of Animal Nutrition, Königin-Luise-Str. 49, 14195, Berlin, Germany
| | | | - Solenne Bordessoule
- Ecole de Biologie Industrielle, 49 Avenue des Genottes, 95800, Cergy, France
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Straße 96a, 07743, Jena, Germany
| | - Jürgen Zentek
- Freie Universität Berlin, Institute of Animal Nutrition, Königin-Luise-Str. 49, 14195, Berlin, Germany
| | - Wilfried Vahjen
- Freie Universität Berlin, Institute of Animal Nutrition, Königin-Luise-Str. 49, 14195, Berlin, Germany
| |
Collapse
|
22
|
USUI M, HARADA M, KAWABATA F, SATO T, HIGUCHI H, TAMURA Y. Prevalence of Clostridium Difficile in Japanese Cows and Calves. ACTA ACUST UNITED AC 2018. [DOI: 10.12935/jvma.71.261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Masaru USUI
- School of Veterinary Medicine, Rakuno Gakuen University
| | | | - Fumi KAWABATA
- School of Veterinary Medicine, Rakuno Gakuen University
| | - Tomomi SATO
- School of Veterinary Medicine, Rakuno Gakuen University
| | | | - Yutaka TAMURA
- School of Veterinary Medicine, Rakuno Gakuen University
| |
Collapse
|
23
|
Andrés-Lasheras S, Martín-Burriel I, Mainar-Jaime RC, Morales M, Kuijper E, Blanco JL, Chirino-Trejo M, Bolea R. Preliminary studies on isolates of Clostridium difficile from dogs and exotic pets. BMC Vet Res 2018. [PMID: 29523201 PMCID: PMC5845233 DOI: 10.1186/s12917-018-1402-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Clostridium difficile infection (CDI) is recognised as an emerging disease in both humans and some animal species. During the past few years, insights into human CDI epidemiology changed and C. difficile is also considered as an emerging community-acquired pathogen. Certain ribotypes (RT) are possibly associated with zoonotic transmission. The objective of this study was to assess the presence of C. difficile in a population of pets and to characterise the isolates. Results Faecal samples from a total of 90 diarrhoeic dogs and 24 from exotic animal species (both diarrhoeic and non-diarrhoeic) were analysed. Clostridium difficile was isolated from 6 (6.7%) dogs and one reptile sample (4.2%). Four (66.7%) of the six dog strains were capable of producing toxins. Four known different RTs were detected in dogs (010, 014, 123 and 358) and a new one was found in a faecal sample of an exotic animal. This new RT isolate was negative for all toxin genes tested and belonged to sequence type 347 which has been proposed as a Clade-III member. Importantly, two dog strains showed a stable resistance to metronidazole (initial MIC values: 128 and 48 μg/ml). Conclusions The results obtained in this study suggest the implementation of antimicrobial susceptibility surveillance programs to assess the prevalence of metronidazole resistance in dogs; molecular studies to elucidate C. difficile metronidazole resistance mechanisms are warranted. Based on the similarity between the ribotypes observed in dogs and those described in humans, the zoonotic transmission should be further explored. Furthermore, exotic animals have shown to harbor uncommon C. difficile strains which require further genomic studies. Electronic supplementary material The online version of this article (10.1186/s12917-018-1402-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Andrés-Lasheras
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), 50013, Zaragoza, Spain
| | - Inma Martín-Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Raúl Carlos Mainar-Jaime
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), 50013, Zaragoza, Spain
| | - Mariano Morales
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), 50013, Zaragoza, Spain.,Laboratorios Albéitar, Zaragoza, Spain
| | - Ed Kuijper
- Department of Medical Microbiology, Centre of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - José L Blanco
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Manuel Chirino-Trejo
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Rosa Bolea
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), 50013, Zaragoza, Spain.
| |
Collapse
|
24
|
Sachsenheimer FE, Yang I, Zimmermann O, Wrede C, Müller LV, Gunka K, Groß U, Suerbaum S. Genomic and phenotypic diversity of Clostridium difficile during long-term sequential recurrences of infection. Int J Med Microbiol 2018; 308:364-377. [PMID: 29490877 DOI: 10.1016/j.ijmm.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/22/2018] [Accepted: 02/18/2018] [Indexed: 01/26/2023] Open
Abstract
Infection with the emerging pathogen Clostridioides (Clostridium) difficile might lead to colonization of the gastrointestinal tract of humans and mammals eventually resulting in antibiotic-associated diarrhea, which can be mild to possibly life-threatening. Recurrences after antibiotic treatment have been described in 15-30% of the cases and are either caused by the original (relapse) or by new strains (reinfection). In this study, we describe a patient with ongoing recurrent C. difficile infections over 13 months. During this time, ten C. difficile strains of six different ribotypes could be isolated that were further characterized by phenotypic and genomic analyses including motility and sporulation assays, growth fitness and antibiotic susceptibility as well as whole-genome sequencing. PCR ribotyping of the isolates confirmed that the recurrences were a mixture of relapses and reinfections. One recurrence was due to a mixed infection with three different strains of two different ribotypes. Furthermore, genomes were sequenced and multi-locus sequence typing (MLST) was carried out, which identified the strains as members of sequence types (STs) 10, 11, 14 and 76. Comparison of the genomes of isolates of the same ST originating from recurrent CDI (relapses) indicated little within-patient microevolution and some concurrent within-patient diversity of closely related strains. Isolates of ribotype 126 that are binary toxin positive differed from other ribotypes in various phenotypic aspects including motility, sporulation behavior and cell morphology. Ribotype 126 is genetically related to ribotype 078 that has been associated with increased virulence. Isolates of the ribotype 126 exhibited elongated cells and a chaining phenotype, which was confirmed by membrane staining and scanning electron microscopy. Furthermore, this strain exhibits a sinking behavior in liquid medium in stationary growth phase. Taken together, our observation has proven multiple CDI recurrences that were based on a mixture of relapses and reinfections.
Collapse
Affiliation(s)
- F E Sachsenheimer
- Institute of Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, Göttingen, Germany.
| | - I Yang
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Stadtfelddamm 34, Hannover, Germany
| | - O Zimmermann
- Institute of Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, Göttingen, Germany
| | - C Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - L V Müller
- National Consulting Laboratory for Clostridium difficile, Germany
| | - K Gunka
- Institute of Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, Göttingen, Germany
| | - U Groß
- Institute of Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, Göttingen, Germany
| | - S Suerbaum
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany; Max von Pettenkofer Institute, Ludwig-Maximilians-Universität München, Pettenkoferstr. 9a, 80336 Munich, Germany; DZIF German Center for Infection Research, Hannover-Braunschweig and Munich Partner Sites, Germany
| |
Collapse
|
25
|
Non-human C. difficile Reservoirs and Sources: Animals, Food, Environment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:227-243. [DOI: 10.1007/978-3-319-72799-8_13] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Piatti G, Bruzzone M, Fontana V, Mannini A, Ceppi M. Epidemiology of Clostridium Difficile Infection in a Large Hospital in Northern Italy: Questioning the Ward-Based Transmission. Open Microbiol J 2017; 11:360-371. [PMID: 29399217 PMCID: PMC5759130 DOI: 10.2174/1874285801711010360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/30/2017] [Accepted: 12/10/2017] [Indexed: 02/07/2023] Open
Abstract
Background: Clostridium Difficile infection (CDI) is considered a ward-based nosocomial infection, due to contagion among patients. Molecular studies recently questioned ward-based contact for disease spread. Objective: To investigate whether it is plausible that CDI spread in San Martino Hospital of Genoa was due to a ward-based contact and patient-to-patient diffusion. Methods: We conducted a retrospective cohort study of CDI cases from April 2010 to March 2015. We referred to Hospital data set and Admission Service. Multilevel modelling approach and ecological analysis were used to assess C. difficile infection risk according to wards and time of occurrence. Six representative CD strains were ribotyped to assess a possible equivalence. Results: The assessment of 514 CDI cases showed that the risk of disease and rate of incidence in wards were independent, while frequency of cases and number of wards involved exhibited a positive relationship, excluding the typical epidemic pattern of contagious diffusion, i.e., many cases in few wards. The extra-binomial variability due to ward clustering was not significant, indicating homogeneity in the probability of CDI occurrence across all wards. Three hundred sixty-eight patients changed ward, without showing connection between the frequency of cases in new wards and incidence among new subjects. Trigonometric components described a significant contribution of seasonality, with excess of CDI cases during the winter months. Molecular analysis showed different ribotypes of CD strains from the same ward. Conclusion: From our results it seems unlikely that in our institution CDI occurrence is due to ward-based contact and inter-human contagion of the organism.
Collapse
Affiliation(s)
- Gabriella Piatti
- DISC, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.,Division of Microbiology, Ospedale Policlinico San Martino, Genoa, 10 Largo Benzi, 16132, Genoa, Italy
| | - Marco Bruzzone
- Unit of Clinical Epidemiology, Ospedale Policlinico San Martino, Genoa, 10 Largo Benzi, 16132, Genoa, Italy
| | - Vincenzo Fontana
- Unit of Clinical Epidemiology, Ospedale Policlinico San Martino, Genoa, 10 Largo Benzi, 16132, Genoa, Italy
| | - Alessandro Mannini
- Department of Science, Environment and Life, University of Genoa, Genoa, Italy
| | - Marcello Ceppi
- Unit of Clinical Epidemiology, Ospedale Policlinico San Martino, Genoa, 10 Largo Benzi, 16132, Genoa, Italy
| |
Collapse
|
27
|
Grześkowiak Ł, Martínez-Vallespín B, Dadi TH, Radloff J, Amasheh S, Heinsen FA, Franke A, Reinert K, Vahjen W, Zentek J, Pieper R. Formula Feeding Predisposes Neonatal Piglets to Clostridium difficile Gut Infection. J Infect Dis 2017; 217:1442-1452. [DOI: 10.1093/infdis/jix567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
| | | | - Temesgen H Dadi
- Department of Mathematics and Computer Science, Institute of Computer Science, Kiel, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Kiel, Germany
| | - Judith Radloff
- Institute of Veterinary Physiology, Freie Universität Berlin, Kiel, Germany
| | - Salah Amasheh
- Institute of Veterinary Physiology, Freie Universität Berlin, Kiel, Germany
| | - Femke-Anouska Heinsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, University Hospital Schleswig Holstein, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, University Hospital Schleswig Holstein, Kiel, Germany
| | - Knut Reinert
- Department of Mathematics and Computer Science, Institute of Computer Science, Kiel, Germany
| | | | | | | |
Collapse
|
28
|
Clostridium difficile in beef cattle farms, farmers and their environment: Assessing the spread of the bacterium. Vet Microbiol 2017; 210:183-187. [DOI: 10.1016/j.vetmic.2017.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 01/03/2023]
|
29
|
Martín-Burriel I, Andrés-Lasheras S, Harders F, Mainar-Jaime RC, Ranera B, Zaragoza P, Falceto V, Bolea Y, Kuijper E, Bolea R, Bossers A, Chirino-Trejo M. Molecular analysis of three Clostridium difficile strain genomes isolated from pig farm-related samples. Anaerobe 2017; 48:224-231. [PMID: 28928035 DOI: 10.1016/j.anaerobe.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/08/2017] [Accepted: 09/14/2017] [Indexed: 02/08/2023]
Abstract
Clostridium difficile is an anaerobic spore-forming bacillus that usually causes gastrointestinal disorders in man and other animal species. Most of the strains isolated from animals are toxigenic being the virulent ribotype (RT) 078 predominant in several animal species. Although C. difficile is pathogenic to both humans and animals, there is no direct evidence of zoonosis. Deep genome sequencing provides sufficient resolution to analyse which strains found in animals might be related to human pathogens. So far, there are only a few fully sequenced genomes of C. difficile strains isolated from domestic and wild animals. Using Illumina technology, we have sequenced the genome of three isolates; a strain isolated from the vagina of a sow (5754), one from rat (Rattus spp) intestinal content (RC10) and a third one isolated from environmental rat faeces (RF17). Both, rat and rat faeces were sampled in fattening pig farms. Our study reveals a close genetic relationship of two of these isolates with the virulent strain M120 (RT078) isolated from a human patient. The analysis of the sequences has revealed the presence of antibiotic resistance genes, mobile elements, including the transposon linked with virulence Tn6164, and the similarity of virulence factors between these isolates and human strains. This is the first study focused on the sequencing of C. difficile genomes obtained from wild animals like rats, which can be considered as potential reservoirs for humans and other animal species. This study can help to understand the genome composition and epidemiology of this bacterium species.
Collapse
Affiliation(s)
- I Martín-Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain.
| | - S Andrés-Lasheras
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - F Harders
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - R C Mainar-Jaime
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - B Ranera
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - P Zaragoza
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - V Falceto
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Y Bolea
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - E Kuijper
- Department of Medical Microbiology, Centre of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - R Bolea
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - A Bossers
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - M Chirino-Trejo
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
30
|
Stoesser N, Eyre DW, Quan TP, Godwin H, Pill G, Mbuvi E, Vaughan A, Griffiths D, Martin J, Fawley W, Dingle KE, Oakley S, Wanelik K, Finney JM, Kachrimanidou M, Moore CE, Gorbach S, Riley TV, Crook DW, Peto TEA, Wilcox MH, Walker AS. Epidemiology of Clostridium difficile in infants in Oxfordshire, UK: Risk factors for colonization and carriage, and genetic overlap with regional C. difficile infection strains. PLoS One 2017; 12:e0182307. [PMID: 28813461 PMCID: PMC5559064 DOI: 10.1371/journal.pone.0182307] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/16/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Approximately 30-40% of children <1 year of age are Clostridium difficile colonized, and may represent a reservoir for adult C. difficile infections (CDI). Risk factors for colonization with toxigenic versus non-toxigenic C. difficile strains and longitudinal acquisition dynamics in infants remain incompletely characterized. METHODS Predominantly healthy infants (≤2 years) were recruited in Oxfordshire, UK, and provided ≥1 fecal samples. Independent risk factors for toxigenic/non-toxigenic C. difficile colonization and acquisition were identified using multivariable regression. Infant C. difficile isolates were whole-genome sequenced to assay genetic diversity and prevalence of toxin-associated genes, and compared with sequenced strains from Oxfordshire CDI cases. RESULTS 338/365 enrolled infants provided 1332 fecal samples, representing 158 C. difficile colonization or carriage episodes (107[68%] toxigenic). Initial colonization was associated with age, and reduced with breastfeeding but increased with pet dogs. Acquisition was associated with older age, Caesarean delivery, and diarrhea. Breastfeeding and pre-existing C. difficile colonization reduced acquisition risk. Overall 13% of CDI C. difficile strains were genetically related to infant strains. 29(18%) infant C. difficile sequences were consistent with recent direct/indirect transmission to/from Oxfordshire CDI cases (≤2 single nucleotide variants [SNVs]); 79(50%) shared a common origin with an Oxfordshire CDI case within the last ~5 years (0-10 SNVs). The hypervirulent, epidemic ST1/ribotype 027 remained notably absent in infants in this large study, as did other lineages such as STs 10/44 (ribotype 015); the most common strain in infants was ST2 (ribotype 020/014)(22%). CONCLUSIONS In predominantly healthy infants without significant healthcare exposure C. difficile colonization and acquisition reflect environmental exposures, with pet dogs identified as a novel risk factor. Genetic overlap between some infant strains and those isolated from CDI cases suggest common community reservoirs of these C. difficile lineages, contrasting with those lineages found only in CDI cases, and therefore more consistent with healthcare-associated spread.
Collapse
Affiliation(s)
- Nicole Stoesser
- Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, Headington, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Headington, United Kingdom
| | - David W. Eyre
- Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, Headington, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Headington, United Kingdom
| | - T. Phuong Quan
- Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, Headington, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Headington, United Kingdom
| | - Heather Godwin
- Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, Headington, United Kingdom
| | - Gemma Pill
- Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, Headington, United Kingdom
| | - Emily Mbuvi
- Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, Headington, United Kingdom
| | - Alison Vaughan
- Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, Headington, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Headington, United Kingdom
| | - David Griffiths
- Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, Headington, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Headington, United Kingdom
| | - Jessica Martin
- Leeds Teaching Hospitals and University of Leeds, Department of Microbiology, Old Medical School, Leeds General Infirmary, Leeds, United Kingdom
| | - Warren Fawley
- Public Health England (Leeds laboratory), Old Medical School, Leeds General Infirmary, Leeds, United Kingdom
| | - Kate E. Dingle
- Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, Headington, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Headington, United Kingdom
| | - Sarah Oakley
- Microbiology Laboratory, John Radcliffe Hospital, Headington, United Kingdom
| | - Kazimierz Wanelik
- Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, Headington, United Kingdom
| | - John M. Finney
- Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, Headington, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Headington, United Kingdom
| | - Melina Kachrimanidou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, University Campus, Thessaloniki, Greece
| | - Catrin E. Moore
- Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, Headington, United Kingdom
| | - Sherwood Gorbach
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Thomas V. Riley
- Microbiology and Immunology, School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Western Australia, Australia
| | - Derrick W. Crook
- Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, Headington, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Headington, United Kingdom
| | - Tim E. A. Peto
- Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, Headington, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Headington, United Kingdom
| | - Mark H. Wilcox
- Leeds Teaching Hospitals and University of Leeds, Department of Microbiology, Old Medical School, Leeds General Infirmary, Leeds, United Kingdom
| | - A. Sarah Walker
- Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, Headington, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Headington, United Kingdom
| | | |
Collapse
|
31
|
Survival of Clostridium difficile spores at low water activity. Food Microbiol 2017; 65:274-278. [PMID: 28400013 DOI: 10.1016/j.fm.2017.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/28/2017] [Accepted: 03/15/2017] [Indexed: 02/03/2023]
Abstract
Clostridium difficile is frequently found in meat and meat products. Germination efficiency, defined as colony formation, was previously investigated at temperatures found in meat handling and processing for spores of strain M120 (animal isolate), R20291 (human isolate), and DK1 (beef isolate). In this study, germination efficiency of these spore strains was assessed in phosphate buffered saline (PBS, aw ∼1.00), commercial beef jerky (aw ∼0.82/0.72), and aw-adjusted PBS (aw ∼0.82/0.72). Surface hydrophobicity was followed for spores stored in PBS. After three months and for all PBS aw levels tested, M120 and DK1 spores showed a ∼1 decimal reduction in colony formation but this was not the case when kept in beef jerky suggesting a protective food matrix effect. During storage, and with no significant aw effect, an increase in colony formation was observed for R20291 spores kept in PBS (∼2 decimal log increase) and beef jerky (∼1 decimal log increase) suggesting a loss of spore superdormancy. For all strains, no significant changes in spore surface hydrophobicity were observed after storage. Collectively, these results indicate that depending on the germination properties of C. difficile spores and the media properties, their germination efficiency may increase or decrease during long term food storage.
Collapse
|
32
|
Food Indwelling Clostridium difficile in Naturally Contaminated Household Meals: Data for Expanded Risk Mathematical Predictions. Infect Control Hosp Epidemiol 2017; 38:509-510. [PMID: 28166846 DOI: 10.1017/ice.2016.332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Andrés-Lasheras S, Bolea R, Mainar-Jaime RC, Kuijper E, Sevilla E, Martín-Burriel I, Chirino-Trejo M. Presence of Clostridium difficile in pig faecal samples and wild animal species associated with pig farms. J Appl Microbiol 2016; 122:462-472. [PMID: 27990723 DOI: 10.1111/jam.13343] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 01/05/2023]
Abstract
AIMS To determine the presence of Clostridium difficile on fattening pig farms in north-eastern Spain. METHODS AND RESULTS Twenty-seven farms were sampled. Pools of pig faecal samples (n = 210), samples of intestinal content from common farm pest species (n = 95) and environment-related samples (n = 93) were collected. Isolates were tested for toxin genes of C. difficile, and typed by PCR-ribotyping and toxinotyping. The minimal inhibitory concentrations of six antimicrobial agents were determined using Etest. Thirty-four isolates were obtained from 12 farms, and 30 (88·2%) had toxin genes. Seven ribotypes were identified. Ribotype 078 and its variant 126 were predominant (52·9%). The same ribotypes were isolated from different animal species on the same farm. None of the isolates were resistant to metronidazole or vancomycin. CONCLUSIONS Clostridium difficile was common within the pig farm environment. Most of the positive samples came from pest species or were pest-related environmental samples. SIGNIFICANCE AND IMPACT OF THE STUDY Pest species were colonized with toxigenic and antimicrobial-resistant C. difficile strains of the same ribotypes that are found in humans and pigs. Rodents and pigeons may transmit toxigenic and antimicrobial-resistant C. difficile strains that are of the same ribotypes as those occuring in humans.
Collapse
Affiliation(s)
- S Andrés-Lasheras
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2-(Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - R Bolea
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2-(Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - R C Mainar-Jaime
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2-(Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - E Kuijper
- Department of Medical Microbiology, Centre of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - E Sevilla
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2-(Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - I Martín-Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2-(Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - M Chirino-Trejo
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
34
|
Warriner K, Xu C, Habash M, Sultan S, Weese S. Dissemination ofClostridium difficilein food and the environment: Significant sources ofC. difficilecommunity-acquired infection? J Appl Microbiol 2016; 122:542-553. [DOI: 10.1111/jam.13338] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022]
Affiliation(s)
- K. Warriner
- Department of Food Science; University of Guelph; Guelph ON Canada
| | - C. Xu
- Shanghai Ocean University; Shanghai China
| | - M. Habash
- School of Environmental Biology; University of Guelph; Guelph ON Canada
| | - S. Sultan
- School of Environmental Biology; University of Guelph; Guelph ON Canada
| | - S.J. Weese
- Pathobiology; University of Guelph; Guelph ON Canada
| |
Collapse
|
35
|
Rodriguez C, Taminiau B, Korsak N, Avesani V, Van Broeck J, Brach P, Delmée M, Daube G. Longitudinal survey of Clostridium difficile presence and gut microbiota composition in a Belgian nursing home. BMC Microbiol 2016; 16:229. [PMID: 27716140 PMCID: PMC5045619 DOI: 10.1186/s12866-016-0848-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Increasing age, several co-morbidities, environmental contamination, antibiotic exposure and other intestinal perturbations appear to be the greatest risk factors for C. difficile infection (CDI). Therefore, elderly care home residents are considered particularly vulnerable to the infection. The main objective of this study was to evaluate and follow the prevalence of C. difficile in 23 elderly care home residents weekly during a 4-month period. A C. difficile microbiological detection scheme was performed along with an overall microbial biodiversity study of the faeces content by 16S rRNA gene analysis. RESULTS Seven out of 23 (30.4 %) residents were (at least one week) positive for C. difficile. C. difficile was detected in 14 out of 30 diarrhoeal samples (43.7 %). The most common PCR-ribotype identified was 027. MLVA showed that there was a clonal dissemination of C. difficile strains within the nursing home residents. 16S-profiling analyses revealed that each resident has his own bacterial imprint, which was stable during the entire study. Significant changes were observed in C. difficile positive individuals in the relative abundance of a few bacterial populations, including Lachnospiraceae and Verrucomicrobiaceae. A decrease of Akkermansia in positive subjects to the bacterium was repeatedly found. CONCLUSIONS A high C. difficile colonisation in nursing home residents was found, with a predominance of the hypervirulent PCR-ribotype 027. Positive C. difficile status is not associated with microbiota richness or biodiversity reduction in this study. The link between Akkermansia, gut inflammation and C. difficile colonisation merits further investigations.
Collapse
Affiliation(s)
- Cristina Rodriguez
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Bernard Taminiau
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Nicolas Korsak
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Véronique Avesani
- National Reference Laboratory for Clostridium difficile, Cliniques Universitaires Saint Luc, Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - Johan Van Broeck
- National Reference Laboratory for Clostridium difficile, Cliniques Universitaires Saint Luc, Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - Philippe Brach
- Nursing Home Saint-Joséphine site de la Chaussée, ACIS, Theux, Belgium
| | - Michel Delmée
- National Reference Laboratory for Clostridium difficile, Cliniques Universitaires Saint Luc, Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - Georges Daube
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
36
|
Bloomfield LE, Riley TV. Epidemiology and Risk Factors for Community-Associated Clostridium difficile Infection: A Narrative Review. Infect Dis Ther 2016; 5:231-51. [PMID: 27370914 PMCID: PMC5019973 DOI: 10.1007/s40121-016-0117-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 12/13/2022] Open
Abstract
Clostridium difficile infection (CDI) was once considered a primarily nosocomial concern. Emerging evidence from the last 20 years has highlighted a drastic shift in the known epidemiology of CDI, with disease outside of hospitals apparently occurring more frequently and causing severe disease in populations that were thought to be at low risk. This narrative review summarises potential pathways for infection outside of the hospital environment and highlights likely routes of transmission. Further, evidence is presented on potential risk factors for development of disease. Understanding the epidemiology of CDI outside of hospitals is essential to the ability to prevent and control disease in vulnerable populations.
Collapse
Affiliation(s)
- Lauren E Bloomfield
- School of Health Sciences, Flinders University, Bedford Park, SA, Australia
- Western Australian Department of Health, Communicable Diseases Control Directorate, Shenton Park, WA, Australia
| | - Thomas V Riley
- Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup Drive, Joondalup, 6027, WA, Australia.
- School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, 6150, WA, Australia.
| |
Collapse
|
37
|
Tsai BY, Ko WC, Chen TH, Wu YC, Lan PH, Chen YH, Hung YP, Tsai PJ. Zoonotic potential of the Clostridium difficile RT078 family in Taiwan. Anaerobe 2016; 41:125-130. [PMID: 27292030 DOI: 10.1016/j.anaerobe.2016.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 02/08/2023]
Abstract
Clostridium difficile is the major cause of nosocomial diarrhea. We have previously demonstrated that in southern Taiwan, severe C. difficile-associated diarrhea (CDAD) cases were due to the C. difficile RT 126 strain infection, indicating the arrival of an epidemic C. difficile clone in southern Taiwan. RT126 has a close genetic relationship with RT078. However, the RT078 family is the predominant strain of C. difficile in animals worldwide, particularly in swine. In this study, we surveyed C. difficile strains isolated from swine at several farms in Taiwan from August 2011 to March 2015. We found that all swine strains, namely RT078 (32.5%, 37 of 114), RT126 (28.9%, 33 of 114) and RT127 (37.7%, 43 of 114), belonged to the toxigenic RT078 family. All strains had high gyrA mutation rate (57.9%, 66/114), which was linked to quinolone resistance. Notably, Rep-PCR revealed that 3 RT078 animal strains had the same fingerprint as human RT078 clinical isolates; their phylogenic relationship was closely related to the whole gene sequences of tcdB, thus suggesting zoonotic potential for C. difficile infection in Taiwan.
Collapse
Affiliation(s)
- Bo-Yang Tsai
- Department of Microbiology and Immunology, National Cheng Kung University, Medical College, Tainan, Taiwan.
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan; Center for Infection Control, National Cheng Kung University Hospital, Tainan, Taiwan; Department of Medicine, National Cheng Kung University Medical College, Tainan, Taiwan.
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan.
| | - Ying-Chen Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan.
| | - Po-Han Lan
- Kaohsiung American School, Kaohsiung, Taiwan.
| | - Yi-Hsuan Chen
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Medical College, Tainan, Taiwan.
| | - Yuan-Pin Hung
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan; Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan.
| | - Pei-Jane Tsai
- Department of Microbiology and Immunology, National Cheng Kung University, Medical College, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Medical College, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
38
|
Subboiling Moist Heat Favors the Selection of Enteric Pathogen Clostridium difficile PCR Ribotype 078 Spores in Food. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2016; 2016:1462405. [PMID: 27375748 PMCID: PMC4914716 DOI: 10.1155/2016/1462405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/26/2016] [Indexed: 12/18/2022]
Abstract
Emerging enteric pathogens could have not only more antibiotic resistance or virulence traits; they could also have increased resistance to heat. We quantified the effects of minimum recommended cooking and higher temperatures, individually on a collection of C. difficile isolates and on the survival probability of a mixture of emerging C. difficile strains. While minimum recommended cooking time/temperature combinations (63–71°C) allowed concurrently tested strains to survive, higher subboiling temperatures reproducibly favored the selection of newly emerging C. difficile PCR ribotype 078. Survival ratios for “ribotypes 078” : “other ribotypes” (n = 49 : 45 isolates) from the mid-2000s increased from 1 : 1 and 0.7 : 1 at 85°C (for 5 and 10 minutes, resp.) to 2.3 : 1 and 3 : 1 with heating at 96°C (for 5 and 10 minutes, resp.) indicating an interaction effect between the heating temperature and survival of C. difficile genotypes. In multistrain heating experiments, with PCR ribotypes 027 and 078 from 2004 and reference type strain ATCC 9689 banked in the 1970s, multinomial logistic regression (P < 0.01) revealed PCR ribotype 078 was the most resistant to increasing lethal heat treatments. Thermal processes (during cooking or disinfection) may contribute to the selection of emergent specific virulent strains of C. difficile. Despite growing understanding of the role of cooking on human evolution, little is known about the role of cooking temperatures on the selection and evolution of enteric pathogens, especially spore-forming bacteria.
Collapse
|
39
|
Rodriguez C, Warszawski N, Korsak N, Taminiau B, Van Broeck J, Delmée M, Daube G. Laboratory identification of anaerobic bacteria isolated on Clostridium difficile selective medium. Acta Microbiol Immunol Hung 2016; 63:171-84. [PMID: 27352971 DOI: 10.1556/030.63.2016.2.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite increasing interest in the bacterium, the methodology for Clostridium difficile recovery has not yet been standardized. Cycloserine-cefoxitin fructose taurocholate (CCFT) has historically been the most used medium for C. difficile isolation from human, animal, environmental, and food samples, and presumptive identification is usually based on colony morphologies. However, CCFT is not totally selective. This study describes the recovery of 24 bacteria species belonging to 10 different genera other than C. difficile, present in the environment and foods of a retirement establishment that were not inhibited in the C. difficile selective medium. These findings provide insight for further environmental and food studies as well as for the isolation of C. difficile on supplemented CCFT.
Collapse
Affiliation(s)
- Cristina Rodriguez
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège , Liège, Belgium
| | - Nathalie Warszawski
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège , Liège, Belgium
| | - Nicolas Korsak
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège , Liège, Belgium
| | - Bernard Taminiau
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège , Liège, Belgium
| | - Johan Van Broeck
- Belgian Reference Centre for Clostridium difficile (NRC), Pôle de microbiologiemédicale, UniversitéCatholique de Louvain , Brussels, Belgium
| | - Michel Delmée
- Belgian Reference Centre for Clostridium difficile (NRC), Pôle de microbiologiemédicale, UniversitéCatholique de Louvain , Brussels, Belgium
| | - Georges Daube
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège , Liège, Belgium
| |
Collapse
|
40
|
Rodriguez C, Van Broeck J, Taminiau B, Delmée M, Daube G. Clostridium difficile infection: Early history, diagnosis and molecular strain typing methods. Microb Pathog 2016; 97:59-78. [PMID: 27238460 DOI: 10.1016/j.micpath.2016.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/18/2016] [Accepted: 05/02/2016] [Indexed: 01/05/2023]
Abstract
Recognised as the leading cause of nosocomial antibiotic-associated diarrhoea, the incidence of Clostridium difficile infection (CDI) remains high despite efforts to improve prevention and reduce the spread of the bacterium in healthcare settings. In the last decade, many studies have focused on the epidemiology and rapid diagnosis of CDI. In addition, different typing methods have been developed for epidemiological studies. This review explores the history of C. difficile and the current scope of the infection. The variety of available laboratory tests for CDI diagnosis and strain typing methods are also examined.
Collapse
Affiliation(s)
- C Rodriguez
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - J Van Broeck
- Belgian Reference Centre for Clostridium Difficile (NRC), Pôle de microbiologie médicale, Université Catholique de Louvain, Brussels, Belgium
| | - B Taminiau
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - M Delmée
- Belgian Reference Centre for Clostridium Difficile (NRC), Pôle de microbiologie médicale, Université Catholique de Louvain, Brussels, Belgium
| | - G Daube
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
41
|
Zhu Z, Shi L, Feng H, Zhou HS. Single domain antibody coated gold nanoparticles as enhancer for Clostridium difficile toxin detection by electrochemical impedance immunosensors. Bioelectrochemistry 2016; 101:153-8. [PMID: 25460611 DOI: 10.1016/j.bioelechem.2014.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 10/06/2014] [Accepted: 10/18/2014] [Indexed: 12/19/2022]
Abstract
This work presents a sandwich-type electrochemical impedance immunosensor for detecting Clostridium difficile toxin A (TcdA) and toxin B (TcdB). Single domain antibody conjugated gold nanoparticles were applied to amplify the detection signal. Gold nanoparticles (Au NPs) were characterized by transmission electron microscopy and UV–vis spectra. The electron transfer resistance (Ret) of the working electrode surface was used as a parameter in the measurement of the biosensor. With the increase of the concentration of toxins from 1 pg/mL to 100 pg/mL, a linear relationship was observed between the relative electron transfer resistance and toxin concentration. In addition, the detection signal was enhanced due to the amplification effect. The limit of detection for TcdA and TcdB was found to be 0.61 pg/mL and 0.60 pg/mL respectively at a signal-to-noise ratio of 3 (S/N = 3). This method is simple, fast and ultrasensitive, thus possesses a great potential for clinical applications in the future.
Collapse
|
42
|
Grześkowiak Ł, Zentek J, Vahjen W. Determination of the extent of Clostridium difficile colonisation and toxin accumulation in sows and neonatal piglets. Anaerobe 2016; 40:5-9. [PMID: 27108595 DOI: 10.1016/j.anaerobe.2016.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
Clostridium difficile is an important spore-forming, opportunistic pathogen in animal husbandry and health care. In pig farming, only neonatal piglets are affected, and diarrhoea and necrotising lesions are common symptoms leading to dehydration and in some cases death. This study aimed at the assessment of the quantitative development of C. difficile colonisation in neonatal piglets by determining the shedding of spores and C. difficile toxins A (TcdA) and B (TcdB) concentrations in sow (n = 5-6) and piglet pen faeces (n = 5-6) at different time points. Spores were quantified on selective agar plates and toxins using ELISA method. C. difficile was not detected in the faeces of all but one sow during the perinatal period. Faeces of 2- and 4-day-old piglets contained 0.65 log cells/g and 5.88 log cells/g of C. difficile, respectively. Toxins were detected on day 4 at a concentration of 2.13 log ng/g (TcdA) and 2.06 log ng/g (TcdB). On day 6, concentration of C. difficile reached 6.14 log CFU/g and toxins 2.02 log ng/g (TcdA) and 2.20 log ng/g (TcdB). Two-week-old piglets showed 4.72 log CFU/g of C. difficile but toxins could not be detected. At 21 days of age, both C. difficile and toxins were undetectable. The concentration and the prevalence of C. difficile were positively associated with the prevalence of toxins in piglets. A very short time window for colonisation by C. difficile, including toxin-producing strains can be observed in neonatal piglets. The significance for animal health and the risk of a carrier status need to be addressed in future studies.
Collapse
Affiliation(s)
- Łukasz Grześkowiak
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise Strasse 49, 14195, Berlin, Germany.
| | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise Strasse 49, 14195, Berlin, Germany
| | - Wilfried Vahjen
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise Strasse 49, 14195, Berlin, Germany
| |
Collapse
|
43
|
Clostridium difficile infection: epidemiology, diagnosis and understanding transmission. Nat Rev Gastroenterol Hepatol 2016; 13:206-16. [PMID: 26956066 DOI: 10.1038/nrgastro.2016.25] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clostridium difficile infection (CDI) continues to affect patients in hospitals and communities worldwide. The spectrum of clinical disease ranges from mild diarrhoea to toxic megacolon, colonic perforation and death. However, this bacterium might also be carried asymptomatically in the gut, potentially leading to 'silent' onward transmission. Modern technologies, such as whole-genome sequencing and multi-locus variable-number tandem-repeat analysis, are helping to track C. difficile transmission across health-care facilities, countries and continents, offering the potential to illuminate previously under-recognized sources of infection. These typing strategies have also demonstrated heterogeneity in terms of CDI incidence and strain types reflecting different stages of epidemic spread. However, comparison of CDI epidemiology, particularly between countries, is challenging due to wide-ranging approaches to sampling and testing. Diagnostic strategies for C. difficile are complicated both by the wide range of bacterial targets and tests available and the need to differentiate between toxin-producing and non-toxigenic strains. Multistep diagnostic algorithms have been recommended to improve sensitivity and specificity. In this Review, we describe the latest advances in the understanding of C. difficile epidemiology, transmission and diagnosis, and discuss the effect of these developments on the clinical management of CDI.
Collapse
|
44
|
Collins DA, Riley TV. Routine detection of Clostridium difficile in Western Australia. Anaerobe 2016; 37:34-7. [DOI: 10.1016/j.anaerobe.2015.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/06/2015] [Accepted: 11/18/2015] [Indexed: 01/05/2023]
|
45
|
Rodriguez C, Taminiau B, Van Broeck J, Delmée M, Daube G. Clostridium difficile in Food and Animals: A Comprehensive Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 932:65-92. [PMID: 27350639 DOI: 10.1007/5584_2016_27] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Zoonoses are infections or diseases that can be transmitted between animals and humans through direct contact, close proximity or the environment. Clostridium difficile is ubiquitous in the environment, and the bacterium is able to colonise the intestinal tract of both animals and humans. Since domestic and food animals frequently test positive for toxigenic C. difficile, even without showing any signs of disease, it seems plausible that C. difficile could be zoonotic. Therefore, animals could play an essential role as carriers of the bacterium. In addition, the presence of the spores in different meats, fish, fruits and vegetables suggests a risk of foodborne transmission. This review summarises the current available data on C. difficile in animals and foods, from when the bacterium was first described up to the present.
Collapse
Affiliation(s)
- C Rodriguez
- Department of Food Science, University of Liège-Faculty of Veterinary Medicine, Avenue de Cureghem 10, bât 43bis Sart-Tilman, 4000, Liège, Belgium.
| | - B Taminiau
- Department of Food Science, University of Liège-Faculty of Veterinary Medicine, Avenue de Cureghem 10, bât 43bis Sart-Tilman, 4000, Liège, Belgium
| | - J Van Broeck
- Belgian Reference Centre for Clostridium difficile (NRC), Pôle de microbiologie médicale, Université Catholique de Louvain, Brussels, Belgium
| | - M Delmée
- Belgian Reference Centre for Clostridium difficile (NRC), Pôle de microbiologie médicale, Université Catholique de Louvain, Brussels, Belgium
| | - G Daube
- Department of Food Science, University of Liège-Faculty of Veterinary Medicine, Avenue de Cureghem 10, bât 43bis Sart-Tilman, 4000, Liège, Belgium
| |
Collapse
|
46
|
Lim SC, Foster NF, Riley TV. Susceptibility of Clostridium difficile to the food preservatives sodium nitrite, sodium nitrate and sodium metabisulphite. Anaerobe 2015; 37:67-71. [PMID: 26700884 DOI: 10.1016/j.anaerobe.2015.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/30/2015] [Accepted: 12/12/2015] [Indexed: 11/30/2022]
Abstract
Clostridium difficile is an important enteric pathogen of humans and food animals. Recently it has been isolated from retail foods with prevalences up to 42%, prompting concern that contaminated foods may be one of the reasons for increased community-acquired C. difficile infection (CA-CDI). A number of studies have examined the prevalence of C. difficile in raw meats and fresh vegetables; however, fewer studies have examined the prevalence of C. difficile in ready-to-eat meat. The aim of this study was to investigate the in vitro susceptibility of 11 C. difficile isolates of food animal and retail food origins to food preservatives commonly used in ready-to-eat meats. The broth microdilution method was used to determine the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) for sodium nitrite, sodium nitrate and sodium metabisulphite against C. difficile. Checkerboard assays were used to investigate the combined effect of sodium nitrite and sodium nitrate, commonly used in combination in meats. Modal MIC values for sodium nitrite, sodium nitrate and sodium metabisulphite were 250 μg/ml, >4000 μg/ml and 1000 μg/ml, respectively. No bactericidal activity was observed for all three food preservatives. The checkerboard assays showed indifferent interaction between sodium nitrite and sodium nitrate. This study demonstrated that C. difficile can survive in the presence of food preservatives at concentrations higher than the current maximum permitted levels allowed in ready-to-eat meats. The possibility of retail ready-to-eat meats contaminated with C. difficile acting as a source of CDI needs to be investigated.
Collapse
Affiliation(s)
- Su-Chen Lim
- Microbiology & Immunology, School of Pathology and Laboratory Medicine, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Western Australia, Australia
| | - Niki F Foster
- Microbiology & Immunology, School of Pathology and Laboratory Medicine, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Western Australia, Australia; Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands 6009, Western Australia, Australia
| | - Thomas V Riley
- Microbiology & Immunology, School of Pathology and Laboratory Medicine, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Western Australia, Australia; Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands 6009, Western Australia, Australia.
| |
Collapse
|
47
|
Moono P, Putsathit P, Knight DR, Squire MM, Hampson DJ, Foster NF, Riley TV. Persistence of Clostridium difficile RT 237 infection in a Western Australian piggery. Anaerobe 2015; 37:62-6. [PMID: 26679487 DOI: 10.1016/j.anaerobe.2015.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/26/2015] [Accepted: 11/29/2015] [Indexed: 12/17/2022]
Abstract
Clostridium difficile is commonly associated with healthcare-related infections in humans, and is an emerging pathogen in food animal species. There is potential for transmission of C. difficile from animals or animal products to humans. This study aimed to determine if C. difficile RT 237 had persisted in a Western Australian piggery or if there had been a temporal change in C. difficile diversity. C. difficile carriage in litters with and without diarrhea was investigated, as was the acquisition of C. difficile over time using cohort surveys. Rectal swabs were obtained from piglets aged 1-10 days to determine prevalence of C. difficile carriage and samples were obtained from 20 piglets on days 1, 7, 13, 20, and 42 of life to determine duration of shedding. Isolation of C. difficile from feces was achieved by selective enrichment culture. All isolates were characterized by standard molecular typing. Antimicrobial susceptibility testing was performed on selected isolates (n = 29). Diarrheic piglets were more likely to shed C. difficile than the non-diseased (p = 0.0124, χ2). In the cohort study, C. difficile was isolated from 40% samples on day 1, 50% on day 7, 20% on day 13, and 0% on days 20 and 42. All isolates were RT 237 and no antimicrobial resistance was detected. The decline of shedding of C. difficile to zero has public health implications because slaughter age pigs have a low likelihood of spreading C. difficile to consumers via pig meat.
Collapse
Affiliation(s)
- Peter Moono
- Microbiology & Immunology, School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Papanin Putsathit
- Microbiology & Immunology, School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Daniel R Knight
- Microbiology & Immunology, School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Michele M Squire
- Microbiology & Immunology, School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands, Western Australia, Australia
| | - David J Hampson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Niki F Foster
- Microbiology & Immunology, School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands, Western Australia, Australia; Department of Microbiology, PathWest Laboratory Medicine (WA), Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia
| | - Thomas V Riley
- Microbiology & Immunology, School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands, Western Australia, Australia; Department of Microbiology, PathWest Laboratory Medicine (WA), Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia.
| |
Collapse
|
48
|
Monitoring in real time the cytotoxic effect of Clostridium difficile upon the intestinal epithelial cell line HT29. J Microbiol Methods 2015; 119:66-73. [PMID: 26436983 DOI: 10.1016/j.mimet.2015.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 01/05/2023]
Abstract
The incidence and severity of Clostridium difficile infections (CDI) has been increased not only among hospitalized patients, but also in healthy individuals traditionally considered as low risk population. Current treatment of CDI involves the use of antibiotics to eliminate the pathogen, although recurrent relapses have also been reported. For this reason, the search of new antimicrobials is a very active area of research. The strategy to use inhibitors of toxin's activity has however been less explored in spite of being a promising option. In this regard, the lack of fast and reliable in vitro screening methods to search for novel anti-toxin drugs has hampered this approach. The aim of the current study was to develop a method to monitor in real time the cytotoxicity of C. difficile upon the human colonocyte-like HT29 line, since epithelial intestinal cells are the primary targets of the toxins. The label-free, impedance based RCTA (real time cell analyser) technology was used to follow overtime the behaviour of HT29 in response to C. difficile LMG21717 producing both A and B toxins. Results obtained showed that the selection of the medium to grow the pathogen had a great influence in obtaining toxigenic supernatants, given that some culture media avoided the release of the toxins. A cytotoxic dose- and time-dependent effect of the supernatant obtained from GAM medium upon HT29 and Caco2 cells was detected. The sigmoid-curve fit of data obtained with HT29 allowed the calculation of different toxicological parameters, such as EC50 and LOAEL values. Finally, the modification in the behaviour of HT29 reordered in the RTCA was correlated with the cell rounding effect, typically induced by these toxins, visualized by time-lapsed captures using an optical microscope. Therefore, this RTCA method developed to test cytotoxicity kinetics of C. difficile supernatants upon IEC could be a valuable in vitro model for the screening of new anti-CDI agents.
Collapse
|
49
|
Rodriguez C, Taminiau B, Brévers B, Avesani V, Van Broeck J, Leroux A, Gallot M, Bruwier A, Amory H, Delmée M, Daube G. Faecal microbiota characterisation of horses using 16 rdna barcoded pyrosequencing, and carriage rate of clostridium difficile at hospital admission. BMC Microbiol 2015; 15:181. [PMID: 26377067 PMCID: PMC4573688 DOI: 10.1186/s12866-015-0514-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/08/2015] [Indexed: 11/10/2022] Open
Abstract
Background The equine faecal microbiota is very complex and remains largely unknown, while interspecies interactions have an important contribution to animal health. Clostridium difficile has been identified as an important cause of diarrhoea in horses. This study provides further information on the nature of the bacterial communities present in horses developing an episode of diarrhoea. The prevalence of C. difficile in hospitalised horses at the time of admission is also reported. Results Bacterial diversity of the gut microbiota in diarrhoea is lower than that in non-diarrhoeic horses in terms of species richness (p-value <0.002) and in population evenness (p-value: 0.02). Statistical differences for Actinobacillus, Porphyromonas, RC9 group, Roseburia and Ruminococcaceae were revealed. Fusobacteria was found in horses with diarrhoea but not in any of the horses with non-diarrheic faeces. In contrast, Akkermansia was among the three predominant taxa in all of the horses studied. The overall prevalence of C. difficile in the total samples of hospitalised horses at admission was 3.7 % (5/134), with five different PCR-ribotypes identified, including PCR-ribotype 014. Two colonised horses displayed a decreased bacterial species richness compared to the remaining subjects studied, which shared the same Bacteroides genus. However, none of the positive animals had diarrhoea at the moment of sampling. Conclusions The abundance of some taxa in the faecal microbiota of diarrhoeic horses can be a result of microbiome dysbiosis, and therefore a cause of intestinal disease, or some of these taxa may act as equine enteric pathogens. Clostridium difficile colonisation seems to be transient in all of the horses studied, without overgrowth to trigger infection. A large proportion of the sequences were unclassified, showing the complexity of horses’ faecal microbiota. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0514-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cristina Rodriguez
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Bernard Taminiau
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Bastien Brévers
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Véronique Avesani
- Microbiology Unit, Catholic University of Louvain, Brussels, Belgium.
| | - Johan Van Broeck
- Microbiology Unit, Catholic University of Louvain, Brussels, Belgium.
| | - Aurélia Leroux
- Equine Teaching Hospital, Clinical Department of Companion Animals and Equids, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Marjorie Gallot
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Antoine Bruwier
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Hélene Amory
- Equine Teaching Hospital, Clinical Department of Companion Animals and Equids, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Michel Delmée
- Microbiology Unit, Catholic University of Louvain, Brussels, Belgium.
| | - Georges Daube
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| |
Collapse
|
50
|
Rodriguez C, Avesani V, Taminiau B, Van Broeck J, Brévers B, Delmée M, Daube G. Investigation of Clostridium difficile interspecies relatedness using multilocus sequence typing, multilocus variable-number tandem-repeat analysis and antimicrobial susceptibility testing. Vet J 2015; 206:349-55. [PMID: 26545846 DOI: 10.1016/j.tvjl.2015.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022]
Abstract
Multilocus sequence typing (MLST), multilocus variable-number tandem-repeat analysis (MLVA) and antimicrobial susceptibility were performed on 37 animal and human C. difficile isolates belonging to 15 different PCR-ribotypes in order to investigate the relatedness of human and animal isolates and to identify possible transmission routes. MLVA identified a total of 21 different types while MLST only distinguished 12 types. Identical C. difficile strains were detected in the same animal species for PCR-ribotypes 014, 078, UCL 16U and UCL 36, irrespective of their origin or the isolation date. Non clonal strains were found among different hosts; however, a high genetic association between pig and cattle isolates belonging to PCR-ribotype 078 was revealed. MLVA also showed genetic differences that clearly distinguished human from animal strains. For a given PCR-ribotype, human and animal strains presented a similar susceptibility to the antimicrobials tested. All strains were susceptible to vancomycin, metronidazole, chloramphenicol and rifampicin, while PCR-ribotypes 078, UCL 5a, UCL 36 and UCL 103 were associated with erythromycin resistance. The data suggest a wide dissemination of clones at hospitals and breeding-farms or a contamination at the slaughterhouse, but less probability of interspecies transmission. However, further highly discriminatory genotyping methods are necessary to elucidate interspecies and zoonotic transmission of C. difficile.
Collapse
Affiliation(s)
- C Rodriguez
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20, 4100 Liège, Belgium.
| | - V Avesani
- Microbiology Unit, Catholic University of Louvain, Avenue Hippocrate B1.54.01, 1200 Brussels, Belgium
| | - B Taminiau
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20, 4100 Liège, Belgium
| | - J Van Broeck
- Microbiology Unit, Catholic University of Louvain, Avenue Hippocrate B1.54.01, 1200 Brussels, Belgium
| | - B Brévers
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20, 4100 Liège, Belgium
| | - M Delmée
- Microbiology Unit, Catholic University of Louvain, Avenue Hippocrate B1.54.01, 1200 Brussels, Belgium
| | - G Daube
- Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20, 4100 Liège, Belgium
| |
Collapse
|