1
|
de Oliveira MJK, Babatunde OO, Rodrigues LA, Erinle TJ, Htoo JK, Mendoza SM, Columbus DA. Development of an indigestible dietary protein index to investigate the effects of dietary protein content in postweaned pigs. J Anim Sci 2025; 103:skae374. [PMID: 39657758 PMCID: PMC11705088 DOI: 10.1093/jas/skae374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
Proteolytic fermentation induces negative effects on gut health and function, which may affect pig performance. The objective was to conduct a meta-analysis to develop an index of dietary indigestible dietary protein (IDP) to investigate growth performance outcomes of mixed-sex weanling pigs (average body weight of 7.59 kg). Eighty-nine articles reporting growth performance variables [average daily gain (ADG), average daily feed intake (ADFI), gain:feed ratio (GF), initial (IBW), and final body weight] in pigs fed different dietary protein (DP) content (from 12% to 33.6%) and protein sources (plant and animal) were included. DP and IDP index was calculated in all experiments using a common database, with the IDP index defined as the difference between total DP and standardized ileal digestible DP. A DP- and an IDP-based model were developed to predict the ADG, GF, and ADFI (by their relationship) of weaning pigs using a multivariable linear mixed model regression approach with estimates of variable effects obtained using the residual maximum likelihood method. Based on a stepwise manual forward selection, significant predictor variables with improvement of at least 2 points in the Bayesian information criterion were included in the final regression model. Statistical significance was set at P ≤ 0.05 and a trend at P < 0.10. Initial exploratory analysis of the database showed a quadratic increase (P < 0.01) in the IDP index with increasing inclusion of plant protein sources in diet formulation and a linear decrease (P < 0.01) in the IDP index with increasing synthetic amino acid inclusion. Regarding the models, the DP-based model could not account for the inclusion of protein sources compared to the IDP-based model. There was a tendency for DP to positively affect (P < 0.10) ADG and GF. Increasing the IDP index tended to negatively impact (P < 0.10) ADG while reducing (P < 0.05) ADFI. Using a practical and hypothetical feed formulation simulation, the final regression models predicted the expected negative impact of a high IDP index on newly weaned pig performance when compared to a low IDP diet. The IDP-based model predicted a stronger negative effect of high IDP when compared to the DP-based model. Results indicate that IDP may be an improved and more reliable index to investigate the impact of DP on pig performance in the postweaning phase.
Collapse
Affiliation(s)
| | | | - Lucas A Rodrigues
- Prairie Swine Centre Inc., Saskatoon, SK, Canada S7H 5N9
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8
| | - Taiwo J Erinle
- Prairie Swine Centre Inc., Saskatoon, SK, Canada S7H 5N9
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8
| | - John K Htoo
- Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | | | - Daniel A Columbus
- Prairie Swine Centre Inc., Saskatoon, SK, Canada S7H 5N9
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8
| |
Collapse
|
2
|
Connolly KR, Sweeney T, O’Doherty JV. Sustainable Nutritional Strategies for Gut Health in Weaned Pigs: The Role of Reduced Dietary Crude Protein, Organic Acids and Butyrate Production. Animals (Basel) 2024; 15:66. [PMID: 39795009 PMCID: PMC11718951 DOI: 10.3390/ani15010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Weaning in piglets presents significant physiological and immunological challenges, including gut dysbiosis and increased susceptibility to post-weaning diarrhoea (PWD). Abrupt dietary, environmental, and social changes during this period disrupt the intestinal barrier and microbiota, often necessitating antimicrobial use. Sustainable dietary strategies are critical to addressing these issues while reducing reliance on antimicrobials. Reducing dietary crude protein mitigates the availability of undigested proteins for pathogenic bacteria, lowering harmful by-products like ammonia and branched-chain fatty acids, which exacerbate dysbiosis. Organic acid supplementation improves gastric acidification, nutrient absorption, and microbial balance, while also serving as an energy-efficient alternative to traditional grain preservation methods. Increasing intestinal butyrate, a key short-chain fatty acid with anti-inflammatory and gut-protective properties, is particularly promising. Butyrate strengthens intestinal barrier integrity by upregulating tight junction proteins, reduces inflammation by modulating cytokine responses, and promotes anaerobic microbial stability. Exogenous butyrate supplementation via salts provides immediate benefits, while endogenous stimulation through prebiotics (e.g., resistant starch) and probiotics promotes sustained butyrate production. These interventions selectively enhance butyrate-producing bacteria such as Roseburia and Faecalibacterium prausnitzii, further stabilising the gut microbiota. Integrating these strategies can enhance gut integrity, microbial resilience, and immune responses in weaned piglets. Their combination offers a sustainable, antimicrobial-free approach to improving health and productivity in modern pig production systems.
Collapse
Affiliation(s)
- Kathryn Ruth Connolly
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| |
Collapse
|
3
|
González-Solé F, Solà-Oriol D, Villagómez Estrada S, Muns R, Pérez JF. Effect of Longer Pre-Starter Diet Allowance on Post-Weaning Performance of Lightweight Piglets. Animals (Basel) 2024; 14:3471. [PMID: 39682436 DOI: 10.3390/ani14233471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/13/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
First-phase diets are formulated to help pigs reach a target body weight before switching to a more affordable diet. However, these transitions typically take place on a fixed schedule, which may disadvantage low-body-weight piglets due to their underdeveloped digestive systems and limited feed intake capacity. This study examined the effects of offering low-body-weight (BW) pigs a pre-starter diet until they reached a target BW on growth performance and BW variability. A total of 528 pigs ([Landrace × Yorkshire] × Pietrain), weaned at day 21, representing the smallest 50% of their batch, were divided into medium (5.35 ± 0.31 kg) and small (3.97 ± 0.21 kg) groups based on weaning BW. Pigs received a pre-starter diet either for 10 days (FIXED) or until they reached a target BW of 7.9 kg (TBW), followed by a starter feed. Growth performance between the TBW and fixed strategies was similar over the 36-day period. Overall, mortality was higher in small pigs, though small pigs fed using the fixed strategy showed higher mortality than the rest of the groups between days 10 and 36. This study concludes that offering a pre-starter diet based on target BW, instead of a fixed time, did not significantly improve growth performance or batch uniformity but reduced mortality in small pigs from days 10 to 36.
Collapse
Affiliation(s)
- Francesc González-Solé
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Science, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - David Solà-Oriol
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Science, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Sandra Villagómez Estrada
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Science, Autonomous University of Barcelona, 08193 Bellaterra, Spain
- Faculty of Veterinary Medicine and Agronomy, Veterinary Medicine Department, Universidad UTE, Quito 17012764, Ecuador
| | - Ramon Muns
- Agri-Food and Biosciences Institute, Large Park, Hillsborough, Co Down, Northern Ireland BT 26 6DR, UK
| | - José Francisco Pérez
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Science, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
4
|
Feng G, Deng M, Li R, Hou G, Ouyang Q, Jiang X, Liu X, Tang H, Chen F, Pu S, Wan D, Yin Y. Gastrointestinal microbiota and metabolites responses to dietary cereal grains in an adult pig model. Front Microbiol 2024; 15:1442077. [PMID: 39355428 PMCID: PMC11442370 DOI: 10.3389/fmicb.2024.1442077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
Corn (C), wheat (W), and paddy rice (PR) are important energy sources and are commonly used in feed production for swine. This study mainly focuses on the variation and regularities of microbiota and metabolites in the gastrointestinal tract (GIT) of pigs in response to C, W, and PR. A total of 18 pigs were allotted into three dietary groups with six replicated pigs and received diets containing C, W, or PR as the sole energy source, respectively. The results showed that digestive parts significantly affected the diversity of microbial communities. Cereal grain sources significantly influenced the β-diversity of microbial communities in the colon and rectum. Campylobacterota and Proteobacteria are mainly distributed in the duodenum, Lactobacillus in the jejunum, and Bacteroidota in the colon and rectum. The W diet increased the Bacteroidota, Spirochaetota, and Prevotellaceae_NK3B31_group abundances and showed the highest concentrations of all short-chain fatty acids (SCFAs) in the hindgut. Fibrobacterota, Bacteroidota, Spirochaetota, Prevotellaceae_NK3B31_group, Prevotella, and Treponema in the colon or rectum were positively correlated with acetate, propionate, butyrate, and total SCFAs. These findings suggested that aerobic bacteria and facultative anaerobes in the foregut will gradually be replaced by anaerobes in the hindgut. The W diet had the best fermentability and was beneficial to the colonization of microbial communities that mainly used carbohydrates. The hindgut flora of the PR diet group may be more balanced with fewer potential pathogenic bacteria. Many microbial communities have been identified to contribute positively to the SCFA production of the hindgut. Collectively, our study revealed the spatial variation regularities of GIT microbial communities in an adult pig model and provided new insights into GIT microbiota and responses of metabolites to cereal grain diets.
Collapse
Affiliation(s)
- Ganyi Feng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Menglong Deng
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Rui Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Gaifeng Hou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qing Ouyang
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Xianji Jiang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Xiaojie Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Hui Tang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Shihua Pu
- Chongqing Academy of Animal Science, Rongchang, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Dan Wan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
5
|
Boven L, Akkerman R, de Vos P. Sustainable diets with plant-based proteins require considerations for prevention of proteolytic fermentation. Crit Rev Food Sci Nutr 2024:1-11. [PMID: 38950600 DOI: 10.1080/10408398.2024.2352523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The human diet requires a more plant-based approach due to the exhaustive effects animal-based foods have on the environment. However, plant-based proteins generally miss a few or have a lower variety in essential amino acids and are more difficult to digest. Subsequently they might be prone to fermentation by the microbiome in the proximal colon. Proteolytic fermentation can induce microbial-metabolites with beneficial and negative health effects. We review current insight into how balances in saccharolytic and proteolytic fermentation can be maintained when the diet consists predominantly of plant-based proteins. Some proteolytic fermentation metabolites may negatively impact balances in gut microbiota composition in the large intestine and influence immunity. However, proteolytic fermentation can potentially be prevented in the proximal colon toward more saccharolytic fermentation through the addition of non-digestible carbohydrates in the diet. Knowledge on this combination of plant-based proteins and non-digestible carbohydrates on colonic- and general health is limited. Current data suggest that transitioning toward a more plant-based protein diet should be accompanied with a consumption of increased quantities and more complex structures of carbohydrates or by application of technological strategies to enhances digestibility. This can reduce or prevent proteolytic fermentation which might consequently improve human health.
Collapse
Affiliation(s)
- Lidwien Boven
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Renate Akkerman
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
6
|
Han X, Hu X, Jin W, Liu G. Dietary nutrition, intestinal microbiota dysbiosis and post-weaning diarrhea in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:188-207. [PMID: 38800735 PMCID: PMC11126776 DOI: 10.1016/j.aninu.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 05/29/2024]
Abstract
Weaning is a critical transitional point in the life cycle of piglets. Early weaning can lead to post-weaning syndrome, destroy the intestinal barrier function and microbiota homeostasis, cause diarrhea and threaten the health of piglets. The nutritional components of milk and solid foods consumed by newborn animals can affect the diversity and structure of their intestinal microbiota, and regulate post-weaning diarrhea in piglets. Therefore, this paper reviews the effects and mechanisms of different nutrients, including protein, dietary fiber, dietary fatty acids and dietary electrolyte balance, on diarrhea and health of piglets by regulating intestinal function. Protein is an essential nutrient for the growth of piglets; however, excessive intake will cause many harmful effects, such as allergic reactions, intestinal barrier dysfunction and pathogenic growth, eventually aggravating piglet diarrhea. Dietary fiber is a nutrient that alleviates post-weaning diarrhea in piglets, which is related to its promotion of intestinal epithelial integrity, microbial homeostasis and the production of short-chain fatty acids. In addition, dietary fatty acids and dietary electrolyte balance can also facilitate the growth, function and health of piglets by regulating intestinal epithelial function, immune system and microbiota. Thus, a targeted control of dietary components to promote the establishment of a healthy bacterial community is a significant method for preventing nutritional diarrhea in weaned piglets.
Collapse
Affiliation(s)
- Xuebing Han
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Xiangdong Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| |
Collapse
|
7
|
Zentek J, Vahjen W, Grześkowiak Ł, Martínez-Vallespín B, Holthausen JS, Saliu EM. The Gut Microbiome in Pigs and Its Impact on Animal Health. PRODUCTION DISEASES IN FARM ANIMALS 2024:157-177. [DOI: 10.1007/978-3-031-51788-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Belloumi D, Calvet S, Roca MI, Ferrer P, Jiménez-Belenguer A, Cambra-López M, García-Rebollar P, Climent E, Martínez-Blanch J, Tortajada M, Chenoll E, Bermejo A, Cerisuelo A. Effect of providing citrus pulp-integrated diet on fecal microbiota and serum and fecal metabolome shifts in crossbred pigs. Sci Rep 2023; 13:17596. [PMID: 37845279 PMCID: PMC10579234 DOI: 10.1038/s41598-023-44741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023] Open
Abstract
The study aimed to assess the impact of dehydrated citrus pulp (DCP) on growth performance, fecal characteristics, fecal bacterial composition (based on 16S rRNA analysis), and fecal and serum metabolomic profiles in crossbred pigs. 80 finishing pigs Duroc × (Landrace × Large White) were fed either a control diet (C) or a diet with 240 g/kg DCP (T) for six weeks. Including DCP in diets tended to decrease feed intake, increased (p < 0.05) the concentrations of acetic and heptanoic acids and decreased (p < 0.05) fecal butyric and branched-chain fatty acid concentrations in feces. Animals fed DCP exhibited a lower abundance of the genera Clostridium and Romboutsia, while Lachnospira significantly increased. Orthogonal partial least squares discriminant analysis plotted a clear separation of fecal and serum metabolites between groups. The main discriminant fecal metabolites were associated with bacterial protein fermentation and were downregulated in T-fed pigs. In serum, DCP supplementation upregulated metabolites related to protein and fatty acids metabolism. In conclusion, the addition of DCP as an environmentally friendly source of nutrients in pig diets, resulted in modifications of fecal bacterial composition, fermentation patterns, and overall pig metabolism, suggesting improvements in protein metabolism and gut health.
Collapse
Affiliation(s)
- Dhekra Belloumi
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, 12400, Segorbe, Spain
- Institute of Animal Science and Technology, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Salvador Calvet
- Institute of Animal Science and Technology, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Marta Isabel Roca
- Unidad Analítica, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain
| | - Pablo Ferrer
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, 12400, Segorbe, Spain
| | - Ana Jiménez-Belenguer
- Departamento de Biotecnología, Universitat Politècnica de València, 46022, Valencia, Spain
| | - María Cambra-López
- Institute of Animal Science and Technology, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Paloma García-Rebollar
- Departamento de Producción Agraria, ETSIAAB, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | | | | | | | | | - Almudena Bermejo
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, 46113, Moncada, Spain
| | - Alba Cerisuelo
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, 12400, Segorbe, Spain.
| |
Collapse
|
9
|
Wang Z, Wu Z, Tu J, Xu B. Muscle food and human health: A systematic review from the perspective of external and internal oxidation. Trends Food Sci Technol 2023; 138:85-99. [DOI: 10.1016/j.tifs.2023.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Vasquez R, Kim SH, Oh JK, Song JH, Hwang IC, Kim IH, Kang DK. Multispecies probiotic supplementation in diet with reduced crude protein levels altered the composition and function of gut microbiome and restored microbiome-derived metabolites in growing pigs. Front Microbiol 2023; 14:1192249. [PMID: 37485501 PMCID: PMC10360209 DOI: 10.3389/fmicb.2023.1192249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Both crude protein (CP) and probiotics can modulate the gut microbiome of the host, thus conferring beneficial effects. However, the benefits of low CP diet supplemented with multispecies probiotics on gut microbiome and its metabolites have not been investigated in pigs. Thus, we investigated the combinatory effects of low CP diet supplemented with multispecies probiotics on gut microbiome composition, function, and microbial metabolites in growing pigs. In total, 140 6 week-old piglets (Landrace × Yorkshire × Duroc) were used in this study. The pigs were divided into four groups with a 2 × 2 factorial design based on their diets: normal-level protein diet (16% CP; NP), low-level protein diet (14% CP; LP), NP with multispecies probiotics (NP-P), and LP with multispecies probiotics (LP-P). After the feeding trial, the fecal samples of the pigs were analyzed. The fecal scores were improved by the probiotic supplementation, especially in LP-P group. We also observed a probiotic-mediated alteration in the gut microbiome of pigs. In addition, LP-P group showed higher species richness and diversity compared with other groups. The addition of multispecies probiotics in low CP diet also enhanced gut microbiota metabolites production, such as short-chain fatty acids (SCFAs) and polyamines. Correlation analysis revealed that Oscillospiraceae UCG-002, Eubacterium coprostanoligenes, Lachnospiraceae NK4A136 group, and Muribaculaceae were positively associated with SCFAs; and Prevotella, Eubacterium ruminantium, Catenibacterium, Alloprevotella, Prevotellaceae NK3B31 group, Roseburia, Butyrivibrio, and Dialister were positively correlated with polyamines. Supplementation with multispecies probiotics modulated the function of the gut microbiome by upregulating the pathways for protein digestion and utilization, potentially contributing to enriched metabolite production in the gut. The results of this study demonstrate that supplementation with multispecies probiotics may complement the beneficial effects of low CP levels in pig feed. These findings may help formulate sustainable feeding strategies for swine production.
Collapse
|
11
|
Ashkar F, Wu J. Effects of Food Factors and Processing on Protein Digestibility and Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267055 DOI: 10.1021/acs.jafc.3c00442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein is an essential macronutrient. The nutritional needs of dietary proteins are met by digestion and absorption in the small intestine. Indigestible proteins are further metabolized in the gut and produce metabolites via protein fermentation. Thus, protein indigestibility exerts a wide range of effects on gut microbiota composition and function. This review aims to discuss protein digestibility, the effects of food factors, such as protein sources, intake level, and amino acid composition, and making meat analogues. Besides, it provides an inventory of antinutritional factors and processing techniques that influence protein digestibility and, consequently, the diversity and composition of intestinal microbiota. Future studies are warranted to understand the implication of plant-based analogues on protein digestibility and gut microbiota and to elucidate the mechanisms concerning protein digestibility to host gut microbiota using various omics techniques.
Collapse
Affiliation(s)
- Fatemeh Ashkar
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jianping Wu
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
12
|
Xu J, Noel SJ, Lauridsen C, Lærke HN, Canibe N. Liquid fermented cereals with added Pediococcus acidilactici did not reduce post-weaning diarrhea in pigs - an Escherichia coli challenge study. Front Vet Sci 2023; 10:1147165. [PMID: 37252380 PMCID: PMC10213407 DOI: 10.3389/fvets.2023.1147165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
The effect of feeding fermented liquid feed (FLF) with added Pediococcus acidilactici to weaning piglets challenged with enterotoxigenic Escherichia coli (ETEC) F4 on aspects of diarrhea, performance, immune responses, and intestinal epithelial barrier function was investigated. A total of 46 weaners (weaning at 27-30 days of age) were assigned to four treatments: (1) Non-challenged and dry feed (Non-Dry); (2) Challenged and dry feed (Ch-Dry); (3) Non-challenged and FLF (Non-Ferm); (4) Challenged and FLF (Ch-Ferm). All groups received the same feed, either dry (Non-Dry and Ch-Dry), or in liquid form (Non-Ferm and Ch-Ferm) in which the cereals with added P. acidilactici (106 CFU/g cereals) had been fermented for 24 h at 30°C. On day 1 and 2 post weaning, Ch-Dry and Ch-Ferm were orally inoculated with 5 mL × 109 CFU ETEC F4/mL, whereas the Non-Dry and Non-Ferm received the same amount of saline. Fecal samples and blood samples were collected through the study period. The microbial composition, concentration of microbial metabolites and nutrient composition indicated that the quality of the FLF was high. In the first week, ADFI of both non-challenged groups was significantly higher (p < 0.05) than that of the Ch-Ferm group. The two challenged groups had higher fecal levels of FaeG gene (ETEC F4 fimbriae) from day 2 to 6 post weaning (p < 0.01), and higher risk of having ETEC F4 present in feces from day 3 to 5 post weaning (p < 0.05) compared to non-challenged groups, indicating the validity of the ETEC challenge model. Generally, ADG of the two groups fed FLF were numerically higher than those fed dry feed. Neither challenge nor FLF affected diarrhea. No significant differences were measured between Ch-Ferm and Ch-Dry regarding the level of plasma haptoglobin and C-reactive protein, hematological parameters or parameters related to epithelial barrier. The data indicated a low level of infection caused by the ETEC challenge, while recovery from weaning stress could be observed. The study showed that a strategy like this can be a way of providing a high level of probiotics to pigs by allowing their proliferation during fermentation.
Collapse
|
13
|
Effects of Exposure to Low Zearalenone Concentrations Close to the EU Recommended Value on Weaned Piglets’ Colon. Toxins (Basel) 2023; 15:toxins15030206. [PMID: 36977097 PMCID: PMC10055674 DOI: 10.3390/toxins15030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Pigs are the most sensitive animal to zearalenone (ZEN) contamination, especially after weaning, with acute deleterious effects on different health parameters. Although recommendations not to exceed 100 µg/kg in piglets feed exists (2006/576/EC), there are no clear regulations concerning the maximum limit in feed for piglets, which means that more investigations are necessary to establish a guidance value. Due to these reasons, the present study aims to investigate if ZEN, at a concentration lower than the EC recommendation for piglets, might affect the microbiota or induce changes in SCFA synthesis and can trigger modifications of nutritional, physiological, and immunological markers in the colon (intestinal integrity through junction protein analysis and local immunity through IgA production). Consequently, the effect of two concentrations of zearalenone were tested, one below the limit recommended by the EC (75 µg/kg) and a higher one (290 µg/kg) for comparison reasons. Although exposure to contaminated feed with 75 µg ZEN/kg feed did not significantly affect the observed parameters, the 290 µg/kg feed altered several microbiota population abundances and the secretory IgA levels. The obtained results contribute to a better understanding of the adverse effects that ZEN can have in the colon of young pigs in a dose-dependent manner.
Collapse
|
14
|
Júnior DTV, de Amorim Rodrigues G, Soares MH, Silva CB, Frank EO, Gonzalez-Vega JC, Htoo JK, Brand HG, Silva BAN, Saraiva A. Supplementation of Bacillus subtilis DSM 32540 improves performance and intestinal health of weaned pigs fed diets containing different fiber sources. Livest Sci 2023. [DOI: 10.1016/j.livsci.2023.105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
15
|
Biosynthetic Gene Clusters from Swine Gut Microbiome. Microorganisms 2023; 11:microorganisms11020434. [PMID: 36838399 PMCID: PMC9964075 DOI: 10.3390/microorganisms11020434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The abuse of antibiotics has become a serious health challenge in the veterinary field. It creates environmental selection pressure on bacteria and facilitates the rapid spread of antibiotic resistance genes. The speed of discovery and application of cost-effective alternatives to antibiotics is slow in pig production. Natural products from biosynthetic gene clusters (BGCs) represent promising therapeutic agents for animal and human health and have attracted extraordinary passion from researchers due to their ability to participate in biofilm inhibition, stress resistance, and the killing of competitors. In this study, we detected the presence of diverse secondary metabolite genes in porcine intestines through sequence alignment in the antiSMASH database. After comparing variations in microbial BGCs' composition between the ileum and the colon, it was found that the abundance of the resorcinol gene cluster was elevated in the ileal microbiome, whereas the gene cluster of arylpolyene was enriched in the colonic microbiome. The investigation of BGCs' diversity and composition differences between the ileal and colonic microbiomes provided novel insights into further utilizing BGCs in livestock. The importance of BGCs in gut microbiota deserves more attention for promoting healthy swine production.
Collapse
|
16
|
Diet nutrient digestibility and growth performance in weaned pigs fed barley differing in fermentable starch and fibre profile. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Bekebrede A, Noorman L, Keijer J, de Boer V, Gerrits W. Functional metabolic capacity of pig colonocytes is differentially modulated by fermentable fibre and poorly digestible protein. Animal 2022; 16:100625. [DOI: 10.1016/j.animal.2022.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 01/10/2023] Open
|
18
|
van Hees HM, Chiers K, den Hartog LA, van Kempen TA, Maes D, Millet S, Janssens GP. Supplementing oat hulls to the diet of suckling piglets altered their intestinal tract and colonic microbiota development. ANIMAL NUTRITION 2022; 12:284-296. [PMID: 37013081 PMCID: PMC10065989 DOI: 10.1016/j.aninu.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 10/02/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Current study evaluated the effect of a fine and coarsely ground insoluble dietary fibre source on the gastrointestinal development of suckling pigs. Oat hulls (OH) were selected as a model feedstuff, rich in cellulose, lignin, and insoluble dietary fibre. Three experimental supplemental diets were formulated: a finely ground, low fibre and nutrient dense diet served as control (CON). For the 2 high fibre diets, 15% heat-treated starch in CON was exchanged with OH, either finely (OH-f) or coarsely ground (OH-c). Litters of 10 primi- and multiparous sows (mean litter size 14.6 ± 0.84) were used. Within a litter, experimental diets were allotted to triplets of 4 piglets. From approximately 12 d of age, piglets' individual feed intakes were recorded 2 times per day when separated from their dam for 70 min. Piglets could suckle with their dam for the remainder of the day. On d 24 and 25, from the total pool of 120 piglets, seven healthy well-eating piglets per treatment were selected for post-mortem evaluation, resulting in 14 replicates per treatment. Consumption of OH-c and OH-f did not impede clinical health and production performance of piglets. The full stomach weights tended to be greater for OH-c compared to OH-f whereas CON was intermediate (P = 0.083). Supplementing OH significantly increased ileal villus height and caecal dry matter concentration (P < 0.05). For the colon, OH increased its length, contents weight, short-chain fatty acid concentration and reduced total bacterial count as well as γ-proteobacteria count and proportion (P < 0.05). The OH-c treatment specifically increased full gastrointestinal tract weight and caecum contents weight compared to piglets fed CON and OH-f. Furthermore, OH-c reduced colonic crypt depth when compared to OH-f (P = 0.018). In conclusion, supplementing OH to a diet for suckling piglets exerted subtle developmental effects on gastrointestinal morphology and colonic microbial community. These effects were largely independent from the particle size of the OH.
Collapse
|
19
|
Li X, Peng B, Chi-Keung Cheung P, Wang J, Zheng X, You L. Depolymerized non-digestible sulfated algal polysaccharides produced by hydrothermal treatment with enhanced bacterial fermentation characteristics. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Vangroenweghe FACJ, Boone M. Vaccination with an Escherichia coli F4/F18 Vaccine Improves Piglet Performance Combined with a Reduction in Antimicrobial Use and Secondary Infections Due to Streptococcus suis. Animals (Basel) 2022; 12:ani12172231. [PMID: 36077950 PMCID: PMC9454454 DOI: 10.3390/ani12172231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Post-weaning diarrhea (PWD) due to Escherichia coli (E. coli) remains a major cause of economic losses for the pig industry. Therapy to combat PWD typically consists of antibiotic treatment or supplementation of zinc oxide to the feed. The emergence of antimicrobial resistance and new EU regulations prompt the need for alternative control strategies, such as immunization. The aim of the field study was to evaluate the effect of an oral live non-pathogenic E. coli vaccine on piglet performance, health, and antimicrobial use. We compared 10 batches receiving a standard antimicrobial control treatment to 10 batches vaccinated with the oral E. coli vaccine. The vaccine-treated groups demonstrated a significant improvement in performance, mortality weight, and antimicrobial use. In addition, secondary infections due to Streptococcus suis in the second part of nursery were reduced, as indicated by the reduction in amoxicillin use. In conclusion, the present study demonstrates the efficacy of an oral live non-pathogenic E. coli vaccine for the active immunization of piglets against PWD under field conditions. Therefore, vaccination against PWD may be considered a valuable alternative for strengthening piglet performance while meeting the new EU requirements concerning the prudent use of antimicrobials in intensive pig production. Abstract Post-weaning diarrhea (PWD) due to Escherichia coli (E. coli) remains a major cause of economic losses for the pig industry. Therapy to combat PWD typically consists of antibiotic treatment or supplementation of zinc oxide to the feed. The emergence of antimicrobial resistance to E. coli and new EU regulations prompt the need for alternative control strategies, such as immunization. The aim of the field study was to evaluate the effect of an oral live non-pathogenic E. coli vaccine on piglet performance, health, and antimicrobial use. We evaluated vaccination with an oral live non-pathogenic E. coli F4/F18 under field conditions in 10 consecutive batches against a standard antimicrobial treatment in 10 historical control batches. The vaccine-treated groups demonstrated a significant improvement in feed conversion rate, mortality weight, and antimicrobial use. From a general health perspective, secondary infections due to Streptococcus suis (S. suis) in the second part of nursery were markedly reduced, as indicated by the reduction in amoxicillin use. In conclusion, the present study demonstrates the efficacy of an oral live non-pathogenic E. coli vaccine for active immunization of piglets against PWD under field conditions. The vaccine-treated groups showed an improvement in several economically important performance parameters while reducing the overall antimicrobial use and infection pressure due to S. suis. Therefore, vaccination against PWD may be considered a valuable alternative for consolidating piglet performance while meeting the new EU requirements concerning the prudent use of antimicrobials in intensive pig production.
Collapse
Affiliation(s)
- Frédéric A. C. J. Vangroenweghe
- Elanco Animal Health Benelux, BU Swine & Ruminants, 2018 Antwerpen, Belgium
- Unit of Porcine Health Management, Faculty of Veterinary Medicine, Department of Internal Medicine–Reproduction–Population Medicine, Ghent University, 9820 Merelbeke, Belgium
- Correspondence: ; Tel.: +32-477-558-562
| | | |
Collapse
|
21
|
Supplementation of mixed doses of glutamate and glutamine can improve the growth and gut health of piglets during the first 2 weeks post-weaning. Sci Rep 2022; 12:14533. [PMID: 36008459 PMCID: PMC9411166 DOI: 10.1038/s41598-022-18330-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/09/2022] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to test the effect of mixing doses of glutamate (Glu) and glutamine (Gln) on the growth, health and gut health of post-weaning piglets. One hundred twenty weaned piglets (24 ± 2 days of age) were assigned to 6 dietary groups: (1) standard diet (CO); (2) CO plus Glu (6 kg/Ton): 100Glu; (3) CO plus 75Glu + 25Gln; (4) CO plus 50Glu + 50Gln; (5) CO plus 25Glu + 75Gln and (6) CO plus 100Gln. At days 8 and 21, blood was collected for haematological and reactive oxygen metabolite analysis, intestinal mucosa for morphological and gene expression analysis, and caecal content for microbial analysis. Data were fitted using a Generalised Linear Model (GLM). Piglet growth increased linearly with an increase in Gln from d7 to d14. The Glu:Gln ratio had a quadratic effect on faecal consistency and days of diarrhoea, neutrophil% and lymphocyte%, and a positive linear effect on monocyte% in the blood at d8. The amino acids (AAs) reduced the intraepithelial lymphocytes in the jejunum, and 100Gln improved intestinal barrier integrity at d8. The caecal microbiota did not differ. Overall, this study suggested a favourable effect of mixing Glu and Gln (25 + 75-50 + 50) as a dietary supplementation in post-weaning piglets to benefit the immune and barrier function of the gut, resulting in an increase in faecal consistency and improvement of growth during the first 2 weeks post-weaning.
Collapse
|
22
|
Zhang Y, Mu C, Liu S, Zhu W. Dietary citrus pectin drives more ileal microbial protein metabolism and stronger fecal carbohydrate fermentation over fructo-oligosaccharide in growing pigs. ANIMAL NUTRITION 2022; 11:252-263. [PMID: 36263407 PMCID: PMC9556793 DOI: 10.1016/j.aninu.2022.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022]
Abstract
Fructo-oligosaccharide (FOS) and pectin are known soluble dietary fibers and can influence gut microbiota and consequently modulate gut health. To understand the differential impact patterns of pectin vs. FOS in modulating gut microbiota in the small and large intestine, an ileal-cannulated pig model was adopted to compare the temporal and spatial effects of FOS and citrus pectin (CP) on the gut microbiota. Sixteen terminal ileal-cannulated pigs were randomly divided into 2 groups and fed with a standard diet supplemented with either 3% FOS or 3% CP for 28 d. The CP group and FOS group showed different microbial composition, especially in the feces, with time and location as major factors affecting microbiota in the CP group, and with only location contribution in the FOS group. In the feces, relative to the FOS group, the CP group showed higher abundance of ChristensenellaceaeR-7 group and RuminococcaceaeUCG-010 and lower abundance of Mitsuokella and Olsenella (adjusted P < 0.05), a higher level of short-chain fatty acids and a lower level of lactate at both d 14 and 25 (P < 0.05), and more copy numbers of genes encoding key enzymes related to propionate (mmdA) and butyrate (BCoAT) production and lactate utilization (LcdA) (P < 0.05), indicating a greater degree of microbial carbohydrate fermentation. In the ileum, as compared with FOS, CP increased the bacteria with high capability of fermenting amino acids, including Escherichia-Shigella and Klebsiella (adjusted P < 0.05), and the expression of enzymes responsible for amino acid fermentation (i.e. lysine decarboxylase), as well as the amino acid fermentation products (cadaverine and tyramine) (P < 0.05), indicating a greater degree of amino acid fermentation. Overall, our results highlight a differential dynamic impact of dietary CP vs. FOS on microbial composition and metabolism in the gut. The dietary CP has a stronger ability to promote microbial amino acid fermentation in the ileum and carbohydrate fermentation in the feces than FOS. These findings provide a new insight into the role of different fibers in gut nutrition and guidelines for the choice of fibers in manipulating gut health.
Collapse
Affiliation(s)
- Yanan Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlong Mu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Liu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
- Corresponding author.
| |
Collapse
|
23
|
Evidence-Based Recommendations for Herd Health Management of Porcine Post-Weaning Diarrhea. Animals (Basel) 2022; 12:ani12141737. [PMID: 35883284 PMCID: PMC9311872 DOI: 10.3390/ani12141737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary In this paper, you will find recommendations on how to prevent post-weaning diarrhea in pigs kept in indoor pig herds. The recommendations are based on the scientific knowledge that is currently available. The authors first validated that Danish veterinarians working with pigs demanded such recommendations. Then, we collected papers written by other researchers who had summarized the scientific knowledge on different topics related to post-weaning diarrhea. From the papers, we extracted and synthesized 79 specific recommendations that may help veterinarians and pig producers make good decisions for their pig herd. The paper exemplifies a novel approach to summarizing and transferring science into practice that may be of interest to people that are not involved with pigs and post-weaning diarrhea. Abstract Aided by their advising veterinarians, pig producers need to make difficult decisions regarding herd health management strategies. For instance, the preventive use of antimicrobials and medicinal zinc oxide must be substituted with more sustainable preventive approaches to porcine post-weaning diarrhea. Veterinarians and pig producers may find assistance in knowledge based on evidence in this regard; however, the overwhelming scientific literature is not always readily available. The overall aim of this paper is to suggest herd health management decision-support tools that can aid veterinary-assisted decision making in the control of porcine post-weaning diarrhea at a tactical level. The first objective was to validate the need for a herd health management concept, including two decision-support tools. The second objective was to develop evidence-based recommendations that can aid veterinary-assisted decision-making for the herd health management of post-weaning diarrhea. The first objective was investigated by a questionnaire-based study among veterinary pig practitioners in Denmark. For the second objective, we conducted a scientific summary based on scientific review papers identified through a systematic search in three databases. From the papers, we synthesized and extracted 79 specific recommendations. In this paper, we report comprehensive evidence-based recommendations for the herd health management of post-weaning diarrhea.
Collapse
|
24
|
Vasquez R, Oh JK, Song JH, Kang DK. Gut microbiome-produced metabolites in pigs: a review on their biological functions and the influence of probiotics. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:671-695. [PMID: 35969697 PMCID: PMC9353353 DOI: 10.5187/jast.2022.e58] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022]
Abstract
The gastrointestinal tract is a complex ecosystem that contains a large number of microorganisms with different metabolic capacities. Modulation of the gut microbiome can improve the growth and promote health in pigs. Crosstalk between the host, diet, and the gut microbiome can influence the health of the host, potentially through the production of several metabolites with various functions. Short-chain and branched-chain fatty acids, secondary bile acids, polyamines, indoles, and phenolic compounds are metabolites produced by the gut microbiome. The gut microbiome can also produce neurotransmitters (such as γ-aminobutyric acid, catecholamines, and serotonin), their precursors, and vitamins. Several studies in pigs have demonstrated the importance of the gut microbiome and its metabolites in improving growth performance and feed efficiency, alleviating stress, and providing protection from pathogens. The use of probiotics is one of the strategies employed to target the gut microbiome of pigs. Promising results have been published on the use of probiotics in optimizing pig production. This review focuses on the role of gut microbiome-derived metabolites in the performance of pigs and the effects of probiotics on altering the levels of these metabolites.
Collapse
Affiliation(s)
- Robie Vasquez
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Ju Kyoung Oh
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Ji Hoon Song
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
25
|
Patience JF, Ramirez A. Invited review: strategic adoption of antibiotic-free pork production: the importance of a holistic approach. Transl Anim Sci 2022; 6:txac063. [PMID: 35854972 PMCID: PMC9278845 DOI: 10.1093/tas/txac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
The discovery of the use of antibiotics to enhance growth in the 1950s proved to be one of the most dramatic and influential in the history of animal agriculture. Antibiotics have served animal agriculture, as well as human and animal medicine, well for more than seven decades, but emerging from this tremendous success has been the phenomenon of antimicrobial resistance. Consequently, human medicine and animal agriculture are being called upon, through legislation and/or marketplace demands, to reduce or eliminate antibiotics as growth promotants and even as therapeutics. As explained in this review, adoption of antibiotic-free (ABF) pork production would represent a sea change. By identifying key areas requiring attention, the clear message of this review is that success with ABF production, also referred to as "no antibiotics ever," demands a multifaceted and multidisciplinary approach. Too frequently, the topic has been approached in a piecemeal fashion by considering only one aspect of production, such as the use of certain feed additives or the adjustment in health management. Based on the literature and on practical experience, a more holistic approach is essential. It will require the modification of diet formulations to not only provide essential nutrients and energy, but to also maximize the effectiveness of normal immunological and physiological capabilities that support good health. It must also include the selection of effective non-antibiotic feed additives along with functional ingredients that have been shown to improve the utility and architecture of the gastrointestinal tract, to improve the microbiome, and to support the immune system. This holistic approach will require refining animal management strategies, including selection for more robust genetics, greater focus on care during the particularly sensitive perinatal and post-weaning periods, and practices that minimize social and environmental stressors. A clear strategy is needed to reduce pathogen load in the barn, such as greater emphasis on hygiene and biosecurity, adoption of a strategic vaccine program and the universal adoption of all-in-all-out housing. Of course, overall health management of the herd, as well as the details of animal flows, cannot be ignored. These management areas will support the basic biology of the pig in avoiding or, where necessary, overcoming pathogen challenges without the need for antibiotics, or at least with reduced usage.
Collapse
Affiliation(s)
- John F Patience
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Iowa Pork Industry Center, Iowa State University, Ames, IA 50011-1178, USA
| | - Alejandro Ramirez
- College of Veterinary Medicine, University of Arizona, Oro Valley, AZ 85737, USA
| |
Collapse
|
26
|
Bekkelund DA, Kjos PNP, Øverland PM. Effects of dried chicory and Jerusalem artichoke on skatole-producing microbial populations of entire male pigs. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Shi H, Yang E, Yang H, Huang X, Zheng M, Chen X, Zhang J. Dynamic changes in the chemical composition and metabolite profiles of drumstick (Moringa oleifera Lam.) leaf flour during fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Ellner C, Wessels AG, Zentek J. Effects of Dietary Cereal and Protein Source on Fiber Digestibility, Composition, and Metabolic Activity of the Intestinal Microbiota in Weaner Piglets. Animals (Basel) 2022; 12:ani12010109. [PMID: 35011215 PMCID: PMC8749901 DOI: 10.3390/ani12010109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Rye and rapeseed meal can be alternative feed components for weaner piglets instead of wheat and soybean meal. Both components can help to meet current challenges in pig nutrition, such as increasingly dry weather conditions and the high amount of imported soybean. Since they contain more and differently composed fiber, effects on digestive physiology and intestinal microbiota might help to maintain gut health and prevent post-weaning diarrhea. This study shows that despite a similar composition of the large intestinal microbiota, the higher amount and solubility of complex carbohydrates from rye lead to a higher fermentative activity compared to wheat, which is considered a beneficial effect. The high amount of insoluble dietary fiber in rapeseed-based diets lowered bacterial metabolic activity and caused a shift toward insoluble fiber degrading bacteria. Abstract This study aimed to investigate the effect of fiber-rich rye and rapeseed meal (RSM) compared to wheat and soybean meal (SBM) on fiber digestibility and the composition and metabolic activity of intestinal microbiota. At weaning, 88 piglets were allocated to four feeding groups: wheat/SBM, wheat/RSM, rye/SBM, and rye/RSM. Dietary inclusion level was 48% for rye and wheat, 25% for SBM, and 30% for RSM. Piglets were euthanized after 33 days for collection of digesta and feces. Samples were analyzed for dry matter and non-starch-polysaccharide (NSP) digestibility, bacterial metabolites, and relative abundance of microbiota. Rye-based diets had higher concentrations of soluble NSP than wheat-based diets. RSM-diets were higher in insoluble NSP compared to SBM. Rye-fed piglets showed a higher colonic and fecal digestibility of NSP (p < 0.001, p = 0.001, respectively). RSM-fed piglets showed a lower colonic and fecal digestibility of NSP than SBM-fed piglets (p < 0.001). Rye increased jejunal and colonic concentration of short-chain fatty acids (SCFA) compared to wheat (p < 0.001, p = 0.016, respectively). RSM-fed pigs showed a lower jejunal concentration of SCFA (p = 0.001) than SBM-fed pigs. Relative abundance of Firmicutes was higher (p = 0.039) and of Proteobacteria lower (p = 0.002) in rye-fed pigs compared to wheat. RSM reduced Firmicutes and increased Actinobacteria (jejunum, colon, feces: p < 0.050), jejunal Proteobacteria (p = 0.019) and colonic Bacteroidetes (p = 0.014). Despite a similar composition of the colonic microbiota, the higher amount and solubility of NSP from rye resulted in an increased fermentative activity compared to wheat. The high amount of insoluble dietary fiber in RSM-based diets reduced bacterial metabolic activity and caused a shift toward insoluble fiber degrading bacteria. Further research should focus on host–microbiota interaction to improve feeding concepts with a targeted use of dietary fiber.
Collapse
|
29
|
Duarte ME, Kim SW. Intestinal microbiota and its interaction to intestinal health in nursery pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:169-184. [PMID: 34977387 PMCID: PMC8683651 DOI: 10.1016/j.aninu.2021.05.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/20/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota has gained increased attention from researchers within the swine industry due to its role in promoting intestinal maturation, immune system modulation, and consequently the enhancement of the health and growth performance of the host. This review aimed to provide updated scientific information on the interaction among intestinal microbiota, dietary components, and intestinal health of pigs. The small intestine is a key site to evaluate the interaction of the microbiota, diet, and host because it is the main site for digestion and absorption of nutrients and plays an important role within the immune system. The diet and its associated components such as feed additives are the main factors affecting the microbial composition and is central in stimulating a beneficial population of microbiota. The microbiota–host interaction modulates the immune system, and, concurrently, the immune system helps to modulate the microbiota composition. The direct interaction between the microbiota and the host is an indication that the mucosa-associated microbiota can be more effective in evaluating its effect on health parameters. It was demonstrated that the mucosa-associated microbiota should be evaluated when analyzing the interaction among diets, microbiota, and health. In addition, supplementation of feed additives aimed to promote the intestinal health of pigs should consider their roles in the modulation of mucosa-associated microbiota as biomarkers to predict the response of growth performance to dietary interventions.
Collapse
Affiliation(s)
- Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, United States
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, United States
| |
Collapse
|
30
|
Kobek-Kjeldager C, Schönherz AA, Canibe N, Pedersen LJ. Diet and microbiota-gut-brain axis in relation to tail biting in pigs: A review. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2021.105514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Yin L, Li J, Wang M, Wang Q, Li J, Ding N, Yang H, Yin Y. Dietary high protein-induced diarrhea and intestinal inflammation by activation of NF-κB signaling in piglets. ACTA ACUST UNITED AC 2021; 7:1070-1077. [PMID: 34738037 PMCID: PMC8546374 DOI: 10.1016/j.aninu.2021.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/09/2021] [Accepted: 05/19/2021] [Indexed: 01/29/2023]
Abstract
The present study aimed to investigate whether inflammation-associated responses in piglets are induced by high protein (HP) through activating nuclear factor kappa B (NF-κB) signaling. Sixteen piglets (35 d of age, Duroc × [Landrace × Yorkshire], weaned at d 21, initial BW = 9.70 ± 0.11 kg) were allocated to 18% and 26% CP (HP group) at random, comprising 8 replicate pens per treatment. The piglets were slaughtered to collect intestinal tissues when apparent, persistent, and stable diarrhea syndromes happened (on d 12). No significant differences were observed in their growth performance (P > 0.05), but reduction by 19.11%, 25.31%, 23.64% of ADFI, ADG, and G:F, respectively was detected in the HP group. The HP group had greater (P = 0.002) diarrhea rates. Furthermore, dietary HP had lower ileal villus height (VH; P = 0.048), ratio of villus height to crypt depth (VH/CD ratio; P = 0.016), and colonic CD (P = 0.034), as well as had the trend (P = 0.075) to reduce the ileal villus absorptive area. Moreover, HP diets significantly elevated the goblet cell numbers in the ileal villi (P = 0.016) and colonic crypts (P < 0.001) and up-regulated (P = 0.012) the mRNA expression of mucin2 (Muc2) in the ileum. In addition, HP diets increased the myeloperoxidase concentration in the ileum (P = 0.002) and colon (P = 0.007) of piglets. Dietary HP significantly down-regulated the mRNA expression of tumor necrosis factor-α (TNF-α; P < 0.001) in the ileum, induced nitric oxide synthase (iNOS; P = 0.040) and interleukin-22 (IL-22; P = 0.008) in the colon, and inclined to down-regulate interleukin-1β (IL-1β; P = 0.076) expression in the colon. The relative protein abundance of Galectin-3 (P = 0.046) in the colon and the ratio of phosphorylation NF-κB to NF-κB (p-NF-κB/NF-κB ratio) in the ileum of HP piglets were also greater (P = 0.038). These results suggest that dietary HP may cause diarrhea in piglets by activating NF-κB signaling induced intestinal inflammation.
Collapse
Affiliation(s)
- Lanmei Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jun Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong Biological Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Zhangzhou 363000, China
| | - Meiwei Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Qiye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Nengshui Ding
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong Biological Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Zhangzhou 363000, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
32
|
Xia J, Fan H, Yang J, Song T, Pang L, Deng H, Ren Z, Deng J. Research progress on diarrhoea and its mechanism in weaned piglets fed a high-protein diet. J Anim Physiol Anim Nutr (Berl) 2021; 106:1277-1287. [PMID: 34719816 DOI: 10.1111/jpn.13654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 07/06/2021] [Accepted: 08/25/2021] [Indexed: 12/01/2022]
Abstract
In order to pursue faster growth and development of weaned piglets, increased dietary protein (CP) levels were favoured by the pig industry and the feed industry. The digestive organs of piglets were not fully developed at weaning, and the digestive absorption capacity of protein was limited. High-protein diets can cause allergic reactions in piglets, destroy intestinal structural integrity, reduce immunity, and cause intestinal flora imbalance. Undigested proteins were prone to produce toxic substances, such as ammonia and biogenic amines, after fermentation in the hindgut, which negatively affects the health of the intestine and eventually causes reduced growth performance and diarrhoea in piglets. This review revealed the mechanism of diarrhoea caused by high-protein diets in weaned piglets and provided ideas for preventing diarrhoea in weaned piglets.
Collapse
Affiliation(s)
- Jiangying Xia
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haoyue Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ju Yang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tianhao Song
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lianfeng Pang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huidan Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhihua Ren
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Junliang Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Luise D, Chalvon-Demersay T, Lambert W, Bosi P, Trevisi P. Meta-analysis to evaluate the impact of the reduction of dietary crude protein on the gut health of post-weaning pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1952911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | | | | | - Paolo Bosi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
34
|
Effects of Different Fermented Feeds on Production Performance, Cecal Microorganisms, and Intestinal Immunity of Laying Hens. Animals (Basel) 2021; 11:ani11102799. [PMID: 34679821 PMCID: PMC8532698 DOI: 10.3390/ani11102799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Fermented feed exerts beneficial effects on intestinal microorganisms, host health, and production performance. However, the effect of fermented feed on laying hens is uncertain due to the different types of inoculated probiotics, fermentation substrates, and fermentation technology. Hence, this experiment was conducted to investigate the effects of fermented feed with different compound strains on the performance and intestinal health of laying hens. Supplement fermented feed reduced the feed conversion ratio and promoted egg quality. Both dietary treatment (fermented feed A produced Bacillus subtilis, Lactobacillus, and Yeast and fermented feed B produced by C. butyricum and L. salivarius) influenced intestinal immunity and regulated cecal microbial structure. This may be because the metabolites of microorganisms in fermented feed and the reduced pH value inhibited the colonization of harmful bacteria, improved the intestinal morphology, and then had a positive impact on the production performance and albumen quality of laying hens. Abstract This experiment was conducted to investigate the effects of different compound probiotics on the performance, cecal microflora, and intestinal immunity of laying hens. A total of 270 Jing Fen No.6 (22-week-old) were randomly divided into 3 groups: basal diet (CON); basal diet supplemented with 6% fermented feed A by Bacillussubtilis,Lactobacillus, and Yeast (FA); and with 6% fermented feed B by C. butyricum and L. salivarius (FB). Phytic acid, trypsin inhibitor, β-glucan concentrations, and pH value in fermented feed were lower than the CON group (p < 0.05). The feed conversion ratio (FCR) in the experimental groups was decreased, while albumen height and Haugh unit were increased, compared with the CON group (p < 0.05). Fermented feed could upregulate the expression of the signal pathway (TLR4/MyD88/NF-κB) to inhibit mRNA expression of pro-inflammatory cytokines (p < 0.05). Fermented feed promoted the level of Romboutsia (in the FA group) Butyricicoccus (in the FB group), and other beneficial bacteria, and reduced opportunistic pathogens, such as Enterocooccus (p < 0.05). Spearman’s correlations showed that the above bacteria were closely related to albumen height and intestinal immunity. In summary, fermented feed can decrease the feed conversion ratio, and improve the performance and intestinal immunity of laying hens, which may be related to the improvement of the cecal microflora structure.
Collapse
|
35
|
Rajković E, Schwarz C, Tischler D, Schedle K, Reisinger N, Emsenhuber C, Ocelova V, Roth N, Frieten D, Dusel G, Gierus M. Potential of Grape Extract in Comparison with Therapeutic Dosage of Antibiotics in Weaning Piglets: Effects on Performance, Digestibility and Microbial Metabolites of the Ileum and Colon. Animals (Basel) 2021; 11:ani11102771. [PMID: 34679793 PMCID: PMC8532789 DOI: 10.3390/ani11102771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Diarrhea as a symptom of different enteric infections leads to poor animal health and performance at weaning, followed by economic losses. Phytogenic feed additives, e.g., grape extracts, have shown antimicrobial and anti-inflammatory properties and these might have beneficial effects on growth trends of weaning piglets and, thereby, potentially reduce the need for antibiotic treatments following weaning. An 8-week feeding trial investigated the potential effects of grape extract (GE) in a model with a negative control (NC) and positive control (PC; antibiotic treatment). Despite no changes in animal performance, dietary GE improved the digestibility of selected nutrients at the same, or even at higher level, as PC. Additionally, there was no clear effect of dietary intervention on the microbial metabolites from the ileum and colon at the end of the trial. These results indicated beneficial effects of GE compared to antibiotic treatment, as often applied at weaning. Abstract Enteric diseases in piglets, such as post-weaning diarrhea (PWD), often require antibiotic treatment of the entire litter. Grape polyphenols may help overcome PWD and thereby reduce the need for antibiotics. The potential of a grape extract (GE; continuous in-feed supplementation) on performance of weaning piglets, compared with both negative (NC; corn-based diet) and positive control (PC; NC + in-feed antibiotic (amoxicillin) in a therapeutic dosage for day 1–day 5 post weaning) was assessed. Apparent total tract digestibility (ATTD) and microbial metabolites were also evaluated on two sampling points (day 27/28 and day 55/56). We assigned 180 weaning piglets (6.9 ± 0.1 kg body weight (BW)) to 6 male and 6 female pens per treatment with 5 piglets each. Animals from PC showed higher BW on day 13 compared with NC and GE, and a tendency for higher BW on day 56 (p = 0.080) compared to NC. Furthermore, PC increased the average daily feed intake in the starter phase (day 1–day 13), and the average daily gain in the early grower phase (day 14–day 24). Overall, GE improved the ATTD at the same level as PC (ash, acid-hydrolyzed ether extract), or at a higher level than PC (dry matter, organic matter, gross energy, crude protein, P). There were no effects on microbial metabolites apart from minor trends for lactic acid and ammonia. Dietary inclusion of GE may have beneficial effects compared to therapeutic antibiotics, as frequently used at weaning.
Collapse
Affiliation(s)
- Emina Rajković
- FFoQSI GmbH—Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria; (E.R.); (D.T.)
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria; (K.S.); (M.G.)
| | - Christiane Schwarz
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria; (K.S.); (M.G.)
- Correspondence: ; Tel.: +43-1-47654-97615
| | - David Tischler
- FFoQSI GmbH—Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria; (E.R.); (D.T.)
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria; (K.S.); (M.G.)
| | - Karl Schedle
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria; (K.S.); (M.G.)
| | | | | | | | - Nataliya Roth
- BIOMIN Holding GmbH, 3131 Getzersdorf, Austria; (V.O.); (N.R.)
| | - Dörte Frieten
- Department of Animal Nutrition, University of Applied Sciences, 55411 Bingen am Rhein, Germany; (D.F.); (G.D.)
| | - Georg Dusel
- Department of Animal Nutrition, University of Applied Sciences, 55411 Bingen am Rhein, Germany; (D.F.); (G.D.)
| | - Martin Gierus
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria; (K.S.); (M.G.)
| |
Collapse
|
36
|
Crude protein and lactose effects on performance, intestinal and immune function of piglets fed diets without antimicrobials growth promoters. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Van Liefferinge E, Müller M, Van Noten N, Degroote J, Niknafs S, Roura E, Michiels J. Cinnamaldehyde Induces Release of Cholecystokinin and Glucagon-Like Peptide 1 by Interacting with Transient Receptor Potential Ankyrin 1 in a Porcine Ex-Vivo Intestinal Segment Model. Animals (Basel) 2021; 11:2262. [PMID: 34438718 PMCID: PMC8388503 DOI: 10.3390/ani11082262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Cinnamaldehyde and capsaicin have been reported to exert effects on the gastric function, mediated by the interaction with transient receptor potential ankyrin channel 1 (TRPA1) and transient receptor potential vanilloid channel 1 (TRPV1), respectively. This study examined whether these compounds could trigger the release of cholecystokinin (CCK) and/or glucagon-like peptide 1 (GLP-1) in the pig's gut in a porcine ex-vivo intestinal segment model. Furthermore, it was verified whether this response was mediated by TRPA1 or TRPV1 by using the channel's antagonist. These gut peptides play a key role in the "intestinal brake", a feedback mechanism that influences the function of proximal parts of the gut. Structural analogues of cinnamaldehyde were screened as well, to explore structure-dependent activation. Results showed a significant effect of capsaicin on GLP-1 release in the proximal small intestine, TRPV1 independent. TRPA1 showed to be strongly activated by cinnamaldehyde, both in proximal and distal small intestine, evidenced by the release of CCK and GLP-1, respectively. Out of all structural derivates, cinnamaldehyde showed the highest affinity for TRPA1, which elucidates the importance of the α,β-unsaturated aldehyde moiety. In conclusion, cinnamaldehyde as a TRPA1 agonist, is a promising candidate to modulate gastric function, by activating intestinal brake mechanisms.
Collapse
Affiliation(s)
- Elout Van Liefferinge
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (J.M.)
| | - Maximiliano Müller
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.M.); (S.N.); (E.R.)
| | - Noémie Van Noten
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (J.M.)
| | - Jeroen Degroote
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (J.M.)
| | - Shahram Niknafs
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.M.); (S.N.); (E.R.)
| | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.M.); (S.N.); (E.R.)
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (J.M.)
| |
Collapse
|
38
|
Mayorga EJ, Horst EA, Al-Qaisi M, Goetz BM, Abeyta MA, Rodríguez-Jiménez S, Lei S, Acosta JA, Patience JF, Serao MCR, Baumgard LH. Effects of continuously infusing glucose or casein into the terminal ileum on biomarkers of metabolism, inflammation, and intestinal morphology in growing pigs. J Anim Sci 2021; 99:skab163. [PMID: 34015122 PMCID: PMC8280934 DOI: 10.1093/jas/skab163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
Study objectives were to determine the effects of continuously infusing glucose (GLC) or casein (CAS) into the terminal ileum on biomarkers of metabolism, inflammation, and intestinal morphology in growing pigs. Crossbred gilts (n = 19; 81 ± 3 kg body weight [BW]) previously fitted with T-cannulas at terminal ileum were used in the current experiment. Following 4 d of acclimation, pigs were enrolled in 2 experimental 4-d periods (P). During P1, pigs were housed in individual pens and fed ad libitum for collection of baseline parameters. At the beginning of P2, pigs were assigned to 1 of 3 infusion treatments: 1) control (CON; water; 3 liters/d; n = 7), 2) GLC (dextrose 50%; 500 g/d; n = 6;), or 3) CAS (casein sodium salt; 300 g/d; n = 6). Water, GLC, and CAS solutions were continuously infused at a rate of 125 mL/h for the entirety of P2. Animals were euthanized at the end of P2, and intestinal tissue was collected. During P2, average daily feed intake differed across treatments and was reduced in GLC compared with CON pigs (14%), while CAS pigs consumed an intermediate amount (P = 0.05). Average daily gain and final BW were similar across treatments. A treatment by time interaction was observed for blood urea nitrogen (BUN; P < 0.01), as it decreased in GLC (21%) while it gradually increased in CAS (76%) pigs relative to CON pigs. Mild hyperthermia occurred with both GLC and CAS infusions relative to CON (+0.3 and 0.2 °C, respectively; P < 0.01). Blood neutrophils increased in CAS relative to CON pigs (26%) but remained similar between CON and GLC treatments (P < 0.01). Blood monocytes decreased in GLC relative to CON pigs (24%) while CAS pigs had an intermediate value (P = 0.03). Circulating lipopolysaccharide binding protein tended to decrease in GLC (29%) relative to CON pigs but remained similar between CON and CAS pigs (P = 0.10). Plasma tumor necrosis factor-alpha was similar across treatments. Ileum villus height:crypt depth was increased in CAS compared with CON pigs (33%; P = 0.05) while GLC pigs had an intermediate value. Colon myeloperoxidase-stained area increased in CAS compared with CON pigs (45%; P = 0.03) but remained similar between GLC and CON pigs. In summary, continuously infusing GLC or CAS into the terminal ileum appeared to stimulate a mild immune response and differently altered BUN patterns but had little or no effects on blood inflammatory markers, intestinal morphology, or key production parameters.
Collapse
Affiliation(s)
- Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Erin A Horst
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Mohmmad Al-Qaisi
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Brady M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Megan A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Samantha Lei
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jesus A Acosta
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
39
|
Mineral Phosphorus Supply in Piglets Impacts the Microbial Composition and Phytate Utilization in the Large Intestine. Microorganisms 2021; 9:microorganisms9061197. [PMID: 34205896 PMCID: PMC8227959 DOI: 10.3390/microorganisms9061197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
A sufficient supply of phosphorus (P) to pigs in livestock farming is based on the optimal use of plant-based phytate and mineral P supplements to ensure proper growth processes and bone stability. However, a high P supplementation might bear the risk of higher environmental burden due to the occurrence of excess P and phytate degradation products in manure. In this context, the intestinal microbiota is of central importance to increase P solubility, to employ non-mineral P by the enzymatic degradation of phytate, and to metabolize residual P. A feeding experiment was conducted in which piglets were fed diets with different P levels, resulting in three groups with low, medium (covering requirements), and high concentrations of available P. Samples from caecum and colon digesta were analysed for microbial composition and phytate breakdown to estimate the microbial contribution to metabolize P sources. In terms of identified operational taxonomic units (OTU), caecum and colon digesta under the three feeding schemes mainly overlap in their core microbiome. Nevertheless, different microbial families correlate with increased dietary P supply. Specifically, microbes of Desulfovibrionaceae, Pasteurellaceae, Anaerovoracaceae, and Methanobacteriaceae were found significantly differentially abundant in the large intestine across the dietary treatments. Moreover, members of the families Veillonellaceae, Selenomonadaceae, and Succinivibrionaceae might contribute to the observed phytate degradation in animals fed a low P diet. In this sense, the targeted manipulation of the intestinal microbiota by feeding measures offers possibilities for the optimization of intestinal phytate and P utilization.
Collapse
|
40
|
Wellington MO, Agyekum AK, Van Kessel AG. Microbial sensing in the neonatal pig gut: effect of diet-independent and diet-dependent factors 1. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is considerable agreement that the gastrointestinal microbiota contributes to the performance and health of the neonate, and this relationship includes an ability of the host animal to “sense” changes in the microbial community. Identifying the mechanisms used by the host to sense microbiota is one approach to developing methods to manipulate the microbiota to improve pig health and performance. Diet-independent microbial products are molecules unique to the microbial community and sensed by host pattern recognition receptors stimulating inflammation. Common among all members of the microbial community, their presence is unaffected by diet, but the nature of the response does depends on factors affecting the microenvironment in which the molecule is detected. Diet-dependent microbial products arise as products of fermentation of dietary components and include short-chain fatty acids, ammonia, phenols, hydrogen sulfide, amines, and many other compounds. A plethora of sensing mechanisms exists that include enzymatic metabolism as well as membrane receptors that have evolved to respond to microbial products (e.g., short-chain fatty acid receptors), or simply cross-react with microbial products. This review focuses on host mechanisms used to sense the intestinal microbiota and attempts to establish practical considerations for neonatal gut health based on current understanding.
Collapse
Affiliation(s)
- Michael O. Wellington
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Atta K. Agyekum
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870, Frederiksberg C, Denmark
| | - Andrew G. Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
41
|
Chalvon-Demersay T, Luise D, Le Floc'h N, Tesseraud S, Lambert W, Bosi P, Trevisi P, Beaumont M, Corrent E. Functional Amino Acids in Pigs and Chickens: Implication for Gut Health. Front Vet Sci 2021; 8:663727. [PMID: 34113671 PMCID: PMC8185281 DOI: 10.3389/fvets.2021.663727] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
In pigs and broiler chickens, the gastrointestinal tract or gut is subjected to many challenges which alter performance, animal health, welfare and livability. Preventive strategies are needed to mitigate the impacts of these challenges on gut health while reducing the need to use antimicrobials. In the first part of the review, we propose a common definition of gut health for pig and chickens relying on four pillars, which correspond to the main functions of the digestive tract: (i) epithelial barrier and digestion, (ii) immune fitness, (iii) microbiota balance and (iv) oxidative stress homeostasis. For each pillar, we describe the most commonly associated indicators. In the second part of the review, we present the potential of functional amino acid supplementation to preserve and improve gut health in piglets and chickens. We highlight that amino acid supplementation strategies, based on their roles as precursors of energy and functional molecules, as signaling molecules and as microbiota modulators can positively contribute to gut health by supporting or restoring its four intertwined pillars. Additional work is still needed in order to determine the effective dose of supplementation and mode of administration that ensure the full benefits of amino acids. For this purpose, synergy between amino acids, effects of amino acid-derived metabolites and differences in the metabolic fate between free and protein-bound amino acids are research topics that need to be furtherly investigated.
Collapse
Affiliation(s)
| | - Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | | | | | | | - Paolo Bosi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Martin Beaumont
- GenPhySE, Université De Toulouse, INRAE, ENVT, Toulouse, France
| | | |
Collapse
|
42
|
Towards Zero Zinc Oxide: Feeding Strategies to Manage Post-Weaning Diarrhea in Piglets. Animals (Basel) 2021; 11:ani11030642. [PMID: 33670980 PMCID: PMC7997240 DOI: 10.3390/ani11030642] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Zinc oxide (ZnO) supplementation at pharmacological doses in post-weaning piglets is a consolidated practice that allows efficient control of post-weaning diarrhea (PWD), a condition exacerbated by Escherichia coli F4 (K88) infections. Far from being completely elucidated, the multifactorial ZnO mechanism of action is in all likelihood exerted at the gastrointestinal level. However, increasing environmental concerns are arising from prolonged ZnO use. This article reviews the utilization of ZnO in piglets, the biological rationale behind its powerful activity, and the emerging threats that are leading towards a significant reduction in its use. Finally, a wide analysis of the strengths and weaknesses of innovative alternative strategies to manage PWD at the nutritional level is given. Abstract Zinc oxide (ZnO) at pharmacological doses is extensively employed in the pig industry as an effective tool to manage post-weaning diarrhea (PWD), a condition that causes huge economic losses because of its impact on the most pivotal phase of a piglet’s production cycle. In a multifactorial way, ZnO exerts a variety of positive effects along the entire gastrointestinal tract by targeting intestinal architecture, digestive secretions, antioxidant systems, and immune cells. ZnO also has a moderate antibacterial effect against Escherichia coli F4 (K88), the main causative agent of PWD. However, the environmental impact of ZnO and new emerging threats are posing serious questions to the sustainability of its extensive utilization. To work towards a future free from pharmacological ZnO, novel nutritional approaches are necessary, and many strategies have been investigated. This review article provides a comprehensive framework for ZnO utilization and its broad mode of action. Moreover, all the risks related to pharmacological ZnO levels are presented; we focus on European institutions’ decisions subsequently. The identification of a novel, complete solution against PWD should be accompanied by the adoption of holistic strategies, thereby combining good management practices to feeding approaches capable of mitigating Escherichia coli F4 (K88) infections and/or lowering ZnO utilization. Promising results can be obtained by adjusting diet composition or employing organic acids, natural identical compounds, polyphenol-rich extracts, prebiotics, and probiotics.
Collapse
|
43
|
Importance of gastrointestinal in vitro models for the poultry industry and feed formulations. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Van Liefferinge E, Van Noten N, Degroote J, Vrolix G, Van Poucke M, Peelman L, Van Ginneken C, Roura E, Michiels J. Expression of Transient Receptor Potential Ankyrin 1 and Transient Receptor Potential Vanilloid 1 in the Gut of the Peri-Weaning Pig Is Strongly Dependent on Age and Intestinal Site. Animals (Basel) 2020; 10:ani10122417. [PMID: 33348615 PMCID: PMC7766004 DOI: 10.3390/ani10122417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Weaning is a critical event for the piglet, contributing to aberrant gut function and resulting in reduced barrier function and retarded protein digestion. The gut is able to “sense” nutrients and release gut hormones to regulate digestive processes. To that end, various gastrointestinal cell types possess transient receptor potential channels that are involved in regulating gastric motility and secretion. Herbal compounds, currently used in pig nutrition as antibiotic alternatives, are able to activate these channels and could potentially aid digestion. However, these channels have not been characterized in the gut of the pig and their ability to release gut hormones has never been explored. This study’s objective was to characterize TRPA1 and TRPV1 in the pig’s gut and explore their potential to modulate gastric function. A gene expression study was performed on tissues obtained from different locations in the guts of piglets of varying age. Moreover, the ability to secrete peptide hormones was investigated by characterizing them on enteroendocrine cells. Both channels were found to be expressed in the mucosa of the porcine gut, strongly dependent on age and location. Moreover, the endocrine nature of both channels was confirmed, indicating their possible role in gut hormone release and the regulation of gastric emptying. Abstract Transient receptor potential (TRP) channels contribute to sensory transduction in the body, agonized by a variety of stimuli, such as phytochemicals, and they are predominantly distributed in afferent neurons. Evidence indicates their expression in non-neuronal cells, demonstrating their ability to modulate gastrointestinal function. Targeting TRP channels could potentially be used to regulate gastrointestinal secretion and motility, yet their expression in the pig is unknown. This study investigated TRPA1 and TRPV1 expression in different gut locations of piglets of varying age. Colocalization with enteroendocrine cells was established by immunohistochemistry. Both channels were expressed in the gut mucosa. TRPV1 mRNA abundance increased gradually in the stomach and small intestine with age, most notably in the distal small intestine. In contrast, TRPA1 exhibited sustained expression across ages and locations, with the exception of higher expression in the pylorus at weaning. Immunohistochemistry confirmed the endocrine nature of both channels, showing the highest frequency of colocalization in enteroendocrine cells for TRPA1. Specific co-localization on GLP-1 immunoreactive cells indicated their possible role in GLP-1 release and the concomitant intestinal feedback mechanism. Our results indicate that TRPA1 and TRPV1 could play a role in gut enteroendocrine activity. Moreover, age and location in the gut significantly affected gene expression.
Collapse
Affiliation(s)
- Elout Van Liefferinge
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (J.M.)
- Correspondence: ; Tel.: +32-0498-604-126
| | - Noémie Van Noten
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (J.M.)
| | - Jeroen Degroote
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (J.M.)
| | - Gunther Vrolix
- Department of Veterinary Medicine, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2000 Antwerp, Belgium; (G.V.); (C.V.G.)
| | - Mario Van Poucke
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, 9000 Ghent, Belgium; (M.V.P.); (L.P.)
| | - Luc Peelman
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, 9000 Ghent, Belgium; (M.V.P.); (L.P.)
| | - Chris Van Ginneken
- Department of Veterinary Medicine, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2000 Antwerp, Belgium; (G.V.); (C.V.G.)
| | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia 4072, Australia;
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (J.M.)
| |
Collapse
|
45
|
González-Solé F, Criado-Mesas L, Villodre C, García WC, Farré M, Borda E, Pérez-Cano FJ, Folch JM, Solà-Oriol D, Pérez JF. Porcine Digestible Peptides (PDP) in Weanling Diets Regulates the Expression of Genes Involved in Gut Barrier Function, Immune Response and Nutrient Transport in Nursery Pigs. Animals (Basel) 2020; 10:ani10122368. [PMID: 33321976 PMCID: PMC7763307 DOI: 10.3390/ani10122368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Porcine digestive peptides (PDP) are a coproduct of the heparin industry obtained from the enzymatic hydrolysis of porcine intestinal mucosa. They have proven to be a valid substitute for other high quality dietary protein sources for piglets, like spray-dried plasma (SDP), but knowledge about their influence on intestinal function is still scarce. This study found that substituting soybean ingredients with PDP and SDP to the diets of weaned piglets increased growth rate at 14 d post-weaning. In addition, the combination of PDP with SDP increased the expression of certain genes related to intestinal function in the jejunum, which suggests that this combination might have functional properties that contribute to improving the intestinal health of the pigs, although more research is needed to confirm it. Abstract This study was conducted to investigate the effects of dietary supplementation of porcine digestible peptides (PDP), spray-dried plasma (SDP), or a combination of both, on growth performance and the expression of genes related to intestinal function of weaned pigs. A total of 180 piglets (trial 1) and 198 piglets (trial 2) were used to evaluate the partial substitution of soybean ingredients with 2% SDP or 2% PDP (trial 1), and with 3% SDP or the combination of 1% SDP and 2% PDP (SDP-PDP; trial 2) during the pre-starter period (0–14 days). The gene expression of 56 genes was quantified in a qPCR platform in jejunum and ileum samples obtained from piglets 14 d after weaning (trial 2). Piglets fed SDP, PDP and SDP-PDP had a higher body weight (BW), average daily gain (ADG) and feed efficiency (G:F) than the soybean control on day 14 (p < 0.05). In addition, the combination of SDP and PDP upregulated ten genes in jejunum samples (p < 0.05) related to intestinal function. More research is needed to confirm that gene expression upregulation by PDP in combination with SDP has an impact on intestinal function and to elucidate its underlying mechanisms.
Collapse
Affiliation(s)
- Francesc González-Solé
- Department of Animal and Food Sciences, Animal Nutrition and Welfare Service, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (F.G.-S.); (C.V.); (W.C.G.); (J.M.F.); (J.F.P.)
| | - Lourdes Criado-Mesas
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Bellaterra, Spain;
| | - Carmen Villodre
- Department of Animal and Food Sciences, Animal Nutrition and Welfare Service, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (F.G.-S.); (C.V.); (W.C.G.); (J.M.F.); (J.F.P.)
| | - Wellington C. García
- Department of Animal and Food Sciences, Animal Nutrition and Welfare Service, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (F.G.-S.); (C.V.); (W.C.G.); (J.M.F.); (J.F.P.)
- Department of Animal Production, Agrarian University of Ecuador, Guayaquil 090108, Ecuador
| | - Mercè Farré
- Department of Mathematics, Area of Statistics and Operations Research, Autonomous University of Barcelona, 08193 Bellaterra, Spain;
| | - Elisabet Borda
- R&D Animal Nutrition Department, Bioiberica S.A.U., 08389 Palafolls, Spain;
| | - Francisco J. Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain;
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Josep M. Folch
- Department of Animal and Food Sciences, Animal Nutrition and Welfare Service, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (F.G.-S.); (C.V.); (W.C.G.); (J.M.F.); (J.F.P.)
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Bellaterra, Spain;
| | - David Solà-Oriol
- Department of Animal and Food Sciences, Animal Nutrition and Welfare Service, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (F.G.-S.); (C.V.); (W.C.G.); (J.M.F.); (J.F.P.)
- Correspondence:
| | - José F. Pérez
- Department of Animal and Food Sciences, Animal Nutrition and Welfare Service, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (F.G.-S.); (C.V.); (W.C.G.); (J.M.F.); (J.F.P.)
| |
Collapse
|
46
|
Zhang H, van der Wielen N, van der Hee B, Wang J, Hendriks W, Gilbert M. Impact of Fermentable Protein, by Feeding High Protein Diets, on Microbial Composition, Microbial Catabolic Activity, Gut Health and beyond in Pigs. Microorganisms 2020; 8:microorganisms8111735. [PMID: 33167470 PMCID: PMC7694525 DOI: 10.3390/microorganisms8111735] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 11/04/2020] [Indexed: 01/01/2023] Open
Abstract
In pigs, high protein diets have been related to post-weaning diarrhoea, which may be due to the production of protein fermentation metabolites that were shown to have harmful effects on the intestinal epithelium in vitro. In this review, we discussed in vivo effects of protein fermentation on the microbial composition and their protein catabolic activity as well as gut and overall health. The reviewed studies applied different dietary protein levels, which was assumed to result in contrasting fermentable protein levels. A general shift to N-utilisation microbial community including potential pathogens was observed, although microbial richness and diversity were not altered in the majority of the studies. Increasing dietary protein levels resulted in higher protein catabolic activity as evidenced by increased concentration of several protein fermentation metabolites like biogenic amines in the digesta of pigs. Moreover, changes in intestinal morphology, permeability and pro-inflammatory cytokine concentrations were observed and diarrhoea incidence was increased. Nevertheless, higher body weight and average daily gain were observed upon increasing dietary protein level. In conclusion, increasing dietary protein resulted in higher proteolytic fermentation, altered microbial community and intestinal physiology. Supplementing diets with fermentable carbohydrates could be a promising strategy to counteract these effects and should be further investigated.
Collapse
Affiliation(s)
- Hanlu Zhang
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands; (H.Z.); (N.v.d.W.); (W.H.)
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Nikkie van der Wielen
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands; (H.Z.); (N.v.d.W.); (W.H.)
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bart van der Hee
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands;
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Wouter Hendriks
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands; (H.Z.); (N.v.d.W.); (W.H.)
| | - Myrthe Gilbert
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands; (H.Z.); (N.v.d.W.); (W.H.)
- Correspondence:
| |
Collapse
|
47
|
Yuan D, Wang J, Xiao D, Li J, Liu Y, Tan B, Yin Y. Eucommia ulmoides Flavones as Potential Alternatives to Antibiotic Growth Promoters in a Low-Protein Diet Improve Growth Performance and Intestinal Health in Weaning Piglets. Animals (Basel) 2020; 10:E1998. [PMID: 33143126 PMCID: PMC7694009 DOI: 10.3390/ani10111998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
Abstract
Eucommia ulmoides flavones (EUF) have been demonstrated to attenuate the inflammation and oxidative stress of piglets. This study aimed to test whether EUF could be used as an alternative antibiotic growth promoter to support growth performance and maintain intestinal health in weanling piglets. Weaned piglets (n = 480) were assigned into three groups and fed with a low-protein basal diet (NC), or supplementation with antibiotics (PC) or 0.01% EUF (EUF). Blood, intestinal contents, and intestine were collected on days 15 and 35 after weaning. The results showed the PC and EUF supplementations increased (p < 0.05) body weight on day 35, average daily gain and gain: feed ratio from day 15 to day 35 and day 0 to day 35, whereas decreased (p < 0.05) the diarrhea index of weanling piglets. EUF treatment increased (p < 0.05) jejunal villus height: crypt depth ratio, jejunal and ileal villus height, and population of ileal lactic acid bacteria on day 15 but decreased (p < 0.05) the population of ileal coliform bacteria on day 15 and day 35. These findings indicated the EUF, as the potential alternative to in-feed antibiotic growth promoter, could improve growth performance and intestinal morphology, and decrease colonization of coliform bacteria and diarrhea index in weanling piglets.
Collapse
Affiliation(s)
- Daixiu Yuan
- Department of Medicine, Jishou University, Jishou 416000, China;
| | - Jing Wang
- Department of Animal Science, Hunan Agricultural University, Changsha 410000, China; (D.X.); (B.T.)
- Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Dingfu Xiao
- Department of Animal Science, Hunan Agricultural University, Changsha 410000, China; (D.X.); (B.T.)
| | - Jiefeng Li
- Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA;
| | - Bie Tan
- Department of Animal Science, Hunan Agricultural University, Changsha 410000, China; (D.X.); (B.T.)
- Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| |
Collapse
|
48
|
Rattigan R, Sweeney T, Vigors S, Rajauria G, O'Doherty JV. Effects of reducing dietary crude protein concentration and supplementation with laminarin or zinc oxide on the faecal scores and colonic microbiota in newly weaned pigs. J Anim Physiol Anim Nutr (Berl) 2020; 104:1471-1483. [PMID: 32767416 DOI: 10.1111/jpn.13428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022]
Abstract
A 2 × 3 factorial design experiment was conducted to examine the effects of reducing dietary crude protein (CP) concentration and/or supplementation with zinc oxide (ZnO) or laminarin on faecal scores (FS) and the large intestinal microbiota post-weaning (PW). One hundred and forty-four pigs were assigned to (T1) 21% standard CP diet (SCP); (T2) SCP + ZnO (SCP ZnO); (T3) SCP + laminarin (SCP LAM); (T4) 18% low CP diet (LCP); (T5) LCP + ZnO (LCP ZnO); and (T6) LCP + laminarin (LCP LAM; n = 8 replicates/treatment). The LCP diet had no effect on FS (p > .05), it increased two measures of alpha diversity, reduced Bacteroidetes and increased Enterobacteriaceae and Helicobacteraceae in the colon relative to the SCP diet (p < .05). ZnO supplementation reduced FS and increased Ruminococcaceae compared with unsupplemented pigs (p < .05). ZnO supplementation increased the genera Frisingicoccus (p < .001), Lachnoclostridium (p < .05) and Peptoclostridium (p < .05) in the colon and reduced total caecal volatile fatty acids (VFA) concentrations compared with the unsupplemented and laminarin-supplemented pigs. Laminarin supplementation reduced FS compared with unsupplemented pigs but had no major effect on the microbiota compared with the unsupplemented pigs. There were CP concentration × additive interactions on both Firmicutes and Proteobacteria. Firmicutes were increased in the LCP ZnO group compared with the LCP group, but there was no difference between the SCP groups. Proteobacteria were reduced in the LCP ZnO group compared with the LCP and LCP LAM groups (p < .05), but there was no difference between the SCP groups. In conclusion, reducing CP did not improve FS; it increased the relative abundance of Enterobacteriaceae; however, it also increased bacterial diversity. Supplementation with ZnO and laminarin improved FS, although all groups had scores within the healthy range. ZnO altered the large intestinal microbiota and VFA concentrations; however, laminarin did not enhance these parameters, suggesting these compounds have differing modes of action.
Collapse
Affiliation(s)
- Ruth Rattigan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Stafford Vigors
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Gaurav Rajauria
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - John V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
49
|
Li Y, Guo B, Wu Z, Wang W, Li C, Liu G, Cai H. Effects of Fermented Soybean Meal Supplementation on the Growth Performance and Cecal Microbiota Community of Broiler Chickens. Animals (Basel) 2020; 10:ani10061098. [PMID: 32630490 PMCID: PMC7341335 DOI: 10.3390/ani10061098] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Microbial fermentation is considered an economically viable processing technique to reduce the content of anti-nutritional factors and improve the nutritional quality of soybean meal (SBM). Fermented soybean meal (FSBM) exerts beneficial effects on the growth performance, carcass traits, and meat quality of broilers. However, there is very little information on the effects of FSBM on cecal microbial composition and diversity in broilers. Hence, this trial is conducted to investigate the effects of the partial replacement of SBM with FSBM in the diet on growth performance and cecal microflora of broilers. Replacing 25% of the SBM in the diet of broilers with FSBM promoted average daily gain and feed conversion ratio during the growth and whole phases. Both dietary treatment (25% or 50% of the SBM in the basal diet was replaced with FSBM) influenced the serum immunity, diversity and composition of cecal microbiota in broilers. FSBM supplementation in the diet shifted the cecal microbial community of broilers towards a healthier balance by increasing the abundance of beneficial bacteria and reducing the abundance of potentially harmful bacteria. Abstract This study investigated the growth performance, serum immunity, and cecal bacterial microbiota of broilers fed a diet in which soybean meal (SBM) was partially replaced with fermented soybean meal (FSBM) for 36 days. A total of 180 one-day-old male Cobb 500 broilers were randomly divided into three dietary groups (six replicates per group): corn-SBM diet (CC); 25% SBM replaced by FSBM (SC); 50% SBM replaced by FSBM (TC). The average daily gain (ADG) and feed conversion rates (FCR) were higher in SC than CC and TC groups (p < 0.05) during the growth (d 22–36) and whole (d 1–36) phases. No significant difference was observed in ADG and average daily feed intake (ADFI) between CC and TC groups during any phases. Dietary treatments increased serum IgA, IgG, and IgM, Chao 1, observed species, and the abundance of the phylum Fimicutes but decreased the proportion of Proteobacteria (p < 0.05). Dietary treatments increased the abundance of the genera Lachnospiraceae, Lachnoclostridium, Gastranaerophilales, and Lactobacillus but decreased the abundance of Escherichia-Shigella and Clostridiales (p < 0.05). Spearman’s correlations showed that the abundance of Gastranaerophilales was positively correlated with ADG and serum immunity, and the abundance of Lactobacillus was strongly positively with IgM. Thus, replacing 25% of SBM with FSBM improves the growth performance and serum immunity of broilers, possibly due to altered cecal microbial composition.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huiyi Cai
- Correspondence: ; Tel.: +86-10-8210-6077
| |
Collapse
|
50
|
López-Colom P, Estellé J, Bonet J, Coma J, Martín-Orúe SM. Applicability of an Unmedicated Feeding Program Aimed to Reduce the Use of Antimicrobials in Nursery Piglets: Impact on Performance and Fecal Microbiota. Animals (Basel) 2020; 10:ani10020242. [PMID: 32028658 PMCID: PMC7070809 DOI: 10.3390/ani10020242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The need for a reduction in the use of antibiotics in livestock to safeguard their efficacy requires the development of alternatives. In this line, the use of alternative by-products or ingredients, with functional properties brings the opportunity to improve pig health and thus, reduce medicalization. Therefore, in the present study, we aimed to evaluate the impact of an alternative feeding program based on unmedicalized diets formulated with fibrous by-products and functional feed ingredients on performance and fecal microbiota of young pigs compared to a common weaner diet supplemented with antibiotics. The alternative feeding program could anticipate the gut development of young piglets, which at the end of the nursery period presented a fecal microbiota more similar to that found in fattening animals. Moreover, piglets in the unmedicalized diets showed a trend to reduce the course of diarrhea immediately after weaning. The alternative feeding program showed, however, a reduced growth efficiency during the nursery period that needs to be discussed in the frame of the costs-benefits analysis of reducing antibiotics. Abstract This study aimed to assess the impact of two different feeding programs, including or not antimicrobials, on gut microbiota development at early ages in commercial pigs. For this, 21-day-old weaned piglets were distributed into 12 pens (6 replicates with 26 pigs each) and fed ad libitum until fattening with: standard commercial formula with antibiotics and zinc oxide (2400 ppm) (AB), and alternative unmedicated feed formula (UN). Subsequently, the animals were moved to the fattening unit (F) receiving a common diet. Pigs were weighed, and feed consumption and diarrhea scores registered. Feces were collected on days 9 (pre-starter), 40 (starter) and 72 (fattening) post-weaning and microbial DNA extracted for 16S rDNA sequencing. Piglets fed UN diets had a worse feed efficiency (p < 0.05) than AB during nursery; however, UN pigs spent less time scouring after weaning (p = 0.098). The structure of fecal community evolved with the age of the animals (p = 0.001), and diet also showed to have a role, particularly in the starter period when UN microbiomes clustered apart from AB, resembling the ecosystems found in the fattening animals. Fibrolytic genera (Fibrobacter, Butyrivibrio, Christellansellaceae) were enriched in UN piglets whereas Lactobacillus characterized AB piglets (adjusted p < 0.05). Overall, this alternative feeding program could anticipate the gut development of piglets despite a lower feed efficiency compared to standard medicalized programs.
Collapse
Affiliation(s)
- Paola López-Colom
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Agraria del Ecuador, 090104 Guayaquil, Ecuador
| | - Jordi Estellé
- Génétique Animale et Biologie Intégrative (GABI), INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; or
| | - Jordi Bonet
- Vall Companys Group, 25191 Lleida, Spain; (J.B.); (J.C.)
| | - Jaume Coma
- Vall Companys Group, 25191 Lleida, Spain; (J.B.); (J.C.)
| | - Susana Ma. Martín-Orúe
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Correspondence: ; Tel.: +34-93581-1504
| |
Collapse
|