1
|
Lima J, Martínez-Álvaro M, Mattock J, Auffret MD, Duthie CA, Cleveland MA, Dewhurst RJ, Watson M, Roehe R. Temporal stability of the rumen microbiome and its longitudinal associations with performance traits in beef cattle. Sci Rep 2024; 14:20772. [PMID: 39237607 PMCID: PMC11377694 DOI: 10.1038/s41598-024-70770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
The rumen microbiome is the focus of a growing body of research, mostly based on investigation of rumen fluid samples collected once from each animal. Exploring the temporal stability of rumen microbiome profiles is imperative, as it enables evaluating the reliability of findings obtained through single-timepoint sampling. We explored the temporal stability of rumen microbiomes considering taxonomic and functional aspects across the 7-month growing-finishing phase spanning 6 timepoints. We identified a temporally stable core microbiome, encompassing 515 microbial genera (e.g., Methanobacterium) and 417 microbial KEGG genes (e.g., K00856-adenosine kinase). The temporally stable core microbiome profiles collected from all timepoints were strongly associated with production traits with substantial economic and environmental impact (e.g., average daily gain, daily feed intake, and methane emissions); 515 microbial genera explained 45-83%, and 417 microbial genes explained 44-83% of their phenotypic variation. Microbiome profiles influenced by the bovine genome explained 54-87% of the genetic variation of bovine traits. Overall, our results provide evidence that the temporally stable core microbiome identified can accurately predict host performance traits at phenotypic and genetic level based on a single timepoint sample taken as early as 7 months prior to slaughter.
Collapse
Affiliation(s)
- Joana Lima
- Scotland's Rural College, Edinburgh, UK.
| | | | - Jennifer Mattock
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | - Mick Watson
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
2
|
Martínez-Álvaro M, Mattock J, González-Recio Ó, Saborío-Montero A, Weng Z, Lima J, Duthie CA, Dewhurst R, Cleveland MA, Watson M, Roehe R. Including microbiome information in a multi-trait genomic evaluation: a case study on longitudinal growth performance in beef cattle. Genet Sel Evol 2024; 56:19. [PMID: 38491422 PMCID: PMC10943865 DOI: 10.1186/s12711-024-00887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/22/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Growth rate is an important component of feed conversion efficiency in cattle and varies across the different stages of the finishing period. The metabolic effect of the rumen microbiome is essential for cattle growth, and investigating the genomic and microbial factors that underlie this temporal variation can help maximize feed conversion efficiency at each growth stage. RESULTS By analysing longitudinal body weights during the finishing period and genomic and metagenomic data from 359 beef cattle, our study demonstrates that the influence of the host genome on the functional rumen microbiome contributes to the temporal variation in average daily gain (ADG) in different months (ADG1, ADG2, ADG3, ADG4). Five hundred and thirty-three additive log-ratio transformed microbial genes (alr-MG) had non-zero genomic correlations (rg) with at least one ADG-trait (ranging from |0.21| to |0.42|). Only a few alr-MG correlated with more than one ADG-trait, which suggests that a differential host-microbiome determinism underlies ADG at different stages. These alr-MG were involved in ribosomal biosynthesis, energy processes, sulphur and aminoacid metabolism and transport, or lipopolysaccharide signalling, among others. We selected two alternative subsets of 32 alr-MG that had a non-uniform or a uniform rg sign with all the ADG-traits, regardless of the rg magnitude, and used them to develop a microbiome-driven breeding strategy based on alr-MG only, or combined with ADG-traits, which was aimed at shaping the rumen microbiome towards increased ADG at all finishing stages. Combining alr-MG information with ADG records increased prediction accuracy of genomic estimated breeding values (GEBV) by 11 to 22% relative to the direct breeding strategy (using ADG-traits only), whereas using microbiome information, only, achieved lower accuracies (from 7 to 41%). Predicted selection responses varied consistently with accuracies. Restricting alr-MG based on their rg sign (uniform subset) did not yield a gain in the predicted response compared to the non-uniform subset, which is explained by the absence of alr-MG showing non-zero rg at least with more than one of the ADG-traits. CONCLUSIONS Our work sheds light on the role of the microbial metabolism in the growth trajectory of beef cattle at the genomic level and provides insights into the potential benefits of using microbiome information in future genomic breeding programs to accurately estimate GEBV and increase ADG at each finishing stage in beef cattle.
Collapse
Affiliation(s)
- Marina Martínez-Álvaro
- Institute of Animal Science and Technology, Universitat Politècnica de Valéncia, 46022, Valencia, Spain.
- Scotland's Rural College, Easter Bush, Edinburgh, EH25 9RG, UK.
| | | | | | - Alejandro Saborío-Montero
- Escuela de Zootecnia y Centro de Investigación en Nutrición Animal, Universidad de Costa Rica, San José, 11501, Costa Rica
| | | | - Joana Lima
- Scotland's Rural College, Easter Bush, Edinburgh, EH25 9RG, UK
| | | | | | | | - Mick Watson
- Scotland's Rural College, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Rainer Roehe
- Scotland's Rural College, Easter Bush, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
3
|
Martínez-Álvaro M, Mattock J, Auffret M, Weng Z, Duthie CA, Dewhurst RJ, Cleveland MA, Watson M, Roehe R. Microbiome-driven breeding strategy potentially improves beef fatty acid profile benefiting human health and reduces methane emissions. MICROBIOME 2022; 10:166. [PMID: 36199148 PMCID: PMC9533493 DOI: 10.1186/s40168-022-01352-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Healthier ruminant products can be achieved by adequate manipulation of the rumen microbiota to increase the flux of beneficial fatty acids reaching host tissues. Genomic selection to modify the microbiome function provides a permanent and accumulative solution, which may have also favourable consequences in other traits of interest (e.g. methane emissions). Possibly due to a lack of data, this strategy has never been explored. RESULTS This study provides a comprehensive identification of ruminal microbial mechanisms under host genomic influence that directly or indirectly affect the content of unsaturated fatty acids in beef associated with human dietary health benefits C18:3n-3, C20:5n-3, C22:5n-3, C22:6n-3 or cis-9, trans-11 C18:2 and trans-11 C18:1 in relation to hypercholesterolemic saturated fatty acids C12:0, C14:0 and C16:0, referred to as N3 and CLA indices. We first identified that ~27.6% (1002/3633) of the functional core additive log-ratio transformed microbial gene abundances (alr-MG) in the rumen were at least moderately host-genomically influenced (HGFC). Of these, 372 alr-MG were host-genomically correlated with the N3 index (n=290), CLA index (n=66) or with both (n=16), indicating that the HGFC influence on beef fatty acid composition is much more complex than the direct regulation of microbial lipolysis and biohydrogenation of dietary lipids and that N3 index variation is more strongly subjected to variations in the HGFC than CLA. Of these 372 alr-MG, 110 were correlated with the N3 and/or CLA index in the same direction, suggesting the opportunity for enhancement of both indices simultaneously through a microbiome-driven breeding strategy. These microbial genes were involved in microbial protein synthesis (aroF and serA), carbohydrate metabolism and transport (galT, msmX), lipopolysaccharide biosynthesis (kdsA, lpxD, lpxB), or flagellar synthesis (flgB, fliN) in certain genera within the Proteobacteria phyla (e.g. Serratia, Aeromonas). A microbiome-driven breeding strategy based on these microbial mechanisms as sole information criteria resulted in a positive selection response for both indices (1.36±0.24 and 0.79±0.21 sd of N3 and CLA indices, at 2.06 selection intensity). When evaluating the impact of our microbiome-driven breeding strategy to increase N3 and CLA indices on the environmental trait methane emissions (g/kg of dry matter intake), we obtained a correlated mitigation response of -0.41±0.12 sd. CONCLUSION This research provides insight on the possibility of using the ruminal functional microbiome as information for host genomic selection, which could simultaneously improve several microbiome-driven traits of interest, in this study exemplified with meat quality traits and methane emissions. Video Abstract.
Collapse
Affiliation(s)
| | - Jennifer Mattock
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | - Mick Watson
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
4
|
Martínez-Álvaro M, Auffret MD, Duthie CA, Dewhurst RJ, Cleveland MA, Watson M, Roehe R. Bovine host genome acts on rumen microbiome function linked to methane emissions. Commun Biol 2022; 5:350. [PMID: 35414107 PMCID: PMC9005536 DOI: 10.1038/s42003-022-03293-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/17/2022] [Indexed: 12/28/2022] Open
Abstract
Our study provides substantial evidence that the host genome affects the comprehensive function of the microbiome in the rumen of bovines. Of 1,107/225/1,141 rumen microbial genera/metagenome assembled uncultured genomes (RUGs)/genes identified from whole metagenomics sequencing, 194/14/337 had significant host genomic effects (heritabilities ranging from 0.13 to 0.61), revealing that substantial variation of the microbiome is under host genomic control. We found 29/22/115 microbial genera/RUGs/genes host-genomically correlated (|0.59| to |0.93|) with emissions of the potent greenhouse gas methane (CH4), highlighting the strength of a common host genomic control of specific microbial processes and CH4. Only one of these microbial genes was directly involved in methanogenesis (cofG), whereas others were involved in providing substrates for archaea (e.g. bcd and pccB), important microbial interspecies communication mechanisms (ABC.PE.P), host-microbiome interaction (TSTA3) and genetic information processes (RP-L35). In our population, selection based on abundances of the 30 most informative microbial genes provided a mitigation potential of 17% of mean CH4 emissions per generation, which is higher than for selection based on measured CH4 using respiration chambers (13%), indicating the high potential of microbiome-driven breeding to cumulatively reduce CH4 emissions and mitigate climate change.
Collapse
Affiliation(s)
| | | | | | | | | | - Mick Watson
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
5
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Bampidis V, Cottrill B, Frutos MJ, Furst P, Parker A, Binaglia M, Christodoulidou A, Gergelova P, Guajardo IM, Wenger C, Hogstrand C. Risk assessment of nitrate and nitrite in feed. EFSA J 2020; 18:e06290. [PMID: 33173543 PMCID: PMC7610142 DOI: 10.2903/j.efsa.2020.6290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks to animal health related to nitrite and nitrate in feed. For nitrate ion, the EFSA Panel on Contaminants in the Food Chain (CONTAM Panel) identified a BMDL 10 of 64 mg nitrate/kg body weight (bw) per day for adult cattle, based on methaemoglobin (MetHb) levels in animal's blood that would not induce clinical signs of hypoxia. The BMDL 10 is applicable to all bovines, except for pregnant cows in which reproductive effects were not clearly associated with MetHb formation. Since the data available suggested that ovines and caprines are not more sensitive than bovines, the BMDL 10 could also be applied to these species. Highest mean exposure estimates of 53 and 60 mg nitrate/kg bw per day in grass silage-based diets for beef cattle and fattening goats, respectively, may raise a health concern for ruminants when compared with the BMDL 10 of 64 mg nitrate/kg bw per day. The concern may be higher because other forages might contain higher levels of nitrate. Highest mean exposure estimates of 2.0 mg nitrate/kg bw per day in pigs' feeds indicate a low risk for adverse health effects, when compared with an identified no observed adverse effect level (NOAEL) of 410 mg nitrate/kg bw per day, although the levels of exposure might be underestimated due to the absence of data on certain key ingredients in the diets of this species. Due to the limitations of the data available, the CONTAM Panel could not characterise the health risk in species other than ruminants and pigs from nitrate and in all livestock and companion animals from nitrite. Based on a limited data set, both the transfer of nitrate and nitrite from feed to food products of animal origin and the nitrate- and nitrite-mediated formation of N-nitrosamines and their transfer into these products are likely to be negligible.
Collapse
|
6
|
Effects of dietary replacement of urea with encapsulated nitrate and cashew nut shell liquid on nutrient digestibility, nitrogen balance, and carcass characteristics in growing lambs. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Auffret MD, Stewart RD, Dewhurst RJ, Duthie CA, Watson M, Roehe R. Identification of Microbial Genetic Capacities and Potential Mechanisms Within the Rumen Microbiome Explaining Differences in Beef Cattle Feed Efficiency. Front Microbiol 2020; 11:1229. [PMID: 32582125 PMCID: PMC7292206 DOI: 10.3389/fmicb.2020.01229] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
In this study, Bos Taurus cattle offered one high concentrate diet (92% concentrate-8% straw) during two independent trials allowed us to classify 72 animals comprising of two cattle breeds as "Low" or "High" feed efficiency groups. Digesta samples were taken from individual beef cattle at the abattoir. After metagenomic sequencing, the rumen microbiome composition and genes were determined. Applying a targeted approach based on current biological evidence, 27 genes associated with host-microbiome interaction activities were selected. Partial least square analysis enabled the identification of the most significant genes and genera of feed efficiency (VIP > 0.8) across years of the trial and breeds when comparing all potential genes or genera together. As a result, limited number of genes explained about 40% of the variability in both feed efficiency indicators. Combining information from rumen metagenome-assembled genomes and partial least square analysis results, microbial genera carrying these genes were determined and indicated that a limited number of important genera impacting on feed efficiency. In addition, potential mechanisms explaining significant difference between Low and High feed efficiency animals were analyzed considering, based on the literature, their gastrointestinal location of action. High feed efficiency animals were associated with microbial species including several Eubacterium having the genetic capacity to form biofilm or releasing metabolites like butyrate or propionate known to provide a greater contribution to cattle energy requirements compared to acetate. Populations associated with fucose sensing or hemolysin production, both mechanisms specifically described in the lower gut by activating the immune system to compete with pathogenic colonizers, were also identified to affect feed efficiency using rumen microbiome information. Microbial mechanisms associated with low feed efficiency animals involved potential pathogens within Proteobacteria and Spirochaetales, releasing less energetic substrates (e.g., acetate) or producing sialic acid to avoid the host immune system. Therefore, this study focusing on genes known to be involved in host-microbiome interaction improved the identification of rumen microbial genetic capacities and potential mechanisms significantly impacting on feed efficiency in beef cattle fed high concentrate diet.
Collapse
Affiliation(s)
| | - Robert D. Stewart
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Mick Watson
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Rainer Roehe
- Scotland’s Rural College (SRUC), Edinburgh, United Kingdom
| |
Collapse
|
8
|
Villar M, Hegarty R, Nolan J, Godwin I, McPhee M. The effect of dietary nitrate and canola oil alone or in combination on fermentation, digesta kinetics and methane emissions from cattle. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Rebelo LR, Luna IC, Messana JD, Araujo RC, Simioni TA, Granja-Salcedo YT, Vito ES, Lee C, Teixeira IA, Rooke JA, Berchielli TT. Effect of replacing soybean meal with urea or encapsulated nitrate with or without elemental sulfur on nitrogen digestion and methane emissions in feedlot cattle. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Villar ML, Godwin IR, Hegarty RS, Dobos RC, Smith KA, Clay JW, Nolan JV. The effects of dietary nitrate on plasma glucose and insulin sensitivity in sheep. J Anim Physiol Anim Nutr (Berl) 2019; 103:1657-1662. [PMID: 31418937 DOI: 10.1111/jpn.13174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 11/29/2022]
Abstract
Nitrate (NO3 ¯ ) is an effective non-protein nitrogen source for gut microbes and reduces enteric methane (CH4 ) production in ruminants. Nitrate is reduced to ammonia by rumen bacteria with nitrite (NO2 ¯ ) produced as an intermediate. The absorption of NO2 ¯ can cause methaemoglobinaemia in ruminants. Metabolism of NO3 ¯ and NO2 ¯ in blood and animal tissues forms nitric oxide (NO) which has profound physiological effects in ruminants and has been shown to increase glucose uptake and insulin secretion in rodents and humans. We hypothesized that absorption of small quantities of NO2 ¯ resulting from a low-risk dose of dietary NO3 ¯ will increase insulin sensitivity (SI ) and glucose uptake in sheep. We evaluated the effect of feeding sheep with a diet supplemented with 18 g NO3 ¯ /kg DM or urea (Ur) isonitrogenously to NO3 ¯ , on insulin and glucose dynamics. A glucose tolerance test using an intravenous bolus of 1 ml/kg LW of 24% (w/v) glucose was conducted in twenty sheep, with 10 sheep receiving 1.8% supplementary NO3 ¯ and 10 receiving supplementary urea isonitrogenously to NO3 ¯ . The MINMOD model used plasma glucose and insulin concentrations to estimate basal plasma insulin (Ib ) and basal glucose concentration (Gb ), insulin sensitivity (SI ), glucose effectiveness (SG ), acute insulin response (AIRg) and disposition index (DI). Nitrate supplementation had no effect on Ib (p > .05). The decrease in blood glucose occurred at the same rate in both dietary treatments (SG ; p = .60), and there was no effect of NO3 ¯ on either Gb , SI , AIRg or DI. This experiment found that the insulin dynamics assessed using the MINMOD model were not affected by NO3 ¯ administered to fasted sheep at a low dose of 1.8% NO3 ¯ in the diet.
Collapse
Affiliation(s)
- Maria L Villar
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia.,Instituto Nacional de Tecnología Agropecuaria (INTA), S.C. Bariloche, Río Negro, Argentina
| | - Ian R Godwin
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Roger S Hegarty
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Robin C Dobos
- NSW Department of Primary Industries, Livestock Industries Centre, Armidale, NSW, Australia
| | - Katherine A Smith
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Jonathon W Clay
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - John V Nolan
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| |
Collapse
|
11
|
Lima J, Auffret MD, Stewart RD, Dewhurst RJ, Duthie CA, Snelling TJ, Walker AW, Freeman TC, Watson M, Roehe R. Identification of Rumen Microbial Genes Involved in Pathways Linked to Appetite, Growth, and Feed Conversion Efficiency in Cattle. Front Genet 2019; 10:701. [PMID: 31440274 PMCID: PMC6694183 DOI: 10.3389/fgene.2019.00701] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022] Open
Abstract
The rumen microbiome is essential for the biological processes involved in the conversion of feed into nutrients that can be utilized by the host animal. In the present research, the influence of the rumen microbiome on feed conversion efficiency, growth rate, and appetite of beef cattle was investigated using metagenomic data. Our aim was to explore the associations between microbial genes and functional pathways, to shed light on the influence of bacterial enzyme expression on host phenotypes. Two groups of cattle were selected on the basis of their high and low feed conversion ratio. Microbial DNA was extracted from rumen samples, and the relative abundances of microbial genes were determined via shotgun metagenomic sequencing. Using partial least squares analyses, we identified sets of 20, 14, 17, and 18 microbial genes whose relative abundances explained 63, 65, 66, and 73% of the variation of feed conversion efficiency, average daily weight gain, residual feed intake, and daily feed intake, respectively. The microbial genes associated with each of these traits were mostly different, but highly correlated traits such as feed conversion ratio and growth rate showed some overlapping genes. Consistent with this result, distinct clusters of a coabundance network were enriched with microbial genes identified to be related with feed conversion ratio and growth rate or daily feed intake and residual feed intake. Microbial genes encoding for proteins related to cell wall biosynthesis, hemicellulose, and cellulose degradation and host-microbiome crosstalk (e.g., aguA, ptb, K01188, and murD) were associated with feed conversion ratio and/or average daily gain. Genes related to vitamin B12 biosynthesis, environmental information processing, and bacterial mobility (e.g., cobD, tolC, and fliN) were associated with residual feed intake and/or daily feed intake. This research highlights the association of the microbiome with feed conversion processes, influencing growth rate and appetite, and it emphasizes the opportunity to use relative abundances of microbial genes in the prediction of these performance traits, with potential implementation in animal breeding programs and dietary interventions.
Collapse
Affiliation(s)
- Joana Lima
- Beef and Sheep Research Centre, Future Farming Systems Group, Scotland’s Rural College, Edinburgh, United Kingdom
| | - Marc D. Auffret
- Beef and Sheep Research Centre, Future Farming Systems Group, Scotland’s Rural College, Edinburgh, United Kingdom
| | - Robert D. Stewart
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard J. Dewhurst
- Beef and Sheep Research Centre, Future Farming Systems Group, Scotland’s Rural College, Edinburgh, United Kingdom
| | - Carol-Anne Duthie
- Beef and Sheep Research Centre, Future Farming Systems Group, Scotland’s Rural College, Edinburgh, United Kingdom
| | | | - Alan W. Walker
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Tom C. Freeman
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Mick Watson
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Rainer Roehe
- Beef and Sheep Research Centre, Future Farming Systems Group, Scotland’s Rural College, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat Biotechnol 2019; 37:953-961. [PMID: 31375809 PMCID: PMC6785717 DOI: 10.1038/s41587-019-0202-3] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
Abstract
Ruminants provide essential nutrition for billions of people worldwide. The rumen is a specialized stomach that is adapted to the breakdown of plant-derived complex polysaccharides. The genomes of the rumen microbiota encode thousands of enzymes adapted to digestion of the plant matter that dominates the ruminant diet. We assembled 4,941 rumen microbial metagenome-assembled genomes (MAGs) using approximately 6.5 terabases of short- and long-read sequence data from 283 ruminant cattle. We present a genome-resolved metagenomics workflow that enabled assembly of bacterial and archaeal genomes that were at least 80% complete. Of note, we obtained three single-contig, whole-chromosome assemblies of rumen bacteria, two of which represent previously unknown rumen species, assembled from long-read data. Using our rumen genome collection we predicted and annotated a large set of rumen proteins. Our set of rumen MAGs increases the rate of mapping of rumen metagenomic sequencing reads from 15% to 50-70%. These genomic and protein resources will enable a better understanding of the structure and functions of the rumen microbiota.
Collapse
Affiliation(s)
- Robert D Stewart
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, UK
| | | | - Amanda Warr
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, UK
| | - Alan W Walker
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | | | - Mick Watson
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, UK.
| |
Collapse
|
13
|
Nutritional strategies to reduce methane emissions from cattle: Effects on meat eating quality and retail shelf life of loin steaks. Meat Sci 2019; 153:51-57. [PMID: 30901612 DOI: 10.1016/j.meatsci.2019.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/28/2019] [Accepted: 03/09/2019] [Indexed: 11/20/2022]
Abstract
Increasing the lipid concentration and/or inclusion of nitrate in the diet of ruminant livestock have been proposed as effective strategies to reduce the contribution of methane from the agricultural sector to greenhouse gas emissions. In this study, the effects of increased lipid or added nitrate on beef eating quality were investigated in two experiments. In experiment 1, lipid and nitrate were fed alone with two different and contrasting basal diets to finishing beef cattle. In the second experiment, lipid and nitrate were fed alone or in combination with a single basal diet. The sensory properties and retail colour shelf life of loin muscle samples obtained were then characterized. Overall, neither lipid nor nitrate had any adverse effects on sensory properties or colour shelf life of loin muscle.
Collapse
|
14
|
Haskell MJ, Rooke JA, Roehe R, Turner SP, Hyslop JJ, Waterhouse A, Duthie CA. Relationships between feeding behaviour, activity, dominance and feed efficiency in finishing beef steers. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2018.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Temperament and dominance relate to feeding behaviour and activity in beef cattle: implications for performance and methane emissions. Animal 2018; 12:2639-2648. [PMID: 29606168 DOI: 10.1017/s1751731118000617] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In beef cattle, feeding behaviour and activity are associated with feed efficiency and methane (CH4) emissions. This study aimed to understand the underlying traits responsible for the contribution of cattle behaviour to individual differences in feed efficiency, performance and CH4 emissions. A total of 84 steers (530±114 kg BW) of two different breeds (crossbreed Charolais and Luing) were used. The experiment was a 2×2×3 factorial design with breed, basal diets (concentrate v. mixed) and dietary treatments (no additive, calcium nitrate or rapeseed cake) as the main factors. The individual dry matter intake (DMI; kg) was recorded daily and the BW was measured weekly over a 56-day period. Ultrasound fat depth was measured on day 56. Based on the previous data, the indexes average daily gain, food conversion and residual feed intake (RFI) were calculated. The frequency of meals, the duration per visit and the time spent feeding per day were taken as feeding behaviour measures. Daily activity was measured using the number of steps, the number of standing bouts and the time standing per day. Agonistic interactions (including the number of contacts, aggressive interactions, and displacements per day) between steers at the feeders were assessed as indicators of dominance. Temperament was assessed using the crush score test (which measures restlessness when restrained) and the flight speed on release from restraint. Statistical analysis was performed using multivariate regression models. Steers that spent more time eating showed better feed efficiency (P=0.039), which can be due to greater secretion of saliva. Feeding time was longer with the mixed diet (P<0.001), Luings (P=0.009) and dominant steers (P=0.032). Higher activity (more steps) in the pen was associated with poorer RFI, possibly because of higher energy expenditure for muscle activity. Frequent meals contributed to a reduction in CH4 emissions per kg DMI. The meal frequency was higher with a mixed diet (P<0.001) and increased in more temperamental (P=0.003) and dominant (P=0.017) steers. In addition, feed intake was lower (P=0.032) in more temperamental steers. This study reveals that efficiency increases with a longer feeding time and CH4 emissions decrease with more frequent meals. As dominant steers eat more frequently and for longer, a reduction in competition at the feeder would improve both feed efficiency and CH4 emissions. Feed efficiency can also be improved through a reduction in activity. Selection for calmer cattle would reduce activity and increase feed intake, which may improve feed efficiency and promote growth, respectively.
Collapse
|
16
|
Auffret MD, Stewart R, Dewhurst RJ, Duthie CA, Rooke JA, Wallace RJ, Freeman TC, Snelling TJ, Watson M, Roehe R. Identification, Comparison, and Validation of Robust Rumen Microbial Biomarkers for Methane Emissions Using Diverse Bos Taurus Breeds and Basal Diets. Front Microbiol 2018; 8:2642. [PMID: 29375511 PMCID: PMC5767246 DOI: 10.3389/fmicb.2017.02642] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/19/2017] [Indexed: 01/04/2023] Open
Abstract
Previous shotgun metagenomic analyses of ruminal digesta identified some microbial information that might be useful as biomarkers to select cattle that emit less methane (CH4), which is a potent greenhouse gas. It is known that methane production (g/kgDMI) and to an extent the microbial community is heritable and therefore biomarkers can offer a method of selecting cattle for low methane emitting phenotypes. In this study a wider range of Bos Taurus cattle, varying in breed and diet, was investigated to determine microbial communities and genetic markers associated with high/low CH4 emissions. Digesta samples were taken from 50 beef cattle, comprising four cattle breeds, receiving two basal diets containing different proportions of concentrate and also including feed additives (nitrate or lipid), that may influence methane emissions. A combination of partial least square analysis and network analysis enabled the identification of the most significant and robust biomarkers of CH4 emissions (VIP > 0.8) across diets and breeds when comparing all potential biomarkers together. Genes associated with the hydrogenotrophic methanogenesis pathway converting carbon dioxide to methane, provided the dominant biomarkers of CH4 emissions and methanogens were the microbial populations most closely correlated with CH4 emissions and identified by metagenomics. Moreover, these genes grouped together as confirmed by network analysis for each independent experiment and when combined. Finally, the genes involved in the methane synthesis pathway explained a higher proportion of variation in CH4 emissions by PLS analysis compared to phylogenetic parameters or functional genes. These results confirmed the reproducibility of the analysis and the advantage to use these genes as robust biomarkers of CH4 emissions. Volatile fatty acid concentrations and ratios were significantly correlated with CH4, but these factors were not identified as robust enough for predictive purposes. Moreover, the methanotrophic Methylomonas genus was found to be negatively correlated with CH4. Finally, this study confirmed the importance of using robust and applicable biomarkers from the microbiome as a proxy of CH4 emissions across diverse production systems and environments.
Collapse
Affiliation(s)
- Marc D. Auffret
- Scotland's Rural College, Future Farming System (FFS), Edinburgh, United Kingdom
| | - Robert Stewart
- Edinburgh Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard J. Dewhurst
- Scotland's Rural College, Future Farming System (FFS), Edinburgh, United Kingdom
| | - Carol-Anne Duthie
- Scotland's Rural College, Future Farming System (FFS), Edinburgh, United Kingdom
| | - John A. Rooke
- Scotland's Rural College, Future Farming System (FFS), Edinburgh, United Kingdom
| | - Robert J. Wallace
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Tom C. Freeman
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Timothy J. Snelling
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Mick Watson
- Edinburgh Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Rainer Roehe
- Scotland's Rural College, Future Farming System (FFS), Edinburgh, United Kingdom
| |
Collapse
|
17
|
Auffret MD, Dewhurst RJ, Duthie CA, Rooke JA, John Wallace R, Freeman TC, Stewart R, Watson M, Roehe R. The rumen microbiome as a reservoir of antimicrobial resistance and pathogenicity genes is directly affected by diet in beef cattle. MICROBIOME 2017; 5:159. [PMID: 29228991 PMCID: PMC5725880 DOI: 10.1186/s40168-017-0378-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/28/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND The emergence and spread of antimicrobial resistance is the most urgent current threat to human and animal health. An improved understanding of the abundance of antimicrobial resistance genes and genes associated with microbial colonisation and pathogenicity in the animal gut will have a major role in reducing the contribution of animal production to this problem. Here, the influence of diet on the ruminal resistome and abundance of pathogenicity genes was assessed in ruminal digesta samples taken from 50 antibiotic-free beef cattle, comprising four cattle breeds receiving two diets containing different proportions of concentrate. RESULTS Two hundred and four genes associated with antimicrobial resistance (AMR), colonisation, communication or pathogenicity functions were identified from 4966 metagenomic genes using KEGG identification. Both the diversity and abundance of these genes were higher in concentrate-fed animals. Chloramphenicol and microcin resistance genes were dominant in samples from forage-fed animals (P < 0.001), while aminoglycoside and streptomycin resistances were enriched in concentrate-fed animals. The concentrate-based diet also increased the relative abundance of Proteobacteria, which includes many animal and zoonotic pathogens. A high ratio of Proteobacteria to (Firmicutes + Bacteroidetes) was confirmed as a good indicator for rumen dysbiosis, with eight cases all from concentrate-fed animals. Finally, network analysis demonstrated that the resistance/pathogenicity genes are potentially useful as biomarkers for health risk assessment of the ruminal microbiome. CONCLUSIONS Diet has important effects on the complement of AMR genes in the rumen microbial community, with potential implications for human and animal health.
Collapse
Affiliation(s)
| | | | | | | | - R. John Wallace
- Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD UK
| | - Tom C. Freeman
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG UK
| | - Robert Stewart
- Edinburgh Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG UK
| | - Mick Watson
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG UK
- Edinburgh Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG UK
| | | |
Collapse
|
18
|
Linseed plus nitrate in the diet for fattening bulls: effects on methane emission, animal health and residues in offal. Animal 2017; 12:501-507. [PMID: 28807084 DOI: 10.1017/s1751731117002014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The combination of linseed and nitrate is known to decrease enteric methane emission in dairy cows but few studies have been carried out in fattening cattle for animal liveweight gain, enteric methane emission, animal health and presence of residues in beef products. To address this gap, 16 young bulls received a control (C) diet between weaning at 9 months and 14 months, then were split into two groups of eight balanced on feed intake, BW gain and methane emission to receive either the C diet or a diet moderately supplemented with extruded linseed and calcium nitrate (LN) for 2 months before being slaughtered. On a dry matter (DM) basis, the C diet contained 70% baled grass silage and 30% concentrate mainly made of maize, wheat and rapeseed meal. In the LN diet, rapeseed meal and a fraction of cereals were replaced by 35% extruded linseed and 6% calcium nitrate; linseed fatty acids and nitrate supply in the LN diet were 1.9% and 1.0%, respectively. Methane emission was measured continuously using the GreenFeed system. Methaemoglobin was determined every week in peripheral blood from bulls receiving the LN diet. Nitrate and nitrite concentrations were determined in rumen, liver and tongue sampled at slaughter. Dry matter intake tended to be lower for LN diet (P=0.10). Body weight gain was lower for LN diet (P=0.01; 1.60 and 1.26 kg/day for C and LN diet, respectively). Daily methane emission was 9% lower (P<0.001) for LN than C diet (249 and 271 g/day, respectively) but methane yield did not differ between diets (24.1 and 23.2 g/kg DM intake for C and LN diet, respectively, P=0.34). Methaemoglobin was under the limit of detection (<2% of total haemoglobin) for most animals and was always lower than 5.6%, suggesting an absence of risk to animal health. Nitrite and nitrate concentrations in offal did not differ between C and LN diets. In conclusion, a moderate supply of linseed and nitrate in bull feed failed to decrease enteric methane yield and impaired bull liveweight gain but without adverse effects for animal health and food safety.
Collapse
|
19
|
The effect of dietary addition of nitrate or increase in lipid concentrations, alone or in combination, on performance and methane emissions of beef cattle. Animal 2017; 12:280-287. [PMID: 28701247 DOI: 10.1017/s175173111700146x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Adding nitrate to or increasing the concentration of lipid in the diet are established strategies for reducing enteric methane (CH4) emissions, but their effectiveness when used in combination has been largely unexplored. This study investigated the effect of dietary nitrate and increased lipid included alone or together on CH4 emissions and performance traits of finishing beef cattle. The experiment was a 2×4 factorial design comprising two breeds (cross-bred Aberdeen Angus (AAx) and cross-bred Limousin (LIMx) steers) and four dietary treatments (each based on 550 g forage : 450 g concentrate/kg dry matter (DM)). The four dietary treatments were assigned according to a 2×2 factorial design where the control treatment contained rapeseed meal as the main protein source, which was replaced either with nitrate (21.5 g nitrate/kg DM); maize distillers dark grains (MDDG, which increased diet ether extract from 24 to 37 g/kg DM) or both nitrate and MDDG. Steers (n=20/dietary treatment) were allocated to each of the four treatments in equal numbers of each breed with feed offered ad libitum. After 28 days adaptation to dietary treatments, individual animal intake, performance and feed efficiency were recorded for 56 days. Thereafter, CH4 emissions were measured over 13 weeks (six steers/week). Increasing dietary lipid did not adversely affect animal performance and showed no interactions with dietary nitrate. In contrast, addition of nitrate to diets resulted in poorer live-weight gain (P<0.01) and increased feed conversion ratio (P<0.05) compared with diets not containing nitrate. Daily CH4 output was lower (P<0.001) on nitrate-containing diets but increasing dietary lipid resulted in only a non-significant reduction in CH4. There were no interactions associated with CH4 emissions between dietary nitrate and lipid. Cross-bred Aberdeen Angus steers achieved greater live-weight gains (P<0.01), but had greater DM intakes (P<0.001), greater fat depth (P<0.01) and poorer residual feed intakes (P<0.01) than LIMx steers. Cross-bred Aberdeen Angus steers had higher daily CH4 outputs (P<0.001) but emitted less CH4 per kilogram DM intake than LIMx steers (P<0.05). In conclusion, inclusion of nitrate reduced CH4 emissions in growing beef cattle although the efficacy of nitrate was less than in previous work. When increased dietary lipid and nitrate inclusion were combined there was no evidence of an interaction between treatments and therefore combining different nutritional treatments to mitigate CH4 emissions could be a useful means of achieving reductions in CH4 while minimising any adverse effects.
Collapse
|
20
|
The impact of divergent breed types and diets on methane emissions, rumen characteristics and performance of finishing beef cattle. Animal 2017; 11:1762-1771. [PMID: 28222832 DOI: 10.1017/s1751731117000301] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study was undertaken to further develop our understanding of the links between breed, diet and the rumen microbial community and determine their effect on production characteristics and methane (CH4) emissions from beef cattle. The experiment was of a 2×2 factorial design, comprising two breeds (crossbred Charolais (CHX); purebred Luing (LU)) and two diets (concentrate-straw or silage-based). In total, 80 steers were used and balanced for sire within each breed, farm of origin and BW across diets. The diets (fed as total mixed rations) consisted of (g/kg dry matter (DM)) forage to concentrate ratios of either 500 : 500 (Mixed) or 79 : 921 (Concentrate). Steers were adapted to the diets over a 4-week period and performance and feed efficiency were then measured over a 56-day test period. Directly after the 56-day test, CH4 and carbon dioxide (CO2) emissions were measured (six steers/week) over a 13-week period. Compared with LU steers, CHX steers had greater average daily gain (ADG; P<0.05) and significantly (P<0.001) lower residual feed intake. Crossbred Charolais steers had superior conformation and fatness scores (P<0.001) than LU steers. Although steers consumed, on a DM basis, more Concentrate than Mixed diet (P<0.01), there were no differences between diets in either ADG or feed efficiency during the 56-day test. At slaughter, however, Concentrate-fed steers were heavier (P<0.05) and had greater carcass weights than Mixed-fed steers (P<0.001). Breed of steer did not influence CH4 production, but it was substantially lower when the Concentrate rather than Mixed diet was fed (P<0.001). Rumen fluid from Concentrate-fed steers contained greater proportions of propionic acid (P<0.001) and lower proportions of acetic acid (P<0.001), fewer archaea (P<0.01) and protozoa (P=0.09), but more Clostridium Cluster XIVa (P<0.01) and Bacteroides plus Prevotella (P<0.001) than Mixed-fed steers. When the CH4 to CO2 molar ratio was considered as a proxy method for CH4 production (g/kg DM intake), only weak relationships were found within diets. In conclusion, although feeding Concentrate and Mixed diets produced substantial differences in CH4 emissions and rumen characteristics, differences in performance were influenced more markedly by breed.
Collapse
|
21
|
Llonch P, Somarriba M, Duthie CA, Haskell MJ, Rooke JA, Troy S, Roehe R, Turner SP. Association of Temperament and Acute Stress Responsiveness with Productivity, Feed Efficiency, and Methane Emissions in Beef Cattle: An Observational Study. Front Vet Sci 2016; 3:43. [PMID: 27379246 PMCID: PMC4904008 DOI: 10.3389/fvets.2016.00043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to assess individual differences in temperament and stress response and quantify their impact on feed efficiency, performance, and methane (CH4) emissions in beef cattle. Eighty-four steers (castrated males) (Charolais or Luing) were used. Temperament was assessed using two standardized tests: restlessness when restrained [crush score (CS)] and flight speed (FS) on release from restraint. Over a 56-day period individual animal dry matter intake (DMI) and weekly body weight was measured. Ultrasound fat depth was measured at the end of 56 days. Average daily gain (ADG), feed conversion ratio (FCR), and residual feed intake (RFI) were calculated. After the 56-day test period, animals were transported in groups of six/week to respiration chamber facilities. Blood samples were taken before and 0, 3, 6, and 9 h after transport. Plasma cortisol, creatine kinase (CK), glucose, and free fatty acids (FFA) were determined to assess physiological stress response. Subsequently, CH4 emissions were measured over a 3-day period in individual respiration chambers. CS (1.7 ± 0.09) and FS (1.6 ± 0.60 m/s) were repeatable (0.63 and 0.51, respectively) and correlated (r = 0.36, P < 0.001). Plasma cortisol, CK, and FFA concentrations increased after transport (P = 0.038, P = 0.006, and P < 0.001, respectively). Temperament (CS) and CK concentration were correlated (r = 0.29; P = 0.015). The extreme group analysis reveals that excitable animals (FS; P = 0.032) and higher stress response (cortisol, P = 0.007; FFA, P = 0.007; and CK, P = 0.003) were associated with lower DMI. ADG was lower in more temperamental animals (CS, P = 0.097, and FS, P = 0.030). Fat depth was greater in steers showing calmer CS (P = 0.026) and lower plasma CK (P = 0.058). Temperament did not show any relationship with RFI or CH4 emissions. However, steers with higher cortisol showed improved feed efficiency (lower FCR and RFI) (P < 0.05) and greater CH4 emissions (P = 0.017). In conclusion, agitated temperament and higher stress responsiveness is detrimental to productivity. A greater stress response is associated with a reduction in feed intake that may both increase the efficiency of consumed feed and the ratio of CH4 emissions/unit of feed. Therefore, temperament and stress response should be considered when designing strategies to improve efficiency and mitigate CH4 emissions in beef cattle.
Collapse
Affiliation(s)
- Pol Llonch
- Animal and Veterinary Sciences Group, Scotland's Rural College (SRUC) , Edinburgh , UK
| | - Miguel Somarriba
- Animal and Veterinary Sciences Group, Scotland's Rural College (SRUC) , Edinburgh , UK
| | - Carol-Anne Duthie
- Future Farming Systems Group, Scotland's Rural College (SRUC) , Edinburgh , UK
| | - Marie J Haskell
- Animal and Veterinary Sciences Group, Scotland's Rural College (SRUC) , Edinburgh , UK
| | - John A Rooke
- Future Farming Systems Group, Scotland's Rural College (SRUC) , Edinburgh , UK
| | - Shane Troy
- Future Farming Systems Group, Scotland's Rural College (SRUC) , Edinburgh , UK
| | - Rainer Roehe
- Future Farming Systems Group, Scotland's Rural College (SRUC) , Edinburgh , UK
| | - Simon P Turner
- Animal and Veterinary Sciences Group, Scotland's Rural College (SRUC) , Edinburgh , UK
| |
Collapse
|
22
|
Yang C, Rooke JA, Cabeza I, Wallace RJ. Nitrate and Inhibition of Ruminal Methanogenesis: Microbial Ecology, Obstacles, and Opportunities for Lowering Methane Emissions from Ruminant Livestock. Front Microbiol 2016; 7:132. [PMID: 26904008 PMCID: PMC4751266 DOI: 10.3389/fmicb.2016.00132] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/25/2016] [Indexed: 11/21/2022] Open
Abstract
Ruminal methane production is among the main targets for greenhouse gas (GHG) mitigation for the animal agriculture industry. Many compounds have been evaluated for their efficacy to suppress enteric methane production by ruminal microorganisms. Of these, nitrate as an alternative hydrogen sink has been among the most promising, but it suffers from variability in efficacy for reasons that are not understood. The accumulation of nitrite, which is poisonous when absorbed into the animal’s circulation, is also variable and poorly understood. This review identifies large gaps in our knowledge of rumen microbial ecology that handicap the further development and safety of nitrate as a dietary additive. Three main bacterial species have been associated historically with ruminal nitrate reduction, namely Wolinella succinogenes, Veillonella parvula, and Selenomonas ruminantium, but others almost certainly exist in the largely uncultivated ruminal microbiota. Indications are strong that ciliate protozoa can reduce nitrate, but the significance of their role relative to bacteria is not known. The metabolic fate of the reduced nitrate has not been studied in detail. It is important to be sure that nitrate metabolism and efforts to enhance rates of nitrite reduction do not lead to the evolution of the much more potent GHG, nitrous oxide. The relative importance of direct inhibition of archaeal methanogenic enzymes by nitrite or the efficiency of capture of hydrogen by nitrate reduction in lowering methane production is also not known, nor are nitrite effects on other members of the microbiota. How effective would combining mitigation methods be, based on our understanding of the effects of nitrate and nitrite on the microbiome? Answering these fundamental microbiological questions is essential in assessing the potential of dietary nitrate to limit methane emissions from ruminant livestock.
Collapse
Affiliation(s)
- Chengjian Yang
- Buffalo Research Institute, Chinese Academy of Agricultural Sciences Nanning, China
| | | | | | - Robert J Wallace
- Rowett Institute of Nutrition and Health, University of Aberdeen Bucksburn, UK
| |
Collapse
|