1
|
Khamoun C, Kupittayanant S, Kupittayanant P. Effect of egg incubator temperature on sex differentiation in Korat chickens. J Therm Biol 2024; 125:103984. [PMID: 39353363 DOI: 10.1016/j.jtherbio.2024.103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
The effect of incubator temperature on sex differentiation in Korat chickens was investigated. The experiments were divided into two sets: temperature applied throughout the entire incubation period and temperature applied during certain periods (days 3-6 of incubation) by either increasing above the standard or decreasing below the standard temperature. In each experiment, 300 Korat chicken eggs were separated into three groups of 5 repetitions, with 20 eggs in each group. This was done using a completely randomized design for each experiment: a group using a temperature below the standard for incubation (36.0 °C), a group using the standard incubation temperature (37.7 °C), and a group using a temperature above the standard for incubation (38.0 °C). W chromosomes were detected at hatch; histology examined reproductive structures after 35 days. Increasing the temperature to 38.0 °C throughout the entire incubation period resulted in no significant difference in hatching rates compared to the standard temperature (P > 0.05). Raising the temperature to 38.0 °C throughout the entire incubation and during certain periods resulted in changes in the reproductive structure of chickens, leading to a mismatch between chromosomal and gonadal sex, observed at 9.7% and 5.9% of individuals with W chromosomes possessed testes, indicating a mismatch between chromosomal and gonadal sex. However, decreasing the temperature to 36.0 °C throughout the incubation period resulted in lower hatching rates compared to the standard temperature (P < 0.05). Incubating eggs at 36.0 °C for specific periods resulted in 19.4% of genetic males developing ovaries instead of testes. The presence of ovaries in individuals without W chromosomes indicated this mismatch. The results of this study provide evidence that temperature plays a role in sex differentiation in Korat chickens, as demonstrated by the detection of W chromosomes and histological studies of testes and ovaries. Moreover, this study presents the first evidence in broilers that temperature can affect sex differentiation.
Collapse
Affiliation(s)
- Chanoknan Khamoun
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sajeera Kupittayanant
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Pakanit Kupittayanant
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
2
|
Al Amaz S, Mishra B. Embryonic thermal manipulation: a potential strategy to mitigate heat stress in broiler chickens for sustainable poultry production. J Anim Sci Biotechnol 2024; 15:75. [PMID: 38831417 PMCID: PMC11149204 DOI: 10.1186/s40104-024-01028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/01/2024] [Indexed: 06/05/2024] Open
Abstract
Due to high environmental temperatures and climate change, heat stress is a severe concern for poultry health and production, increasing the propensity for food insecurity. With climate change causing higher temperatures and erratic weather patterns in recent years, poultry are increasingly vulnerable to this environmental stressor. To mitigate heat stress, nutritional, genetic, and managerial strategies have been implemented with some success. However, these strategies did not adequately and sustainably reduce the heat stress. Therefore, it is crucial to take proactive measures to mitigate the effects of heat stress on poultry, ensuring optimal production and promoting poultry well-being. Embryonic thermal manipulation (TM) involves manipulating the embryonic environment's temperature to enhance broilers' thermotolerance and growth performance. One of the most significant benefits of this approach is its cost-effectiveness and saving time associated with traditional management practices. Given its numerous advantages, embryonic TM is a promising strategy for enhancing broiler production and profitability in the poultry industry. TM increases the standard incubation temperature in the mid or late embryonic stage to induce epigenetic thermal adaption and embryonic metabolism. Therefore, this review aims to summarize the available literature and scientific evidence of the beneficial effect of pre-hatch thermal manipulation on broiler health and performance.
Collapse
Affiliation(s)
- Sadid Al Amaz
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA.
| |
Collapse
|
3
|
Khalil KM, El-Shater S, Rizk H, Khalifa E. Embryonic thermal manipulation of poultry birds: Lucrative and deleterious effects. J Anim Physiol Anim Nutr (Berl) 2024; 108:346-356. [PMID: 37885333 DOI: 10.1111/jpn.13896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023]
Abstract
The major efforts to improve feed conversion, increase the body weight and breast muscle yield of broilers have been focused on feeding and management at the post hatch period. However, incubation temperature is the most significant factor for the egg hatching rate, chick quality, and post hatch performance. Therefore, incubation factors affecting the performance should be taken with necessary precautions. Incubation temperature not only affects the early development of the hatchlings but also has a lasting impact on the characteristics of the chicks, such as final body weight and meat quality traits. This article provides an overview about embryonic thermal manipulation (TM) of domestic fowls and review the lucrative and deleterious effects of embryonic TM on embryo development, muscle growth, thermotolerance acquisition, and immunity.
Collapse
Affiliation(s)
- Karim M Khalil
- Department of Veterinary Medicine, College of Applied and Health Sciences, A'Sharqiyah University, Ibra, Sultanate of Oman
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Saad El-Shater
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hamdy Rizk
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Elsayed Khalifa
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Al Amaz S, Chaudhary A, Mahato PL, Jha R, Mishra B. Pre-hatch thermal manipulation of embryos and post-hatch baicalein supplementation mitigated heat stress in broiler chickens. J Anim Sci Biotechnol 2024; 15:8. [PMID: 38246989 PMCID: PMC10802028 DOI: 10.1186/s40104-023-00966-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND High environmental temperatures induce heat stress in broiler chickens, affecting their health and production performance. Several dietary, managerial, and genetics strategies have been tested with some success in mitigating heat stress (HS) in broilers. Developing novel HS mitigation strategies for sustaining broiler production is critically needed. This study investigated the effects of pre-hatch thermal manipulation (TM) and post-hatch baicalein supplementation on growth performance and health parameters in heat-stressed broilers. RESULTS Six hundred fertile Cobb 500 eggs were incubated for 21 d. After candling on embryonic day (ED) 10, 238 eggs were thermally manipulated at 38.5 °C with 55% relative humidity (RH) from ED 12 to 18, then transferred to the hatcher (ED 19 to 21, standard temperature) and 236 eggs were incubated at a controlled temperature (37.5 °C) till hatch. After hatch, 180-day-old chicks from both groups were raised in 36 pens (n = 10 birds/pen, 6 replicates per treatment). The treatments were: 1) Control, 2) TM, 3) control heat stress (CHS), 4) thermal manipulation heat stress (TMHS), 5) control heat stress supplement (CHSS), and 6) thermal manipulation heat stress supplement (TMHSS). All birds were raised under the standard environment for 21 d, followed by chronic heat stress from d 22 to 35 (32-33 °C for 8 h) in the CHS, TMHS, CHSS, and TMHSS groups. A thermoneutral (22-24 °C) environment was maintained in the Control and TM groups. RH was constant (50% ± 5%) throughout the trial. All the data were analyzed using one-way ANOVA in R and GraphPad software at P < 0.05 and are presented as mean ± SEM. Heat stress significantly decreased (P < 0.05) the final body weight and ADG in CHS and TMHS groups compared to the other groups. Embryonic TM significantly increased (P < 0.05) the expression of heat shock protein-related genes (HSP70, HSP90, and HSPH1) and antioxidant-related genes (GPX1 and TXN). TMHS birds showed a significant increment (P < 0.05) in total cecal volatile fatty acid (VFA) concentration compared to the CHS birds. The cecal microbial analysis showed significant enrichment (P < 0.05) in alpha and beta diversity and Coprococcus in the TMHSS group. CONCLUSIONS Pre-hatch TM and post-hatch baicalein supplementation in heat-stressed birds mitigate the detrimental effects of heat stress on chickens' growth performance, upregulate favorable gene expression, increase VFA production, and promote gut health by increasing beneficial microbial communities.
Collapse
Affiliation(s)
- Sadid Al Amaz
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Ajay Chaudhary
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Prem Lal Mahato
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA.
| |
Collapse
|
5
|
Li S, Wang Y, Guo S, Li X, Han G, Zhou Z, Li C. Embryo thermal manipulation modifies development and hepatic lipid metabolism in post-hatch layer-type chicks. J Anim Sci 2024; 102:skae242. [PMID: 39164212 PMCID: PMC11391616 DOI: 10.1093/jas/skae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/19/2024] [Indexed: 08/22/2024] Open
Abstract
Incubation temperature is a crucial environmental factor affecting embryonic development and chick quality. Metabolism during the embryonic stage, particularly liver lipid metabolism, is essential for the growth and development of poultry. This study aimed to investigate the effects of embryo thermal manipulation with high (TMH, 39.5 °C, 65% RH, 8 h/d) and low (TML, 20 °C, 65% RH, 1 h/d) temperatures during 8th to 15th embryonic age on hatching performance and liver lipid metabolism in layer chicks. Additionally, the duration of TM effects was evaluated through a short-term feeding trial. The results indicated that TMH accelerated the hatching process without significantly affecting hatchability and growth performance. In contrast, TML delayed hatching time and significantly reduced hatchability and chick quality. After hatching, TML also increased residual yolk weight and reduced the relative liver weight in relation to body weight and yolk-free body mass. Moreover, lipid droplets in the liver were stained with Oil Red O, and the lipid content in the liver and serum was further detected. TMH had no significant impact on triglyceride (TG) and total-cholesterol (TCHO) content in the liver and serum but upregulated the expression of lipogenesis-related genes ACC, Fas, and Fatp1 compared to the TML group. Conversely, TML significantly reduced liver TG content, enhanced lipoprotein lipase (LPL) activity, and promoted the expression of lipid oxidation-related genes CPT-1, PGC-1α, and PPARα. At 7 d of age, liver LPL activity was significantly increased in the TMH group. However, there were no significant changes in the content of TG and TCHO in the liver and the expression of lipid metabolism-related genes in the TML group. Overall, these results indicate that embryonic TM alters hatching performance and liver lipid metabolism in layer chicks. TML reduces TG content by increasing liver lipid oxidation capacity. However, this effect is not long-lasting, as the influence of TM diminishes as the chicks develop.
Collapse
Affiliation(s)
- Sheng Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuyan Wang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Siyu Guo
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoqing Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guofeng Han
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zilin Zhou
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Ncho CM, Bakhsh A, Goel A. In ovo feeding of vitamins in broilers: A comprehensive meta-analysis of hatchability and growth performance. J Anim Physiol Anim Nutr (Berl) 2024; 108:215-225. [PMID: 37697679 DOI: 10.1111/jpn.13881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
In ovo feeding has been introduced as a cost-effective method to improve hatchability and broiler performance. Specifically, several studies have focused on the impact of vitamins. However, due to variations in experimental conditions across all trials, drawing general conclusions appears challenging. Therefore, we conducted a meta-analysis of 17 published papers, including a maximum of 134 sample size to evaluate the potential effects of in ovo feeding of vitamins in broilers. Studies were retrieved by consulting scientific repositories such as Pubmed, Scopus, Scielo, Web of Science, and Google Scholar. A binary logistic model was used to determine the parameters influencing hatchability. To assess variations in hatchling weight and growth parameters based on the vitamin category, a mixed model analysis of variance was performed, considering the study as a random effect and the vitamin category as a fixed effect. Finally, a linear mixed model was used to develop equations that explain the evolution of growth parameters based on vitamin concentration, volume, and day of injection. The results revealed that for better hatchability, it is preferable to consider heavier eggs (p = 0.007), lower volumes (p = 0.039), and late injection (p = 0.022). Vitamin E was associated with higher hatchling weight (p = 0.037), while vitamin C exhibited the lowest overall feed conversion ratio (p = 0.042). Interactions were observed between the day of injection and vitamin concentration or volume of injection for all studied growth parameters. In summary, the findings of this study suggest that hatchability during in ovo feeding is influenced by technique-related parameters, whereas growth parameters can be modulated by the category of vitamin injected. Consequently, this study lays the groundwork for future investigations assessing the effects of in ovo feeding in broilers, as it highlights the relationship between the methodology and potential outcomes.
Collapse
Affiliation(s)
- Chris Major Ncho
- Department of Animal Science, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Allah Bakhsh
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Akshat Goel
- Department of Animal Science, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
7
|
Jia M, Reynolds KL, Wong EA. Effects of high incubation temperature on tight junction proteins in the yolk sac and small intestine of embryonic broilers. Poult Sci 2023; 102:102875. [PMID: 37406432 PMCID: PMC10339051 DOI: 10.1016/j.psj.2023.102875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023] Open
Abstract
During the transition from incubation to hatch, the chicks shift from obtaining nutrients from the yolk sac to the intestine. The yolk sac tissue (YST) and small intestine serve as biological barriers between the yolk or gut contents and the blood circulation. These barriers must maintain structural integrity for optimal nutrient uptake as well as protection from pathogens. The objective of this study was to investigate the effect of high incubation temperature on mRNA abundance of the tight junction (TJ) proteins zona occludens 1 (ZO1), occludin (OCLN), claudin 1 (CLDN1), and junctional adhesion molecules A and 2 (JAMA, JAM2) and the heat shock proteins (HSP70 and HSP90) in the YST and small intestine of embryonic broilers. Broiler eggs were incubated at 37.5°C. On embryonic day 12 (E12), half of the eggs were switched to 39.5°C. YST samples were collected from E7 to day of hatch (DOH), while small intestinal samples were collected from E17 to DOH. The temporal expression of TJ protein mRNA from E7 to DOH at 37.5°C and the effect of incubation temperature from E13 to DOH were analyzed by one-way and two-way ANOVA, respectively and Tukey's test. Significance was set at P < 0.05. The temporal expression pattern of ZO1, OCLN, and CLDN1 mRNA showed a pattern of decreased expression from E7 to E13 followed by an increase to DOH. High incubation temperature caused an upregulation of ZO1 and JAM2 mRNA in the YST and small intestine. Using in situ hybridization, OCLN and JAMA mRNA were detected in the epithelial cells of the YST. In addition, JAMA mRNA was detected in epithelial cells of the small intestine, whereas JAM2 mRNA was detected in the vascular system of the villi and lamina propria. In conclusion, the YST expressed mRNA for TJ proteins and high incubation temperature increased ZO1 and JAM2 mRNA. This suggests that the TJ in the vasculature of the YST and intestine is affected by high incubation temperature.
Collapse
Affiliation(s)
- M Jia
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - K L Reynolds
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - E A Wong
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
8
|
Karakelle H, Özçalişan G, Şahin F, Narinç D. The effects of exposure to cold during incubation on developmental stability, fear, growth, and carcass traits in Japanese quails. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023:10.1007/s00484-023-02497-1. [PMID: 37225917 DOI: 10.1007/s00484-023-02497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/13/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
The aim of this study was to determine the effects of 6 h/day cold (35.0 °C) acclimatization between the 9th and 15th days of incubation of Japanese quail embryos on hatchability, livability, chick quality, developmental stability, fear response, live weight, and slaughter-carcass characteristics. Two homologous incubators and a total of 500 hatching eggs were used in the study. Randomly selected half of the eggs were exposed to cold according to the eggshell temperature. The cold acclimation of Japanese quail embryos had no adverse effects on all mentioned traits, except for chick quality. Chicks in the control group had higher Tona scores (99.46) than those exposed to cold (99.00) (P < 0.05). In addition, there were differences among the treatment groups in terms of the parameters of mature weight (β0), instantaneous growth rate (β2), and inflection point coordinates of the Gompertz growth model (P < 0.05 for all). It was found that exposing embryos to cold during the incubation changed the shape of the growth curve. As the development of embryos exposed to cold slows down, a compensatory growth occurs in the early posthatch period. Thus, the growth rate increased in the period before the inflection point of the growth curve.
Collapse
Affiliation(s)
- Hasan Karakelle
- Department of Animal Science, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| | - Gülşah Özçalişan
- Department of Animal Science, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| | - Fatih Şahin
- Department of Animal Science, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| | - Doğan Narinç
- Department of Animal Science, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey.
| |
Collapse
|
9
|
Wang R, Guo Y, Shi Z, Qin S. A quantitative proteomic analyses of primary myocardial cell injury induced by heat stress in chicken embryo. J Therm Biol 2023; 112:103461. [PMID: 36796906 DOI: 10.1016/j.jtherbio.2023.103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
In this study, the model of heat stress was constructed in primary chick embryonic myocardial cells at 42 °C for 4 h. Proteome analysis using DIA identified 245 differentially expressed proteins (DEPs) (Q-value <0.05, fold change >1.5), of which 63 proteins were up-regulated and 182 proteins were down-regulated. Many were related to metabolism, oxidative stress, oxidative phosphorylation and apoptosis. Gene Ontology (GO) analysis showed that many DEPs under heat stress were involved in regulating metabolites and energy, cellular respiration, catalytic activity and stimulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEPs were enriched in metabolic pathways, oxidative phosphorylation, citrate cycle (TCA cycle), cardiac muscle contraction, and carbon metabolism. The results could help understanding of the effect of heat stress on myocardial cells and even the heart and possible action mechanism at the protein level.
Collapse
Affiliation(s)
- Rui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Yanli Guo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zhaoguo Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Shizhen Qin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
10
|
Ncho CM, Goel A, Gupta V, Jeong CM, Choi YH. Effect of in ovo feeding of γ-aminobutyric acid combined with embryonic thermal manipulation on hatchability, growth, and hepatic gene expression in broilers. Anim Biosci 2023; 36:284-294. [PMID: 35798039 PMCID: PMC9834729 DOI: 10.5713/ab.22.0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE This study investigated the effects of in ovo feeding of γ-aminobutyric acid (GABA) and embryonic thermal manipulation (ETM) on growth performance, organ indices, plasma biochemical parameters, hepatic antioxidant levels, and expression of lipid metabolism-related genes in broilers. METHODS Two hundred and fifty eggs were assigned to one of four treatments: control eggs incubated under standard conditions (CON); eggs that received an in ovo injection of 10% GABA on day 17.5 of incubation (G10); thermally manipulated eggs between days 10 and 18 of incubation at 39.6°C for 6 h daily (TM); and eggs that received both treatments during incubation (G10+TM). After 28 days of rearing, five birds per treatment were selected for blood and organ sampling. RESULTS No differences were found in hatchability or growth parameters among different treatment groups. Hepatic gene expression of catalase (CAT) and glutathione peroxidase 1 (GPx1) was upregulated (p = 0.046 and p = 0.006, respectively) in the G10+TM group, while that of nuclear factor erythroid 2-related factor 2 (NRF2) was upregulated (p = 0.039) in the G10 group. In addition, the relative gene expression of NADPH oxidase 1 (NOX1) was significantly lower (p = 0.007) in all treatment groups than that in the CON group. Hepatic fatty acid synthase (FAS) levels and average daily feed intake (ADFI) of last week showed a positive correlation (r = 0.50, p = 0.038). In contrast, the relative gene expression of the extracellular fatty acid-binding protein (EXFAB) and peroxisome proliferator-activated receptor-γ (PPAR-γ) were positively correlated (r = 0.48, p = 0.042 and r = 0.50, p = 0.031) with the overall ADFI of birds. CONCLUSION Taken together, the results of this study suggest that the combination of in ovo feeding of GABA and ETM can enhance hepatic antioxidant function in broilers.
Collapse
Affiliation(s)
- Chris Major Ncho
- Department of Animal Science, Gyeongsang National University, Jinju 52828,
Korea,Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828,
Korea
| | - Akshat Goel
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828,
Korea
| | - Vaishali Gupta
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju 52828,
Korea
| | - Chae-Mi Jeong
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828,
Korea,Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju 52828,
Korea
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang National University, Jinju 52828,
Korea,Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828,
Korea,Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju 52828,
Korea,Corresponding Author: Yang-Ho Choi, Tel: +82-55-772-1946, Fax: +82-55-772-1949, E-mail:
| |
Collapse
|
11
|
Goel A, Ncho CM, Gupta V, Choi YH. Embryonic modulation through thermal manipulation and in ovo feeding to develop heat tolerance in chickens. ANIMAL NUTRITION 2023; 13:150-159. [PMID: 37123616 PMCID: PMC10130083 DOI: 10.1016/j.aninu.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Healthy chickens are necessary to meet the ever-increasing demand for poultry meat. Birds are subjected to numerous stressful conditions under commercial rearing systems, including variations in the environmental temperature. However, it is difficult to counter the effects of global warming on the livestock industry. High environmental temperature is a stressful condition that has detrimental effects on growth and production performance, resulting in decreased feed intake, retarded growth, compromised gut health, enhanced oxidative stress, and altered immune responses. Traditional approaches include nutritional modification and housing management to mitigate the harmful effects of hot environments. Currently, broiler chickens are more susceptible to heat stress (HS) than layer chickens because of their high muscle mass and metabolic rate. In this review, we explored the possibility of in ovo manipulation to combat HS in broiler chickens. Given their short lifespan from hatching to market age, embryonic life is thought to be one of the critical periods for achieving these objectives. Chicken embryos can be modulated through either temperature treatment or nourishment to improve thermal tolerance during the rearing phase. We first provided a brief overview of the harmful effects of HS on poultry. An in-depth evaluation was then presented for in ovo feeding and thermal manipulation as emerging strategies to combat the negative effects of HS. Finally, we evaluated a combination of the two methods using the available data. Taken together, these investigations suggest that embryonic manipulation has the potential to confer heat resistance in chickens.
Collapse
|
12
|
Liu YL, Ding KN, Shen XL, Liu HX, Zhang YA, Liu YQ, He YM, Tang LP. Chronic heat stress promotes liver inflammation in broilers via enhancing NF-κB and NLRP3 signaling pathway. BMC Vet Res 2022; 18:289. [PMID: 35871002 PMCID: PMC9308265 DOI: 10.1186/s12917-022-03388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background This study investigated the effects of chronic heat stress on liver inflammatory injury and its potential mechanisms in broilers. Chickens were randomly assigned to the 1-week control group (Control 1), 1-week heat stress group (HS1), 2-week control group (Control 2), and a 2-week heat stress group (HS2) with 15 replicates per group. Broilers in the heat stress groups were exposed to heat stress (35 ± 2 °C) for 8 h/d for 7 or 14 consecutive days, and the rest of 26 hours/day were kept at 23 ± 2 °C like control group broilers. Growth performance and liver inflammatory injury were examined for the analysis of liver injury. Results The results showed that heat stress for 2 weeks decreased the growth performance, reduced the liver weight (P < 0.05) and liver index (P < 0.05), induced obvious bleeding and necrosis points. Liver histological changes found that the heat stress induced the liver infiltration of neutrophils and lymphocytes in broilers. Serum levels of AST and SOD were enhanced in HS1 (P < 0.01, P < 0.05) and HS2 (P < 0.01, P < 0.05) group, compared with control 1 and 2 group broilers. The MDA content in HS1 group was higher than that of in control 1 group broilers (P < 0.05). Both the gene and protein expression levels of HSP70, TLR4 and NF-κB in the liver were significantly enhanced by heat stress. Furthermore, heat stress obviously enhanced the expression of IL-6, TNF-α, NF-κB P65, IκB and their phosphorylated proteins in the livers of broilers. In addition, heat stress promoted the activation of NLRP3 with increased NLRP3, caspase-1 and IL-1β levels. Conclusions These results suggested that heat stress can cause liver inflammation via activation of the TLR4-NF-κB and NLRP3 signaling pathways in broilers. With the extension of heat stress time, the effect of heat stress on the increase of NF-κB and NLRP3 signaling pathways tended to slow down. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03388-0.
Collapse
|
13
|
Ramiah SK, Balakrishnan KN, Subramaniam Y, Iyasere OS, Idrus Z. Effects of Thermal Manipulation on mRNA Regulation of Response Genes Regarding Improvement of Thermotolerance Adaptation in Chickens during Embryogenesis. Animals (Basel) 2022; 12:ani12233354. [PMID: 36496875 PMCID: PMC9737942 DOI: 10.3390/ani12233354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
The phenomenon of increasing heat stress (HS) among animals is of particular significance when it is seen in economically significant industries, such as poultry. Due to the identification of the physiological, molecular, and genetic roots of HS responses in chickens, a substantial number of studies have focused on reducing the effects of HS in poultry through environmental management, dietary manipulation, and genetic alterations. Temperature manipulation (TM) during embryogenesis has been claimed to increase the thermal tolerance and well-being of chickens without affecting their capacity for future growth. There has been little investigation into the vulnerability of the epigenome involving TM during embryogenesis, although the cellular pathways activated by HS have been explored in chickens. Epigenetic changes caused by prenatal TM enhance postnatal temperature adaption and produce physiological memory. This work offers a thorough analysis that explains the cumulative impact of HS response genes, such as genes related to heat shock proteins, antioxidants, and immunological genes, which may aid in the enhanced adaptability of chickens that have undergone thermal manipulation during their embryonic stages.
Collapse
Affiliation(s)
- Suriya Kumari Ramiah
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Correspondence: (S.K.R.); (K.N.B.); Tel.: +60-3-9769-4286 (S.K.R.)
| | - Krishnan Nair Balakrishnan
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Correspondence: (S.K.R.); (K.N.B.); Tel.: +60-3-9769-4286 (S.K.R.)
| | - Yashini Subramaniam
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Oluwaseun Serah Iyasere
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta P.M.B 2240, Nigeria
| | - Zulkifli Idrus
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| |
Collapse
|
14
|
Ncho CM, Goel A, Gupta V, Jeong CM, Choi YH. Embryonic manipulations modulate differential expressions of heat shock protein, fatty acid metabolism, and antioxidant-related genes in the liver of heat-stressed broilers. PLoS One 2022; 17:e0269748. [PMID: 35839219 PMCID: PMC9286270 DOI: 10.1371/journal.pone.0269748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, the effects of in ovo feeding of γ-aminobutyric acid (GABA) and embryonic thermal manipulation (TM) on plasma biochemical parameters, organ weights, and hepatic gene expression in broilers exposed to cyclic heat stress (32 ± 1°C for 8 days) (HS) were investigated. A total of 175 chicks were assigned to five treatments: chicks hatched from control eggs (CON); chicks hatched from control eggs but exposed to HS (CON+HS); chicks hatched from eggs injected at 17.5 days of incubation with 0.6mL of 10% GABA and exposed to HS (G10+HS); chicks hatched from thermally manipulated eggs (39.6°C, 6h/d from embryonic days 10 to 18) and exposed to HS (TM+HS); chicks hatched from eggs that received both previous treatments during incubation and exposed to HS (G10+TM+HS). Results revealed that on day 36 post-hatch, hepatic NADPH oxidase 1 (P = 0.034) and 4 (P = 0.021) genes were downregulated in the TM+HS and G10+TM+HS compared to the CON+HS group. In addition, while acetyl-CoA carboxylase gene expression was reduced (P = 0.002) in the G10+TM group, gene expression of extracellular fatty acid-binding protein and peroxisome proliferator-activated receptor-γ was lower (P = 0.045) in the TM+HS group than in the CON+HS group. HS led to higher gene expression of heat shock protein 70 (HSP70) and 90 (HSP90) (P = 0.005, and P = 0.022). On the other hand, the TM+HS group exhibited lower expression of both HSP70 (P = 0.031) and HSP90 (P = 0.043) whereas the G10+TM+HS group had a reduced (P = 0.016) HSP90 expression compared to the CON+HS. MANOVA on different gene sets highlighted an overall lower (P = 0.034) oxidative stress and lower (P = 0.035) heat shock protein expression in the G10+TM+HS group compared to the CON+HS group. Taken together, the current results suggest that the combination of in ovo feeding of GABA with TM can modulate HSPs and antioxidant-related gene expression in heat-stressed broilers.
Collapse
Affiliation(s)
- Chris Major Ncho
- Department of Animal Science, Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju, Republic of Korea
| | - Akshat Goel
- Department of Animal Science, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Vaishali Gupta
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju, Republic of Korea
| | - Chae-Mi Jeong
- Department of Animal Science, Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju, Republic of Korea
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- * E-mail:
| |
Collapse
|
15
|
Meng T, Deng J, Xiao D, Arowolo MA, Liu C, Chen L, Deng W, He S, He J. Protective Effects and Potential Mechanisms of Dietary Resveratrol Supplementation on the Spleen of Broilers Under Heat Stress. Front Nutr 2022; 9:821272. [PMID: 35651504 PMCID: PMC9150503 DOI: 10.3389/fnut.2022.821272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Resveratrol (RSV) is a natural polyphenolic compound with potent antioxidant and anti-inflammatory properties. This study aimed to investigate the protective effects of RSV supplementation on the inflammatory responses of broilers during heat stress. A total of 432 28-d-old white-feathered broilers (817 crossbred chicken) with an average weight of 549 ± 4 g were randomly allotted to 4 equal groups (Half male and half female, 6 replicates/group, 18 chickens/replicate), including normal temperature (NT) group (24 ± 2°C for 24 h/d, basal diet), NT+RSV group (24 ± 2°C for 24 h/d, basal diet + RSV), heat stress (HT) group (37 ± 2°C for 8 h/d, basal diet), and HT+RSV group (37 ± 2°C for 8 h/d, basal diet + RSV). Serum samples were collected on d 7 and 14 of heat stress, and thymus, spleen, jejunum, and bursa of Fabricius samples were collected and analyzed on d14. RSV treatment decreased the feed conversion ratio, partially reversed the negative alternations in body weight, average daily gain, and average daily feed intake caused by heat stress. RSV treatment also decreased the elevated levels of corticosterone on d 14, adrenocorticotropic hormone, and triiodothyronine in serum on d 7 caused by heat stress, and significantly increased the villus height to crypt depth ratio in the jejunum on d 14. Dietary RSV also reduced heat stress-induced splenic pro-inflammatory cytokine concentrations. TUNEL assay showed that RSV significantly reduced heat stress-induced the number of apoptotic cells. Remarkably, RSV down-regulated some splenic related genes for apoptosis genes, including BCL-2, Apaf-1, and MDM2 mRNA levels induced by heat stress. According to GO and KEGG enrichment analyses, the differential genes between HT and HT + RSV groups were mainly associated with immune system process, hematopoietic or lymphoid organ development, and toll-like receptor signaling pathway. The relative mRNA expression of NF-κB, heat shock protein 70 (HSP70), and p38 MAPK were markedly decreased by the combination of RSV and heat stress. These findings showed that RSV might reduce the splenic inflammatory response in heat-stressed white-feather broilers by inhibiting heat stress-induced activation of NF-B, MAPK, and HSP70, as well as inhibiting the activation of mitochondrial apoptotic pathways.
Collapse
Affiliation(s)
- Tiantian Meng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Juying Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | | | - Chunming Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Liang Chen
- Institute of Animal Husbandry and Aquaculture, Huaihua Academy of Agricultural Sciences, Huaihua, China
| | - Wei Deng
- Institute of Animal Husbandry and Aquaculture, Huaihua Academy of Agricultural Sciences, Huaihua, China
| | - Shaoping He
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Institute of Animal Husbandry and Aquaculture, Huaihua Academy of Agricultural Sciences, Huaihua, China
| |
Collapse
|
16
|
Duodenal Metabolic Profile Changes in Heat-Stressed Broilers. Animals (Basel) 2022; 12:ani12111337. [PMID: 35681802 PMCID: PMC9179521 DOI: 10.3390/ani12111337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Heat stress (HS) represents an environmental and socio-economic burden to the poultry industry worldwide. However, the underpinning mechanisms for HS responses are still not well defined. Here, we used a high-throughput analysis to determine the metabolite profiles in acute and chronic heat-stressed broilers in comparison with thermoneutral and pair-fed birds. The results showed that HS altered several duodenal metabolites in a duration-dependent manner and identified potential metabolite signatures. Abstract Heat stress (HS) is devastating to poultry production sustainability worldwide. In addition to its adverse effects on growth, welfare, meat quality, and mortality, HS alters the gut integrity, leading to dysbiosis and leaky gut syndrome; however, the underlying mechanisms are not fully defined. Here, we used a high-throughput mass spectrometric metabolomics approach to probe the metabolite profile in the duodenum of modern broilers exposed to acute (AHS, 2 h) or chronic cyclic (CHS, 8 h/day for 2 weeks) HS in comparison with thermoneutral (TN) and pair-fed birds. Ultra high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC–HRMS) identified a total of 178 known metabolites. The trajectory analysis of the principal component analysis (PCA) score plots (both 2D and 3D maps) showed clear separation between TN and each treated group, indicating a unique duodenal metabolite profile in HS birds. Within the HS groups, partial least squares discriminant analysis (PLS-DA) displayed different clusters when comparing metabolite profiles from AHS and CHS birds, suggesting that the metabolite signatures were also dependent on HS duration. To gain biologically related molecule networks, the above identified duodenal metabolites were mapped into the Ingenuity Pathway Analysis (IPA) knowledge-base and analyzed to outline the most enriched biological functions. Several common and specific top canonical pathways were generated. Specifically, the adenosine nucleotide degradation and dopamine degradation pathways were specific for the AHS group; however, the UDP-D-xylose and UDP-D-glucuronate biosynthesis pathways were generated only for the CHS group. The top diseases enriched by the IPA core analysis for the DA metabolites, including cancer, organismal (GI) injury, hematological, cardiovascular, developmental, hereditary, and neurological disorders, were group-specific. The top altered molecular and cellular functions were amino acid metabolism, molecular transport, small molecule biochemistry, protein synthesis, cell death and survival, and DNA damage and repair. The IPA-causal network predicted that the upstream regulators (carnitine palmitoyltransferase 1B, CPT1B; histone deacetylase 11, HDAC11; carbonic anhydrase 9, CA9; interleukin 37, IL37; glycine N-methyl transferase, GNMT; GATA4) and the downstream mediators (mitogen-activated protein kinases, MAPKs; superoxide dismutase, SOD) were altered in the HS groups. Taken together, these data showed that, independently of feed intake depression, HS induced significant changes in the duodenal metabolite profile in a duration-dependent manner and identified a potential duodenal signature for HS.
Collapse
|
17
|
Goel A, Ncho CM, Jeong CM, Choi YH. Embryonic Thermal Manipulation and in ovo Gamma-Aminobutyric Acid Supplementation Regulating the Chick Weight and Stress-Related Genes at Hatch. Front Vet Sci 2022; 8:807450. [PMID: 35071394 PMCID: PMC8777219 DOI: 10.3389/fvets.2021.807450] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/03/2021] [Indexed: 01/19/2023] Open
Abstract
Chickens are exposed to numerous types of stress from hatching to shipping, influencing poultry production. Embryonic manipulation may develop resistance against several stressors. This study investigates the effects of thermoneutral temperature (T0; 37.8°C) with no injection (N0) (T0N0), T0 with 0.6 ml of 10% in ovo gamma-aminobutyric acid (GABA) supplementation (N1) at 17.5th embryonic day (ED) (T0N1), thermal manipulation (T1) at 39.6°C from the 10th to 18th ED (6 h/day) with N0 (T1N0), and T1 with N1 (T1N1) on hatchability parameters and hepatic expression of stress-related genes in day-old Arbor Acres chicks. The parameters determined were hatchability, body weight (BW), organ weight, hepatic malondialdehyde (MDA), and antioxidant-related gene expression. Percent hatchability was calculated on a fertile egg basis. Growth performance was analyzed using each chick as an experimental unit. Eight birds per group were used for organ weight. Two-way ANOVA was used taking temperature and GABA as the main effect for growth performance and gene expression studies. Analysis was performed using an IBM SPSS statistics software package 25.0 (IBM software, Chicago, IL, USA). Hatchability was similar in all the groups and was slightly lower in the T1N1. Higher BW was recorded in both T1 and N1. Intestinal weight and MDA were higher in T0N1 against T0N0 and T1N1, respectively. The expression of HSP70, HSP90, NOX1, and NOX4 genes was higher and SOD and CAT genes were lower in the T1 group. The present results show that T1 and N1 independently improve the BW of broiler chicks at hatch, but T1 strongly regulates stress-related gene expression and suggests that both T1 and N1 during incubation can improve performance and alleviate stress after hatch.
Collapse
Affiliation(s)
- Akshat Goel
- Department of Animal Science, Gyeongsang National University, Jinju, South Korea.,Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Chris Major Ncho
- Department of Animal Science, Gyeongsang National University, Jinju, South Korea.,Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Chae-Mi Jeong
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea.,Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju, South Korea
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang National University, Jinju, South Korea.,Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea.,Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
18
|
Andrieux C, Biasutti S, Barrieu J, Morganx P, Morisson M, Coustham V, Panserat S, Houssier M. Identification of different critical embryonic periods to modify egg incubation temperature in mule ducks. Animal 2021; 16:100416. [PMID: 34954551 DOI: 10.1016/j.animal.2021.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
Egg incubation of mule ducks, mainly used for fatty liver production, is one of the critical phases in this sector. Based on hatching rate, the best incubation parameters have already been well described for poultry, but the literature on ducks is lacking. In this study, we tested different incubation conditions by varying two important factors, temperature and relative humidity, in mule ducks. These variations were applied at different periods during embryogenesis in order to measure the impact of environmental disturbances on different zootechnical performances. The temperature was increased by 1.5 °C (16 h/24) and the relative humidity was set up to 65%, during 10 days. Six 10-day developmental windows were tested, from embryonic day 9 to embryonic day 14. Our results are in line with previous reports showing that increasing incubation temperature, even when relative humidity is adjusted, can have a negative impact on duck embryonic mortality up to 24.5% for the condition E10-E20 (P < 10-5). However, the hatchability can be maintained at the level of the control groups when these modifications are applied on the latest windows (from the 11th embryonic day). Sex ratio, hatching BW, and internal temperature are also sensitive to these incubation changes, and their modification could have a major impact on later zootechnical performance. These results should contribute to the development or embryonic temperature programming approaches, especially for the fatty liver production industry.
Collapse
Affiliation(s)
- C Andrieux
- Univ Pau & Pays Adour, E2S UPPA, INRAE, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle 64310, France
| | - S Biasutti
- Univ Pau & Pays Adour, E2S UPPA, IUT Génie Biologique, 40000 Mont de Marsan, France
| | - J Barrieu
- INRAE Bordeaux-Aquitaine, UEPFG (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d'Artiguères 1076, route de Haut Mauco, 40280 Benquet, France
| | - P Morganx
- INRAE Bordeaux-Aquitaine, UEPFG (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d'Artiguères 1076, route de Haut Mauco, 40280 Benquet, France
| | - M Morisson
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France
| | - V Coustham
- Univ Pau & Pays Adour, E2S UPPA, INRAE, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle 64310, France
| | - S Panserat
- Univ Pau & Pays Adour, E2S UPPA, INRAE, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle 64310, France
| | - M Houssier
- Univ Pau & Pays Adour, E2S UPPA, INRAE, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle 64310, France.
| |
Collapse
|
19
|
Farghly M, Mahrose K, Abougabal M, Taboosha M, Ali R. Early heat acclimation during incubation improves Japanese quail performance under summer conditions. Vet Res Commun 2021; 46:93-100. [PMID: 34537913 DOI: 10.1007/s11259-021-09832-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Effects of exposing quail eggs to high temperature on the heat tolerance ability and productivity of birds were investigated. Four groups of 600 fertile eggs were randomly selected; the first group was incubated under 37.5 °C and the hatched chicks were reared under a gradual decrease in temperature from 35 to 24 °C (Control). The second group was exposed to 39.1 °C for 2 h/day during 4-14 days of embryogenesis and the hatched chicks were reared under a gradual decrease in temperature from 35 to 24 °C. The third group was incubated under 37.5 °C and the hatched chicks were exposed to 39 ± 1 °C for 2 h/day during 4-14 days of age. The fourth group was exposed to 39 ± 1 °C for 2 h during 4-14 days of embryogenesis and the hatched chicks were exposed to 39 ± 1 °C for 2 h/day during 4-14 days of age. The temperature applied changed (P < 0.01) embryo weight and incubation period. Birds exposed to high temperature during brooding had superior growth performance, dressed carcass, body temperature and health traits. Birds subjected to 39 ± 1 °C during brooding exhibited decreased feed consumption and body weight gain. Finally, this work suggests that thermal acclimation during embryogenesis might offer a practical method for easing heat stress.
Collapse
Affiliation(s)
- Mohamed Farghly
- Department of Poultry Production, Agriculture College, Asyut University, Asyut, 71516, Egypt
| | - Khalid Mahrose
- Animal and Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohammed Abougabal
- Department of Animal Production, Agriculture College, Al-Azher University, Cairo, Egypt
| | - Mossad Taboosha
- Department of Animal Production, Agriculture College, Al-Azher University, Cairo, Egypt
| | - Reham Ali
- Animal and Poultry Production Department, Agriculture and Natural Resources College, Aswan University, Aswan, Egypt
| |
Collapse
|
20
|
Khaleel KE, Al-Zghoul MB, Saleh KMM. Molecular and morphometric changes in the small intestine during hot and cold exposure in thermally manipulated broiler chickens. Vet World 2021; 14:1511-1528. [PMID: 34316199 PMCID: PMC8304413 DOI: 10.14202/vetworld.2021.1511-1528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/28/2021] [Indexed: 01/10/2023] Open
Abstract
Background and Aim: Thermal stress (hot or cold) is one of many environmental stressors that severely affects the health of broiler chickens. One negative effect of thermal stress is the disruption of the intestinal barrier function in broiler chickens. This study aimed to evaluate the effect of thermal manipulation (TM) on the small intestine in terms of histomorphometry as well as junctional, heat-shock, and immune response gene expression during post-hatch exposure to thermal stress. Materials and Methods: The experiment was conducted by dividing 928 fertile Ross eggs into three incubation groups: The control (C) group (incubated at 37.8°C and 56% relative humidity [RH] for the whole incubation period), the TM using low temperature TML group (incubated at 36°C and 56% RH for 18 h/day from embryonic days 7 to 16), and the TM using high temperature (TMH) group (incubated at 39°C and 65% RH for 18 h/day from embryonic days 7 to 16). On post-hatch day 21, 90 chicks were randomly selected from each incubation group and were equally subdivided into three subgroups for the post-hatch thermal stress experiment: The TN subgroup (room temperature maintained at 24°C), the heat stress (HS) subgroup (room temperature maintained at 35°C), and the cold stress (CS) subgroup (room temperature maintained at 16°C). After 1 day of thermal stress exposure (age 22 days), five birds from each subgroup were euthanized and ileum samples were collected to evaluate the transcription of the Claudin (CLDN1), CLDN-5, Occludin, Cadherin-1, heat shock factors (HSF1), HSF3, 70 kilodalton heat shock protein, 90 kilodalton heat shock protein, Interleukin6 (IL6), IL8, toll-like receptors-2 (TLR2), and TLR4 genes by Real-Time Quantitative Reverse Transcription polymerase chain reaction analysis. Finally, after 4 and 7 days of thermal stress (age 25 and 28 days, respectively), nine chicks were euthanized, and their jejunum and ileum were collected for histomorphometric analysis. Results: After exposure to 1 day of thermal stress, the C subgroups exposed to thermal stress (HS and CS) possessed significantly increased expression of junctional, heat-shock, and immune response genes compared to the C-TN subgroup, and similar results were observed for the TMH. In contrast, thermally stressed TMH subgroups had significantly lower expression of the studied genes compared to C subgroups exposed to thermal stress. Furthermore, no significant changes were detected between the TML subgroups exposed to thermal stress and TML-TN. Moreover, significant alterations in villus height (VH), villus surface area, crypt depth (CD), and VH to CD ratio were observed between the TML, TMH, and C subgroups exposed to CS. Conclusion: It might be suggested that TM may have a protective impact on the small intestine histomorphometry and epithelial integrity of broilers during post-hatch exposure to thermal stress.
Collapse
Affiliation(s)
- Khaleel Emad Khaleel
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Jordan
| | - Mohammad Borhan Al-Zghoul
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Jordan
| | - Khaled Musa Mohammad Saleh
- Department of Applied Biological Sciences, Faculty of Science and Art, Jordan University of Science and Technology, Jordan
| |
Collapse
|
21
|
Tesarova MP, Skoupa M, Foltyn M, Tvrdon Z, Lichovnikova M. Research Note: Effects of preincubation and higher initiating incubation temperature of long-term stored hatching eggs on hatchability and day-old chick and yolk sac weight. Poult Sci 2021; 100:101293. [PMID: 34229216 PMCID: PMC8264209 DOI: 10.1016/j.psj.2021.101293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022] Open
Abstract
We studied the effect of increased initial incubation temperature and repeated preincubation of 35-d stored eggs from 46-week-old Ross 308 parental stock on the hatchability and day-old chick and yolk sac weight. Two different temperatures were applied during the first 36 h and they were combined with 4 preincubation treatments during storage. One half of the hatching eggs (2,400) were incubated for the first 36 h at an incubation temperature of 38.3°C, and the second half were incubated at a higher temperature of 39.2°C. Four different preincubations were applied; none, once at the 7th d of hatching egg storage, twice at the 7th and 12th d of storage and 3 times at the 7th, 12th and 19th d of storage. Both preincubation and increased temperature had negative effects on hatchability (P < 0.001). The interaction between these 2 factors was also significant (P < 0.05). These 2 factors also negatively affected early and late embryonic mortality (P < 0.001). However, middle embryonic mortality was not influenced. Live weight, weight of residual yolk sac, and yolk sac proportion were not affected by repeated preincubation nor by increased temperature over the first 36 h of incubation (P > 0.05). A higher initial temperature decreased chick yolk free body mass (P < 0.05). Although neither increased initial temperature in the setter nor repeated preincubation affected one-day-old chick weights, these treatments were not suitable for long-term stored eggs because of decreased hatchability and impairment of one day chick yolk free body mass.
Collapse
Affiliation(s)
- Martina Pesanova Tesarova
- Department of Animal Breeding, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Marketa Skoupa
- Department of Animal Breeding, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | | | | | - Martina Lichovnikova
- Department of Animal Breeding, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic.
| |
Collapse
|
22
|
El-Shater SN, Rizk H, Abdelrahman HA, Awad MA, Khalifa EF, Khalil KM. Embryonic thermal manipulation of Japanese quail: effects on embryonic development, hatchability, and post-hatch performance. Trop Anim Health Prod 2021; 53:263. [PMID: 33864132 DOI: 10.1007/s11250-021-02726-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/12/2021] [Indexed: 11/29/2022]
Abstract
Embryonic thermal manipulation led to several modifications in molecular, physiological, and biochemical parameters which affect pre- and post-hatch growth performance. The current study aims to elucidate the onset and long-term effects of intermittent thermal manipulations (TM) during two-time windows, early/late, of embryogenesis in Japanese quail (Coturnix japonica) on embryonic development, hatchability, muscle histogenesis, and post-hatch growth performance. Four groups were created; quail eggs in the control group were incubated at 37.7 °C and relative humidity (RH) 55%. Three thermally treated groups were incubated intermittently at 41 °C and 65% RH intermittently (3 h/day): early embryogenesis group (EE) was thermally treated during embryonic days (ED) 6-8, late embryogenesis group (LE) was thermally treated during (ED12-ED14), and early and late embryogenesis group (EL) was thermally manipulated in both time windows. Relative embryo weights in EL and EE were significantly lighter than those in LE and Ctrl groups. The hatched chicks were reared under optimal managemental conditions (three replicates per treatment). Average daily feed intake was recorded, and feed conversion ratio (FCR) was calculated. Histological and quantitative analyses of muscle fibers were performed. The results revealed that TM led to significant hypertrophy of quail breast muscle in (EE). Intermittent short-term (3-6 h) thermal manipulation (39-40 °C) protocols during early embryogenesis (ED6-ED8) could be recommended to enhance muscle mass growth and breast muscle yield in the Japanese quail.
Collapse
Affiliation(s)
- Saad N El-Shater
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Hamdy Rizk
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Hisham A Abdelrahman
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed A Awad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Elsayed F Khalifa
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Karim M Khalil
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
23
|
Narinç D, Aydemir E. Chick quality: an overview of measurement techniques and influencing factors. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1892469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- D. Narinç
- Department of Animal Science, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - E. Aydemir
- Department of Animal Science, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| |
Collapse
|
24
|
The Impact of Temperature and Humidity on the Performance and Physiology of Laying Hens. Animals (Basel) 2020; 11:ani11010056. [PMID: 33396835 PMCID: PMC7823783 DOI: 10.3390/ani11010056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 11/24/2022] Open
Abstract
Simple Summary The present study investigated whether the temperature-humidity index (THI) influences the production parameters and physiology of laying hens. Two environmental conditions combining high temperature with low relative humidity (TLHH75) or vice versa (THHL75), with the same THI value (75), were considered. The same THI value indicated equal thermal stress for laying hens. Neither TLHH75 nor THHL75 affected laying performance, including egg production, egg weight, and egg mass, feed intake, feed conversion ratio, plasma biochemical parameters, and stress indicators. Our study suggests that laying hens exposed to the same THI values will receive similar thermal stresses. The results of this study will serve as a scientific basis for management decisions and handling laying hens under thermally challenging conditions. Abstract We investigated the effect of different ambient temperatures and relative humidity (RH) with the same temperature-humidity indices (THI) on laying performance, egg quality, heterophil to lymphocyte ratio (H/L ratio), corticosterone (CORT) concentration in blood, yolk, and albumen, and plasma biochemical parameters of laying hens. Commercial hens (Hy-Line Brown; n = 120), aged 60 weeks, were allocated to two environmental chambers. Laying hens were subjected to either one of two thermal treatments—26 °C and 70% RH (TLHH75) or 30 °C and 30% RH (THHL75) for 28 days—with the same THI of 75. Neither TLHH75 nor THHL75 affected laying performance, including egg production, egg weight, egg mass, feed intake, and feed conversion ratio (p > 0.05). Plasma biochemical parameters such as total cholesterol, high-density lipoprotein cholesterol, triglycerides, calcium, magnesium, and phosphorus were not altered by the environmental treatments (p > 0.05). As for stress indicators, both environmental regimes failed to affect blood H/L ratio and CORT levels in plasma, yolk, and albumen (p > 0.05), although albumen CORT levels were elevated (p < 0.05) in TLHH75 group at day 7. Hence, our study suggests that laying hens performed and responded similarly when exposed to either TLHH75 or THHL75 characterized by the same THI. These results can serve as a scientific basis for management decisions and handling laying hens under thermally challenging conditions.
Collapse
|
25
|
Amjadian T, Shahir MH. Effects of repeated thermal manipulation of broiler embryos on hatchability, chick quality, and post-hatch performance. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:2177-2183. [PMID: 32888089 DOI: 10.1007/s00484-020-02012-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
The current study aimed to evaluate the effects of embryonic thermal manipulation (TM) on hatching criteria, chick quality, and subsequent growth performance of broiler chickens under heat stress (HS) condition. Two thousand fertile eggs were randomly divided between 2 groups and incubated under standard (37.8 °C and 56% relative humidity (RH)) and TM (39.5 °C and 65% RH) conditions. Temperature and humidity were identical in both groups within the first 10 days. The eggs in the TM group were exposed to 39.5 °C and 65% RH for 3 h/day from 11 to 16 days of incubation. Egg weight (EW) was measured in 1, 11, and 18 days of incubation, and eggshell temperature (EST) was recorded daily. Chick quality was, also, evaluated according to the Tona method on hatch day. Samples of the chicks (n = 20) were euthanized and dissected at 0-day post-hatch, and different carcass parts were weighed, and blood samples were collected for hormones analysis. The post-hatch growth performance of both groups was also recorded under HS (37 °C for 5 h beginning at 22 days) condition. The results showed that TM did not significantly affect hatchability and embryonic mortality (P > 0.05). The female chick percentage was higher in the TM group (P < 0.05). Eggshell temperature and serum concentrations of corticosterone and T4 were significantly higher in the TM compared with the control chicks (P < 0.05). The chick length was considerably shorter in TM chicks (P < 0.05). Chick quality was not influenced by TM. There was no significant difference between the two groups in the post-hatch growth performance (P > 0.05). In conclusion, exposing broiler embryos to the controlled TM did not have adverse effects on chick quality and post-hatch growth performance.
Collapse
Affiliation(s)
- Tahere Amjadian
- Department of Animal Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Mohammad Hossein Shahir
- Department of Animal Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, 45371-38791, Iran.
| |
Collapse
|
26
|
Tarkhan AH, Saleh KMM, Al-Zghoul MB. HSF3 and Hsp70 Expression during Post-Hatch Cold Stress in Broiler Chickens Subjected to Embryonic Thermal Manipulation. Vet Sci 2020; 7:vetsci7020049. [PMID: 32331280 PMCID: PMC7356021 DOI: 10.3390/vetsci7020049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
Decades of selective breeding for commercial purposes have rendered the broiler chicken (Gallus gallus domesticus) highly susceptible to heat and cold stress. A multitude of studies have documented the effects of thermal manipulation (TM) on broiler thermotolerance during periods of post-hatch heat stress, but very few have focused on the effect of TM on a broiler’s ability to withstand cold stress. Therefore, the primary objective of the current study is to determine the effects of TM on the acquisition of thermotolerance in broilers via their expression of the stress-associated 70 kilodalton heat shock protein (Hsp70) gene and heat shock factor 3 (HSF3) gene. Briefly, Hubbard broiler embryos were subject to TM by increasing the incubation temperature to 39 °C and 65% relative humidity (RH) for 18 h daily, from embryonic days (ED) 10 to 18. Broilers were then exposed to cold stress by decreasing the room temperature to 16 °C during post-hatch days 32 to 37. After thermal challenge, broilers were euthanized and hepatic and splenic tissues were collected. Our results showed that TM decreased the hatchability rate and body temperature but improved the body weight gain. TM generally decreased the hepatic expression but did not change the splenic expression of HSF3 during cold stress. In contrast, both hepatic and splenic Hsp70 expression decreased during cold stress. The results of the present study may suggest that TM significantly affects a broiler’s genetic response to cold stress.
Collapse
Affiliation(s)
- Amneh H. Tarkhan
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.H.T.); (K.M.M.S.)
| | - Khaled M. M. Saleh
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.H.T.); (K.M.M.S.)
| | - Mohammad Borhan Al-Zghoul
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
- Correspondence: ; Tel.: +962-790-340-114
| |
Collapse
|
27
|
Wang Y, Xia L, Guo T, Heng C, Jiang L, Wang D, Wang J, Li K, Zhan X. Research Note: Metabolic changes and physiological responses of broilers in the final stage of growth exposed to different environmental temperatures. Poult Sci 2020; 99:2017-2025. [PMID: 32241486 PMCID: PMC7587865 DOI: 10.1016/j.psj.2019.11.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/28/2022] Open
Abstract
There is no information regarding the influence of heat stress (HS) on host metabolic profile. In this study, we investigated the effects of different environmental temperatures on oxidative status, hormone levels, HS indicators, and plasma metabolites in broilers. A total of 1,680 yellow-feather broilers (28 D old) were randomly allotted to 4 groups with 6 replicates. The broilers (29–57 D old) were maintained in thermostatic rooms (20°C, 25°C, 28°C, and 30°C) for 28 consecutive days. The results showed that the plasma cortisol and adrenocorticotropic hormone levels and creatine kinase and lactate dehydrogenase activities gradually increased when the temperature increased from 20°C to 30°C. However, the insulin-like growth factor-І level decreased gradually. Furthermore, heat shock protein 70 expression significantly increased in the liver and breast muscle (P < 0.01). As the temperature increased, the total anti-oxidant capacity in the plasma and liver gradually decreased, whereas the malondialdehyde level increased. The activity of plasma glutathione peroxidase and total superoxide dismutase in the liver showed a similar increasing trend (P < 0.01). In addition, 15 metabolites were identified at higher (P < 0.05) levels, whereas 2 metabolites were identified at lower (P < 0.05) levels in the 30°C treatment group than those in the 25°C treatment group. Most of these potentially diagnostic biomarkers are involved in carbohydrate, amino acid, lipid, or gut microbiome-derived metabolism, indicating that HS affected the metabolic pathways in broilers. Six candidate metabolites (tartronic acid, l-bethreine, tartaric acid, allose, glutaric acid, and neohesperidin) were selected as biomarkers, as they showed high sensitivity, specificity, and accuracy in diagnosing broilers under HS (P < 0.01). In conclusion, in the final stage of growth, we identified 6 plasma differential metabolites as potential biomarkers of HS-induced metabolic disorders in yellow-feathered broilers. This work offers new insights into the metabolic alterations of broilers exposed to HS and provides a new perspective for further study.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lei Xia
- Agricultural Product Quality and Safety Management Center, Zhoushan, China
| | - Tianyu Guo
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chianning Heng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lei Jiang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Dianchun Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jiangshui Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Kaixuan Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiuan Zhan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
28
|
He S, Chen L, He Y, Chen F, Ma Y, Xiao D, He J. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, barrier integrity and inflammation in yellow-feather broilers. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an19218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Context
Heat stress is one of the problems commonly found in broiler industry in tropic and subtropic regions that results in impairment of intestinal integrity, leading to inflammation and poor performance.
Aims
This study aimed to investigate the effect of dietary resveratrol supplementation on growth performance, intestinal morphology and barrier integrity, and inflammation response of yellow-feather broilers under heat stress.
Methods
In total, 288 birds (28-day-old) were randomly allotted to three treatment groups, with six replicates. A thermo-neutral group (24 ± 2°C) received a basal diet and two heat-stressed groups (37 ± 2°C for 8 h/day and 24 ± 2°C for the remaining time) were fed the basal diet (HT) or basal diet supplemented with 500 mg/kg resveratrol for 14 consecutive days.
Key results
Compared with the thermo-neutral group, birds in the HT group had a decreased (P < 0.05) average daily feed intake, average daily gain, villus height, villus height to crypt depth ratio, mRNA concentrations of mucin-2, secreted immunoglobulin A (sIgA), claudin-1,zona occludens-1 and serum concentrations of interferon γ, and increased (P < 0.05) feed to gain ratio, crypt depth, mRNA levels of expression of heat-shock protein (HSP) 70, HSP90, nuclear factor kappa B, mucin-4, claudin-2 and serum concentrations of endotoxin, interleukin (IL)-1β, IL-4, IL-6 and tumour necrosis factor (TNF)-α on Day 3 and Day 14, except for claudin-1 on Day 14 and TNF-α on Day 3 (P > 0.05). Compared with HT group, birds in HT supplemented with resveratrol group decreased (P < 0.05) crypt depth (in jejunum on Day 3, ileum on Day 14), mRNA levels of expression of HSP70, HSP90, nuclear factor kappa B, mucin-4, claudin-2 and serum concentrations of endotoxin, IL-1β, IL-4, IL-6 and TNF-α, and increased (P < 0.05) average daily feed intake (+11%), average daily gain (+22%) and villus height, villus height to crypt depth ratio, mRNA levels of expression of mucin-2, sIgA, claudin-1,zona occludens-1 and serum concentrations of interferon γ, although with few fluctuations between Day 3 and Day 14.
Conclusions
Dietary supplementation of resveratrol was effective in partially alleviating the adverse effects of heat stress on growth performance and intestinal barrier function in yellow-feather broilers, by restoring the impaired villus-crypt structure, altering the mRNA expression of intestinal HSPs, mucins, sIgA and tight junction-related gene, and inhibiting secretion of pro-inflammation cytokines.
Implications
Dietary resveratrol supplementation is a considerable nutritional strategy to anti-stress in animal production.
Collapse
|
29
|
Massimino W, Davail S, Bernadet MD, Pioche T, Tavernier A, Ricaud K, Gontier K, Bonnefont C, Manse H, Morisson M, Fauconneau B, Collin A, Panserat S, Houssier M. Positive Impact of Thermal Manipulation During Embryogenesis on Foie Gras Production in Mule Ducks. Front Physiol 2019; 10:1495. [PMID: 31920700 PMCID: PMC6920244 DOI: 10.3389/fphys.2019.01495] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022] Open
Abstract
Animal studies have shown that very early life events may have programing effects on adult metabolism and health. In this study, we aim, for the first, time to elucidate the effects of embryonic thermal manipulation (TM) on the performance of overfed mule ducks, in particular for the production of foie gras (fatty liver). We designed three embryonic TMs with different protocols for increasing the incubation temperature during the second part of embryogenesis, to determine whether hepatic metabolism could be “programed” to improve its fattening response to overfeeding at the age of three months. Initial results confirm that an increase in the incubation temperature leads to faster development (observed for all treated groups compared to the control group), and a decrease in the body surface temperature at birth. Thereafter, in a very innovative way, we showed that the three TM conditions specifically increased liver weights, as well as liver lipid content after overfeeding compared to the non-TM control group. These results demonstrate that embryonic TM effectively “programs” the metabolic response to the challenge of force-feeding, resulting in increased hepatic steatosis. Finally, our goal of improving foie gras production has been achieved with three different embryonic thermal stimuli, demonstrating the high reproducibility of the method. However, this repeatability was also perceptible in the adverse effects observed on two groups treated with exactly the same cumulative temperature rise leading to a reduction in hatchability (75 and 76% vs. 82% in control), in addition to an increase in the melting rate after cooking. These results suggest that embryonic thermal programing could be an innovative and inexpensive technique for improving foie gras production, although the specific protocol (duration, level or period of temperature increase), remains to be elucidated in order to avoid adverse effects.
Collapse
Affiliation(s)
- William Massimino
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Université de Pau et des Pays de l'Adour, Pau, France
| | - Stéphane Davail
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Université de Pau et des Pays de l'Adour, Pau, France
| | - Marie-Dominique Bernadet
- UE-PFG-UE89, Unité Expérimentale sur les Palmipèdes à Foie Gras, Centre INRA Bordeaux-Aquitaine, Benquet, France
| | - Tracy Pioche
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Université de Pau et des Pays de l'Adour, Pau, France
| | - Annabelle Tavernier
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Université de Pau et des Pays de l'Adour, Pau, France
| | - Karine Ricaud
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Université de Pau et des Pays de l'Adour, Pau, France
| | - Karine Gontier
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Université de Pau et des Pays de l'Adour, Pau, France
| | - Cécile Bonnefont
- GenPhySE, INRA, ENVT, Université de Toulouse, Castanet Tolosan, France
| | - Hélène Manse
- GenPhySE, INRA, ENVT, Université de Toulouse, Castanet Tolosan, France
| | - Mireille Morisson
- GenPhySE, INRA, ENVT, Université de Toulouse, Castanet Tolosan, France
| | - Benoit Fauconneau
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Université de Pau et des Pays de l'Adour, Pau, France
| | - Anne Collin
- UMR-BOA, Centre INRA Val de Loire, Nouzilly, France
| | - Stéphane Panserat
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Université de Pau et des Pays de l'Adour, Pau, France
| | - Marianne Houssier
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Université de Pau et des Pays de l'Adour, Pau, France
| |
Collapse
|
30
|
Al-Zghoul MB, Alliftawi ARS, Saleh KMM, Jaradat ZW. Expression of digestive enzyme and intestinal transporter genes during chronic heat stress in the thermally manipulated broiler chicken. Poult Sci 2019; 98:4113-4122. [PMID: 31065718 DOI: 10.3382/ps/pez249] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/10/2019] [Indexed: 01/21/2023] Open
Abstract
Heat stress has a serious impact on nutrient digestion and absorption in broiler chickens. This study aimed to investigate the effects of chronic heat stress (CHS) on the mRNA expression of digestive enzymes and nutrient transporter genes in thermally manipulated (TM) broiler chickens. The evaluated genes encompassed pancreatic lipase, trypsin, amylase, maltase, and alkaline phosphatase as well as certain glucose transporter (GLUT2, SGLT1), amino acid transporter (y+LAT1, CAT1), and fatty acid transporter (FABP1, CD36) genes in the jejunal mucosa. Thermal manipulation was carried out at 39°C and 65% relative humidity for 18 h daily from embryonic days (ED) 10-18, while CHS was induced by raising the temperature to 35°C for 7 D throughout post-hatch days 28 to 35. After 0, 1, 3, 5, and 7 D of CHS, the pancreas and jejunal mucosa were collected from the control and TM groups to evaluate the mRNA expression by relative-quantitative real-time qRT-qPCR. Thermal manipulation significantly decreased the cloacal temperature (Tc) and the hatchling weight, and improved weight gain in broilers during post-hatch life and CHS. In addition, TM decreased the mortality rate during CHS. During CHS, the mRNA expression levels of SGLT1, GLUT2, FABP1, and trypsin were significantly decreased after 1 D in control chickens, and this lower expression persisted until day 7, after which it further decreased. In contrast, in TM chickens, SGLT1, GLUT2, and FABP1 expression decreased after 3, 5, and 7 D of CHS, respectively, while no significant change in trypsin expression was observed throughout the CHS period. Moreover, it was found that TM significantly modulated the mRNA expression dynamics of CD36, alkaline phosphatase, y+LAT1, CAT1, lipase, amylase, and maltase during CHS exposure. The findings of this study suggest that, in broiler chickens, TM has a long-lasting impact on nutrient digestion and absorption capabilities as well as Tc, mortality rates, and BW during CHS.
Collapse
Affiliation(s)
- Mohammad Borhan Al-Zghoul
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Aseel Ra'ed Said Alliftawi
- Department of Applied Biological Sciences, Faculty of Science and Art, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Khaled Musa Mohammad Saleh
- Department of Applied Biological Sciences, Faculty of Science and Art, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ziad Waheed Jaradat
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Art, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
31
|
|
32
|
Araújo IC, Café MB, Noleto RA, Martins JMS, Ulhoa CJ, Guareshi GC, Reis MM, Leandro NSM. Effect of vitamin E in ovo feeding to broiler embryos on hatchability, chick quality, oxidative state, and performance. Poult Sci 2019; 98:3652-3661. [DOI: 10.3382/ps/pey439] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/29/2018] [Indexed: 11/20/2022] Open
|
33
|
Al-Zghoul MB, El-Bahr SM. Thermal manipulation of the broilers embryos: expression of muscle markers genes and weights of body and internal organs during embryonic and post-hatch days. BMC Vet Res 2019; 15:166. [PMID: 31122240 PMCID: PMC6533759 DOI: 10.1186/s12917-019-1917-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/16/2019] [Indexed: 11/30/2022] Open
Abstract
Background In broilers chickens, the molecular bases for promoting muscle development and growth requires further investigation. Therefore, the current study aimed to investigate the effects of daily thermal manipulation (TM) during embryonic days (ED) 12 to 18 on body, carcass and internal organ weights as well as on the expression of muscle growth markers genes during late embryogenesis and post-hatch days. 1500 fertile Cobb eggs were divided into five groups. The first group was a control group and incubated at 37.8°C. The other four groups were thermally manipulated (TM) and exposed to 38.5°C (TM1), 39°C (TM2), 39.5°C (TM3) and 40°C (TM4) daily for 18 h, respectively, with a relative humidity of 56%. Body weights (BW) from ED 12 to 18 and on post-hatch days 1, 2, 3, 4, 5, 6, 7, 14, 21, 28 and 35 were recorded. mRNA expression levels of muscle growth factor genes (IGF-1 and GH) and muscle marker genes (Myogenic Differentiation Antigen; MyoD), Myogenin, Pax7, and PCNA) during ED 12 to 18 and on post-hatch days 1, 3, 5, 7, 14 were analyzed. On post-hatch day 35, the carcass and internal organ weights have been also evaluated. Results TM during certain days of embryogenesis (ED 12 to 18) did not affect the BW of broilers during their embryonic lives. However, TM, particularly TM1 and TM2, significantly increased BW, carcass and internal weights of hatched chicks near to the marketing age (post-hatch days 28 and 35). Most of TM protocols induced up-regulation of muscle growth factor genes (IGF-1 and GH) and muscle marker genes (MyoD, Myogenin, Pax7, and PCNA) during embryonic life (ED 12 to 18) and on post-hatch days. Conclusion Among the various TM conditions, it seems that,TM1 and TM2 induced a significant increase in BW, carcass and internal weights of hatched chicks near to the marketing age. This increase in BW induced presumably via up-regulation of muscle growth factor genes and muscle growth markers genes during embryonic life (ED 12 to 18) and on post-hatch days. Both protocols (TM1 and TM2) can be used in real-world applications of poultry industry for maximum benefit.
Collapse
Affiliation(s)
- Mohamed Borhan Al-Zghoul
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Sabry Mohamed El-Bahr
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Hufof, 31982, Saudi Arabia. .,Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
34
|
Al-Zghoul MB, Sukker H, Ababneh MM. Effect of thermal manipulation of broilers embryos on the response to heat-induced oxidative stress. Poult Sci 2019; 98:991-1001. [PMID: 30137537 DOI: 10.3382/ps/pey379] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/20/2018] [Indexed: 11/20/2022] Open
Abstract
Effects of embryonic thermal manipulation (TM) on mRNA expressional levels and total antioxidant capacity of genes associated with heat-induced oxidative stress (NOX4, GpX2, SOD2, catalase, and AvUCP) in 2 breeds of broiler chicken were investigated. Fertile Cobb and Hubbard eggs (n = 1,200) were divided into 4 treatment groups: Cobb control, Cobb TM, Hubbard control, and Hubbard TM. Control groups were maintained under standard conditions (37.8°C; 56% relative humidity), whereas TM groups were incubated at 39°C and 65% relative humidity for 18 h a day from embryonic days (ED) 10 to 18. On post-hatch day 28, the broilers were subject to acute heat stress (AHS) at 40°C for 7 h. At certain intervals (0, 1, 3, 5, and 7 h), 12 chickens from each of the 4 groups were humanely euthanized, and liver samples were immediately isolated. During AHS, in both breeds, the mRNA expression levels of NOX4, GPx2, SOD2, and catalase in TM chickens were significantly lower than in controls, but AvUCP mRNA expression in the TM group was higher. The total antioxidant capacity and activity of superoxidase dismutase and catalase were significantly lower in the TM than in the control group in both breeds. The results of this study suggest that TM has a long-lasting effect on the acquisition of thermotolerance in 2 broiler chicken breeds as indicated by the reduction of system genes associated with heat-induced oxidative stress.
Collapse
Affiliation(s)
- M B Al-Zghoul
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - H Sukker
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - M M Ababneh
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
35
|
He S, Li S, Arowolo MA, Yu Q, Chen F, Hu R, He J. Effect of resveratrol on growth performance, rectal temperature and serum parameters of yellow-feather broilers under heat stress. Anim Sci J 2019; 90:401-411. [DOI: 10.1111/asj.13161] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/04/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Shaoping He
- College of Animal Science and Technology; Hunan Agricultural University; Changsha China
| | - Si Li
- College of Animal Science and Technology; Hunan Agricultural University; Changsha China
| | | | - Qifang Yu
- College of Animal Science and Technology; Hunan Agricultural University; Changsha China
| | - Fu Chen
- College of Animal Science and Technology; Hunan Agricultural University; Changsha China
| | - Ruizhi Hu
- College of Animal Science and Technology; Hunan Agricultural University; Changsha China
| | - Jianhua He
- College of Animal Science and Technology; Hunan Agricultural University; Changsha China
| |
Collapse
|
36
|
Abuoghaba A, Rizk Y, Ismail I, Awadien N. Impact of hen treatment with bee pollen and thermal manipulation
during early egg incubation period on the hatchability
and embryonic development of chicks. JOURNAL OF ANIMAL AND FEED SCIENCES 2018. [DOI: 10.22358/jafs/100622/2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Vinoth A, Thirunalasundari T, Shanmugam M, Uthrakumar A, Suji S, Rajkumar U. Evaluation of DNA methylation and mRNA expression of heat shock proteins in thermal manipulated chicken. Cell Stress Chaperones 2018; 23:235-252. [PMID: 28842808 PMCID: PMC5823805 DOI: 10.1007/s12192-017-0837-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/29/2017] [Accepted: 08/02/2017] [Indexed: 01/20/2023] Open
Abstract
Thermal manipulation during embryogenesis has been demonstrated to enhance the thermotolerance capacity of broilers through epigenetic modifications. Heat shock proteins (HSPs) are induced in response to stress for guarding cells against damage. The present study investigates the effect of thermal conditioning during embryogenesis and thermal challenge at 42 days of age on HSP gene and protein expression, DNA methylation and in vitro luciferase assay in brain tissue of Naked Neck (NN) and Punjab Broiler-2 (PB-2) chicken. On the 15th day of incubation, fertile eggs from two breeds, NN and PB-2, were randomly divided in to two groups: control (C)-eggs were incubated under standard incubation conditions, and thermal conditioning (TC)-eggs were exposed to higher incubation temperature (40.5°C) for 3 h on the 15th, 16th, and 17th days of incubation. The chicks obtained from each group were further subdivided and reared under different environmental conditions from the 15th to the 42nd day as normal [N; 25 ± 1 °C, 70% relative humidity (RH)] and heat exposed (HE; 35 ± 1 °C, 50% RH) resulting in four treatment groups (CN, CHE, TCN, and TCHE). The results revealed that HSP promoter activity was stronger in CHE, which had lesser methylation and higher gene expression. The activity of promoter region was lesser in TCHE birds that were thermally manipulated at the embryonic stage, thus reflecting their stress-free condition. This was confirmed by the lower level of mRNA expression of all the HSP genes. In conclusion, thermal conditioning during embryogenesis has a positive impact and improves chicken thermotolerance capacity in postnatal life.
Collapse
Affiliation(s)
- A Vinoth
- Department of Industrial Biotechnology, Bharathidhasan University, Tiruchirappalli, Tamilnadu, 620 024, India
| | - T Thirunalasundari
- Department of Industrial Biotechnology, Bharathidhasan University, Tiruchirappalli, Tamilnadu, 620 024, India
| | - M Shanmugam
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana, 500 030, India
| | - A Uthrakumar
- Tamilnadu Veterinary and Animal Sciences University, Chennai, Tamilnadu, India
| | - S Suji
- M.S. Swaminathan Research Institute, Taramani, Chennai, Tamilnadu, India
| | - U Rajkumar
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana, 500 030, India.
| |
Collapse
|
38
|
Reyna KS, Burggren WW. Altered embryonic development in northern bobwhite quail (Colinus virginianus) induced by pre-incubation oscillatory thermal stresses mimicking global warming predictions. PLoS One 2017; 12:e0184670. [PMID: 28926597 PMCID: PMC5604979 DOI: 10.1371/journal.pone.0184670] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022] Open
Abstract
Global warming is likely to alter reproductive success of ground-nesting birds that lay eggs normally left unattended for days or even weeks before actual parental incubation, especially in already warm climates. The native North American bobwhite quail (Colinus virginianus) is such a species, and pre-incubation quail eggs may experience temperatures ≥45°C. Yet, almost nothing is known about embryonic survival after such high pre-incubation temperatures. Freshly laid bobwhite quail eggs were exposed during a 12 day pre-incubation period to one of five thermal regimes: low oscillating temperatures (25–40°C, mean = 28.9°C), high oscillating temperatures (30–45°C, mean = 33.9°C), low constant temperatures (28.85°C), high constant temperatures (mean = 33.9°C), or commercially employed pre-incubation temperatures (20°C). After treatment, eggs were then incubated at a standard 37.5°C to determine subsequent effects on embryonic development rate, survival, water loss, hatching, and embryonic oxygen consumption. Both quantity of heating degree hours during pre-incubation and specific thermal regime (oscillating vs. non-oscillating) profoundly affected important aspects of embryo survival and indices of development and growth Pre-incubation quail eggs showed a remarkable tolerance to constant high temperatures (up to 45°C), surviving for 4.5±0.3 days of subsequent incubation, but high oscillating pre-incubation temperature increased embryo survival (mean survival 12.2±1.8 days) and led to more rapid development than high constant temperature (maximum 38.5°C), even though both groups experienced the same total heating degree-hours. Oxygen consumption was ~200–300 μl O2.egg.min-1 at hatching in all groups, and was not affected by pre-incubation conditions. Oscillating temperatures, which are the norm for pre-incubation quail eggs in their natural habitat, thus enhanced survival at higher temperatures. However, a 5°C increase in pre-incubation temperature, which equates to the predicted long-term increases of 5°C or more, nonetheless reduced hatching rate by approximately 50%. Thus, while pre-incubation bobwhite eggs may be resiliant to moderate oscillating temperature increases, global warming will likely severely impact wild bobwhite quail populations, especially in their strongholds in southern latitudes.
Collapse
Affiliation(s)
- Kelly S. Reyna
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
- * E-mail:
| | - Warren W. Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| |
Collapse
|
39
|
Archer G, Jeffrey D, Tucker Z. Effect of the combination of white and red LED lighting during incubation on layer, broiler, and Pekin duck hatchability. Poult Sci 2017; 96:2670-2675. [DOI: 10.3382/ps/pex040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/18/2017] [Indexed: 11/20/2022] Open
|
40
|
abuoghaba AA. Impact of spraying incubated eggs submitted to high temperature with ascorbic acid on embryonic development, hatchability and some physiological responses of hatched chicks. CANADIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.1139/cjas-2016-0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|