1
|
Pavy CL, Shaw JC, Palliser HK, Moloney RA, Hirst JJ. Neurosteroid replacement therapy using tiagabine and zuranolone restores cerebellar neurodevelopment and reduces hyperactive behaviour following preterm birth. J Dev Orig Health Dis 2025; 16:e2. [PMID: 39773606 DOI: 10.1017/s2040174424000394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Preterm birth exposes the neonate to hypoxic-ischaemic and excitotoxic insults that impair neurodevelopment and are magnified by the premature loss of placentally supplied, inhibitory neurosteroids. The cerebellum is a neuronally dense brain region, which undergoes critical periods of development during late gestation, when preterm births frequently occur. We propose that neurosteroid replacement therapy using tiagabine and zuranolone will protect the cerebellum against preterm-associated insults. Guinea pig dams received c-section surgery preterm (gestational age (GA) 64) or at term (GA70) with preterm pups administered tiagabine (2.5 mg/kg/day), zuranolone (1 mg/kg/day) or vehicle (15% β-cyclodextrin) until term equivalent age (GA70). Behavioural testing was performed at corrected postnatal day 8 (PND8) and PND41 with tissue collection occurring at PND42. Neurodevelopmental markers (MBP, OLIG2 and NeuN) were assessed within the cerebellum by immunohistochemistry, whilst GABAergic and glutamatergic pathway expression was quantified using high throughput RT-PCR. Zuranolone and, to a lesser extent, tiagabine were able to protect against hyperactive behaviour at PND8 in males, whilst in females, a less marked hyperactive phenotype was present with neither treatment impacting behaviour further. Both treatments improved MBP staining, whilst tiagabine was found to restore oligodendrocyte maturation in females only. GABAergic and glutamatergic pathway expression was found to be restored by both treatments in females. Overall, this study demonstrates the neuroprotective attributes of neurosteroid replacement therapy using tiagabine and zuranolone, thereby demonstrating their potential to mitigate long-term neurodevelopmental impairments. Furthermore, the sexually dimorphic effects observed suggest future investigations may show increased benefit by using sex-specific treatment regimes.
Collapse
Affiliation(s)
- Carlton L Pavy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, Australia
| | - Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, Australia
| | - Roisin A Moloney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, Australia
| |
Collapse
|
2
|
de Groot ER, Dudink J, Austin T. Sleep as a driver of pre- and postnatal brain development. Pediatr Res 2024; 96:1503-1509. [PMID: 38956219 PMCID: PMC11624135 DOI: 10.1038/s41390-024-03371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
In 1966, Howard Roffwarg proposed the ontogenic sleep hypothesis, relating neural plasticity and development to rapid eye movement (REM) sleep, a hypothesis that current fetal and neonatal sleep research is still exploring. Recently, technological advances have enabled researchers to automatically quantify neonatal sleep architecture, which has caused a resurgence of research in this field as attempts are made to further elucidate the important role of sleep in pre- and postnatal brain development. This article will review our current understanding of the role of sleep as a driver of brain development and identify possible areas for future research. IMPACT: The evidence to date suggests that Roffwarg's ontogenesis hypothesis of sleep and brain development is correct. A better understanding of the relationship between sleep and the development of functional connectivity is needed. Reliable, non-invasive tools to assess sleep in the NICU and at home need to be tested in a real-world environment and the best way to promote healthy sleep needs to be understood before clinical trials promoting and optimizing sleep quality in neonates could be undertaken.
Collapse
Affiliation(s)
- Eline R de Groot
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Topun Austin
- NeoLab, Evelyn Perinatal Imaging Centre, The Rosie Hospital, Cambridge University Hospitals, Cambridge, UK.
| |
Collapse
|
3
|
Moloney RA, Palliser HK, Pavy CL, Shaw JC, Hirst JJ. Zuranolone therapy protects frontal cortex neurodevelopment and improves behavioral outcomes after preterm birth. Brain Behav 2024; 14:e70009. [PMID: 39236116 PMCID: PMC11376442 DOI: 10.1002/brb3.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Preterm birth is associated with brain injury and long-term behavioral abnormalities, for which there are limited prevention options. When born preterm, infants prematurely lose placental neurosteroid (allopregnanolone) support. This increases the risk of excitotoxic damage to the brain, which increases the risk of injury, causing long-term deficits in behavior, myelination, and alterations to neurotransmitter pathways. We propose that postnatal restoration of neurosteroid action through zuranolone therapy will reduce neurological impairments following preterm birth. METHODS Guinea pig dams underwent survival cesarean section surgery to deliver pups prematurely (GA64) or at term (GA69). Between birth and term equivalence age, preterm pups received vehicle (15% β-cyclodextrin) or the allopregnanolone analogue zuranolone (1 mg/kg/day). Behavioral analysis was performed at postnatal day (PND) 7 and 40, before tissue collection at PND 42. Immunostaining for myelin basic protein (MBP), as well as real-time polymerase chain reaction to characterize oligodendrocyte lineage and neurotransmitter pathways, was performed in frontal cortex tissues. RESULTS Zuranolone treatment prevented the hyperactive phenotype in preterm-born offspring, most markedly in males. Additionally, preterm-related reductions in MBP were ameliorated. Several preterm-related alterations in mRNA expression of dopaminergic, glutamatergic, and GABAergic pathways were also restored back to that of a term control level. CONCLUSION This is the first study to assess zuranolone treatment as a neuroprotective therapy following preterm birth. Zuranolone treatment improved behavioral outcomes and structural changes in the preterm offspring, which continued long term until at least a late childhood timepoint. Clinical studies are warranted for further exploring the neuroprotective possibilities of this treatment following preterm birth.
Collapse
Affiliation(s)
- Roisin A Moloney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Carlton L Pavy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| |
Collapse
|
4
|
Moloney RA, Palliser HK, Dyson RM, Pavy CL, Berry M, Hirst JJ, Shaw JC. Ongoing effects of preterm birth on the dopaminergic and noradrenergic pathways in the frontal cortex and hippocampus of guinea pigs. Dev Neurobiol 2024; 84:93-110. [PMID: 38526217 DOI: 10.1002/dneu.22937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
Children born preterm have an increased likelihood of developing neurobehavioral disorders such as attention-deficit hyperactivity disorder (ADHD) and anxiety. These disorders have a sex bias, with males having a higher incidence of ADHD, whereas anxiety disorder tends to be more prevalent in females. Both disorders are underpinned by imbalances to key neurotransmitter systems, with dopamine and noradrenaline in particular having major roles in attention regulation and stress modulation. Preterm birth disturbances to neurodevelopment may affect this neurotransmission in a sexually dimorphic manner. Time-mated guinea pig dams were allocated to deliver by preterm induction of labor (gestational age 62 [GA62]) or spontaneously at term (GA69). The resultant offspring were randomized to endpoints as neonates (24 h after term-equivalence age) or juveniles (corrected postnatal day 40, childhood equivalence). Relative mRNA expressions of key dopamine and noradrenaline pathway genes were examined in the frontal cortex and hippocampus and quantified with real-time PCR. Myelin basic protein and neuronal nuclei immunostaining were performed to characterize the impact of preterm birth. Within the frontal cortex, there were persisting reductions in the expression of dopaminergic pathway components that occurred in preterm males only. Conversely, preterm-born females had increased expression of key noradrenergic receptors and a reduction of the noradrenergic transporter within the hippocampus. This study demonstrated that preterm birth results in major changes in dopaminergic and noradrenergic receptor, transporter, and synthesis enzyme gene expression in a sex- and region-based manner that may contribute to the sex differences in susceptibility to neurobehavioral disorders. These findings highlight the need for the development of sex-based treatments for improving these conditions.
Collapse
Affiliation(s)
- Roisin A Moloney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Rebecca M Dyson
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
- Biomedical Research Unit, University of Otago, Wellington, New Zealand
| | - Carlton L Pavy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Max Berry
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
- Biomedical Research Unit, University of Otago, Wellington, New Zealand
| | - Jonathon J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| |
Collapse
|
5
|
Moloney RA, Pavy CL, Kahl RGS, Palliser HK, Hirst JJ, Shaw JC. Dual isolation of primary neurons and oligodendrocytes from guinea pig frontal cortex. Front Cell Neurosci 2024; 17:1298685. [PMID: 38269115 PMCID: PMC10806141 DOI: 10.3389/fncel.2023.1298685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Primary cell culture is a technique that is widely used in neuroscience research to investigate mechanisms that underlie pathologies at a cellular level. Typically, mouse or rat tissue is used for this process; however, altricial rodent species have markedly different neurodevelopmental trajectories comparatively to humans. The use of guinea pig brain tissue presents a novel aspect to this routinely used cell culture method whilst also allowing for dual isolation of two major cell types from a physiologically relevant animal model for studying perinatal neurodevelopment. Primary neuronal and oligodendrocyte cell cultures were derived from fetal guinea pig's frontal cortex brain tissue collected at a gestational age of 62 days (GA62), which is a key time in the neuronal and oligodendrocyte development. The major advantage of this protocol is the ability to acquire both neuronal and oligodendrocyte cellular cultures from the frontal cortex of one fetal brain. Briefly, neuronal cells were grown in 12-well plates initially in a 24-h serum-rich medium to enhance neuronal survival before switching to a serum-free media formulation. Oligodendrocytes were first grown in cell culture flasks using a serum-rich medium that enabled the growth of oligodendrocyte progenitor cells (OPCs) on an astrocyte bed. Following confluency, the shake method of differential adhesion and separation was utilized via horizontally shaking the OPCs off the astrocyte bed overnight. Therefore, OPCs were plated in 12-well plates and were initially expanded in media supplemented with growth hormones, before switching to maturation media to progress the lineage to a mature phenotype. Reverse transcription-polymerase chain reaction (RT-PCR) was performed on both cell culture types to analyze key population markers, and the results were further validated using immunocytochemistry. Primary neurons displayed the mRNA expression of multiple neuronal markers, including those specific to GABAergic populations. These cells also positively stained for microtubule-associated protein 2 (MAP2; a dendritic marker specific to neurons) and NeuN (a marker of neuronal cell bodies). Primary oligodendrocytes expressed all investigated markers of the oligodendrocyte lineage, with a majority of the cells displaying an immature oligodendrocyte phenotype. This finding was further confirmed with positive oligodendrocyte transcription factor (OLIG2) staining, which serves as a marker for the overall oligodendrocyte population. This study demonstrates a novel method for isolating both neurons and oligodendrocytes from the guinea pig brain tissue. These isolated cells display key markers and gene expression that will allow for functional experiments to occur and may be particularly useful in studying neurodevelopmental conditions with perinatal origins.
Collapse
Affiliation(s)
- Roisin A. Moloney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, NSW, Australia
| | - Carlton L. Pavy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, NSW, Australia
| | - Richard G. S. Kahl
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, NSW, Australia
| | - Hannah K. Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, NSW, Australia
| | - Jon J. Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, NSW, Australia
| | - Julia C. Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, NSW, Australia
| |
Collapse
|
6
|
Basu SK, Pradhan S, Sharker YM, Kapse KJ, Murnick J, Chang T, Lopez CA, Andescavage N, duPlessis AJ, Limperopoulos C. Severity of prematurity and age impact early postnatal development of GABA and glutamate systems. Cereb Cortex 2023; 33:7386-7394. [PMID: 36843135 PMCID: PMC10267637 DOI: 10.1093/cercor/bhad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/28/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) and glutamatergic system perturbations following premature birth may explain neurodevelopmental deficits in the absence of structural brain injury. Using GABA-edited spectroscopy (MEscher-GArwood Point Resolved Spectroscopy [MEGA-PRESS] on 3 T MRI), we have described in-vivo brain GABA+ (+macromolecules) and Glx (glutamate + glutamine) concentrations in term-born infants. We report previously unavailable comparative data on in-vivo GABA+ and Glx concentrations in the cerebellum, the right basal ganglia, and the right frontal lobe of preterm-born infants without structural brain injury. Seventy-five preterm-born (gestational age 27.8 ± 2.9 weeks) and 48 term-born (39.6 ± 0.9 weeks) infants yielded reliable MEGA-PRESS spectra acquired at post-menstrual age (PMA) of 40.2 ± 2.3 and 43.0 ± 2 weeks, respectively. GABA+ (median 2.44 institutional units [i.u.]) concentrations were highest in the cerebellum and Glx higher in the cerebellum (5.73 i.u.) and basal ganglia (5.16 i.u.), with lowest concentrations in the frontal lobe. Metabolite concentrations correlated positively with advancing PMA and postnatal age at MRI (Spearman's rho 0.2-0.6). Basal ganglia Glx and NAA, and frontal GABA+ and NAA concentrations were lower in preterm compared with term infants. Moderate preterm infants had lower metabolite concentrations than term and extreme preterm infants. Our findings emphasize the impact of premature extra-uterine stimuli on GABA-glutamate system development and may serve as early biomarkers of neurodevelopmental deficits.
Collapse
Affiliation(s)
- Sudeepta K Basu
- Neonatology, Children’s National Hospital, Washington, D.C., United States
- Developing Brain Institute, Children’s National Hospital, Washington, D.C. 20010, United States
- The George Washington University School of Medicine, Washington, D.C. 20037, United States
| | - Subechhya Pradhan
- Developing Brain Institute, Children’s National Hospital, Washington, D.C. 20010, United States
- The George Washington University School of Medicine, Washington, D.C. 20037, United States
| | - Yushuf M Sharker
- Developing Brain Institute, Children’s National Hospital, Washington, D.C. 20010, United States
| | - Kushal J Kapse
- Developing Brain Institute, Children’s National Hospital, Washington, D.C. 20010, United States
| | - Jonathan Murnick
- The George Washington University School of Medicine, Washington, D.C. 20037, United States
- Division of Diagnostic Imaging and Radiology, Children’s National Hospital, Washington, D.C. 20010, United States
| | - Taeun Chang
- The George Washington University School of Medicine, Washington, D.C. 20037, United States
- Division of Neurology, Children’s National Hospital, Washington, D.C. 20010, United States
| | - Catherine A Lopez
- Developing Brain Institute, Children’s National Hospital, Washington, D.C. 20010, United States
| | - Nickie Andescavage
- Neonatology, Children’s National Hospital, Washington, D.C., United States
- Developing Brain Institute, Children’s National Hospital, Washington, D.C. 20010, United States
- The George Washington University School of Medicine, Washington, D.C. 20037, United States
- Perinatal Pediatrics institute, Children’s National Hospital, Washington, D.C. 20010, United States
| | - Adre J duPlessis
- The George Washington University School of Medicine, Washington, D.C. 20037, United States
- Division of Neurology, Children’s National Hospital, Washington, D.C. 20010, United States
- Perinatal Pediatrics institute, Children’s National Hospital, Washington, D.C. 20010, United States
| | - Catherine Limperopoulos
- Developing Brain Institute, Children’s National Hospital, Washington, D.C. 20010, United States
- The George Washington University School of Medicine, Washington, D.C. 20037, United States
- Division of Diagnostic Imaging and Radiology, Children’s National Hospital, Washington, D.C. 20010, United States
| |
Collapse
|
7
|
Crombie GK, Palliser HK, Shaw JC, Hanley BA, Moloney RA, Hirst JJ. Prenatal Stress Induces Translational Disruption Associated with Myelination Deficits. Dev Neurosci 2023; 45:290-308. [PMID: 37004512 DOI: 10.1159/000530282] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Disruptions to neurodevelopment are known to be linked to behavioral disorders in childhood and into adulthood. The fetal brain is extremely vulnerable to stimuli that alter inhibitory GABAergic pathways and critical myelination processes, programing long-term neurobehavioral disruption. The maturation of the GABAergic system into the major inhibitory pathway in the brain and the development of oligodendrocytes into mature cells capable of producing myelin are integral components of optimal neurodevelopment. The current study aimed to elucidate prenatal stress-induced mechanisms that disrupt these processes and to delineate the role of placental pathways in these adverse outcomes. Pregnant guinea pig dams were exposed to prenatal stress with strobe light exposure for 2 h/day on gestational age (GA) 35, 40, 45, 50, 55, 60, and 65, and groups of fetuses and placentae were collected after the stress exposure on GA40, GA50, GA60, and GA69 (term). Fetal plasma, placental, and brain tissue were collected for allopregnanolone and cortisol quantification with ELISA. Relative mRNA expression of genes of specific pathways of interest was examined with real-time PCR in placental and hippocampal tissue, and myelin basic protein (MBP) was quantified immunohistochemically in the hippocampus and surrounding regions for assessment of mature myelin. Prenatal stress in mid-late gestation resulted in disruptions to the translational machinery responsible for the production of myelin and decreased myelin coverage in the hippocampus and surrounding regions. The male placenta showed an initial protective increase in allopregnanolone concentrations in response to maternal psychosocial stress. The male and female placentae had a sex-dependent increase in neurosteroidogenic enzymes at term following prenatal stress. Independent from exposure to prenatal stress, at gestational day 60 - a critical period for myelin development, the placentae of female fetuses had increased capability of preventing cortisol transfer to the fetus through expression of 11-beta-hydroxysteroid dehydrogenase types 1 and 2. The deficits early in the process of maturation of myelination indicate that the reduced myelination observed at childhood equivalence in previous studies begins in fetal life. This negative programing persists into childhood, potentially due to dysregulation of MBP translation processes. Expression patterns of neurosteroidogenic enzymes in the placenta at term following stress may identify at-risk fetuses that have been exposed to a stressful in utero environment.
Collapse
Affiliation(s)
- Gabrielle K Crombie
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Hannah K Palliser
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Julia C Shaw
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Bethany A Hanley
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Roisin A Moloney
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jonathan J Hirst
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
8
|
Sze Y, Brunton PJ. Neurosteroids and early-life programming: An updated perspective. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 25:100367. [PMID: 36561280 PMCID: PMC7613978 DOI: 10.1016/j.coemr.2022.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Early-life stress can lead to detrimental offspring outcomes, including an increased risk for mood disorders and hypothalamic-pituitary-adrenal axis dysregulation. Neurosteroids bind to ligand-gated neurotransmitter receptors, rapidly modulating neuronal excitability and promoting termination of stress responses. Reduced neurosteroidogenesis underlies some of the aberrant neuroendocrine and behavioural phenotypes observed in adult prenatally stressed rodents. During development, disruptions in neurosteroid generation and action also lead to long-term programming effects on the off-spring's brain and behaviour. Here, we review recent advances in the field, focusing on the interaction between neurosteroids and early-life stress outcomes in adulthood and in the perinatal period. We also discuss the direction of future research, with emphasis on quantification methods, sex differences, and neurosteroids as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, Scotland, UK
| | - Paula J Brunton
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, Scotland, UK
| |
Collapse
|
9
|
Lacaille H, Vacher CM, Penn AA. Preterm Birth Alters the Maturation of the GABAergic System in the Human Prefrontal Cortex. Front Mol Neurosci 2022; 14:827370. [PMID: 35185465 PMCID: PMC8852329 DOI: 10.3389/fnmol.2021.827370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Developmental changes in GABAergic and glutamatergic systems during frontal lobe development have been hypothesized to play a key role in neurodevelopmental disorders seen in children born very preterm or at/with low birth weight, but the associated cellular changes have not yet been identified. Here we studied the molecular development of the GABAergic system specifically in the dorsolateral prefrontal cortex, a region that has been implicated in neurodevelopmental and psychiatric disorders. The maturation state of the GABAergic system in this region was assessed in human post-mortem brain samples, from term infants ranging in age from 0 to 8 months (n = 17 male, 9 female). Gene expression was measured for 47 GABAergic genes and used to calculate a maturation index. This maturation index was significantly more dynamic in male than female infants. To evaluate the impact of premature birth on the GABAergic system development, samples from 1-month-old term (n = 9 male, 4 female) and 1-month corrected-age very preterm (n = 8 male, 6 female) infants, were compared using the same gene list and methodology. The maturation index for the GABAergic system was significantly lower (−50%, p < 0.05) in male preterm infants, with major alterations in genes linked to GABAergic function in astrocytes, suggesting astrocytic GABAergic developmental changes as a new cellular mechanism underlying preterm brain injury.
Collapse
|
10
|
Vallés AS, Barrantes FJ. Dysregulation of Neuronal Nicotinic Acetylcholine Receptor-Cholesterol Crosstalk in Autism Spectrum Disorder. Front Mol Neurosci 2021; 14:744597. [PMID: 34803605 PMCID: PMC8604044 DOI: 10.3389/fnmol.2021.744597] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a set of complex neurodevelopmental diseases that include impaired social interaction, delayed and disordered language, repetitive or stereotypic behavior, restricted range of interests, and altered sensory processing. The underlying causes of the core symptoms remain unclear, as are the factors that trigger their onset. Given the complexity and heterogeneity of the clinical phenotypes, a constellation of genetic, epigenetic, environmental, and immunological factors may be involved. The lack of appropriate biomarkers for the evaluation of neurodevelopmental disorders makes it difficult to assess the contribution of early alterations in neurochemical processes and neuroanatomical and neurodevelopmental factors to ASD. Abnormalities in the cholinergic system in various regions of the brain and cerebellum are observed in ASD, and recently altered cholesterol metabolism has been implicated at the initial stages of the disease. Given the multiple effects of the neutral lipid cholesterol on the paradigm rapid ligand-gated ion channel, the nicotinic acetylcholine receptor, we explore in this review the possibility that the dysregulation of nicotinic receptor-cholesterol crosstalk plays a role in some of the neurological alterations observed in ASD.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Buenos Aires, Argentina
| | - Francisco J Barrantes
- Instituto de Investigaciones Biomédicas (BIOMED), UCA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
11
|
Gustorff C, Scheuer T, Schmitz T, Bührer C, Endesfelder S. GABA B Receptor-Mediated Impairment of Intermediate Progenitor Maturation During Postnatal Hippocampal Neurogenesis of Newborn Rats. Front Cell Neurosci 2021; 15:651072. [PMID: 34421540 PMCID: PMC8377254 DOI: 10.3389/fncel.2021.651072] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
The neurotransmitter GABA and its receptors assume essential functions during fetal and postnatal brain development. The last trimester of a human pregnancy and early postnatal life involves a vulnerable period of brain development. In the second half of gestation, there is a developmental shift from depolarizing to hyperpolarizing in the GABAergic system, which might be disturbed by preterm birth. Alterations of the postnatal GABA shift are associated with several neurodevelopmental disorders. In this in vivo study, we investigated neurogenesis in the dentate gyrus (DG) in response to daily administration of pharmacological GABAA (DMCM) and GABAB (CGP 35348) receptor inhibitors to newborn rats. Six-day-old Wistar rats (P6) were daily injected (i.p.) to postnatal day 11 (P11) with DMCM, CGP 35348, or vehicle to determine the effects of both antagonists on postnatal neurogenesis. Due to GABAB receptor blockade by CGP 35348, immunohistochemistry revealed a decrease in the number of NeuroD1 positive intermediate progenitor cells and a reduction of proliferative Nestin-positive neuronal stem cells at the DG. The impairment of hippocampal neurogenesis at this stage of differentiation is in line with a significantly decreased RNA expression of the transcription factors Pax6, Ascl1, and NeuroD1. Interestingly, the number of NeuN-positive postmitotic neurons was not affected by GABAB receptor blockade, although strictly associated transcription factors for postmitotic neurons, Tbr1, Prox1, and NeuroD2, displayed reduced expression levels, suggesting impairment by GABAB receptor antagonization at this stage of neurogenesis. Antagonization of GABAB receptors decreased the expression of neurotrophins (BDNF, NT-3, and NGF). In contrast to the GABAB receptor blockade, the GABAA receptor antagonization revealed no significant changes in cell counts, but an increased transcriptional expression of Tbr1 and Tbr2. We conclude that GABAergic signaling via the metabotropic GABAB receptor is crucial for hippocampal neurogenesis at the time of rapid brain growth and of the postnatal GABA shift. Differentiation and proliferation of intermediate progenitor cells are dependent on GABA. These insights become more pertinent in preterm infants whose developing brains are prematurely exposed to spostnatal stress and predisposed to poor neurodevelopmental disorders, possibly as sequelae of early disruption in GABAergic signaling.
Collapse
Affiliation(s)
- Charlotte Gustorff
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Till Scheuer
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Schmitz
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
12
|
Basu SK, Pradhan S, du Plessis AJ, Ben-Ari Y, Limperopoulos C. GABA and glutamate in the preterm neonatal brain: In-vivo measurement by magnetic resonance spectroscopy. Neuroimage 2021; 238:118215. [PMID: 34058332 PMCID: PMC8404144 DOI: 10.1016/j.neuroimage.2021.118215] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cognitive and behavioral disabilities in preterm infants, even without obvious brain injury on conventional neuroimaging, underscores a critical need to identify the subtle underlying microstructural and biochemical derangements. The gamma-aminobutyric acid (GABA) and glutamatergic neurotransmitter systems undergo rapid maturation during the crucial late gestation and early postnatal life, and are at-risk of disruption after preterm birth. Animal and human autopsy studies provide the bulk of current understanding since non-invasive specialized proton magnetic resonance spectroscopy (1H-MRS) to measure GABA and glutamate are not routinely available for this vulnerable population due to logistical and technical challenges. We review the specialized 1H-MRS techniques including MEscher-GArwood Point Resolved Spectroscopy (MEGA-PRESS), special challenges and considerations needed for interpretation of acquired data from the developing brain of preterm infants. We summarize the limited in-vivo preterm data, highlight the gaps in knowledge, and discuss future directions for optimal integration of available in-vivo approaches to understand the influence of GABA and glutamate on neurodevelopmental outcomes after preterm birth.
Collapse
Affiliation(s)
- Sudeepta K Basu
- Neonatology, Children's National Hospital, Washington, D.C., United States; Center for the Developing Brain, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States
| | - Subechhya Pradhan
- Center for the Developing Brain, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States
| | - Adre J du Plessis
- Fetal Medicine institute, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States
| | - Yehezkel Ben-Ari
- Division of Neurology, Children's National Hospital, Washington, D.C., United States; Neurochlore, Marseille, France
| | - Catherine Limperopoulos
- Center for the Developing Brain, Children's National Hospital, Washington, D.C., United States; Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States.
| |
Collapse
|
13
|
Chen S, Gao L, Li X, Ye Y. Allopregnanolone in mood disorders: Mechanism and therapeutic development. Pharmacol Res 2021; 169:105682. [PMID: 34019980 DOI: 10.1016/j.phrs.2021.105682] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 01/23/2023]
Abstract
The neuroactive steroid allopregnanolone (ALLO) is an endogenous positive allosteric modulator of GABA type A receptor (GABAAR), and the down-regulation of its biosynthesis have been attributed to the development of mood disorders, such as depression, anxiety and post-traumatic stress disorder (PTSD). ALLO mediated depression/anxiety involves GABAergic mechanisms and appears to be related to brain-derived neurotrophic factor (BDNF), dopamine receptor, glutamate neurotransmission, and Ca2+ channel. In the clinical, brexanolone, as a newly developed intravenous ALLO preparation, has been approved for the treatment of postpartum depression (PPD). In addition, traditional antidepressants such as selective serotonin reuptake inhibitor (SSRI) could reverse ALLO decline. Recently, the translocation protein (TSPO, 18 kDa), which involves in the speed-limiting step of ALLO synthesis, and ALLO derivatization have been identified as new directions for antidepressant therapy. This review provides an overview of ALLO researches in animal model and patients, discusses its role in the development and treatment of depression/anxiety, and directs its therapeutic potential in future.
Collapse
Affiliation(s)
- Shiyi Chen
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Lijuan Gao
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Xiaoyu Li
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Yiping Ye
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
14
|
Crombie GK, Palliser HK, Shaw JC, Hodgson DM, Walker DW, Hirst JJ. Effects of prenatal stress on behavioural and neurodevelopmental outcomes are altered by maternal separation in the neonatal period. Psychoneuroendocrinology 2021; 124:105060. [PMID: 33333379 DOI: 10.1016/j.psyneuen.2020.105060] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Chronic psychosocial stress during pregnancy and/or after birth, and the associated elevation in cortisol, is linked with the onset of behavioural disorders in childhood. Previously, prenatal stress has been shown to reduce neurosteroid pathways in the fetus and the levels of the neurosteroid and GABAA receptor agonist, allopregnanolone. In late gestation, elevated levels of GABAergic activity increases inhibitory tone and protects against excessive excitation. These levels of allopregnanolone may also contribute to promoting myelination, thus stress-induced suppression of protective neurosteroid levels may disrupt neurodevelopmental processes and can result in reduced myelination. The objective of this study was to examine whether prenatal and postnatal stress reduces levels of inhibitory pathways to result in behavioural, myelin, and GABAergic/glutamatergic pathway deficits in the hippocampus at a postnatal time point in the guinea pig equivalent to childhood in humans. METHODS Pregnant guinea pig dams were exposed to prenatal stress (PRE) with strobe light exposure for 2 h/day on gestational age (GA) 50, 55, 60 and 65 (term is ∼GA70), with postnatal stress (POST) caused by maternal separation for 2 h/day from postnatal day (PND) 1-7), or a double-hit of both stressors (PRE + POST). Control dams and offspring groups (CON) were handled at the same time each day without causing stress. Behavioural outcomes were assessed using open field and elevated plus maze testing on PND27. After euthanasia on PND30, plasma samples were collected for steroid quantification of cortisol, allopregnanolone and progesterone by ELISA. Hippocampal samples were collected to assess markers of oligodendrocyte development and mature cells by myelin basic protein (MBP) immunostaining and GABAergic and glutamatergic pathway component gene expression by real time PCR. RESULTS Male guinea pig offspring exposed to prenatal stress exhibited hyperactive-like behaviour at childhood equivalence, while female offspring displayed anxious-like behaviour, to a lesser extent. In both sexes, MBP immunostaining was significantly decreased in the hippocampal region following prenatal stress, despite normal levels of MBP mRNA, which suggests a disruption to the MBP protein translation pathway. Many components of the GABAergic and glutamatergic pathways were disrupted following prenatal stress, notably GABAA receptor subunits, GABA production and uptake, glutamate ionotropic and metabotropic receptor subunits and glutamate transport. Following prenatal + postnatal stress, many of the behavioural and neurodevelopmental deficits were improved compared to the prenatal stress only group. CONCLUSION We conclude that prenatal stress disrupts GABAergic and glutamatergic pathways that may contribute to reduced myelination and subsequent behavioural deficits in the offspring. The deficits seen following prenatal stress are ameliorated when paired with subsequent postnatal stress, which highlights the early postnatal period as an important treatment window.
Collapse
Affiliation(s)
- Gabrielle K Crombie
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia.
| | - Hannah K Palliser
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| | - Julia C Shaw
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| | | | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, VIC, Australia
| | - Jonathan J Hirst
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| |
Collapse
|
15
|
Shaw JC, Crombie GK, Palliser HK, Hirst JJ. Impaired Oligodendrocyte Development Following Preterm Birth: Promoting GABAergic Action to Improve Outcomes. Front Pediatr 2021; 9:618052. [PMID: 33634057 PMCID: PMC7901941 DOI: 10.3389/fped.2021.618052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
Preterm birth is associated with poor long-term neurodevelopmental and behavioral outcomes, even in the absence of obvious brain injury at the time of birth. In particular, behavioral disorders characterized by inattention, social difficulties and anxiety are common among children and adolescents who were born moderately to late preterm (32-37 weeks' gestation). Diffuse deficits in white matter microstructure are thought to play a role in these poor outcomes with evidence suggesting that a failure of oligodendrocytes to mature and myelinate axons is responsible. However, there remains a major knowledge gap over the mechanisms by which preterm birth interrupts normal oligodendrocyte development. In utero neurodevelopment occurs in an inhibitory-dominant environment due to the action of placentally derived neurosteroids on the GABAA receptor, thus promoting GABAergic inhibitory activity and maintaining the fetal behavioral state. Following preterm birth, and the subsequent premature exposure to the ex utero environment, this action of neurosteroids on GABAA receptors is greatly reduced. Coinciding with a reduction in GABAergic inhibition, the preterm neonatal brain is also exposed to ex utero environmental insults such as periods of hypoxia and excessive glucocorticoid concentrations. Together, these insults may increase levels of the excitatory neurotransmitter glutamate in the developing brain and result in a shift in the balance of inhibitory: excitatory activity toward excitatory. This review will outline the normal development of oligodendrocytes, how it is disrupted under excitation-dominated conditions and highlight how shifting the balance back toward an inhibitory-dominated environment may improve outcomes.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Gabrielle K Crombie
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
16
|
Serrano-Regal MP, Bayón-Cordero L, Ordaz RP, Garay E, Limon A, Arellano RO, Matute C, Sánchez-Gómez MV. Expression and Function of GABA Receptors in Myelinating Cells. Front Cell Neurosci 2020; 14:256. [PMID: 32973453 PMCID: PMC7472887 DOI: 10.3389/fncel.2020.00256] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/24/2020] [Indexed: 01/14/2023] Open
Abstract
Myelin facilitates the fast transmission of nerve impulses and provides metabolic support to axons. Differentiation of oligodendrocyte progenitor cells (OPCs) and Schwann cell (SC) precursors is critical for myelination during development and myelin repair in demyelinating disorders. Myelination is tightly controlled by neuron-glia communication and requires the participation of a wide repertoire of signals, including neurotransmitters such as glutamate, ATP, adenosine, or γ-aminobutyric acid (GABA). GABA is the main inhibitory neurotransmitter in the central nervous system (CNS) and it is also present in the peripheral nervous system (PNS). The composition and function of GABA receptors (GABARs) are well studied in neurons, while their nature and role in glial cells are still incipient. Recent studies demonstrate that GABA-mediated signaling mechanisms play relevant roles in OPC and SC precursor development and function, and stand out the implication of GABARs in oligodendrocyte (OL) and SC maturation and myelination. In this review, we highlight the evidence supporting the novel role of GABA with an emphasis on the molecular identity of the receptors expressed in these glial cells and the possible signaling pathways involved in their actions. GABAergic signaling in myelinating cells may have potential implications for developing novel reparative therapies in demyelinating diseases.
Collapse
Affiliation(s)
- Mari Paz Serrano-Regal
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Laura Bayón-Cordero
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Rainald Pablo Ordaz
- Laboratorio de Neurofisiología Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Edith Garay
- Laboratorio de Neurofisiología Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Rogelio O. Arellano
- Laboratorio de Neurofisiología Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Carlos Matute
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - María Victoria Sánchez-Gómez
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| |
Collapse
|
17
|
Basu SK, Pradhan S, Jacobs MB, Said M, Kapse K, Murnick J, Whitehead MT, Chang T, du Plessis AJ, Limperopoulos C. Age and Sex Influences Gamma-aminobutyric Acid Concentrations in the Developing Brain of Very Premature Infants. Sci Rep 2020; 10:10549. [PMID: 32601466 PMCID: PMC7324587 DOI: 10.1038/s41598-020-67188-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) and glutamate are principal neurotransmitters essential for late gestational brain development and may play an important role in prematurity-related brain injury. In vivo investigation of GABA in the preterm infant with standard proton magnetic resonance spectroscopy (1H-MRS) has been limited due to its low concentrations in the developing brain, and overlap in the spectrum by other dominant metabolites. We describe early postnatal profiles of in vivo GABA and glutamate concentrations in the developing preterm brain measured by using the J-difference editing technique, Mescher-Garwood point resolved spectroscopy. We prospectively enrolled very preterm infants born ≤32 weeks gestational age and non-sedated 1H-MRS (echo time 68 ms, relaxation time 2000 ms, 256 signal averages) was acquired on a 3 Tesla magnetic resonance imaging scanner from a right frontal lobe voxel. Concentrations of GABA + (with macromolecules) was measured from the J-difference spectra; whereas glutamate and composite glutamate + glutamine (Glx) were measured from the unedited (OFF) spectra and reported in institutional units. We acquired 42 reliable spectra from 38 preterm infants without structural brain injury [median gestational age at birth of 28.0 (IQR 26.0, 28.9) weeks; 19 males (50%)] at a median postmenstrual age of 38.4 (range 33.4 to 46.4) weeks. With advancing post-menstrual age, the concentrations of glutamate OFF increased significantly, adjusted for co-variates (generalized estimating equation β = 0.22, p = 0.02). Advancing postnatal weeks of life at the time of imaging positively correlated with GABA + (β = 0.06, p = 0.02), glutamate OFF (β = 0.11, p = 0.02) and Glx OFF (β = 0.12, p = 0.04). Male infants had higher GABA + (1.66 ± 0.07 vs. 1.33 ± 0.11, p = 0.01) concentrations compared with female infants. For the first time, we report the early ex-utero developmental profile of in vivo GABA and glutamate stratified by age and sex in the developing brain of very preterm infants. This data may provide novel insights into the pathophysiology of neurodevelopmental disabilities reported in preterm infants even in the absence of structural brain injury.
Collapse
Affiliation(s)
- Sudeepta K Basu
- Neonatology, Children's National Hospital, Washington, D.C, US
- Center for the Developing Brain, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Subechhya Pradhan
- Center for the Developing Brain, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Marni B Jacobs
- Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Mariam Said
- Neonatology, Children's National Hospital, Washington, D.C, US
- Center for the Developing Brain, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Kushal Kapse
- Center for the Developing Brain, Children's National Hospital, Washington, D.C, US
| | - Jonathan Murnick
- Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Matthew T Whitehead
- Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Taeun Chang
- Division of Neurology, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Adre J du Plessis
- Fetal Medicine institute, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Catherine Limperopoulos
- Center for the Developing Brain, Children's National Hospital, Washington, D.C, US.
- Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, D.C, US.
- The George Washington University School of Medicine, Washington, D.C, US.
| |
Collapse
|
18
|
Shaw JC, Crombie GK, Zakar T, Palliser HK, Hirst JJ. Perinatal compromise contributes to programming of GABAergic and glutamatergic systems leading to long-term effects on offspring behaviour. J Neuroendocrinol 2020; 32:e12814. [PMID: 31758712 DOI: 10.1111/jne.12814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/30/2019] [Accepted: 11/20/2019] [Indexed: 01/01/2023]
Abstract
Extensive evidence now shows that adversity during the perinatal period is a significant risk factor for the development of neurodevelopmental disorders long after the causative event. Despite stemming from a variety of causes, perinatal compromise appears to have similar effects on the developing brain, thereby resulting in behavioural disorders of a similar nature. These behavioural disorders occur in a sex-dependent manner, with males affected more by externalising behaviours such as attention deficit hyperactivity disorder (ADHD) and females by internalising behaviours such as anxiety. Regardless of the causative event or the sex of the offspring, these disorders may begin in childhood or adolescence but extend into adulthood. A mechanism by which adverse events in the perinatal period impact later in life behaviour has been shown to be the changing epigenetic landscape. Methylation of the GAD1/GAD67 gene, which encodes the key glutamate-to-GABA-synthesising enzyme glutamate decarboxylase 1, resulting in increased levels of glutamate, is one epigenetic mechanism that may account for a tendency towards excitation in disorders such as ADHD. Exposure of the fetus or the neonate to high levels of cortisol may be the mediator between perinatal compromise and poor behavioural outcomes because evidence suggests that increased glucocorticoid exposure triggers widespread changes in the epigenetic landscape. This review summarises the current evidence and recent literature about the impact of various perinatal insults on the epigenome and the common mechanisms that may explain the similarity of behavioural outcomes occurring following diverse perinatal compromise.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Gabrielle K Crombie
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tamas Zakar
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
19
|
Sze Y, Brunton PJ. Sex, stress and steroids. Eur J Neurosci 2019; 52:2487-2515. [DOI: 10.1111/ejn.14615] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
| | - Paula J. Brunton
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
- Zhejiang University‐University of Edinburgh Joint Institute Haining Zhejiang China
| |
Collapse
|
20
|
Shaw JC, Berry MJ, Dyson RM, Crombie GK, Hirst JJ, Palliser HK. Reduced Neurosteroid Exposure Following Preterm Birth and Its' Contribution to Neurological Impairment: A Novel Avenue for Preventative Therapies. Front Physiol 2019; 10:599. [PMID: 31156466 PMCID: PMC6529563 DOI: 10.3389/fphys.2019.00599] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
Children born preterm are at an increased risk of developing cognitive problems and neuro-behavioral disorders such as attention deficit hyperactivity disorder (ADHD) and anxiety. Whilst neonates born at all gestational ages, even at term, can experience poor cognitive outcomes due to birth-complications such as birth asphyxia, it is becoming widely known that children born preterm in particular are at significant risk for learning difficulties with an increased utilization of special education resources, when compared to their healthy term-born peers. Additionally, those born preterm have evidence of altered cerebral myelination with reductions in white matter volumes of the frontal cortex, hippocampus and cerebellum evident on magnetic resonance imaging (MRI). This disruption to myelination may underlie some of the pathophysiology of preterm-associated brain injury. Compared to a fetus of the same post-conceptional age, the preterm newborn loses access to in utero factors that support and promote healthy brain development. Furthermore, the preterm ex utero environment is hostile to the developing brain with a myriad of environmental, biochemical and excitotoxic stressors. Allopregnanolone is a key neuroprotective fetal neurosteroid which has promyelinating effects in the developing brain. Preterm birth leads to an abrupt loss of the protective effects of allopregnanolone, with a dramatic drop in allopregnanolone concentrations in the preterm neonatal brain compared to the fetal brain. This occurs in conjunction with reduced myelination of the hippocampus, subcortical white matter and cerebellum; thus, damage to neurons, astrocytes and especially oligodendrocytes of the developing nervous system can occur in the vulnerable developmental window prior to term as a consequence reduced allopregnanolone. In an effort to prevent preterm-associated brain injury a number of therapies have been considered, but to date, other than antenatal magnesium sulfate and corticosteroid therapy, none have become part of standard clinical care for vulnerable infants. Therefore, there remains an urgent need for improved therapeutic options to prevent brain injury in preterm neonates. The actions of the placentally derived neurosteroid allopregnanolone on GABAA receptor signaling has a major role in late gestation neurodevelopment. The early loss of this intrauterine neurotrophic support following preterm birth may be pivotal to development of neurodevelopmental morbidity. Thus, restoring the in utero neurosteroid environment for preterm neonates may represent a new and clinically feasible treatment option for promoting better trajectories of myelination and brain development, and therefore reducing neurodevelopmental disorders in children born preterm.
Collapse
Affiliation(s)
- Julia C. Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Mary J. Berry
- Department of Paediatrics and Child Health, University of Otago, Wellington, Wellington, New Zealand
- Centre for Translational Physiology, University of Otago, Wellington, Wellington, New Zealand
| | - Rebecca M. Dyson
- Department of Paediatrics and Child Health, University of Otago, Wellington, Wellington, New Zealand
- Centre for Translational Physiology, University of Otago, Wellington, Wellington, New Zealand
| | - Gabrielle K. Crombie
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Jonathan J. Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Hannah K. Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
21
|
Neurosteroid replacement therapy using the allopregnanolone-analogue ganaxolone following preterm birth in male guinea pigs. Pediatr Res 2019; 85:86-96. [PMID: 30237570 DOI: 10.1038/s41390-018-0185-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Children born preterm, especially boys, are at increased risk of developing attention deficit hyperactivity disorder (ADHD) and learning difficulties. We propose that neurosteroid-replacement therapy with ganaxolone (GNX) following preterm birth may mitigate preterm-associated neurodevelopmental impairment. METHODS Time-mated sows were delivered preterm (d62) or at term (d69). Male preterm pups were randomized to ganaxolone (Prem-GNX; 2.5 mg/kg subcutaneously twice daily until term equivalence), or preterm control (Prem-CON). Surviving male juvenile pups underwent behavioural testing at d25-corrected postnatal age (CPNA). Brain tissue was collected at CPNA28 and mature myelinating oligodendrocytes of the hippocampus and subcortical white matter were quantified by immunostaining of myelin basic protein (MBP). RESULTS Ganaxolone treatment returned the hyperactive behavioural phenotype of preterm-born juvenile males to a term-born phenotype. Deficits in MBP immunostaining of the preterm hippocampus and subcortical white matter were also ameliorated in animals receiving ganaxolone. However, during the treatment period weight gain was poor, and pups were sedated, ultimately increasing the neonatal mortality rate. CONCLUSION Ganaxolone improved neurobehavioural outcomes in males suggesting that neonatal treatment may be an option for reducing preterm-associated neurodevelopmental impairment. However, dosing studies are required to reduce the burden of unwanted side effects.
Collapse
|
22
|
Morrison JL, Botting KJ, Darby JRT, David AL, Dyson RM, Gatford KL, Gray C, Herrera EA, Hirst JJ, Kim B, Kind KL, Krause BJ, Matthews SG, Palliser HK, Regnault TRH, Richardson BS, Sasaki A, Thompson LP, Berry MJ. Guinea pig models for translation of the developmental origins of health and disease hypothesis into the clinic. J Physiol 2018; 596:5535-5569. [PMID: 29633280 PMCID: PMC6265540 DOI: 10.1113/jp274948] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Over 30 years ago Professor David Barker first proposed the theory that events in early life could explain an individual's risk of non-communicable disease in later life: the developmental origins of health and disease (DOHaD) hypothesis. During the 1990s the validity of the DOHaD hypothesis was extensively tested in a number of human populations and the mechanisms underpinning it characterised in a range of experimental animal models. Over the past decade, researchers have sought to use this mechanistic understanding of DOHaD to develop therapeutic interventions during pregnancy and early life to improve adult health. A variety of animal models have been used to develop and evaluate interventions, each with strengths and limitations. It is becoming apparent that effective translational research requires that the animal paradigm selected mirrors the tempo of human fetal growth and development as closely as possible so that the effect of a perinatal insult and/or therapeutic intervention can be fully assessed. The guinea pig is one such animal model that over the past two decades has demonstrated itself to be a very useful platform for these important reproductive studies. This review highlights similarities in the in utero development between humans and guinea pigs, the strengths and limitations of the guinea pig as an experimental model of DOHaD and the guinea pig's potential to enhance clinical therapeutic innovation to improve human health.
Collapse
Affiliation(s)
- Janna L. Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Kimberley J. Botting
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Anna L. David
- Research Department of Maternal Fetal Medicine, Institute for Women's HealthUniversity College LondonLondonUK
| | - Rebecca M. Dyson
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| | - Kathryn L. Gatford
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Clint Gray
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| | - Emilio A. Herrera
- Pathophysiology Program, Biomedical Sciences Institute (ICBM), Faculty of MedicineUniversity of ChileSantiagoChile
| | - Jonathan J. Hirst
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Bona Kim
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Karen L. Kind
- School of Animal and Veterinary SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Bernardo J. Krause
- Division of Paediatrics, Faculty of MedicinePontificia Universidad Católica de ChileSantiagoChile
| | | | - Hannah K. Palliser
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Timothy R. H. Regnault
- Departments of Obstetrics and Gynaecology, Physiology and PharmacologyWestern University, and Children's Health Research Institute and Lawson Health Research InstituteLondonOntarioCanada
| | - Bryan S. Richardson
- Departments of Obstetrics and Gynaecology, Physiology and PharmacologyWestern University, and Children's Health Research Institute and Lawson Health Research InstituteLondonOntarioCanada
| | - Aya Sasaki
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Loren P. Thompson
- Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Mary J. Berry
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| |
Collapse
|
23
|
Bennet L, Walker DW, Horne RSC. Waking up too early - the consequences of preterm birth on sleep development. J Physiol 2018; 596:5687-5708. [PMID: 29691876 DOI: 10.1113/jp274950] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Good quality sleep of sufficient duration is vital for optimal physiological function and our health. Sleep deprivation is associated with impaired neurocognitive function and emotional control, and increases the risk for cardiometabolic diseases, obesity and cancer. Sleep develops during fetal life with the emergence of a recognisable pattern of sleep states in the preterm fetus associated with the development, maturation and connectivity within neural networks in the brain. Despite the physiological importance of sleep, surprisingly little is known about how sleep develops in individuals born preterm. Globally, an estimated 15 million babies are born preterm (<37 weeks gestation) each year, and these babies are at significant risk of neural injury and impaired brain development. This review discusses how sleep develops during fetal and neonatal life, how preterm birth impacts on sleep development to adulthood, and the factors which may contribute to impaired brain and sleep development, leading to altered neurocognitive, behavioural and motor capabilities in the infant and child. Going forward, the challenge is to identify specific risk factors for impaired sleep development in preterm babies to allow for the design of interventions that will improve the quality and quantity of sleep throughout life.
Collapse
Affiliation(s)
- Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Rosemary S C Horne
- The Ritchie Centre, Department of Paediatrics, Monash University and Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Bennett GA, Palliser HK, Shaw JC, Palazzi KL, Walker DW, Hirst JJ. Maternal stress in pregnancy affects myelination and neurosteroid regulatory pathways in the guinea pig cerebellum. Stress 2017; 20:580-588. [PMID: 28969480 DOI: 10.1080/10253890.2017.1378637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Prenatal stress predisposes offspring to behavioral pathologies. These may be attributed to effects on cerebellar neurosteroids and GABAergic inhibitory signaling, which can be linked to hyperactivity disorders. The aims were to determine the effect of prenatal stress on markers of cerebellar development, a key enzyme in neurosteroid synthesis and the expression of GABAA receptor (GABAAR) subunits involved in neurosteroid signaling. We used a model of prenatal stress (strobe light exposure, 2 h on gestational day 50, 55, 60 and 65) in guinea pigs, in which we have characterized anxiety and neophobic behavioral outcomes. The cerebellum and plasma were collected from control and prenatally stressed offspring at term (control fetus: n = 9 male, n = 7 female; stressed fetus: n = 7 male, n = 8 female) and postnatal day (PND) 21 (control: n = 8 male, n = 8 female; stressed: n = 9 male, n = 6 female). We found that term female offspring exposed to prenatal stress showed decreased expression of mature oligodendrocytes (∼40% reduction) and these deficits improved to control levels by PND21. Reactive astrocyte expression was lower (∼40% reduction) following prenatal stress. GABAAR subunit (δ and α6) expression and circulating allopregnanolone concentrations were not affected by prenatal stress. Prenatal stress increased expression (∼150-250% increase) of 5α-reductase type-1 mRNA in the cerebellum, which may be a neuroprotective response to promote GABAergic inhibition and aid in repair. These observations indicate that prenatal stress exposure has marked effects on the development of the cerebellum. These findings suggest cerebellar changes after prenatal stress may contribute to adverse behavioral outcomes after exposure to these stresses.
Collapse
Affiliation(s)
- Greer A Bennett
- a Mothers and Babies Research Centre , Hunter Medical Research Institute , Newcastle , New South Wales , Australia
- b School of Biomedical Sciences and Pharmacy , University of Newcastle , New South Wales , Australia
| | - Hannah K Palliser
- a Mothers and Babies Research Centre , Hunter Medical Research Institute , Newcastle , New South Wales , Australia
- b School of Biomedical Sciences and Pharmacy , University of Newcastle , New South Wales , Australia
| | - Julia C Shaw
- a Mothers and Babies Research Centre , Hunter Medical Research Institute , Newcastle , New South Wales , Australia
- b School of Biomedical Sciences and Pharmacy , University of Newcastle , New South Wales , Australia
| | - Kerrin L Palazzi
- c Clinical Research Design , Information Technology and Statistical Support (CReDITSS), Hunter Medical Research Institute (HMRI) , Newcastle , New South Wales , Australia
| | - David W Walker
- d School of Health and Biomedical Sciences , RMIT University , Bundoora , Victoria , Australia
| | - Jonathan J Hirst
- a Mothers and Babies Research Centre , Hunter Medical Research Institute , Newcastle , New South Wales , Australia
- b School of Biomedical Sciences and Pharmacy , University of Newcastle , New South Wales , Australia
| |
Collapse
|
25
|
Shaw JC, Palliser HK, Dyson RM, Berry MJ, Hirst JJ. Disruptions to the cerebellar GABAergic system in juvenile guinea pigs following preterm birth. Int J Dev Neurosci 2017; 65:1-10. [PMID: 29024720 DOI: 10.1016/j.ijdevneu.2017.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Children that are born preterm are at an increased risk of developing cognitive problems and behavioural disorders, such as attention deficit hyperactivity disorder (ADHD). There is increasing interest in the role of the cerebellum in these processes and the potential involvement of GABAergic pathways in neurodevelopmental disorders. We propose that preterm birth, and the associated loss of the trophic intrauterine environment, alters the development of the cerebellum, contributing to ongoing neurobehavioral disorders. METHODS Guinea pigs were delivered preterm (GA62) or spontaneously at term (GA69), and tissues collected at corrected postnatal day (PND) 28. Neurodevelopmental and GABAergic markers myelin basic protein (MBP), neuronal nuclei (NeuN), calbindin (Purkinje cells), and GAD67 (GABA synthesis enzyme) were analysed in cerebellar lobules IX and X by immunohistochemistry. Protein expression of GAD67 and GAT1 (GABA transporter enzyme) were quantified by western blot, whilst neurosteroid-sensitive GABAA receptor subunits were measured by RT-PCR. RESULTS MBP immunostaining was increased in lobule IX of preterm males, and reduced in lobule X of preterm females when compared to their term counterparts. GAD67 staining was decreased in lobule IX and X of the preterm males, but only in lobule X of the preterm females compared to term cohorts for each sex. Internal granule cell layer width of lobule X was decreased in preterm cohorts of both sexes compared to terms. There were no differences between gestational age groups for NeuN staining, GAD67 and GAT1 protein expression as measured by western blotting, or GABAA receptor subunits as measured by RT-PCR between preterm and term for either sex. CONCLUSIONS The present findings suggest that components of the cerebellar GABAergic system of the ex-preterm cerebellum are disrupted. The higher expression of myelin in the preterm males may be due to a deficit in axonal pruning, whereas females have a deficit in myelination at 28 corrected days of age. Together these ongoing alterations may contribute to the neurodevelopmental and behavioural disorders observed in those born preterm.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia; Mothers and Babies Research Centre, Hunter Medical Research Institute, Australia.
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia; Mothers and Babies Research Centre, Hunter Medical Research Institute, Australia
| | - Rebecca M Dyson
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand; Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Mary J Berry
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand; Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia; Mothers and Babies Research Centre, Hunter Medical Research Institute, Australia
| |
Collapse
|
26
|
Shaw JC, Palliser HK, Palazzi K, Hirst JJ. Administration of Progesterone Throughout Pregnancy Increases Maternal Steroids Without Adverse Effect on Mature Oligodendrocyte Immunostaining in the Guinea Pig. Reprod Sci 2017. [PMID: 28631553 DOI: 10.1177/1933719117715125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Progesterone is administered to pregnant women at risk of premature labor, despite systematic reviews showing conflicting outcomes regarding its use, highlighting doubt over the effectiveness of the therapy. Progesterone can be rapidly metabolized into a number of steroids, but to date, there has been a lack of investigation into the fetal steroid profiles following administration and whether this impacts fetal neurodevelopment. The objective of this study was to determine the effect of progesterone treatment on allopregnanolone and cortisol levels in the fetus and on a marker of myelination in the fetal brain. We used a guinea pig model where pregnant dams were administered vehicle (β-cyclodextrin) or progesterone orally throughout pregnancy (GA29-61). Maternal and fetal fluids and tissues were collected at both preterm (GA61) and term (GA68) ages. Maternal and fetal progesterone and cortisol were analyzed by enzyme immunoassay and allopregnanolone by radioimmunoassay. Measurement of myelination of fetal brains (hippocampus, cingulum, and subcortical white matter) at preterm and term ages was performed by immunohistochemistry staining for myelin basic protein. We found that dams receiving progesterone had significantly elevated progesterone and cortisol concentrations, but there was no effect on allopregnanolone. Interestingly, the increased cortisol concentrations were not reflected in the fetuses, and there was no effect of progesterone treatment on myelination. Therefore, we conclude that in our guinea pig model, maternal administration of progesterone has no effect on cortisol levels or markers of mature oligodendrocytes in the fetus and suggest this is potentially due to the protective cortisol barrier in the placenta.
Collapse
Affiliation(s)
- Julia C Shaw
- 1 School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia.,2 Mothers and Babies Research Centre, Hunter Medical Research Institute, New South Wales, Australia
| | - Hannah K Palliser
- 1 School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia.,2 Mothers and Babies Research Centre, Hunter Medical Research Institute, New South Wales, Australia
| | - Kerrin Palazzi
- 3 Clinical Research Design, Information Technology and Statistical Support, Hunter Medical Research Institute, New South Wales, Australia
| | - Jonathan J Hirst
- 1 School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia.,2 Mothers and Babies Research Centre, Hunter Medical Research Institute, New South Wales, Australia
| |
Collapse
|
27
|
Effects of combined IUGR and prenatal stress on the development of the hippocampus in a fetal guinea pig model. J Dev Orig Health Dis 2017; 8:584-596. [PMID: 28502262 DOI: 10.1017/s2040174417000307] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Intrauterine growth restriction (IUGR) and maternal stress during pregnancy are two compromises that negatively impact neurodevelopment and increase the risk of developing later life neuropsychiatric disorders such as schizophrenia, depression and behavioural disorders. Neurosteroids, particularly allopregnanolone, are important in protecting the developing brain and promoting many essential neurodevelopmental processes. Individually, IUGR and prenatal stress (PS) reduce myelination and neurogenesis within affected fetal brains, however less information is available on the combined effects of these two disorders on the term fetal brain. This study aimed to investigate how IUGR and PS impairs the neurosteroid pathway when combined using a guinea pig model, and how these then disrupt the neurodevelopment of the fetus. Uterine artery blood flow restriction was performed at GA30-35 to induce growth restriction, whilst PS was induced by exposure of the dam to a strobe light during gestation commencing GA40 and repeated every 5 days. Exposure in this model caused reductions in hippocampal CA1 MBP immunostaining of male fetuses in both IUGR alone and IUGR+PS paradigms but only by IUGR in the subcortical white mater, compared with control males. Plasma allopregnanolone was reduced by both stressors irrespective of sex, whereas GFAP or MAP2 expression were not affected by either stressor. Female neurodevelopment, as assessed by these markers, was unimpeded by these compromises. The addition of prenatal stress did not further compound these deficits.
Collapse
|
28
|
Cumberland AL, Palliser HK, Crombie GK, Walker DW, Hirst JJ. Increased anxiety-like phenotype in female guinea pigs following reduced neurosteroid exposure in utero. Int J Dev Neurosci 2017; 58:50-58. [PMID: 28192175 DOI: 10.1016/j.ijdevneu.2017.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 02/06/2023] Open
Abstract
Neurosteroids are essential for aiding proper fetal neurodevelopment. Pregnancy compromises such as preterm birth, prenatal stress and intrauterine growth restriction are associated with an increased risk of developing behavioural and mood disorders, particularly during adolescence. These pathologies involve the premature loss or alteration of trophic steroid hormones reaching the fetus leading to impaired neurodevelopment. While the specific programming mechanisms are yet to be fully elucidated, in adult life, dysfunctions of allopregnanolone action are prevalent in individuals with depression, post-traumatic stress disorder and anxiety disorders. The objective of this study was to assess if changes in concentrations of the neurosteroid, allopregnanolone, may be a fetal programming factor in priming the brain towards a negative behavioural phenotype during the childhood to adolescent period using a guinea pig model. Pregnant guinea pigs received either vehicle (45% (2-hydroxypropyl)-β-cyclodextrin) or the 5α-reductase inhibitor, finasteride (25mg/kg maternal weight) from gestational age 60 until spontaneous delivery (∼71days gestation). Male and female offspring from vehicle and finasteride treated dams were tested at postnatal day 20 (juvenile-equivalence) in an open field arena, and hippocampus and amygdala subsequently assessed for neurological changes in markers of development and GABA production pathways 24h later. Females with reduced allopregnanolone exposure in utero displayed increased neophobic-like responses to a change in their environment compared to female controls. There were no differences in the neurodevelopmental markers assessed; MAP2, NeuN, MBP, GFAP or GAD67 between intrauterine finasteride or vehicle exposure, in either the hippocampus or amygdala whereas GAT1 staining was decreased. This study indicates that an intrauterine reduction in the supply of allopregnanolone programs vulnerability of female offspring to anxiety-like disorders in juvenility without impacting long term allopregnanolone concentrations.
Collapse
Affiliation(s)
- Angela L Cumberland
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Newcastle 2308, New South Wales, Australia; Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle 2305, New South Wales, Australia.
| | - Hannah K Palliser
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Newcastle 2308, New South Wales, Australia; Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle 2305, New South Wales, Australia
| | - Gabrielle K Crombie
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Newcastle 2308, New South Wales, Australia; Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle 2305, New South Wales, Australia
| | - David W Walker
- Department of Obstetrics and Gynaecology, The Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia
| | - Jonathan J Hirst
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Newcastle 2308, New South Wales, Australia; Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle 2305, New South Wales, Australia
| |
Collapse
|
29
|
A review of fundamental principles for animal models of DOHaD research: an Australian perspective. J Dev Orig Health Dis 2016; 7:449-472. [DOI: 10.1017/s2040174416000477] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epidemiology formed the basis of ‘the Barker hypothesis’, the concept of ‘developmental programming’ and today’s discipline of the Developmental Origins of Health and Disease (DOHaD). Animal experimentation provided proof of the underlying concepts, and continues to generate knowledge of underlying mechanisms. Interventions in humans, based on DOHaD principles, will be informed by experiments in animals. As knowledge in this discipline has accumulated, from studies of humans and other animals, the complexity of interactions between genome, environment and epigenetics, has been revealed. The vast nature of programming stimuli and breadth of effects is becoming known. As a result of our accumulating knowledge we now appreciate the impact of many variables that contribute to programmed outcomes. To guide further animal research in this field, the Australia and New Zealand DOHaD society (ANZ DOHaD) Animals Models of DOHaD Research Working Group convened at the 2nd Annual ANZ DOHaD Congress in Melbourne, Australia in April 2015. This review summarizes the contributions of animal research to the understanding of DOHaD, and makes recommendations for the design and conduct of animal experiments to maximize relevance, reproducibility and translation of knowledge into improving health and well-being.
Collapse
|
30
|
Shaw JC, Palliser HK, Dyson RM, Hirst JJ, Berry MJ. Long-term effects of preterm birth on behavior and neurosteroid sensitivity in the guinea pig. Pediatr Res 2016; 80:275-83. [PMID: 27055188 DOI: 10.1038/pr.2016.63] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/28/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Ex-preterm children and adolescents are at risk of developing late-onset neurodevelopmental and behavioral disorders. The mechanisms by which this happens are poorly understood and relevant animal models are required. METHODS Ex-preterm (delivered at 62 d gestation) and term (spontaneously delivered) juvenile guinea pigs underwent behavioral testing at 25 d corrected postnatal age, with tissues collected at 28 d. Neurodevelopmental markers (myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP)) were analyzed in the hippocampus and subcortical white matter by immunohistochemistry. Gamma-aminobutyric acid A (GABAA) receptor subunit mRNA levels were quantified by reverse transcription polymerase chain reaction (RT-PCR), and salivary cortisol measured by enzyme-linked immunosorbent assay. RESULTS Preterm males travelled greater distances, were mobile for longer, spent more time investigating objects, and approached or interacted with familiar animals more than controls. Myelination and reactive astrocyte coverage was lower in the hippocampus and the subcortical white matter in preterm males. Hippocampal levels of the α5 subunit were also lower in the preterm male brain. Baseline salivary cortisol was higher for preterm males compared to controls. CONCLUSION We conclude that juvenile ex-preterm male guinea pigs exhibit a hyperactive phenotype and feature impaired neurodevelopment, making this a suitable model for future therapeutic studies.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Rebecca M Dyson
- Department of Paediatrics, Graduate School of Medicine and IHMRI, University of Wollongong, Wollongong, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Mary J Berry
- Centre for Translational Physiology, University of Otago, Wellington, New Zealand.,Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| |
Collapse
|
31
|
Cerebellar Changes in Guinea Pig Offspring Following Suppression of Neurosteroid Synthesis During Late Gestation. THE CEREBELLUM 2016; 16:306-313. [DOI: 10.1007/s12311-016-0802-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Hirst JJ, Cumberland AL, Shaw JC, Bennett GA, Kelleher MA, Walker DW, Palliser HK. Loss of neurosteroid-mediated protection following stress during fetal life. J Steroid Biochem Mol Biol 2016; 160:181-8. [PMID: 26365557 DOI: 10.1016/j.jsbmb.2015.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 11/22/2022]
Abstract
Elevated levels of neurosteroids during late gestation protect the fetal brain from hypoxia/ischaemia and promote neurodevelopment. Suppression of allopregnanolone production during pregnancy leads to the onset of seizure-like activity and potentiates hypoxia-induced brain injury. Markers of myelination are reduced and astrocyte activation is increased. The placenta has a key role in maintaining allopregnanolone concentrations in the fetal circulation and brain during gestation and levels decline markedly after both normal and preterm birth. This leads to the preterm neonate developing in a neurosteroid deficient environment between delivery and term equivalence. The expression of 5α-reductases is also lower in the fetus prior to term. These deficiencies in neurosteroid exposure may contribute to the increase in incidence of the adverse patterns of behaviour seen in children that are born preterm. Repeated exposure to glucocorticoid stimulation suppresses 5α-reductase expression and allopregnanolone levels in the fetus and results in reduced myelination. Both fetal growth restriction and prenatal maternal stress lead to increased cortisol concentrations in the maternal and fetal circulation. Prenatal stress results in reduced expression of key GABAA receptor subunits that normally heighten neurosteroid sensitivity. These stressors also result in altered placental allopregnanolone metabolism pathways. These findings suggest that reduced neurosteroid production and action in the perinatal period may contribute to some of the adverse neurodevelopmental and behavioural outcomes that result from these pregnancy compromises. Studies examining perinatal steroid supplementation therapy with non-metabolisable neurosteroid analogues to improve these outcomes are warranted.
Collapse
Affiliation(s)
- Jonathan J Hirst
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Angela L Cumberland
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Julia C Shaw
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Greer A Bennett
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | - David W Walker
- Ritchie Centre for Baby Health Research, Department of Obstetrics and Gynaecology, Monash University, VIC 3800, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
33
|
Bennett GA, Palliser HK, Shaw JC, Walker D, Hirst JJ. Prenatal Stress Alters Hippocampal Neuroglia and Increases Anxiety in Childhood. Dev Neurosci 2015; 37:533-45. [DOI: 10.1159/000437302] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/30/2015] [Indexed: 11/19/2022] Open
Abstract
Prenatal stress has been associated with detrimental outcomes of pregnancy, including altered brain development leading to behavioural pathologies. The neurosteroid allopregnanolone has been implicated in mediating some of these adverse outcomes following prenatal stress due to its potent inhibitory and anxiolytic effects on the brain. The aims of the current study were to characterise key markers for brain development as well as behavioural parameters, adrenocortical responses to handling and possible neurosteroid influences towards outcomes in guinea pig offspring in childhood. Pregnant guinea pig dams were exposed to strobe light for 2 h (9-11 a.m.) on gestational days 50, 55, 60, and 65 and were left to deliver spontaneously at term and care for their litter. Behavioural testing (open-field test, object exploration test) of the offspring was performed at postnatal day 18 (with salivary cortisol and DHEA measured), and brains were collected at post-mortem on day 21. Markers of brain development myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) were assessed via immunohistochemistry, and the neurosteroid allopregnanolone and its rate-limiting enzymes 5α-reductase types 1 and 2 (5αR1/2) were measured in neonatal brains by radioimmunoassay, reverse transcriptase polymerase chain reaction (RT-PCR), and Western blot, respectively. Brain-derived neurotrophic factor protein was measured as a marker of synaptic plasticity, and GABAA receptor subunit expression was also assessed using RT-PCR. Neonates born from mothers stressed during late pregnancy showed a reduction in both MBP (p < 0.01) and GFAP (p < 0.05) expression in the CA1 region of the hippocampus at 21 days of age. Pups of prenatally stressed pregnancies also showed higher levels of anxiety and neophobic behaviours at the equivalent of childhood (p < 0.05). There were no significant changes observed in allopregnanolone levels, 5αR1/2 expression, or GABAA receptor subunit expression in prenatally stressed neonates compared to controls. This study shows alterations in markers of myelination and reactive astrocytes in the hippocampus of offspring exposed to prenatal stress. These changes are also observed in offspring that show increased anxiety behaviours at the equivalent of childhood, which indicates ongoing structural and functional postnatal changes after prenatal stress exposure.
Collapse
|