1
|
Martínez A, Velázquez L, Díaz R, Huaiquipán R, Pérez I, Muñoz A, Valdés M, Sepúlveda N, Paz E, Quiñones J. Impact of Novel Foods on the Human Gut Microbiome: Current Status. Microorganisms 2024; 12:1750. [PMID: 39338424 PMCID: PMC11433882 DOI: 10.3390/microorganisms12091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The microbiome is a complex ecosystem of microorganisms that inhabit a specific environment. It plays a significant role in human health, from food digestion to immune system strengthening. The "Novel Foods" refer to foods or ingredients that have not been consumed by humans in the European Union before 1997. Currently, there is growing interest in understanding how "Novel Foods" affect the microbiome and human health. The aim of this review was to assess the effects of "Novel Foods" on the human gut microbiome. Research was conducted using scientific databases, focusing on the literature published since 2000, with an emphasis on the past decade. In general, the benefits derived from this type of diet are due to the interaction between polyphenols, oligosaccharides, prebiotics, probiotics, fibre content, and the gut microbiome, which selectively promotes specific microbial species and increases microbial diversity. More research is being conducted on the consumption of novel foods to demonstrate how they affect the microbiome and, thus, human health. Consumption of novel foods with health-promoting properties should be further explored to maintain the diversity and functionality of the gut microbiome as a potential tool to prevent the onset and progression of chronic diseases.
Collapse
Affiliation(s)
- Ailín Martínez
- Doctoral Program in Science Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4800000, Chile;
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
| | - Lidiana Velázquez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rommy Díaz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rodrigo Huaiquipán
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Isabela Pérez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Alex Muñoz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Marcos Valdés
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Erwin Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - John Quiñones
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| |
Collapse
|
2
|
Vélez-Ixta JM, Juárez-Castelán CJ, Ramírez-Sánchez D, Lázaro-Pérez NDS, Castro-Arellano JJ, Romero-Maldonado S, Rico-Arzate E, Hoyo-Vadillo C, Salgado-Mancilla M, Gómez-Cruz CY, Krishnakumar A, Piña-Escobedo A, Benitez-Guerrero T, Pizano-Zárate ML, Cruz-Narváez Y, García-Mena J. Post Natal Microbial and Metabolite Transmission: The Path from Mother to Infant. Nutrients 2024; 16:1990. [PMID: 38999737 PMCID: PMC11243545 DOI: 10.3390/nu16131990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The entero-mammary pathway is a specialized route that selectively translocates bacteria to the newborn's gut, playing a crucial role in neonatal development. Previous studies report shared bacterial and archaeal taxa between human milk and neonatal intestine. However, the functional implications for neonatal development are not fully understood due to limited evidence. This study aimed to identify and characterize the microbiota and metabolome of human milk, mother, and infant stool samples using high-throughput DNA sequencing and FT-ICR MS methodology at delivery and 4 months post-partum. Twenty-one mothers and twenty-five infants were included in this study. Our results on bacterial composition suggest vertical transmission of bacteria through breastfeeding, with major changes occurring during the first 4 months of life. Metabolite chemical characterization sheds light on the growing complexity of the metabolites. Further data integration and network analysis disclosed the interactions between different bacteria and metabolites in the biological system as well as possible unknown pathways. Our findings suggest a shared bacteriome in breastfed mother-neonate pairs, influenced by maternal lifestyle and delivery conditions, serving as probiotic agents in infants for their healthy development. Also, the presence of food biomarkers in infants suggests their origin from breast milk, implying selective vertical transmission of these features.
Collapse
Affiliation(s)
- Juan Manuel Vélez-Ixta
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Carmen Josefina Juárez-Castelán
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Daniela Ramírez-Sánchez
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Noemí Del Socorro Lázaro-Pérez
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - José Javier Castro-Arellano
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Silvia Romero-Maldonado
- Unidad de Cuidados Intermedios al Recién Nacido, Instituto Nacional de Perinatología, Secretaría de Salud, Mexico City 11000, Mexico
| | - Enrique Rico-Arzate
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Carlos Hoyo-Vadillo
- Departamento de Farmacología, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Marisol Salgado-Mancilla
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Carlos Yamel Gómez-Cruz
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Aparna Krishnakumar
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Alberto Piña-Escobedo
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Tizziani Benitez-Guerrero
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - María Luisa Pizano-Zárate
- Coordinación de Nutrición y Bioprogramación, Instituto Nacional de Perinatología, Secretaría de Salud, Mexico City 11000, Mexico
- Unidad de Medicina Familiar No. 4, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Yair Cruz-Narváez
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| |
Collapse
|
3
|
Cohen A, Turjeman S, Levin R, Tal S, Koren O. Comparison of canine colostrum and milk using a multi-omics approach. Anim Microbiome 2024; 6:19. [PMID: 38650014 PMCID: PMC11034113 DOI: 10.1186/s42523-024-00309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND A mother's milk is considered the gold standard of nutrition in neonates and is a source of cytokines, immunoglobulins, growth factors, and other important components, yet little is known about the components of canine milk, specifically colostrum, and the knowledge related to its microbial and metabolic profiles is particularly underwhelming. In this study, we characterized canine colostrum and milk microbiota and metabolome for several breeds of dogs and examined profile shifts as milk matures in the first 8 days post-whelping. RESULTS Through untargeted metabolomics, we identified 63 named metabolites that were significantly differentially abundant between days 1 and 8 of lactation. Surprisingly, the microbial compositions of the colostrum and milk, characterized using 16S rRNA gene sequencing, were largely similar, with only two differentiating genera. The shifts observed, mainly increases in several sugars and amino sugars over time and shifts in amino acid metabolites, align with shifts observed in human milk samples and track with puppy development. CONCLUSION Like human milk, canine milk composition is dynamic, and shifts are well correlated with developing puppies' needs. Such a study of the metabolic profile of canine milk, and its relation to the microbial community, provides insights into the changing needs of the neonate, as well as the ideal nutrition profile for optimal functionality. This information will add to the existing knowledge base of canine milk composition with the prospect of creating a quality, tailored milk substitute or supplement for puppies.
Collapse
Affiliation(s)
- Alisa Cohen
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Rachel Levin
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Smadar Tal
- Koret School of Veterinary Medicine, The Hebrew University Veterinary Teaching Hospital, Hebrew University of Jerusalem, Rehovot, Israel
- Tel-Hai Academic College, Upper Galilee, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- Kyung Hee University, Seoul, the Republic of Korea.
| |
Collapse
|
4
|
Chen B, Jia Q, Chen Z, You Y, Liu Y, Zhao J, Chen L, Ma D, Xing Y. Comparative evaluation of enriched formula milk powder with OPO and MFGM vs. breastfeeding and regular formula milk powder in full-term infants: a comprehensive study on gut microbiota, neurodevelopment, and growth. Food Funct 2024; 15:1417-1430. [PMID: 38224157 DOI: 10.1039/d3fo03392a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
This study investigated the non-inferiority of feeding term healthy infants with enriched formula milk powder containing 1,3-dioleoyl-2-palmitoylglycerol (OPO) and milk fat globular membrane (MFGM), compared to breast milk, in terms of the formation of gut microbiota, neurodevelopment and growth. Infants were divided into three groups: breast milk group (BMG, N = 50), fortified formula group (FFG, N = 17), and regular formula group (RFG, N = 12), based on the feeding pattern. Growth and development information was collected from the infants at one month, four months, and six months after the intervention. Fecal samples were collected from infants and analyzed for gut microbiota using 16S ribosomal DNA identification. The study found that at the three time points, the predominant bacterial phyla in FFG and BMG were Proteobacteria, Firmicutes, and Bacteroidetes, which differed from RFG. The abundance of Bifidobacterium in the RFG was lower than the FFG (one month, p = 0.019) and BMG (four months, p = 0.007). The abundance of Methanoprebacteria and so on (genus level) are positively correlated with bone mineral density (BMD) of term infants, and have the potential to be biomarkers for predicting BMD. The abundance of beta-galactosidase, a protein that regulates lactose metabolism and sphingoid metabolism, was higher in FFG (six months, p = 0.0033) and BMG (one month, p = 0.0089; four months, p = 0.0005; six months, p = 0.0005) than in the RFG group, which may be related to the superior bone mineral density and neurodevelopment of infants in the FFG and BMG groups than in the RFG group. Our findings suggest that formula milk powder supplemented with OPO and MFGM is a viable alternative to breastfeeding, providing a practical alternative for infants who cannot be breastfed for various reasons.
Collapse
Affiliation(s)
- Botian Chen
- School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
- Department of Pediatrics, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing 100191, China.
| | - Qiong Jia
- Department of Pediatrics, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing 100191, China.
| | - Zekun Chen
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Yanxia You
- Department of Pediatrics, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing 100191, China.
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| | - Defu Ma
- School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Yan Xing
- Department of Pediatrics, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing 100191, China.
| |
Collapse
|
5
|
Jha P, Dangi N, Sharma S. Probiotics Show Promise as a Novel Natural Treatment for Neurological Disorders. Curr Pharm Biotechnol 2024; 25:799-806. [PMID: 37877144 DOI: 10.2174/0113892010261604230919170143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 10/26/2023]
Abstract
Probiotics are beneficial microorganisms shown to improve human health when consumed regularly and in sufficient quantities. Numerous health benefits can be attained by possessing important metabolites with nutritional and medicinal qualities. It has been shown through scientific research that these living microbial consortiums can influence a variety of mental health outcomes, including but not limited to anxiety, depression, cognitive processes, stress responses, and behavioral patterns. Selected strains of bacteria and yeasts control how the central nervous system (CNS) communicates with the gut-brain axis (GBA) through neuronal, humoral, and metabolic pathways to ease mood. Psychobiotics are substances that can affect the digestive system as well as mood and anxiety. There is scant evidence to validate the beneficial effects of psychiatric drugs in treating neurological diseases or disorders. The therapeutic method of research into psychobiotics opens exciting prospects for the future of the field of development. This review compiles the current evidence available in the scientific literature on the use of probiotics to influence neurological disorders.
Collapse
Affiliation(s)
- Preeti Jha
- Department of Biotechnology, Amity Institute of Biotechnology, Amity University, Jaipur, 303002, Rajasthan, India
| | - Neha Dangi
- Department of Pharmaceutical Sciences, Alwar Pharmacy College, M.I.A., Alwar, 301030, Rajasthan, India
| | - Shikha Sharma
- Department of Pharmaceutical Science, Lords University, Alwar, 301028, Rajasthan, India
| |
Collapse
|
6
|
Mollova D, Gozmanova M, Apostolova E, Yahubyan G, Iliev I, Baev V. Illuminating the Genomic Landscape of Lactiplantibacillus plantarum PU3-A Novel Probiotic Strain Isolated from Human Breast Milk, Explored through Nanopore Sequencing. Microorganisms 2023; 11:2440. [PMID: 37894099 PMCID: PMC10609609 DOI: 10.3390/microorganisms11102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Lactiplantibacillus plantarum stands out as a remarkably diverse species of lactic acid bacteria, occupying a myriad of ecological niches. Particularly noteworthy is its presence in human breast milk, which can serve as a reservoir of probiotic bacteria, contributing significantly to the establishment and constitution of infant gut microbiota. In light of this, our study attempted to conduct an initial investigation encompassing both genomic and phenotypic aspects of the L. plantarum PU3 strain, that holds potential as a probiotic agent. By employing the cutting-edge third-generation Nanopore sequencing technology, L. plantarum PU3 revealed a circular chromosome of 3,180,940 bp and nine plasmids of various lengths. The L. plantarum PU3 genome has a total of 2962 protein-coding and non-coding genes. Our in-depth investigations revealed more than 150 probiotic gene markers that unfold the genetic determinants for acid tolerance, bile resistance, adhesion, and oxidative and osmotic stress. The in vivo analysis showed the strain's proficiency in utilizing various carbohydrates as growth substrates, complementing the in silico analysis of the genes involved in metabolic pathways. Notably, the strain demonstrated a pronounced affinity for D-sorbitol, D-mannitol, and D-Gluconic acid, among other carbohydrate sources. The in vitro experimental verification of acid, osmotic and bile tolerance validated the robustness of the strain in challenging environments. Encouragingly, no virulence factors were detected in the genome of PU3, suggesting its safety profile. In search of beneficial properties, we found potential bacteriocin biosynthesis clusters, suggesting its capability for antimicrobial activity. The characteristics exhibited by L. plantarum PU3 pave the way for promising strain potential, warranting further investigations to unlock its full capacity and contributions to probiotic and therapeutic avenues.
Collapse
Affiliation(s)
- Daniela Mollova
- Faculty of Biology, Department of Biochemistry and Microbiology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (D.M.); (I.I.)
| | - Mariyana Gozmanova
- Faculty of Biology, Department of Plant Physiology and Molecular Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (M.G.); (E.A.); (G.Y.)
| | - Elena Apostolova
- Faculty of Biology, Department of Plant Physiology and Molecular Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (M.G.); (E.A.); (G.Y.)
| | - Galina Yahubyan
- Faculty of Biology, Department of Plant Physiology and Molecular Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (M.G.); (E.A.); (G.Y.)
| | - Ilia Iliev
- Faculty of Biology, Department of Biochemistry and Microbiology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (D.M.); (I.I.)
| | - Vesselin Baev
- Faculty of Biology, Department of Plant Physiology and Molecular Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (M.G.); (E.A.); (G.Y.)
| |
Collapse
|
7
|
Zhou GQ, Huang MJ, Yu X, Zhang NN, Tao S, Zhang M. Early life adverse exposures in irritable bowel syndrome: new insights and opportunities. Front Pediatr 2023; 11:1241801. [PMID: 37732013 PMCID: PMC10507713 DOI: 10.3389/fped.2023.1241801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder worldwide. Extensive research has identified multiple factors contributing to its development, including genetic predisposition, chronic infection, gut dysbiosis, aberrant serotonin metabolism, and brain dysfunction. Recent studies have emphasized the critical role of the early life stage as a susceptibility window for IBS. Current evidence suggests that diet can heighten the risk of IBS in offspring by influencing the microbiota composition, intestinal epithelium structure, gene expression, and brain-gut axis. The use of antibiotics during pregnancy and the neonatal period disrupts the normal gut microbiota structure, aligning it with the characteristics observed in IBS patients. Additionally, early life stress impacts susceptibility to IBS by modulating TLR4, NK1, and the hypothalamic-pituitary-adrenal (HPA) axis while compromising the offspring's immune system. Formula feeding facilitates the colonization of pathogenic bacteria in the intestines, concurrently reducing the presence of probiotics. This disruption of the Th1 and Th2 cell balance in the immune system weakens the intestinal epithelial barrier. Furthermore, studies suggest that delivery mode influences the occurrence of IBS by altering the composition of gut microbes. This review aims to provide a comprehensive summary of the existing evidence regarding the impact of adverse early life exposures on IBS during pregnancy, intrapartum, and neonatal period. By consolidating this knowledge, the review enhances our understanding of the direct and indirect mechanisms underlying early life-related IBS and offers new insights and research directions from childhood to adulthood.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming Zhang
- Department of General Practice, Honghui Hospital, Xi'an Jiaotong University, Xi’an, China
| |
Collapse
|
8
|
Yelverton CA, Killeen SL, Feehily C, Moore RL, Callaghan SL, Geraghty AA, Byrne DF, Walsh CJ, Lawton EM, Murphy EF, Van Sinderen D, Cotter PD, McAuliffe FM. Maternal breastfeeding is associated with offspring microbiome diversity; a secondary analysis of the MicrobeMom randomized control trial. Front Microbiol 2023; 14:1154114. [PMID: 37720155 PMCID: PMC10502216 DOI: 10.3389/fmicb.2023.1154114] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Background Microbial dysbiosis in infancy can influence long-term health outcomes such as childhood obesity. The aim of this study is to explore relationships among maternal well-being during pregnancy, breastfeeding, and the infant gut microbiome. Methods This is a secondary analysis of healthy pregnant women from the MicrobeMom study, a double-blind randomized control trial of maternal probiotic supplementation (Bifidobacterium breve 702258) versus placebo antenatally and up to 3 months postpartum. Maternal well-being was assessed using the WHO-5 well-being index at 16 weeks' and 34 weeks' gestation. Breastfeeding practices were recorded at discharge from hospital and at 1 month postpartum. Infant stool samples were obtained at 1 month of age. Next generation shotgun sequencing determined infant microbial diversity. Independent sample t-tests and Mann-Whitney U tests informed adjusted regression analysis, which was adjusted for delivery mode, antibiotics during delivery, maternal age and body mass index (BMI), and probiotic vs. control study group. Results Women (n = 118) with at least one measure of well-being were on average 33 years (SD 3.93) of age and 25.09 kg/m2 (SD 3.28) BMI. Exclusive breastfeeding was initiated by 65% (n = 74). Any breastfeeding was continued by 69% (n = 81) after 1 month. In early and late pregnancy, 87% (n = 97/111) and 94% (n = 107/114) had high well-being scores. Well-being was not associated with infant microbial diversity at 1 month. In adjusted analysis, exclusive breastfeeding at discharge from hospital was associated with infant microbial beta diversity (PC2; 0.254, 95% CI 0.006, 0.038). At 1 month postpartum, any breastfeeding was associated with infant microbial alpha diversity (Shannon index; -0.241, 95% CI -0.498, -0.060) and observed species; (-0.325, 95% CI -0.307, -0.060), and infant microbial beta diversity (PC2; 0.319, 95% CI 0.013, 0.045). Exclusive breastfeeding at 1 month postpartum was associated with infant alpha diversity (Shannon index -0.364, 95% CI -0.573, -0.194; Simpson index 0.339, 95% CI 0.027, 0.091), and infant's number of observed microbial species (-0.271, 95% CI -0.172, -0.037). Conclusion Breastfeeding practices at 1 month postpartum were associated with lower microbial diversity and observed species in infants at 1 month postpartum, which is potentially beneficial to allow greater abundance of Bifidobacterium. Clinical trial registration ISRCTN53023014.
Collapse
Affiliation(s)
- Cara A. Yelverton
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Sarah Louise Killeen
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Conor Feehily
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Rebecca L. Moore
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Shauna L. Callaghan
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Aisling A. Geraghty
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David F. Byrne
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Calum J. Walsh
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Elaine M. Lawton
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | | | - Douwe Van Sinderen
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Fionnuala M. McAuliffe
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| |
Collapse
|
9
|
Holdsworth EA, Williams JE, Pace RM, Lane AA, Gartstein M, McGuire MA, McGuire MK, Meehan CL. Breastfeeding patterns are associated with human milk microbiome composition: The Mother-Infant Microbiomes, Behavior, and Ecology Study (MIMBES). PLoS One 2023; 18:e0287839. [PMID: 37556398 PMCID: PMC10411759 DOI: 10.1371/journal.pone.0287839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/14/2023] [Indexed: 08/11/2023] Open
Abstract
The human milk microbiome (HMM) is hypothesized to be seeded by multiple factors, including the infant oral microbiome during breastfeeding. However, it is not known whether breastfeeding patterns (e.g., frequency or total time) impact the composition of the HMM. As part of the Mother-Infant Microbiomes, Behavior, and Ecology Study (MIMBES), we analyzed data from naturalistic observations of 46 mother-infant dyads living in the US Pacific Northwest and analyzed milk produced by the mothers for its bacterial diversity and composition. DNA was extracted from milk and the V1-V3 region of the 16S rRNA gene was amplified and sequenced. We hypothesized that number of breastfeeding bouts (breastfeeding sessions separated by >30 seconds) and total time breastfeeding would be associated with HMM α-diversity (richness, diversity, or evenness) and differential abundance of HMM bacterial genera. Multiple linear regression was used to examine associations between HMM α-diversity and the number of breastfeeding bouts or total time breastfeeding and selected covariates (infant age, maternal work outside the home, frequency of allomother physical contact with the infant, non-household caregiving network). HMM richness was inversely associated with number of breastfeeding bouts and frequency of allomother physical contact, but not total time breastfeeding. Infants' non-household caregiving network was positively associated with HMM evenness. In two ANCOM-BC analyses, abundances of 5 of the 35 most abundant genera were differentially associated with frequency of breastfeeding bouts (Bifidobacterium, Micrococcus, Pedobacter, Acidocella, Achromobacter); 5 genera (Bifidobacterium, Agreia, Pedobacter, Rugamonas, Stenotrophomonas) were associated with total time breastfeeding. These results indicate that breastfeeding patterns and infant caregiving ecology may play a role in influencing HMM composition. Future research is needed to identify whether these relationships are consistent in other populations and if they are associated with variation in the infant's gastrointestinal (including oral) microbiome.
Collapse
Affiliation(s)
- Elizabeth A. Holdsworth
- Department of Anthropology, Washington State University, Pullman, Washington, United States of America
| | - Janet E. Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Ryan M. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Avery A. Lane
- Department of Anthropology, Washington State University, Pullman, Washington, United States of America
| | - Maria Gartstein
- Department of Psychology, Washington State University, Pullman, Washington, United States of America
| | - Mark A. McGuire
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Courtney L. Meehan
- Department of Anthropology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
10
|
Noble AJ, Nowak JK, Adams AT, Uhlig HH, Satsangi J. Defining Interactions Between the Genome, Epigenome, and the Environment in Inflammatory Bowel Disease: Progress and Prospects. Gastroenterology 2023; 165:44-60.e2. [PMID: 37062395 DOI: 10.1053/j.gastro.2023.03.238] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 04/18/2023]
Abstract
Recent advances in our understanding of the pathogenesis of inflammatory bowel disease (IBD) have highlighted the complex interplay between the genome, the epigenome, and the environment. Despite the exciting advances in genomics that have enabled the identification of over 200 susceptibility loci, these only account for a small proportion of the disease variance and the estimated heritability in IBD. It is likely that gene-environment (GxE) interactions contribute to "missing heritability" and these may act through epigenetic mechanisms. Several environmental factors, such as the microbiome, nutrition, and tobacco smoking, induce alterations in the epigenome of children and adults, which may impact disease susceptibility. Other mechanisms for GxE interactions are also directly pertinent in early life. We discuss a model in which environmental factors imprint disease risk in a window of susceptibility during infancy that may contribute to later disease onset, whereas other elements of the exposome act later in life and contribute directly to the pathogenesis and course of the disease. Understanding the mechanisms underlying GxE interactions may provide the basis for new therapeutic targets or preventative strategies for IBD.
Collapse
Affiliation(s)
- Alexandra J Noble
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom.
| | - Jan K Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Alex T Adams
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom; Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom; Department of Pediatrics, University of Oxford, Oxford, United Kingdom; Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom; Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Korobkova L, Morin EL, Aoued H, Sannigrahi S, Garza KM, Siebert ER, Walum H, Cabeen RP, Sanchez MM, Dias BG. RNA in extracellular vesicles during adolescence reveal immune, energetic and microbial imprints of early life adversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529808. [PMID: 36865138 PMCID: PMC9980043 DOI: 10.1101/2023.02.23.529808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Exposure to early life adversity (ELA), including childhood maltreatment, is one of the most significant risk factors for the emergence of neuropsychiatric disorders in adolescence and adulthood. Despite this relationship being well established, the underlying mechanisms remain unclear. One way to achieve this understanding is to identify molecular pathways and processes that are perturbed as a consequence of childhood maltreatment. Ideally, these perturbations would be evident as changes in DNA, RNA or protein profiles in easily accessible biological samples collected in the shadow of childhood maltreatment. In this study, we isolated circulating extracellular vesicles (EVs) from plasma collected from adolescent rhesus macaques that had either experienced nurturing maternal care (CONT) or maternal maltreatment (MALT) in infancy. RNA sequencing of RNA in plasma EVs and gene enrichment analysis revealed that genes related to translation, ATP synthesis, mitochondrial function and immune response were downregulated in MALT samples, while genes involved in ion transport, metabolism and cell differentiation were upregulated. Interestingly, we found that a significant proportion of EV RNA aligned to the microbiome and that MALT altered the diversity of microbiome-associated RNA signatures found in EVs. Part of this altered diversity suggested differences in prevalence of bacterial species in CONT and MALT animals noted in the RNA signatures of the circulating EVs. Our findings provide evidence that immune function, cellular energetics and the microbiome may be important conduits via which infant maltreatment exerts effects on physiology and behavior in adolescence and adulthood. As a corollary, perturbations of RNA profiles related to immune function, cellular energetics and the microbiome may serve as biomarkers of responsiveness to ELA. Our results demonstrate that RNA profiles in EVs can serve as a powerful proxy to identify biological processes that might be perturbed by ELA and that may contribute to the etiology of neuropsychiatric disorders in the aftermath of ELA.
Collapse
|
12
|
Schilling AL, Rody A, Bossung V. Antibiotic Use During Pregnancy and Childbirth: Prospective Observational Study on Prevalence, Indications, and Prescribing Patterns in a German Tertiary Center. Geburtshilfe Frauenheilkd 2023; 83:192-200. [PMID: 37151734 PMCID: PMC10155238 DOI: 10.1055/a-1934-1761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/28/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Antibiotics are powerful drugs to prevent and treat perinatal infections. Overuse of antibiotics leads to antibiotic resistance, has potential side effects and influences the maternal and neonatal microbiome. Patients and Methods We performed a prospective observational study on the prevalence, indications, and prescribing patterns of antibiotics during pregnancy and childbirth. We included women who had given birth after 23+0 weeks of gestation at a single tertiary center in Germany from January 2020 to March 2021. Descriptive statistics and binomial regression were performed to analyze the factors influencing the prescription of antibiotics. Results We included 522 postpartum women into our study. 337 (64.6%) were exposed to antibiotics during pregnancy and/or childbirth. 115 women received antibiotics during pregnancy, 291 during birth. Most antibiotics during pregnancy were prescribed for urinary tract infections (UTIs) (56.0%). Most prescriptions were issued by obstetrics and gynecology physicians (65.8%), followed by hospitals (16.7%) and family medicine physicians (8.8%). Most antibiotics during childbirth were given for a cesarean section (64.3%), followed by preterm rupture of membranes (41.2%). 95.3% of women who had a preterm birth were exposed to antibiotics. In logistic regression models, lower gestational age at birth, higher maternal body-mass-index and smoking were independently associated with antibiotic use during pregnancy and childbirth. Conclusion We found a high rate of antibiotic exposure during pregnancy and childbirth. Our results imply an urgent need for antibiotic stewardship programs in perinatal medicine as well as further research on the effects of perinatal antibiotic exposure on microbiome development and childhood health.
Collapse
Affiliation(s)
- Anna-Lara Schilling
- Department of Obstetrics and Gynecology, University Hospital of
Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Achim Rody
- Department of Obstetrics and Gynecology, University Hospital of
Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Verena Bossung
- Department of Obstetrics and Gynecology, University Hospital of
Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Department of Obstetrics, University Hospital of Zürich, Zürich,
Switzerland
| |
Collapse
|
13
|
Alotiby AA. The role of breastfeeding as a protective factor against the development of the immune-mediated diseases: A systematic review. Front Pediatr 2023; 11:1086999. [PMID: 36873649 PMCID: PMC9981158 DOI: 10.3389/fped.2023.1086999] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
INTRODUCTION Breast milk is rich in nutrients and immunological factors capable of protecting infants against various immunological diseases and disorders. The current systematic review has been framed with the objective of studying the role of breastfeeding as a protective factor against the development of immune-mediated diseases. METHODS The database and website searches were performed using PubMed, PubMed Central, Nature, Springer, Nature, Web of Science, and Elsevier. The studies were scrutinized based on the nature of participants and the nature of disease considered. The search was restricted to infants with immune-mediated diseases such as diabetes mellitus, allergic conditions, diarrhoea, and rheumatoid arthritis. RESULTS We have included 28 studies, out of which seven deal with diabetes mellitus, two rheumatoid arthritis, five studies about Celiac Disease, twelve studies about allergic/ asthma/wheezing conditions and one study on each of the following diseases: neonatal lupus erythematosus and colitis. DISCUSSION Based on our analysis, breastfeeding in association with the considered diseases was found to be positive. Breastfeeding is involved as protective factor against various diseases. The role of breastfeeding in the prevention of diabetes mellitus has been found to be significantly higher than for other diseases.
Collapse
Affiliation(s)
- Amna A Alotiby
- Department of Hematology and Immunology, Faculty of Medicine Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
14
|
So RJ, Jenks C, Ryan MA, Tunkel DE, McKenna Benoit MK, Walsh JM. Upper lip tie: A novel classification scale with improved inter-rater reliability. Laryngoscope Investig Otolaryngol 2022; 7:1611-1617. [PMID: 36258882 PMCID: PMC9575066 DOI: 10.1002/lio2.889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives Upper lip tie (ULT) is a clinical condition with restrictive attachment of the superior labial frenulum (SLF), which may inhibit flanging of the lips. Objective outcome studies are lacking in part due to unreliable classification systems that rely solely upon a single attachment parameter of the SLF. This study's objectives are to describe a novel 3-point classification system for ULT and compare its inter-rater reliability to the Kotlow and Stanford systems. Methods Five raters used the Kotlow and Stanford systems, as well as our novel 3-point scale to score images of the SLF from 20 newborns seen at our institution between September 1, 2017 and April 1, 2018. Newborn birth weight, gestational age, and demographic data were collected from the infant's medical record. Fleiss's kappa was used to calculate inter-rater reliability for all classification systems. Results The parameters for our novel 3-point classification system for ULT were as follows: length from alveolar edge to frenulum gingival attachment, length of frenulum on stretch, and free-lip to total-lip length ratio. Our novel scale yielded the highest inter-rater reliability of 0.41, compared to 0.24 and 0.25 under the Kotlow and Stanford systems. Conclusion While the Kotlow and Stanford systems are based upon a single anatomical parameter, our novel 3-point classification scale uses three oral parameters that encompass anatomical points of attachment as well as the maximal length of the ULT on stretch. Our classification scheme is the first to incorporate a functional parameter of the SLF, and thereby more fully characterizes ULT.Level of Evidence: Level 4.
Collapse
Affiliation(s)
- Raymond J. So
- Department of OtolaryngologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Carolyn Jenks
- Department of OtolaryngologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Marisa A. Ryan
- Department of OtolaryngologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - David E. Tunkel
- Department of OtolaryngologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Margo K. McKenna Benoit
- Department of OtolaryngologyUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| | - Jonathan M. Walsh
- Department of OtolaryngologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
15
|
DAİF A, ZER Y, ERİNMEZ M. Lactobacillus Species in Breast Milk: Do They Get Affected by Birth Style? CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2022. [DOI: 10.33808/clinexphealthsci.915721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective; Breast milk has an important function in the formation of the intestinal flora. Cesarean section bypasses the vertical transition of vaginal flora to the baby also usually causes the late start of lactation. The difference is in birth style and lactation period may affect the microbiota of breast milk. In this study, it was aimed to investigate how Lactobacillus species found in breast milk differ by the birth style and stages of milk.
Methods; Milk samples were taken from 72 mothers who had a vaginal birth (n:36) and cesarean (n:36) were divided into three groups as colostrum (n:12), early milk (n:12), and mature milk (n:12). Lactobacillus species were investigated from milk samples by real-time PCR.
Results: While Lactobacillus was detected in 70 (97.2%) of the samples, it was not detected in 2 (2.8%) of the samples taken from women with cesarean delivery. L. acidophilus and L. rhamnosus were detected simultaneously in all transitional milk samples of women who had a vaginal birth, and 82 Lactobacillus species were detected. The species identified were 33(39.3%) L. rhamnosus, 25(29.8%) Lactobacillus spp., and 24(28.6%) L. acidophilus. The rate of detection of L. acidophilus in milk samples taken from women who gave birth was found to be significantly higher than that found in milk samples taken from women who gave birth by cesarean section (p <0.05).
Conlusion: Breast milk is not only a nutritional source but an important source of probiotics. Lactobacilli were found to be concentrated in breast milk. Also, Lactobacillus species detected in breast milk may differ according to the mode of delivery.
Collapse
Affiliation(s)
- Aya DAİF
- Gaziantep University School of Medicine Medical Microbiology
| | - Yasemin ZER
- Gaziantep University Faculty of Medicine Medical Microbiology
| | - Mehmet ERİNMEZ
- Gaziantep University Faculty of Medicine Medical Microbiology
| |
Collapse
|
16
|
Selma-Royo M, Calvo-Lerma J, Bäuerl C, Esteban-Torres M, Cabrera-Rubio R, Collado MC. Human milk microbiota: what did we learn in the last 20 years? MICROBIOME RESEARCH REPORTS 2022; 1:19. [PMID: 38046359 PMCID: PMC10688795 DOI: 10.20517/mrr.2022.05] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 12/05/2023]
Abstract
Human milk (HM) is the gold standard for infant nutrition during the first months of life. Beyond its nutritional components, its complex bioactive composition includes microorganisms, their metabolites, and oligosaccharides, which also contribute to gut colonization and immune system maturation. There is growing evidence of the beneficial effects of bacteria present in HM. However, current research presents limited data on the presence and functions of other organisms. The potential biological impacts on maternal and infant health outcomes, the factors contributing to milk microbes' variations, and the potential functions in the infant's gut remain unclear. This review provides a global overview of milk microbiota, what the actual knowledge is, and what the gaps and challenges are for the next years.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| |
Collapse
|
17
|
Maqsood R, Skidmore PT, Holland LA, Au JL, Khan AK, Wu LI, Ma N, Begnel ER, Chohan BH, Adhiambo J, John-Stewart G, Kiarie J, Kinuthia J, Chung MH, Richardson BA, Slyker J, Lehman DA, Lim ES. Dynamic Changes in Breast Milk Microbiome in the Early Postpartum Period of Kenyan Women Living with HIV Are Influenced by Antibiotics but Not Antiretrovirals. Microbiol Spectr 2022; 10:e0208021. [PMID: 35384692 PMCID: PMC9045247 DOI: 10.1128/spectrum.02080-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Shared bacteria between maternal breast milk and infant stool, infers that transfer of maternal breast milk microbiota through breastfeeding seeds the establishment of the infant gut microbiome. Whether combination antiretroviral therapy (cART) impacts the breast milk microbiota in women living with HIV is unknown. Since current standard of care for people living with HIV includes cART, it has been difficult to evaluate the impact of cART on the microbiome. Here, we performed a next-generation sequencing retrospective study from pre-ART era clinical trials in Nairobi, Kenya (between 2003-2006 before cART was standard of care) that tested the effects of ART regimens to prevent mother-to-child HIV transmission. Kenyan women living with HIV were randomized to receive either no ART during breastfeeding (n = 24) or cART (zidovudine, nevirapine, lamivudine; n = 25) postpartum. Using linear mixed-effects models, we found that alpha diversity and beta diversity of the breast milk bacterial microbiome changed significantly over time during the first 4 weeks postpartum (alpha diversity P < 0.0007; beta diversity P = 0.005). There was no statistically significant difference in diversity, richness, and composition of the bacterial microbiome between cART-exposed and cART-unexposed women. In contrast, antibiotic use influenced the change of beta diversity of the bacterial microbiome over time. Our results indicate that while early postpartum time predicts breast milk microbiome composition, cART does not substantially alter the breast milk microbiota in women living with HIV. Hence, cART has minimal impact on the breast milk microbiome compared to antibiotics use. IMPORTANCE Breastfeeding has important benefits for long-term infant health, particularly in establishing and shaping the infant gut microbiome. However, the impact of combination antiretroviral therapy exposure and antibiotics on the breast milk microbiome in women living with HIV is not known. Here, in a longitudinal retrospective study of Kenyan women living with HIV from the pre-antiretroviral therapy era, we found that antibiotic use significantly influenced breast milk microbiome beta diversity, but antiretrovirals exposure did not substantially alter the microbiome. Given the protective role of breastfeeding in maternal-infant health, these findings fill an important knowledge gap of the impact of combination antiretroviral therapy on the microbiome of women living with HIV.
Collapse
Affiliation(s)
- Rabia Maqsood
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Peter T. Skidmore
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - LaRinda A. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Joshua L. Au
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Adam K. Khan
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Lily I. Wu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ningxin Ma
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Emily R. Begnel
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Bhavna H. Chohan
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Judith Adhiambo
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Grace John-Stewart
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - James Kiarie
- Department of Research and Programs, Kenyatta National Hospital, Nairobi, Kenya
| | - John Kinuthia
- Department of Research and Programs, Kenyatta National Hospital, Nairobi, Kenya
| | - Michael H. Chung
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Barbra A. Richardson
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Jennifer Slyker
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Dara A. Lehman
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Efrem S. Lim
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
18
|
Yadav M, Kapoor A, Verma A, Ambatipudi K. Functional Significance of Different Milk Constituents in Modulating the Gut Microbiome and Infant Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3929-3947. [PMID: 35324181 DOI: 10.1021/acs.jafc.2c00335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human milk, the gold standard for optimal nourishment, controls the microbial composition of infants by either enhancing or limiting bacterial growth. The milk fat globule membrane has gained interest in gut-related functions and cognitive development. The membrane proteins can directly interact with probiotic bacteria, influencing their survival and adhesion through gastrointestinal transit, whereas membrane phospholipids increase the residence time of probiotic bacteria in the gut. The commensal bacteria in milk act as the initial inoculum in building up the gut colonization of an infant, whereas oligosaccharides promote proliferation of beneficial microorganisms. Interestingly, milk extracellular vesicles are also involved in influencing the microbiota composition but are not well-explored. This review highlights the contribution of different milk components in modulating the infant gut microbiota, particularly the fat globule membrane, and the complex interplay between host- and brain-gut microbiota signaling affecting infant and adult health positively.
Collapse
Affiliation(s)
- Monica Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ayushi Kapoor
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Aparna Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
19
|
van Stigt AH, Oude Rengerink K, Bloemenkamp KWM, de Waal W, Prevaes SMPJ, Le TM, van Wijk F, Nederend M, Hellinga AH, Lammers CS, den Hartog G, van Herwijnen MJC, Garssen J, Knippels LMJ, Verhagen LM, de Theije CGM, Lopez-Rincon A, Leusen JHW, Van't Land B, Bont L. Analysing the protection from respiratory tract infections and allergic diseases early in life by human milk components: the PRIMA birth cohort. BMC Infect Dis 2022; 22:152. [PMID: 35164699 PMCID: PMC8842741 DOI: 10.1186/s12879-022-07107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/29/2022] [Indexed: 11/28/2022] Open
Abstract
Background Many studies support the protective effect of breastfeeding on respiratory tract infections. Although infant formulas have been developed to provide adequate nutritional solutions, many components in human milk contributing to the protection of newborns and aiding immune development still need to be identified. In this paper we present the methodology of the “Protecting against Respiratory tract lnfections through human Milk Analysis” (PRIMA) cohort, which is an observational, prospective and multi-centre birth cohort aiming to identify novel functions of components in human milk that are protective against respiratory tract infections and allergic diseases early in life. Methods For the PRIMA human milk cohort we aim to recruit 1000 mother–child pairs in the first month postpartum. At one week, one, three, and six months after birth, fresh human milk samples will be collected and processed. In order to identify protective components, the level of pathogen specific antibodies, T cell composition, Human milk oligosaccharides, as well as extracellular vesicles (EVs) will be analysed, in the milk samples in relation to clinical data which are collected using two-weekly parental questionnaires. The primary outcome of this study is the number of parent-reported medically attended respiratory infections. Secondary outcomes that will be measured are physician diagnosed (respiratory) infections and allergies during the first year of life. Discussion The PRIMA human milk cohort will be a large prospective healthy birth cohort in which we will use an integrated, multidisciplinary approach to identify the longitudinal effect human milk components that play a role in preventing (respiratory) infections and allergies during the first year of life. Ultimately, we believe that this study will provide novel insights into immunomodulatory components in human milk. This may allow for optimizing formula feeding for all non-breastfed infants. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07107-w.
Collapse
Affiliation(s)
- Arthur H van Stigt
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Katrien Oude Rengerink
- Department of Biostatistics and Research Support, Clinical Trial Methodology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kitty W M Bloemenkamp
- Department of Gynaecology and Obstetrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter de Waal
- Department of Pediatrics, Diakonessenhuis, Utrecht, The Netherlands
| | - Sabine M P J Prevaes
- Department of Pediatric Pulmonology and Allergology, Wilhelmina Children's Hospital/University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Thuy-My Le
- Department of Dermatology/Allergology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maaike Nederend
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anneke H Hellinga
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christianne S Lammers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerco den Hartog
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Martijn J C van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| | - Léon M J Knippels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| | - Lilly M Verhagen
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline G M de Theije
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Alejandro Lopez-Rincon
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Belinda Van't Land
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| | - Louis Bont
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands. .,Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands. .,ReSViNET Foundation, Zeist, The Netherlands.
| | | |
Collapse
|
20
|
Abstract
The developing gut microbiome in infancy plays a key role in shaping the host immune system and metabolic state, and human milk is the main factor influencing its composition. Human milk does not only serve to feed the baby, but also to help the new-born adapt to its new environment and microbial exposures. Human milk protects the infant by providing multiple bioactive molecules, including human milk oligosaccharides (HMOs), which are the third most abundant solid component after lipids and lactose. The infant is unable to digest HMOs, so they reach the small and large intestines intact where they have many roles, including acting as prebiotics. Bifidobacterium spp. are the main, but not the only, commensals equipped with genes for HMO degradation. In this review we will outline the HMOs structures and functions, list the genes needed for their digestion, and describe the main strategies adopted by bacteria for their utilization.
Collapse
Affiliation(s)
- Andrea C Masi
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, 3rd Floor Leech Building, Newcastle NE2 4HH, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, 3rd Floor Leech Building, Newcastle NE2 4HH, UK
| |
Collapse
|
21
|
The Impact of Probiotics, Prebiotics, and Synbiotics during Pregnancy or Lactation on the Intestinal Microbiota of Children Born by Cesarean Section: A Systematic Review. Nutrients 2022; 14:nu14020341. [PMID: 35057522 PMCID: PMC8778982 DOI: 10.3390/nu14020341] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
The gut microbiota is a key factor in the correct development of the gastrointestinal immune system. Studies have found differences between the gut microbiota of newborns delivered by cesarean section compared to those vaginally delivered. Our objective was to evaluate the effect of ingestion of probiotics, prebiotics, or synbiotics during pregnancy and/or lactation on the development of the gut microbiota of the C-section newborns. We selected experimental studies in online databases from their inception to October 2021. Of the 83 records screened, 12 met the inclusion criteria. The probiotics used belonged to the genera Lactobacillus, Bifidobacterium, Propionibacterium, and Streptococcus, or a combination of those, with dosages varying between 2 × 106 and 9 × 1011 CFU per day, and were consumed during pregnancy and/or lactation. Probiotic strains were combined with galacto-oligosaccharides, fructo-oligosaccharides, or bovine milk-derived oligosaccharides in the synbiotic formulas. Probiotic, prebiotic, and synbiotic interventions led to beneficial gut microbiota in cesarean-delivered newborns, closer to that in vaginally delivered newborns, especially regarding Bifidobacterium colonization. This effect was more evident in breastfed infants. The studies indicate that this beneficial effect is achieved when the interventions begin soon after birth, especially the restoration of bifidobacterial population. Changes in the infant microbial ecosystem due to the interventions seem to continue after the end of the intervention in most of the studies. More interventional studies are needed to elucidate the optimal synbiotic combinations and the most effective strains and doses for achieving the optimal gut microbiota colonization of C-section newborns.
Collapse
|
22
|
Rubio-Del-Campo A, Gozalbo-Rovira R, Moya-Gonzálvez EM, Alberola J, Rodríguez-Díaz J, Yebra MJ. Infant gut microbiota modulation by human milk disaccharides in humanized microbiome mice. Gut Microbes 2022; 13:1-20. [PMID: 33938391 PMCID: PMC8096338 DOI: 10.1080/19490976.2021.1914377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human milk glycans present a unique diversity of structures that suggest different mechanisms by which they may affect the infant microbiome development. A humanized mouse model generated by infant fecal transplantation was utilized here to evaluate the impact of fucosyl-α1,3-GlcNAc (3FN), fucosyl-α1,6-GlcNAc, lacto-N-biose (LNB) and galacto-N-biose on the fecal microbiota and host-microbiota interactions. 16S rRNA amplicon sequencing showed that certain bacterial genera significantly increased (Ruminococcus and Oscillospira) or decreased (Eubacterium and Clostridium) in all disaccharide-supplemented groups. Interestingly, cluster analysis differentiates the consumption of fucosyl-oligosaccharides from galactosyl-oligosaccharides, highlighting the disappearance of Akkermansia genus in both fucosyl-oligosaccharides. An increment of the relative abundance of Coprococcus genus was only observed with 3FN. As well, LNB significantly increased the relative abundance of Bifidobacterium, whereas the absolute levels of this genus, as measured by quantitative real-time PCR, did not significantly increase. OTUs corresponding to the species Bifidobacterium longum, Bifidobacterium adolescentis and Ruminococcus gnavus were not present in the control after the 3-week intervention, but were shared among the donor and specific disaccharide groups, indicating that their survival is dependent on disaccharide supplementation. The 3FN-feeding group showed increased levels of butyrate and acetate in the colon, and decreased levels of serum HDL-cholesterol. 3FN also down-regulated the pro-inflammatory cytokine TNF-α and up-regulated the anti-inflammatory cytokines IL-10 and IL-13, and the Toll-like receptor 2 in the large intestine tissue. The present study revealed that the four disaccharides show efficacy in producing beneficial compositional shifts of the gut microbiota and in addition, the 3FN demonstrated physiological and immunomodulatory roles.
Collapse
Affiliation(s)
- Antonio Rubio-Del-Campo
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, IATA-CSIC, Paterna, Spain
| | - Roberto Gozalbo-Rovira
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Eva M. Moya-Gonzálvez
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, IATA-CSIC, Paterna, Spain
| | - Juan Alberola
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - María J. Yebra
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, IATA-CSIC, Paterna, Spain,CONTACT María J. Yebra Laboratorio De Bacterias Lácticas Y Probióticos, Departamento De Biotecnología De Alimentos, IATA-CSIC, Agustín Escardino 7, 46980Paterna, Spain
| |
Collapse
|
23
|
The hidden universe of human milk microbiome: origin, composition, determinants, role, and future perspectives. Eur J Pediatr 2022; 181:1811-1820. [PMID: 35124754 PMCID: PMC9056486 DOI: 10.1007/s00431-022-04383-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
UNLABELLED Although traditionally considered sterile, human milk is currently recognized as an alive ecosystem that harbors not only bacteria, but also viruses, fungi and yeasts, and minor genera, collectively known as the human milk microbiome (HMM). The seeding of HMM is a complex phenomenon whose dynamics are still a matter of research. Many factors contribute to its determination, both maternal, neonatal, environmental, and related to human milk itself. The transmission of microorganisms to the infant through breastfeeding may impact its present and future health, mainly shaping the GI tract microbiome and immune system. The existence and persistence of HMM as a conserved feature among different species may also have an evolutionary meaning, which will become apparent only in evolutionary times. CONCLUSION The complexities of HMM warrant further research in order to deepen our knowledge on its origin, determinants, and impact on infants' health. The practical and translational implications of research on HMM (e.g., reconstitution of donor human milk through inoculation of infant's own mother milk, modulation of HMM through maternal dietary supplementation) should not be overlooked. WHAT IS KNOWN • Human milk harbors a wide variety of microorganisms, ranging from bacteria to viruses, fungi and yeasts, and minor genera. • Human milk microbiome is shaped over time by many factors: maternal, neonatal, environmental, and related to human milk itself. • The transmission of microorganisms through breastfeeding may impact the infant's present and future health. WHAT IS NEW • We provide an overview on human milk microbiome, hopefully encouraging physicians to consider it among the other better-known breastfeeding benefits. • Further studies, with standardized and rigorous study designs to enhance accuracy and reproducibility of the results, are needed to deepen our knowledge of the human milk microbiota and its role in newborn and infant's health.
Collapse
|
24
|
Sakarya E, Sanlier NT, Sanlier N. The relationship between human milk, a functional nutrient, and microbiota. Crit Rev Food Sci Nutr 2021:1-13. [PMID: 34872407 DOI: 10.1080/10408398.2021.2008301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The intestinal microbiota begins to take shape in the mother's womb, changes depending on many factors. It is known that the intestinal microbiota has an important role in the maturation of the immune system, also in the prevention of diseases that occur in newborn, childhood, adulthood. Nutrition is the main factor on the development of microbiota in infants after birth. The microbiota compositions of breastfed infants are different from formula-fed infants. Breast milk oligosaccharides play an important role in the development of infants' microbiota. The higher number of Bifidobacterium species and lower α and β diversity in breastfed infants are considered protective. A dysbiosis occurring in the microbiota can cause adverse effects on health. Human milk oligosaccharides also have protective effects on the microbiota. These protective effects are to promote the growth of intestinal microbiota, prevent the adhesion of viruses to the colon, promote the growth of Bifidobacterium with its prebiotic effect. Short-chain fatty acids resulting from their digestion, also have protective effects. Another component that shapes the gut microbiota is HM glycoproteins. The aim of this study is to examine the effect of breast milk on the development of microbiota, to present the results by scanning the literature.
Collapse
Affiliation(s)
- Elif Sakarya
- Department of Nutrition and Dietetics, Ankara Medipol University, Institute of Health Sciences, Ankara, Turkey
| | - Nazlı Tunca Sanlier
- Department of Obstetrics and Gynecology, Ankara City Hospital, Ankara, Turkey
| | - Nevin Sanlier
- School of Health Sciences, Department of Nutrition and Dietetics, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
25
|
Abstract
Aside from nutritional components, human milk is rich in microorganisms. Through breastfeeding these microorganisms are introduced to the infant gut where they may transiently or persistently colonize it. Therefore, the human milk microbiota may be an important factor which shapes the infant gut microbiota further influencing infant health and disease. In the current review we aim to give a brief updated insight into the putative origin of the human milk microbiota, its constituents and the possible factors that shape it. Understanding the factors that determine the human milk microbiota composition and function will aid developing optimal postnatal feeding and intervention strategies to reduce the risk of communicable and noncommunicable diseases.
Collapse
Affiliation(s)
- Anastasia Mantziari
- Functional Foods Forum, Faculty of Medicine, University of Turku, Itäinen Pitkäkatu 4A, 20520 Turku, Finland
| | - Samuli Rautava
- University of Helsinki and Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki, Finland.
| |
Collapse
|
26
|
Cortez RV, Fernandes A, Sparvoli LG, Padilha M, Feferbaum R, Neto CM, Taddei CR. Impact of Oropharyngeal Administration of Colostrum in Preterm Newborns' Oral Microbiome. Nutrients 2021; 13:nu13124224. [PMID: 34959775 PMCID: PMC8703686 DOI: 10.3390/nu13124224] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023] Open
Abstract
The initial colonization of the human microbiota is of paramount importance. In this context, the oropharyngeal administration of colostrum is a safe, viable, and well-tolerated practice even by the smallest preterm infants. Therefore, this study evaluated the effects of oropharyngeal administration of colostrum on the establishment of preterm infants' oral microbiota. A longitudinal observational study was carried out with 20 premature neonates, divided into two groups: one receiving the protocol (Oropharyngeal Administration of Colostrum; OAC) and the other one receiving Standard Caare (SC). Saliva samples were collected from the newborns weekly during the study period (from the day of birth until the 21st day of life) for analysis of oral microbiota through 16S rRNA gene sequencing. We observed that the colonization of the oral microbiota of preterm newborns preseanted a higher relative abundance of Staphylococcus on the 7th day of life, mainly in the OAC group. Additionally, an increased abundance of Bifidobacterium and Bacteroides was observed in the OAC group at the first week of life. Regarding alpha and beta diversity, time was a key factor in the oral modulation of both groups, showing how dynamic this environment is in early life.
Collapse
Affiliation(s)
- Ramon V. Cortez
- Department of Clinical Analysis and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (R.V.C.); (L.G.S.)
| | - Andrea Fernandes
- Human Milk Bank, Hospital Maternidade Leonor Mendes de Barros, São Paulo 03015-000, Brazil; (A.F.); (C.M.N.)
| | - Luiz Gustavo Sparvoli
- Department of Clinical Analysis and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (R.V.C.); (L.G.S.)
| | - Marina Padilha
- Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil;
| | - Rubens Feferbaum
- Children’s Institute, University of São Paulo, Rua Tremembé, São Paulo 01256-010, Brazil;
| | - Corintio Mariani Neto
- Human Milk Bank, Hospital Maternidade Leonor Mendes de Barros, São Paulo 03015-000, Brazil; (A.F.); (C.M.N.)
| | - Carla R. Taddei
- Department of Clinical Analysis and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (R.V.C.); (L.G.S.)
- School of Arts, Sciences and Humanity, University of São Paulo, São Paulo 03828-000, Brazil
- Correspondence:
| |
Collapse
|
27
|
Maternal effects in mammals: Broadening our understanding of offspring programming. Front Neuroendocrinol 2021; 62:100924. [PMID: 33992652 DOI: 10.1016/j.yfrne.2021.100924] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The perinatal period is a sensitive time in mammalian development that can have long-lasting consequences on offspring phenotype via maternal effects. Maternal effects have been most intensively studied with respect to two major conditions: maternal diet and maternal stress. In this review, we shift the focus by discussing five major additional maternal cues and their influence on offspring phenotype: maternal androgen levels, photoperiod (melatonin), microbiome, immune regulation, and milk composition. We present the key findings for each of these topics in mammals, their mechanisms of action, and how they interact with each other and with the maternal influences of diet and stress. We explore their impacts in the contexts of both predictive adaptive responses and the developmental origins of disease, identify knowledge gaps and research opportunities in the field, and place a particular emphasis on the application and consideration of these effects in non-model species and natural ecological systems.
Collapse
|
28
|
The role of the microbiome in gastrointestinal inflammation. Biosci Rep 2021; 41:228872. [PMID: 34076695 PMCID: PMC8201460 DOI: 10.1042/bsr20203850] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiome plays an important role in maintaining human health. Despite multiple factors being attributed to the shaping of the human microbiome, extrinsic factors such diet and use of medications including antibiotics appear to dominate. Mucosal surfaces, particularly in the gut, are highly adapted to be able to tolerate a large population of microorganisms whilst still being able to produce a rapid and effective immune response against infection. The intestinal microbiome is not functionally independent from the host mucosa and can, through presentation of microbe-associated molecular patterns (MAMPs) and generation of microbe-derived metabolites, fundamentally influence mucosal barrier integrity and modulate host immunity. In a healthy gut there is an abundance of beneficial bacteria that help to preserve intestinal homoeostasis, promote protective immune responses, and limit excessive inflammation. The importance of the microbiome is further highlighted during dysbiosis where a loss of this finely balanced microbial population can lead to mucosal barrier dysfunction, aberrant immune responses, and chronic inflammation that increases the risk of disease development. Improvements in our understanding of the microbiome are providing opportunities to harness members of a healthy microbiota to help reverse dysbiosis, reduce inflammation, and ultimately prevent disease progression.
Collapse
|
29
|
Dinleyici M, Pérez-Brocal V, Arslanoglu S, Aydemir O, Sevuk Ozumut S, Tekin N, Vandenplas Y, Moya A, Dinleyici EC. Human Milk Virome Analysis: Changing Pattern Regarding Mode of Delivery, Birth Weight, and Lactational Stage. Nutrients 2021; 13:nu13061779. [PMID: 34071061 PMCID: PMC8224552 DOI: 10.3390/nu13061779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
The human milk (HM) microbiota is a significant source of microbes that colonize the infant gut early in life. The aim of this study was to compare transient and mature HM virome compositions, and also possible changes related to the mode of delivery, gestational age, and weight for gestational age. Overall, in the 81 samples analyzed in this study, reads matching bacteriophages accounted for 79.5% (mainly Podoviridae, Myoviridae, and Siphoviridae) of the reads, far more abundant than those classified as eukaryotic viruses (20.5%, mainly Herpesviridae). In the whole study group of transient human milk, the most abundant families were Podoviridae and Myoviridae. In mature human milk, Podoviridae decreased, and Siphoviridae became the most abundant family. Bacteriophages were predominant in transient HM samples (98.4% in the normal spontaneous vaginal delivery group, 92.1% in the premature group, 89.9% in the C-section group, and 68.3% in the large for gestational age group), except in the small for gestational age group (only ~45% bacteriophages in transient HM samples). Bacteriophages were also predominant in mature HM; however, they were lower in mature HM than in transient HM (71.7% in the normal spontaneous vaginal delivery group, 60.8% in the C-section group, 56% in the premature group, and 80.6% in the large for gestational age group). Bacteriophages still represented 45% of mature HM in the small for gestational age group. In the transient HM of the normal spontaneous vaginal delivery group, the most abundant family was Podoviridae; however, in mature HM, Podoviridae became less prominent than Siphoviridae. Myoviridae was predominant in both transient and mature HM in the premature group (all C-section), and Podoviridae was predominant in transient HM, while Siphoviridae and Herpesviridae were predominant in mature HM. In the small for gestational age group, the most abundant taxa in transient HM were the family Herpesviridae and a species of the genus Roseolovirus. Bacteriophages constituted the major component of the HM virome, and we showed changes regarding the lactation period, preterm birth, delivery mode, and birth weight. Early in life, the HM virome may influence the composition of an infant's gut microbiome, which could have short- and long-term health implications. Further longitudinal mother-newborn pair studies are required to understand the effects of these variations on the composition of the HM and the infant gut virome.
Collapse
Affiliation(s)
- Meltem Dinleyici
- Department of Social Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey;
| | - Vicente Pérez-Brocal
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain; (V.P.-B.); (A.M.)
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
| | - Sertac Arslanoglu
- Division of Neonatology, Faculty of Medicine, Medeniyet University, Istanbul 34720, Turkey; (S.A.); (S.S.O.)
| | - Ozge Aydemir
- Division of Neonatology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; (O.A.); (N.T.)
| | - Sibel Sevuk Ozumut
- Division of Neonatology, Faculty of Medicine, Medeniyet University, Istanbul 34720, Turkey; (S.A.); (S.S.O.)
| | - Neslihan Tekin
- Division of Neonatology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; (O.A.); (N.T.)
| | - Yvan Vandenplas
- Department of Pediatrics, KidZ Health Castle, UZ Brussel, Vrije Unversiteit Brussel, 1050 Brussels, Belgium;
| | - Andrés Moya
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain; (V.P.-B.); (A.M.)
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), The University of Valencia and The Spanish National Research Council (CSIC-UVEG), 46010 Valencia, Spain
| | - Ener Cagri Dinleyici
- Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
- Correspondence: ; Tel.: +90-222-239-29-79 (ext. 2722)
| |
Collapse
|
30
|
Gut Microbiota, in the Halfway between Nutrition and Lung Function. Nutrients 2021; 13:nu13051716. [PMID: 34069415 PMCID: PMC8159117 DOI: 10.3390/nu13051716] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022] Open
Abstract
The gut microbiota is often mentioned as a “forgotten organ” or “metabolic organ”, given its profound impact on host physiology, metabolism, immune function and nutrition. A healthy diet is undoubtedly a major contributor for promoting a “good” microbial community that turns out to be crucial for a fine-tuned symbiotic relationship with the host. Both microbial-derived components and produced metabolites elicit the activation of downstream cascades capable to modulate both local and systemic immune responses. A balance between host and gut microbiota is crucial to keep a healthy intestinal barrier and an optimal immune homeostasis, thus contributing to prevent disease occurrence. How dietary habits can impact gut microbiota and, ultimately, host immunity in health and disease has been the subject of intense study, especially with regard to metabolic diseases. Only recently, these links have started to be explored in relation to lung diseases. The objective of this review is to address the current knowledge on how diet affects gut microbiota and how it acts on lung function. As the immune system seems to be the key player in the cross-talk between diet, gut microbiota and the lungs, involved immune interactions are discussed. There are key nutrients that, when present in our diet, help in gut homeostasis and lead to a healthier lifestyle, even ameliorating chronic diseases. Thus, with this review we hope to incite the scientific community interest to use diet as a valuable non-pharmacological addition to lung diseases management. First, we talk about the intestinal microbiota and interactions through the intestinal barrier for a better understanding of the following sections, which are the main focus of this article: the way diet impacts the intestinal microbiota and the immune interactions of the gut–lung axis that can explain the impact of diet, a key modifiable factor influencing the gut microbiota in several lung diseases.
Collapse
|
31
|
Beck LC, Granger CL, Masi AC, Stewart CJ. Use of omic technologies in early life gastrointestinal health and disease: from bench to bedside. Expert Rev Proteomics 2021; 18:247-259. [PMID: 33896313 DOI: 10.1080/14789450.2021.1922278] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: At birth, the gastrointestinal (GI) tract is colonized by a complex community of microorganisms, forming the basis of the gut microbiome. The gut microbiome plays a fundamental role in host health, disorders of which can lead to an array of GI diseases, both short and long term. Pediatric GI diseases are responsible for significant morbidity and mortality, but many remain poorly understood. Recent advancements in high-throughput technologies have enabled deeper profiling of GI morbidities. Technologies, such as metagenomics, transcriptomics, proteomics and metabolomics, have already been used to identify associations with specific pathologies, and highlight an exciting area of research. However, since these diseases are often complex and multifactorial by nature, reliance on a single experimental approach may not capture the true biological complexity. Therefore, multi-omics aims to integrate singular omic data to further enhance our understanding of disease.Areas covered: This review will discuss and provide an overview of the main omic technologies that are used to study complex GI pathologies in early life.Expert opinion: Multi-omic technologies can help to unravel the complexities of several diseases during early life, aiding in biomarker discovery and enabling the development of novel therapeutics and augment predictive models.
Collapse
Affiliation(s)
- Lauren C Beck
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Claire L Granger
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.,Newcastle Neonatal Service, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Andrea C Masi
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
32
|
Paparo L, Nocerino R, Ciaglia E, Di Scala C, De Caro C, Russo R, Trinchese G, Aitoro R, Amoroso A, Bruno C, Di Costanzo M, Passariello A, Messina F, Agangi A, Napolitano M, Voto L, Gatta GD, Pisapia L, Montella F, Mollica MP, Calignano A, Puca A, Berni Canani R. Butyrate as a bioactive human milk protective component against food allergy. Allergy 2021; 76:1398-1415. [PMID: 33043467 PMCID: PMC8247419 DOI: 10.1111/all.14625] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Food allergy (FA) is a growing health problem worldwide. Effective strategies are advocated to limit the disease burden. Human milk (HM) could be considered as a protective factor against FA, but its mechanisms remain unclear. Butyrate is a gut microbiota-derived metabolite able to exert several immunomodulatory functions. We aimed to define the butyrate concentration in HM, and to see whether the butyrate concentration detected in HM is able to modulate the mechanisms of immune tolerance. METHODS HM butyrate concentration from 109 healthy women was assessed by GS-MS. The effect of HM butyrate on tolerogenic mechanisms was assessed in in vivo and in vitro models. RESULTS The median butyrate concentration in mature HM was 0.75 mM. This butyrate concentration was responsible for the maximum modulatory effects observed in all experimental models evaluated in this study. Data from mouse model show that in basal condition, butyrate up-regulated the expression of several biomarkers of gut barrier integrity, and of tolerogenic cytokines. Pretreatment with butyrate significantly reduced allergic response in three animal models of FA, with a stimulation of tolerogenic cytokines, inhibition of Th2 cytokines production and a modulation of oxidative stress. Data from human cell models show that butyrate stimulated human beta defensin-3, mucus components and tight junctions expression in human enterocytes, and IL-10, IFN-γ and FoxP3 expression through epigenetic mechanisms in PBMCs from FA children. Furthermore, it promoted the precursors of M2 macrophages, DCs and regulatory T cells. CONCLUSION The study's findings suggest the importance of butyrate as a pivotal HM compound able to protect against FA.
Collapse
Affiliation(s)
- Lorella Paparo
- Department of Translational Medical Science University of Naples Federico II Naples Italy
- ImmunoNutritionLab at the CEINGE‐Biotecnologie Avanzate s.c.ar.l Research Center University of Naples Federico II Naples Italy
- European Laboratory for the Investigation of Food‐Induced Diseases University of Naples Federico II Naples Italy
| | - Rita Nocerino
- Department of Translational Medical Science University of Naples Federico II Naples Italy
- ImmunoNutritionLab at the CEINGE‐Biotecnologie Avanzate s.c.ar.l Research Center University of Naples Federico II Naples Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno Fisciano Italy
| | - Carmen Di Scala
- Department of Translational Medical Science University of Naples Federico II Naples Italy
- ImmunoNutritionLab at the CEINGE‐Biotecnologie Avanzate s.c.ar.l Research Center University of Naples Federico II Naples Italy
| | - Carmen De Caro
- Department of Pharmacy University of Naples Federico II Naples Italy
| | - Roberto Russo
- Department of Pharmacy University of Naples Federico II Naples Italy
| | | | - Rosita Aitoro
- Department of Translational Medical Science University of Naples Federico II Naples Italy
| | - Antonio Amoroso
- Department of Translational Medical Science University of Naples Federico II Naples Italy
| | - Cristina Bruno
- Department of Translational Medical Science University of Naples Federico II Naples Italy
- ImmunoNutritionLab at the CEINGE‐Biotecnologie Avanzate s.c.ar.l Research Center University of Naples Federico II Naples Italy
| | - Margherita Di Costanzo
- Department of Translational Medical Science University of Naples Federico II Naples Italy
- ImmunoNutritionLab at the CEINGE‐Biotecnologie Avanzate s.c.ar.l Research Center University of Naples Federico II Naples Italy
| | - Annalisa Passariello
- Department of Translational Medical Science University of Naples Federico II Naples Italy
- Department of Pediatric Cardiology Monaldi Hospital Naples Italy
| | - Francesco Messina
- Neonatal Intensive Care Unit "Betania" Evangelical Hospital Naples Italy
| | - Annalisa Agangi
- Neonatal Intensive Care Unit "Betania" Evangelical Hospital Naples Italy
| | | | - Luana Voto
- Department of Translational Medical Science University of Naples Federico II Naples Italy
| | - Giusy Della Gatta
- Department of Translational Medical Science University of Naples Federico II Naples Italy
- ImmunoNutritionLab at the CEINGE‐Biotecnologie Avanzate s.c.ar.l Research Center University of Naples Federico II Naples Italy
| | - Laura Pisapia
- Department of Translational Medical Science University of Naples Federico II Naples Italy
- ImmunoNutritionLab at the CEINGE‐Biotecnologie Avanzate s.c.ar.l Research Center University of Naples Federico II Naples Italy
| | - Francesco Montella
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno Fisciano Italy
| | | | - Antonio Calignano
- Department of Pharmacy University of Naples Federico II Naples Italy
| | - Annibale Puca
- European Laboratory for the Investigation of Food‐Induced Diseases University of Naples Federico II Naples Italy
- Cardiovascular Research Unit IRCCS MultiMedica Milan Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science University of Naples Federico II Naples Italy
- ImmunoNutritionLab at the CEINGE‐Biotecnologie Avanzate s.c.ar.l Research Center University of Naples Federico II Naples Italy
- European Laboratory for the Investigation of Food‐Induced Diseases University of Naples Federico II Naples Italy
- Task Force for Microbiome Studies University of Naples Federico II Naples Italy
| |
Collapse
|
33
|
Yang J, Wu J, Li Y, Zhang Y, Cho WC, Ju X, van Schothorst EM, Zheng Y. Gut bacteria formation and influencing factors. FEMS Microbiol Ecol 2021; 97:6168382. [PMID: 33705527 DOI: 10.1093/femsec/fiab043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota plays an important role in human health. In modern life, with the improvement of living conditions, the intake of high-sugar and high-fat diets as well as the large-scale use of antibacterial drugs have an extensive impact on the gut microbiota, even leading to gut microbiota-orchestrating disorders. This review discusses the effects of various factors, including geographic location, age, diet, antibacterial drugs, psychological situation and exercise on gut bacteria, which helps us profoundly to understand the significance of gut bacteria to human health and to find effective solutions to prevent or treat related diseases.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Chengguan District, Lanzhou 730046, China
| | - Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Chengguan District, Lanzhou 730046, China
| | - Yating Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Chengguan District, Lanzhou 730046, China
| | - Yong'e Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Chengguan District, Lanzhou 730046, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong SAR 999077, China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Agriculture, Guangdong Ocean University, 1 Haida Road, Mazhang District, 524088, China
| | - Evert M van Schothorst
- Human and Animal Physiology, Wageningen University, De Elst 1, Wageningen 6708WD, The Netherlands
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Chengguan District, Lanzhou 730046, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 88 Daxuenan Road, Yangzhou 225009, China
| |
Collapse
|
34
|
Princisval L, Rebelo F, Williams BL, Coimbra AC, Crovesy L, Ferreira AL, Kac G. Association Between the Mode of Delivery and Infant Gut Microbiota Composition Up to 6 Months of Age: A Systematic Literature Review Considering the Role of Breastfeeding. Nutr Rev 2021; 80:113-127. [PMID: 33837424 DOI: 10.1093/nutrit/nuab008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CONTEXT Cesarean section (CS), breastfeeding, and geographic location can influence the infant microbiota. OBJECTIVE In this systematic review, evidence of the association between mode of delivery and infant gut microbiota up to 6 months of age was evaluated, as was the role of breastfeeding in this association, according to PRISMA guidelines. DATA SOURCE The Pubmed, Web of Science, Scopus, Embase, Medical Database, and Open Grey databases were searched. DATA EXTRACTION A total of 31 observational studies with ≥2 infant stool collections up to the sixth month of age and a comparison of gut microbiota between CS and vaginal delivery (VD) were included. DATA ANALYSIS Infants born by CS had a lower abundance of Bifidobacterium and Bacteroides spp. at almost all points up to age 6 months. Populations of Lactobacillus, Bifidobacterium longum, Bifidobacterium catenulatum, and Escherichia coli were reduced in infants delivered by CS. Infants born by CS and exclusively breastfed had greater similarity with the microbiota of infants born by VD. CONCLUSIONS Species of Bifidobacterium and Bacteroides are potentially reduced in infants born by CS. Geographic location influenced bacterial colonization. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. 42017071285.
Collapse
Affiliation(s)
- Luciana Princisval
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Fernanda Rebelo
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Brent L Williams
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Anna Carolina Coimbra
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Louise Crovesy
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Ana Lorena Ferreira
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Gilberto Kac
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
35
|
Moubareck CA. Human Milk Microbiota and Oligosaccharides: A Glimpse into Benefits, Diversity, and Correlations. Nutrients 2021; 13:1123. [PMID: 33805503 PMCID: PMC8067037 DOI: 10.3390/nu13041123] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Human milk represents a cornerstone for growth and development of infants, with extensive array of benefits. In addition to exceptionally nutritive and bioactive components, human milk encompasses a complex community of signature bacteria that helps establish infant gut microbiota, contributes to maturation of infant immune system, and competitively interferes with pathogens. Among bioactive constituents of milk, human milk oligosaccharides (HMOs) are particularly significant. These are non-digestible carbohydrates forming the third largest solid component in human milk. Valuable effects of HMOs include shaping intestinal microbiota, imparting antimicrobial effects, developing intestinal barrier, and modulating immune response. Moreover, recent investigations suggest correlations between HMOs and milk microbiota, with complex links possibly existing with environmental factors, genetics, geographical location, and other factors. In this review, and from a physiological and health implications perspective, milk benefits for newborns and mothers are highlighted. From a microbiological perspective, a focused insight into milk microbiota, including origins, diversity, benefits, and effect of maternal diet is presented. From a metabolic perspective, biochemical, physiological, and genetic significance of HMOs, and their probable relations to milk microbiota, are addressed. Ongoing research into mechanistic processes through which the rich biological assets of milk promote development, shaping of microbiota, and immunity is tackled.
Collapse
Affiliation(s)
- Carole Ayoub Moubareck
- College of Natural and Health Sciences, Zayed University, Dubai 19282, United Arab Emirates
| |
Collapse
|
36
|
Zhu B, Zheng S, Lin K, Xu X, Lv L, Zhao Z, Shao J. Effects of Infant Formula Supplemented With Prebiotics and OPO on Infancy Fecal Microbiota: A Pilot Randomized Clinical Trial. Front Cell Infect Microbiol 2021; 11:650407. [PMID: 33854983 PMCID: PMC8039316 DOI: 10.3389/fcimb.2021.650407] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Several lines of evidence suggest that the intestinal microbiota plays crucial roles in infant development, and that it is highly influenced by extrinsic and intrinsic factors. Prebiotic-containing infant formula may increase gastrointestinal tolerance and improve commensal microbiota composition. However, it remains unknown whether supplementation of milk-formulas with prebiotics and 1,3-olein-2-palmitin (OPO) can achieve feeding outcomes similar to those of breastfeeding. In the present study, we investigated the effects of two kinds of infant formula with different additives on the overall diversity and composition of the fecal microbiota, to determine which was closer to breastfeeding. A total of 108 infants were enrolled, including breastfeeding (n=59) and formula feeding group (n=49). The formula feeding infants were prospectively randomly divided into a standard formula group (n=18), and a supplemented formula group(n=31). The fecal samples were collected at 4 months after intervention. Fecal microbiota analysis targeting the V4 region of the 16S rRNA gene was performed using MiSeq sequencing. The overall bacterial diversity and composition, key functional bacteria, and predictive functional profiles in the two different formula groups were compared with breastfeeding group. We found that the alpha diversity of the gut microbiota was not significantly different between the OPO and breastfeeding groups with Chaos 1 index (p=0.346). The relative abundances of Enhydrobacter and Akkermansia in the OPO group were more similar to those of the breastfeeding group than to those of the standard formula group. The gut microbiota metabolism function prediction analysis showed that the supplemented formula group was similar to the breastfeeding group in terms of ureolysis (p=0.297). These findings suggest that, when formula supplemented with prebiotics and OPO was given, the overall bacterial diversity and parts of the composition of the fecal microbiota would be similar to that of breastfeeding infants.
Collapse
Affiliation(s)
- Bingquan Zhu
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shuangshuang Zheng
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Kexin Lin
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xin Xu
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lina Lv
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhengyan Zhao
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Shao
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
37
|
Singh KS, Singh BP, Rokana N, Singh N, Kaur J, Singh A, Panwar H. Bio-therapeutics from human milk: prospects and perspectives. J Appl Microbiol 2021; 131:2669-2687. [PMID: 33740837 DOI: 10.1111/jam.15078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/10/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022]
Abstract
Human milk is elixir for neonates and is a rich source of nutrients and beneficial microbiota required for infant growth and development. Its benefits prompted research into probing the milk components and their use as prophylactic or therapeutic agents. Culture-independent estimation of milk microbiome and high-resolution identification of milk components provide information, but a holistic purview of these research domains is lacking. Here, we review the current research on bio-therapeutic components of milk and simplified future directions for its efficient usage. Publicly available databases such as PubMed and Google scholar were searched for keywords such as probiotics and prebiotics related to human milk, microbiome and milk oligosaccharides. This was further manually curated for inclusion and exclusion criteria relevant to human milk and clinical efficacy. The literature was classified into subgroups and then discussed in detail to facilitate understanding. Although milk research is still in infancy, it is clear that human milk has many functions including protection of infants by passive immunization through secreted antibodies, and transfer of immune regulators, cytokines and bioactive peptides. Unbiased estimates show that the human milk carries a complex community of microbiota which serves as the initial inoculum for establishment of infant gut. Our search effectively screened for evidence that shows that milk also harbours many types of prebiotics such as human milk oligosaccharides which encourage growth of beneficial probiotics. The milk also trains the naive immune system of the infant by supplying immune cells and stimulatory factors, thereby strengthening mucosal and systemic immune system. Our systematic review would improve understanding of human milk and the inherent complexity and diversity of human milk. The interrelated functional role of human milk components especially the oligosaccharides and microbiome has been discussed which plays important role in human health.
Collapse
Affiliation(s)
- K S Singh
- National Centre for Microbial Resource - National Centre for Cell Science, Pune, Maharashtra, India.,Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - B P Singh
- Department of Microbiology, School of Science, RK University, Rajkot, Gujarat, India
| | - N Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - N Singh
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Uttar Pradesh, Kanpur, India
| | - J Kaur
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - A Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - H Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| |
Collapse
|
38
|
Abstract
Breast milk is nutritionally and immunologically beneficial in early life but is also a potential source of infection. Little is known about breast milk microbiota of women living with HIV (WLHIV), the impact of severe immunosuppression, and the contribution to mortality of HIV-exposed infants. Here, we performed metagenomic sequencing to characterize the bacterial microbiome and DNA virome of breast milk samples at 1 month postpartum from Kenyan WLHIV who were not receiving combination antiretroviral therapy (cART), 23 women with CD4 counts of <250 and 30 women with CD4 of >500; and additionally, 19 WLHIV with infants that lived and 26 WLHIV with infants that died during the first 2 years of life were included. We found that breast milk bacterial microbiomes in this study population were highly diverse but shared a core community composed of the Streptococcaceae, Staphylococcaceae, Moraxellaceae, and Eubacteriaceae families. The breast milk virome was dominated by human cytomegalovirus (CMV) and included the bacteriophage families Myoviridae, Siphoviridae, and Podoviridae. Bacterial microbiome and virome profiles and diversity were not significantly altered by HIV immunosuppression, as defined by a CD4 of <250. CMV viral load was not associated with maternal CD4 counts or infant mortality. In conclusion, we show that the core bacterial and viral communities are resilient in breast milk despite immunosuppression in WLHIV. IMPORTANCE Breastfeeding plays an important role in seeding the infant gut microbiome and mammary health. Although most studies focus on the diverse breast milk bacterial communities, little is known about the viral communities harbored in breast milk. We performed the first breast milk virome study of an HIV population. In this study cohort of Kenyan women living with HIV from the pre-antiretroviral therapy era, we found that breast milk harbors a core bacterial microbiome and a virome dominated by human cytomegalovirus. The virome and bacterial microbiome were not substantially altered by immunosuppression or associated with infant mortality. Together, these findings indicate resilience of the microbial community in breast milk compartmentalization. These findings advance out fundamental understanding of the breast milk core microbiome and virome interactions in the context of HIV disease.
Collapse
|
39
|
Granger CL, Embleton ND, Palmer JM, Lamb CA, Berrington JE, Stewart CJ. Maternal breastmilk, infant gut microbiome and the impact on preterm infant health. Acta Paediatr 2021; 110:450-457. [PMID: 33245565 DOI: 10.1111/apa.15534] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
AIM This narrative review summarises the benefits of maternal breastmilk to both the infant and the mother, specifically the benefits that relate to modification of the infant microbiome, and how this might vary in the preterm infant. METHODS We used PubMed to primarily identify papers, reviews, case series and editorials published in English until May 2020. Based on this, we report on the components of breastmilk, their associated hypothesised benefits and the implications for clinical practice. RESULTS Breastmilk is recommended as the exclusive diet for newborn infants because it has numerous nutritional and immunological benefits. Additionally, exposure to the maternal breastmilk microbiome may confer a lasting effect on gut health. In the preterm infant, breastmilk is associated with a significant reduction in necrotising enterocolitis, an inflammatory gastrointestinal disease and reduction in other key morbidities, together with improved neurodevelopmental outcomes. CONCLUSION These impacts have long-term benefits for the child (and the mother) even after weaning. This benefit is likely due, in part, to modification of the infant gut microbiome by breastmilk microbes and bioactive components, and provide potential areas for research and novel therapies in preterm and other high-risk infants.
Collapse
Affiliation(s)
- Claire L. Granger
- Clinical and Translational Research Institute Newcastle University Newcastle upon Tyne UK
- Department of Neonatal Medicine Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
| | - Nicholas D. Embleton
- Department of Neonatal Medicine Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
- Population Health Sciences Institute Newcastle University Newcastle upon Tyne UK
| | - Jeremy M. Palmer
- Clinical and Translational Research Institute Newcastle University Newcastle upon Tyne UK
| | - Christopher A. Lamb
- Clinical and Translational Research Institute Newcastle University Newcastle upon Tyne UK
- Department of Gastroenterology Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
| | - Janet E. Berrington
- Clinical and Translational Research Institute Newcastle University Newcastle upon Tyne UK
- Department of Neonatal Medicine Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
| | - Christopher J. Stewart
- Clinical and Translational Research Institute Newcastle University Newcastle upon Tyne UK
| |
Collapse
|
40
|
Coppola S, Avagliano C, Calignano A, Berni Canani R. The Protective Role of Butyrate against Obesity and Obesity-Related Diseases. Molecules 2021; 26:molecules26030682. [PMID: 33525625 PMCID: PMC7865491 DOI: 10.3390/molecules26030682] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Worldwide obesity is a public health concern that has reached pandemic levels. Obesity is the major predisposing factor to comorbidities, including type 2 diabetes, cardiovascular diseases, dyslipidemia, and non-alcoholic fatty liver disease. The common forms of obesity are multifactorial and derive from a complex interplay of environmental changes and the individual genetic predisposition. Increasing evidence suggest a pivotal role played by alterations of gut microbiota (GM) that could represent the causative link between environmental factors and onset of obesity. The beneficial effects of GM are mainly mediated by the secretion of various metabolites. Short-chain fatty acids (SCFAs) acetate, propionate and butyrate are small organic metabolites produced by fermentation of dietary fibers and resistant starch with vast beneficial effects in energy metabolism, intestinal homeostasis and immune responses regulation. An aberrant production of SCFAs has emerged in obesity and metabolic diseases. Among SCFAs, butyrate emerged because it might have a potential in alleviating obesity and related comorbidities. Here we reviewed the preclinical and clinical data that contribute to explain the role of butyrate in this context, highlighting its crucial contribute in the diet-GM-host health axis.
Collapse
Affiliation(s)
- Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy;
- ImmunoNutriton Lab at CEINGE Advanced Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.A.); (A.C.)
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.A.); (A.C.)
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy;
- ImmunoNutriton Lab at CEINGE Advanced Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-7462680
| |
Collapse
|
41
|
de Castro MM, Pascoal LB, Steigleder KM, Siqueira BP, Corona LP, Ayrizono MDLS, Milanski M, Leal RF. Role of diet and nutrition in inflammatory bowel disease. World J Exp Med 2021; 11:1-16. [PMID: 33585174 PMCID: PMC7852575 DOI: 10.5493/wjem.v11.i1.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are closely linked to nutrition. The latest research indicates that diet and nutrition are significantly involved in the etiopathogenesis of the disease, although their specific role throughout its clinical course still remains unclear. This study reviewed how diet and nutrition are associated with IBD development and management. Even though specific diets have been shown to bring about positive outcomes, there is currently no scientific consensus regarding an appropriate diet that would benefit all IBD patients. We suggest that individualized dietary recommendations are of the greatest importance and that diets should be planned to provide individual IBD patients with specific nutrient requirements while keeping all the clinical aspects of the patients in mind. Further research is clearly necessary to investigate nutritional factors involved in IBD development and, especially, to evaluate the applications of the diets during the course of the disease.
Collapse
Affiliation(s)
- Marina Moreira de Castro
- IBD Research Laboratory, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-878, São Paulo, Brazil
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas (UNICAMP), Campinas 13083-878, São Paulo, Brazil
| | - Lívia Bitencourt Pascoal
- IBD Research Laboratory, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-878, São Paulo, Brazil
| | - Karine Mariane Steigleder
- IBD Research Laboratory, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-878, São Paulo, Brazil
| | - Beatriz Piatezzi Siqueira
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas (UNICAMP), Limeira 13484-350, São Paulo, Brazil
| | - Ligiana Pires Corona
- Laboratory of Nutritional Epidemiology, School of Applied Sciences, University of Campinas (UNICAMP), Limeira 13484-350, São Paulo, Brazil
| | - Maria de Lourdes Setsuko Ayrizono
- IBD Research Laboratory, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-878, São Paulo, Brazil
| | - Marciane Milanski
- IBD Research Laboratory, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-878, São Paulo, Brazil
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas (UNICAMP), Campinas 13083-878, São Paulo, Brazil
| | - Raquel Franco Leal
- IBD Research Laboratory, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-878, São Paulo, Brazil
| |
Collapse
|
42
|
Rault L, Lévêque PA, Barbey S, Launay F, Larroque H, Le Loir Y, Germon P, Guinard-Flament J, Even S. Bovine Teat Cistern Microbiota Composition and Richness Are Associated With the Immune and Microbial Responses During Transition to Once-Daily Milking. Front Microbiol 2021; 11:602404. [PMID: 33391220 PMCID: PMC7772349 DOI: 10.3389/fmicb.2020.602404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/23/2020] [Indexed: 01/01/2023] Open
Abstract
The relationship between microbiota and health has been widely reported in humans and animals. We established a link between teat cistern microbiota composition and bovine mastitis, an inflammatory disease often due to bacterial infections. To further decipher the relationships between teat cistern microbiota and immune and microbial responses, a switch from twice- to once-daily milking (ODM) in 31 initially healthy quarters of dairy cows was used to trigger an udder perturbation. In this study, a temporal relationship was reported between initial teat cistern microbiota composition and richness, the immune response to ODM, and mastitis development. Quarters with a low initial microbiota richness and taxonomic markers such as Bacteroidetes and Proteobacteria were associated with a higher rate of mastitis during ODM. Quarters with a higher richness and taxonomic markers such as Firmicutes, including the Lachnospiraceae family, and genera such as Bifidobacterium and Corynebacterium displayed early inflammation following transition to ODM but without developing mastitis (no infection). Short-term compositional shifts of microbiota indicates that microbiotas with a higher initial richness were more strongly altered by transition to ODM, with notably the disappearance of rare OTUs. Microbiota modifications were associated with an early innate immune system stimulation, which, in turn, may have contributed to the prevention of mastitis development.
Collapse
Affiliation(s)
| | | | - Sarah Barbey
- INRAE, Domaine Expérimental du Pin, Gouffern En Auge, France
| | - Frederic Launay
- INRAE, Domaine Expérimental du Pin, Gouffern En Auge, France
| | - Hélène Larroque
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | - Pierre Germon
- INRAE, Université François Rabelais, ISP, Tours, France
| | | | | |
Collapse
|
43
|
Łubiech K, Twarużek M. Lactobacillus Bacteria in Breast Milk. Nutrients 2020; 12:E3783. [PMID: 33321792 PMCID: PMC7764098 DOI: 10.3390/nu12123783] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Breast milk is an optimal food for infants and toddlers. The composition of breast milk adapts to the needs of the developing organism, satisfying nutritional needs at an early stage of growth and development. The results of research to date have shown that breast milk is the best food for a child, containing not only nutrients but also biologically active substances that aid in the optimal, proper growth and development of infants. Among the many components of breast milk, an important element is the probiotic microflora, including bacteria of the genus Lactobacillus spp. These organisms exert a multidirectional, health-promoting effect on the body of children who consume breast milk. The number of lactic acid bacteria, including Lactobacillus, colonizing the breast milk environment and their species diversity varies and depends on many factors, both maternal and environmental. Breast milk, as a recommended food for infants, is an important source of probiotic microflora. The aim of this study was to present the current understanding of probiotic bacteria of the genus Lactobacillus present in breast milk.
Collapse
Affiliation(s)
- Katarzyna Łubiech
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30 St., 85-064 Bydgoszcz, Poland;
| | | |
Collapse
|
44
|
Li N, Liang S, Chen Q, Zhao L, Li B, Huo G. Distinct gut microbiota and metabolite profiles induced by delivery mode in healthy Chinese infants. J Proteomics 2020; 232:104071. [PMID: 33307251 DOI: 10.1016/j.jprot.2020.104071] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/20/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022]
Abstract
Delivery mode is recognized as an important determinant of gut microbiota composition. Vaginally delivered infants were colonized by maternal vaginal and fecal microbiota, while those delivered by cesarean section were colonized by environmental microorganisms. To reveal differences induced by delivery mode, we determined fecal microbiota and fecal metabolome from 60 infants in Northeast China region. Bacterial gene sequence analysis showed that the feces of vaginally delivered infants had the highest abundance of Bifidobacterium, Lactobacillus, Bacteroides and Parabacteroides, while the feces of cesarean section delivered infants were more enriched in Klebsiella. LC-MS-based metabolomics data demonstrated that the feces of vaginally delivered infants were associated with high abundance of DL-norvaline and DL-citrulline, while the feces of cesarean section delivered infants were abundant in trans-vaccenic acid and cis-aconitic acid. Moreover, the feces of vaginally delivered infants was significantly in positive correlation with tryptophan metabolism and pyruvate metabolism, however, the feces of cesarean section delivered infants was positively correlated with ABC transporters. Collectively, our study demonstrated that gut microbiota and metabolite profiles were significantly different between vaginally delivered and cesarean section delivered infants, and provided the theoretical basis for restoring the intestinal environment of cesarean section infants birthed in the study region. SIGNIFICANCE: The intestinal microbiota and metabolites play important roles in infant development. To validate whether delivery modes influence the gut environment, we performed a detailed analysis of the earliest microbial colonization of the infant gut using a combination of 16S rRNA gene amplicon sequencing and LC-MS-based metabolomics. We found that the gut microbiota and metabolite composition were significantly different between vaginally delivered infants and cesarean section delivered infants. Our findings establish a vital baseline for studies tracking the infant gut microbiota and metabolite development following different delivery modes, and their associated effects on infant health. This study provides preliminary evidence that the observed differences due to delivery modes highlight their importance in shaping the early intestinal microbiota and metabolites.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China; Food College, Northeast Agricultural University, Harbin, China
| | - Shengnan Liang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China; Food College, Northeast Agricultural University, Harbin, China
| | - Qingxue Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China; Food College, Northeast Agricultural University, Harbin, China
| | - Lina Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China; Food College, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China; Food College, Northeast Agricultural University, Harbin, China.
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China; Food College, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
45
|
Baghbani T, Nikzad H, Azadbakht J, Izadpanah F, Haddad Kashani H. Dual and mutual interaction between microbiota and viral infections: a possible treat for COVID-19. Microb Cell Fact 2020; 19:217. [PMID: 33243230 PMCID: PMC7689646 DOI: 10.1186/s12934-020-01483-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
All of humans and other mammalian species are colonized by some types of microorganisms such as bacteria, archaea, unicellular eukaryotes like fungi and protozoa, multicellular eukaryotes like helminths, and viruses, which in whole are called microbiota. These microorganisms have multiple different types of interaction with each other. A plethora of evidence suggests that they can regulate immune and digestive systems and also play roles in various diseases, such as mental, cardiovascular, metabolic and some skin diseases. In addition, they take-part in some current health problems like diabetes mellitus, obesity, cancers and infections. Viral infection is one of the most common and problematic health care issues, particularly in recent years that pandemics like SARS and COVID-19 caused a lot of financial and physical damage to the world. There are plenty of articles investigating the interaction between microbiota and infectious diseases. We focused on stimulatory to suppressive effects of microbiota on viral infections, hoping to find a solution to overcome this current pandemic. Then we reviewed mechanistically the effects of both microbiota and probiotics on most of the viruses. But unlike previous studies which concentrated on intestinal microbiota and infection, our focus is on respiratory system's microbiota and respiratory viral infection, bearing in mind that respiratory system is a proper entry site and residence for viruses, and whereby infection, can lead to asymptomatic, mild, self-limiting, severe or even fatal infection. Finally, we overgeneralize the effects of microbiota on COVID-19 infection. In addition, we reviewed the articles about effects of the microbiota on coronaviruses and suggest some new therapeutic measures.
Collapse
Affiliation(s)
- Taha Baghbani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Azadbakht
- Department of Radiology, Faculty of Medicin, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Izadpanah
- Food and Drug Laboratory Research Center and Food and Drug Reference Control Laboratories Center, Food & Drug Administration of Iran, MOH & ME, Tehran, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
46
|
Kyle MH, Glassman ME, Khan A, Fernández CR, Hanft E, Emeruwa UN, Scripps T, Walzer L, Liao GV, Saslaw M, Rubenstein D, Hirsch DS, Keown MK, Stephens A, Mollicone I, Bence ML, Gupta A, Sultan S, Sibblies C, Whittier S, Abreu W, Akita F, Penn A, Orange JS, Saiman L, Welch MG, Gyamfi-Bannerman C, Stockwell MS, Dumitriu D. A review of newborn outcomes during the COVID-19 pandemic. Semin Perinatol 2020; 44:151286. [PMID: 32826081 PMCID: PMC7376345 DOI: 10.1016/j.semperi.2020.151286] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As the COVID-19 pandemic continues to spread worldwide, it is crucial that we determine populations that are at-risk and develop appropriate clinical care policies to protect them. While several respiratory illnesses are known to seriously impact pregnant women and newborns, preliminary data on the novel SARS-CoV-2 Coronavirus suggest that these groups are no more at-risk than the general population. Here, we review the available literature on newborns born to infected mothers and show that newborns of mothers with positive/suspected SARS-CoV-2 infection rarely acquire the disease or show adverse clinical outcomes. With this evidence in mind, it appears that strict postnatal care policies, including separating mothers and newborns, discouraging breastfeeding, and performing early bathing, may be more likely to adversely impact newborns than they are to reduce the low risk of maternal transmission of SARS-CoV-2 or the even lower risk of severe COVID-19 disease in otherwise healthy newborns.
Collapse
Affiliation(s)
- Margaret H Kyle
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA; Division of Developmental Neuroscience, Psychiatry Department, Columbia University Irving Medical Center, New York, NY USA
| | - Melissa E Glassman
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA; NewYork-Presbyterian Hospital, New York, NY USA
| | - Adrita Khan
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA; NewYork-Presbyterian Hospital, New York, NY USA
| | - Cristina R Fernández
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA; NewYork-Presbyterian Hospital, New York, NY USA
| | - Erin Hanft
- Division of Neonatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA
| | - Ukachi N Emeruwa
- NewYork-Presbyterian Hospital, New York, NY USA; Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY USA
| | - Tessa Scripps
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA; NewYork-Presbyterian Hospital, New York, NY USA
| | - Lauren Walzer
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA; NewYork-Presbyterian Hospital, New York, NY USA
| | - Grace V Liao
- Division of Neonatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA
| | - Minna Saslaw
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA; NewYork-Presbyterian Hospital, New York, NY USA
| | - David Rubenstein
- NewYork-Presbyterian Hospital, New York, NY USA; Division of Neonatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA
| | - Daniel S Hirsch
- NewYork-Presbyterian Hospital, New York, NY USA; Division of Neonatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA
| | - M Kathleen Keown
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA; NewYork-Presbyterian Hospital, New York, NY USA
| | - Ashley Stephens
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA; NewYork-Presbyterian Hospital, New York, NY USA
| | - Isabelle Mollicone
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA
| | - Mary L Bence
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA
| | - Archana Gupta
- NewYork-Presbyterian Hospital, New York, NY USA; Division of Neonatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA
| | - Sally Sultan
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA; NewYork-Presbyterian Hospital, New York, NY USA
| | - Caroline Sibblies
- NewYork-Presbyterian Hospital, New York, NY USA; Division of Neonatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA
| | - Susan Whittier
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY USA
| | - Wanda Abreu
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA; NewYork-Presbyterian Hospital, New York, NY USA
| | - Francis Akita
- NewYork-Presbyterian Hospital, New York, NY USA; Division of Neonatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA
| | - Anna Penn
- NewYork-Presbyterian Hospital, New York, NY USA; Division of Neonatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA
| | - Jordan S Orange
- NewYork-Presbyterian Hospital, New York, NY USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA
| | - Lisa Saiman
- NewYork-Presbyterian Hospital, New York, NY USA; Division of Pediatric Infectious Diseases, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA
| | - Martha G Welch
- Division of Developmental Neuroscience, Psychiatry Department, Columbia University Irving Medical Center, New York, NY USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA
| | - Cynthia Gyamfi-Bannerman
- NewYork-Presbyterian Hospital, New York, NY USA; Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY USA
| | - Melissa S Stockwell
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA; NewYork-Presbyterian Hospital, New York, NY USA; Department of Population and Family Health, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY USA
| | - Dani Dumitriu
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY USA; Division of Developmental Neuroscience, Psychiatry Department, Columbia University Irving Medical Center, New York, NY USA; NewYork-Presbyterian Hospital, New York, NY USA; Sackler Institute, Zuckerman Institute, and the Columbia Population Research Center, Columbia University, New York, NY USA.
| |
Collapse
|
47
|
Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. Sci Rep 2020; 10:15792. [PMID: 32978424 PMCID: PMC7519658 DOI: 10.1038/s41598-020-72635-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 08/28/2020] [Indexed: 02/08/2023] Open
Abstract
To compare gut microbiota of healthy infants that were exclusively breast-fed or formula-fed, we recruited 91 infants, who were assigned into three different groups and fed by breast milk (30 babies), formula A (30 babies) or formula B (31 babies) exclusively for more than 4 months after birth. Faecal bacterial composition was tested. Among different groups, α diversity was lower in breast-fed group than formula-fed groups in 40 days of age, but increased significantly in 6 months of age. The Bifidobacterium represented the most predominant genus and Enterobacteriaceae the second in all groups. In 40 days of age, Bifidobacterium and Bacteroides were significantly higher, while Streptococcus and Enterococcus were significantly lower in breast-fed group than they were in formula A-fed group. Lachnospiraceae was lower in breast-fed than formula B-fed group. Veillonella and Clostridioides were lower in breast-fed than formula-fed groups. In 3 months of age there were less Lachnospiraceae and Clostridioides in breast-fed group than formula-fed groups. There were also significant differences of microbiota between formula A-fed and formula B-fed groups. Those differences may have impacts on their long-term health.
Collapse
|
48
|
Fuertes M, Gonçalves JL, Faria A, Lopes-Dos-Santos P, Conceição IC, Dionisio F. Maternal sensitivity and mother-infant attachment are associated with antibiotic uptake in infancy. J Health Psychol 2020; 27:2197-2210. [PMID: 32660278 DOI: 10.1177/1359105320941245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Attachment security has been associated with health status and symptom reporting. In this longitudinal study, we investigated the association between antibiotics uptake by infants at 9-months and mother-infant attachment at 12-months. Logistic regression analyses indicated that lower maternal sensitivity was associated with increased odds of antibiotic uptake. Furthermore, 89.7% of insecure-ambivalent infants consumed antibiotics, which contrasted with 32.5% of avoidant infants and 21.5% of secure infants. This study suggests that maternal behavior and mother-infant attachment impact on antibiotic consumption, which is worrying because antibiotics may lead to several health problems later in life and antibiotic-resistance.
Collapse
Affiliation(s)
- Marina Fuertes
- Centro de Psicologia, University of Porto, Portugal.,Escola Superior de Educação de Lisboa, Portugal
| | | | - Anabela Faria
- Hospital de Santo Espírito, Terceira, Azores, Portugal
| | | | - Inês C Conceição
- Serviço de Patologia Clínica, Hospital Nossa Senhora do Rosário, Barreiro, Setúbal, Portugal
| | - Francisco Dionisio
- cE3c -Centre for Ecology, Evolution and Environmental Changes, and Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Portugal
| |
Collapse
|
49
|
Profiles of Human Milk Oligosaccharides and Their Relations to the Milk Microbiota of Breastfeeding Mothers in Dubai. Nutrients 2020; 12:nu12061727. [PMID: 32526930 PMCID: PMC7353065 DOI: 10.3390/nu12061727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
The composition of human breast milk is affected by several factors, including genetics, geographic location and maternal nutrition. This study investigated the human milk oligosaccharides (HMOs) of breastfeeding mothers living in Dubai and their relations with the milk microbiota. A total of 30 breast milk samples were collected from healthy Emirati and UAE-expatriates at Latifa Hospital. HMO profiling was performed using UHPLC-MS. Microbiota profiles were determined by sequencing amplicons of the V3-V4 region of the 16S rRNA gene. HMO concentrations were significantly higher in Emirati, and dropped with the lactation period in both groups of mothers. The Le (a-b+)-secretor (Le+Se+) type was the most abundant in Dubai mothers (60%), followed by the Le(a-b-)-secretor (Le-Se+) type (23%). Bifidobacterium and Lactobacillus were considerably lower in Dubai-based mothers, while Pseudomonas and Delftia (Hydrogenophaga) were detected at a higher abundance compared to mothers from other countries. Atopobium was correlated with sialyl-lacto-N-tetraose c, Leptotrichia and Veillonella were correlated with 6'-sialyl-lactose, and Porphyromonas was correlated with lacto-N-hexaose. The study highlights the HMO profiles of breastfeeding mothers in Dubai and reveals few correlations with milk microbial composition. Targeted genomic analyses may help in determining whether these differences are due to genetic variations or to sociocultural and environmental factors.
Collapse
|
50
|
Li N, Yan F, Wang N, Song Y, Yue Y, Guan J, Li B, Huo G. Distinct Gut Microbiota and Metabolite Profiles Induced by Different Feeding Methods in Healthy Chinese Infants. Front Microbiol 2020; 11:714. [PMID: 32435235 PMCID: PMC7219020 DOI: 10.3389/fmicb.2020.00714] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/26/2020] [Indexed: 01/03/2023] Open
Abstract
Human milk is closely correlated with infant gut microbiota and is important for infant development. However, most infants receive exclusively insufficient breast milk, and the discordance between effects of commercial formula and human milk exists. To elucidate the differences induced by various feeding methods, we determined microbiota and metabolites composition in fecal samples from 77 healthy infants in Northeast China and identified the differences in various feeding methods. Bacterial 16S rRNA gene sequence analysis demonstrated that the fecal samples of exclusively breastfed (BF) infants were abundant in Bifidobacterium and Lactobacillus; the mixed-fed (MF) infants had the highest abundance of Veillonella and Klebsiella; the exclusively formula-fed (FF) infants were enriched in Bacteroides and Blautia; and the complementary food-fed (CF) infants were associated with higher relative abundance of Lachnoclostridium and Akkermansia. Liquid chromatography-mass spectrometry (LC-MS)-based metabolomics data revealed that the fecal samples of BF infants had the highest abundance of dl-citrulline, threonine, l-proline, l-glutamine, guanine, and l-arginine; the MF infants were abundant in d-maltose, stearidonic acid, capric acid, and myristic acid; the FF infants were enriched in itaconic acid, 4-pyridoxic acid, prostaglandin B2, thymine, dl-α-hydroxybutyric acid, and orotic acid; and the CF infants were associated with higher relative abundance of taurine, l-tyrosine, adenine, and uric acid. Furthermore, compared with the BF infants, the MF and FF infants were more abundant in fatty acid biosynthesis. Collectively, these findings will provide probable explanations for some of the risks and benefits related to infant feeding methods and will support a theoretical basis for the development of infant formula.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Fenfen Yan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Nana Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Yue Song
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Yingxue Yue
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Jiaqi Guan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| |
Collapse
|