1
|
Dimasi CG, Darby JRT, Cho SKS, Saini BS, Holman SL, Meakin AS, Wiese MD, Macgowan CK, Seed M, Morrison JL. Reduced in utero substrate supply decreases mitochondrial abundance and alters the expression of metabolic signalling molecules in the fetal sheep heart. J Physiol 2024; 602:5901-5922. [PMID: 37996982 DOI: 10.1113/jp285572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Babies born with fetal growth restriction (FGR) are at higher risk of developing cardiometabolic diseases across the life course. The reduction in substrate supply to the developing fetus that causes FGR not only alters cardiac growth and structure but may have deleterious effects on metabolism and function. Using a sheep model of placental restriction to induce FGR, we investigated key cardiac metabolic and functional markers that may be altered in FGR. We also employed phase-contrast magnetic resonance imaging MRI to assess left ventricular cardiac output (LVCO) as a measure of cardiac function. We hypothesized that signalling molecules involved in cardiac fatty acid utilisation and contractility would be impaired by FGR and that this would have a negative impact on LVCO in the late gestation fetus. Key glucose (GLUT4 protein) and fatty acid (FATP, CD36 gene expression) substrate transporters were significantly reduced in the hearts of FGR fetuses. We also found reduced mitochondrial numbers as well as abundance of electron transport chain complexes (complexes II and IV). These data suggest that FGR diminishes metabolic and mitochondrial capacity in the fetal heart; however, alterations were not correlated with fetal LVCO. Overall, these data show that FGR alters fetal cardiac metabolism in late gestation. If sustained ex utero, this altered metabolic profile may contribute to poor cardiac outcomes in FGR-born individuals after birth. KEY POINTS: Around the time of birth, substrate utilisation in the fetal heart switches from carbohydrates to fatty acids. However, the effect of fetal growth restriction (FGR) on this switch, and thus the ability of the fetal heart to effectively metabolise fatty acids, is not fully understood. Using a sheep model of early onset FGR, we observed significant downregulation in mRNA expression of fatty acid receptors CD36 and FABP in the fetal heart. FGR fetuses also had significantly lower cardiac mitochondrial abundance than controls. There was a reduction in abundance of complexes II and IV within the electron transport chain of the FGR fetal heart, suggesting altered ATP production. This indicates reduced fatty acid metabolism and mitochondrial function in the heart of the FGR fetus, which may have detrimental long-term implications and contribute to increased risk of cardiovascular disease later in life.
Collapse
Affiliation(s)
- Catherine G Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Steven K S Cho
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Brahmdeep S Saini
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ashley S Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Michael D Wiese
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Christopher K Macgowan
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mike Seed
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Zhang S, Lock MC, Tie M, McMillen IC, Botting KJ, Morrison JL. Cardiac programming in the placentally restricted sheep fetus in early gestation. J Physiol 2024; 602:3815-3832. [PMID: 38975864 DOI: 10.1113/jp286702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024] Open
Abstract
Fetal growth restriction (FGR) occurs in 8% of human pregnancies, and the growth restricted newborn is at a greater risk of developing heart disease in later adult life. In sheep, experimental restriction of placental growth (PR) from conception results in FGR, a decrease in cardiomyocyte endowment and an upregulation of pathological hypertrophic signalling in the fetal heart in late gestation. However, there is no change in the expression of markers of cellular proliferation nor in the level of cardiomyocyte apoptosis in the heart of the PR fetus in late gestation. This suggests that FGR arises early in gestation and programs a decrease in cardiomyocyte endowment in early, rather than late, gestation. Here, control and PR fetal sheep were humanely killed at 55 days' gestation (term, 150 days). Fetal body and heart weight were lower in PR compared with control fetuses and there was evidence of sparing of fetal brain growth. While there was no change in the proportion of cardiomyocytes that were proliferating in the early gestation PR heart, there was an increase in measures of apoptosis, and markers of autophagy and pathological hypertrophy in the PR fetal heart. These changes in early gestation highlight that FGR is associated with evidence of early cell death and compensatory hypertrophic responses of cardiomyocytes in the fetal heart. The data suggest that early placental restriction results in a decrease in the pool of proliferative cardiomyocytes in early gestation, which would limit cardiomyocyte endowment in the heart of the PR fetus in late gestation. KEY POINTS: Placental restriction leading to fetal growth restriction (FGR) and chronic fetal hypoxaemia in sheep results in a decrease in cardiomyocyte endowment in late gestation. FGR did not change cardiomyocyte proliferation during early gestation but did result in increased apoptosis and markers of autophagy in the fetal heart, which may result in the decreased endowment of cardiomyocytes observed in late gestation. FGR in early gestation also results in increased hypoxia inducible factor signalling in the fetal heart, which in turn may result in the altered expression of epigenetic regulators, increased expression of insulin-like growth factor 2 and cardiomyocyte hypertrophy during late gestation and after birth.
Collapse
Affiliation(s)
- Song Zhang
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - Michelle Tie
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
3
|
Chang EI, Stremming J, Knaub LA, Wesolowski SR, Rozance PJ, Sucharov CC, Reusch JE, Brown LD. Mitochondrial respiration is lower in the intrauterine growth-restricted fetal sheep heart. J Physiol 2024; 602:2697-2715. [PMID: 38743350 PMCID: PMC11325437 DOI: 10.1113/jp285496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
Fetuses affected by intrauterine growth restriction have an increased risk of developing heart disease and failure in adulthood. Compared with controls, late gestation intrauterine growth-restricted (IUGR) fetal sheep have fewer binucleated cardiomyocytes, reflecting a more immature heart, which may reduce mitochondrial capacity to oxidize substrates. We hypothesized that the late gestation IUGR fetal heart has a lower capacity for mitochondrial oxidative phosphorylation. Left (LV) and right (RV) ventricles from IUGR and control (CON) fetal sheep at 90% gestation were harvested. Mitochondrial respiration (states 1-3, LeakOmy, and maximal respiration) in response to carbohydrates and lipids, citrate synthase (CS) activity, protein expression levels of mitochondrial oxidative phosphorylation complexes (CI-CV), and mRNA expression levels of mitochondrial biosynthesis regulators were measured. The carbohydrate and lipid state 3 respiration rates were lower in IUGR than CON, and CS activity was lower in IUGR LV than CON LV. However, relative CII and CV protein levels were higher in IUGR than CON; CV expression level was higher in IUGR than CON. Genes involved in lipid metabolism had lower expression in IUGR than CON. In addition, the LV and RV demonstrated distinct differences in oxygen flux and gene expression levels, which were independent from CON and IUGR status. Low mitochondrial respiration and CS activity in the IUGR heart compared with CON are consistent with delayed cardiomyocyte maturation, and CII and CV protein expression levels may be upregulated to support ATP production. These insights will provide a better understanding of fetal heart development in an adverse in utero environment. KEY POINTS: Growth-restricted fetuses have a higher risk of developing and dying from cardiovascular diseases in adulthood. Mitochondria are the main supplier of energy for the heart. As the heart matures, the substrate preference of the mitochondria switches from carbohydrates to lipids. We used a sheep model of intrauterine growth restriction to study the capacity of the mitochondria in the heart to produce energy using either carbohydrate or lipid substrates by measuring how much oxygen was consumed. Our data show that the mitochondria respiration levels in the growth-restricted fetal heart were lower than in the normally growing fetuses, and the expression levels of genes involved in lipid metabolism were also lower. Differences between the right and left ventricles that are independent of the fetal growth restriction condition were identified. These results indicate an impaired metabolic maturation of the growth-restricted fetal heart associated with a decreased capacity to oxidize lipids postnatally.
Collapse
Affiliation(s)
- Eileen I. Chang
- Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jane Stremming
- Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Leslie A. Knaub
- Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Administration Medical Center, Aurora, Colorado, USA
| | - Stephanie R. Wesolowski
- Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paul J. Rozance
- Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Jane E.B. Reusch
- Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Administration Medical Center, Aurora, Colorado, USA
| | - Laura D. Brown
- Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Elia A, Mohsin S, Khan M. Cardiomyocyte Ploidy, Metabolic Reprogramming and Heart Repair. Cells 2023; 12:1571. [PMID: 37371041 DOI: 10.3390/cells12121571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 06/29/2023] Open
Abstract
The adult heart is made up of cardiomyocytes (CMs) that maintain pump function but are unable to divide and form new myocytes in response to myocardial injury. In contrast, the developmental cardiac tissue is made up of proliferative CMs that regenerate injured myocardium. In mammals, CMs during development are diploid and mononucleated. In response to cardiac maturation, CMs undergo polyploidization and binucleation associated with CM functional changes. The transition from mononucleation to binucleation coincides with unique metabolic changes and shift in energy generation. Recent studies provide evidence that metabolic reprogramming promotes CM cell cycle reentry and changes in ploidy and nucleation state in the heart that together enhances cardiac structure and function after injury. This review summarizes current literature regarding changes in CM ploidy and nucleation during development, maturation and in response to cardiac injury. Importantly, how metabolism affects CM fate transition between mononucleation and binucleation and its impact on cell cycle progression, proliferation and ability to regenerate the heart will be discussed.
Collapse
Affiliation(s)
- Andrea Elia
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sadia Mohsin
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Mohsin Khan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
5
|
Mühlfeld C, Schipke J. Methodological Progress of Stereology in Cardiac Research and Its Application to Normal and Pathological Heart Development. Cells 2022; 11:cells11132032. [PMID: 35805115 PMCID: PMC9265976 DOI: 10.3390/cells11132032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Design-based stereology is the gold standard for obtaining unbiased quantitative morphological data on volume, surface area, and length, as well as the number of tissues, cells or organelles. In cardiac research, the introduction of a stereological method to unbiasedly estimate the number of cardiomyocytes has considerably increased the use of stereology. Since its original description, various modifications to this method have been described. A particular field in which this method has been employed is the normal developmental life cycle of cardiomyocytes after birth, and particularly the question of when, during postnatal development, cardiomyocytes lose their capacity to divide and proliferate, and thus their inherent regenerative ability. This field is directly related to a second major application of stereology in recent years, addressing the question of what consequences intrauterine growth restriction has on the development of the heart, particularly of cardiomyocytes. Advances have also been made regarding the quantification of nerve fibers and collagen deposition as measures of heart innervation and fibrosis. In the present review article, we highlight the methodological progress made in the last 20 years and demonstrate how stereology has helped to gain insight into the process of normal cardiac development, and how it is affected by intrauterine growth restriction.
Collapse
Affiliation(s)
- Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany;
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
- Correspondence:
| | - Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany;
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| |
Collapse
|
6
|
Cardiac structure and function in very preterm-born adolescents compared to term-born controls: A longitudinal cohort study. Early Hum Dev 2021; 163:105505. [PMID: 34763163 DOI: 10.1016/j.earlhumdev.2021.105505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND There is emerging evidence of differences in cardiac structure and function in preterm-born adults and increased risk of heart failure. However, there is a paucity of data in populations who have been exposed to modern intensive care and the impact of perinatal factors is unclear. AIMS To compare echocardiographic measures of cardiac structure and function in a regional cohort of 17-year-olds born very preterm compared to term-born peers and the influence of perinatal factors. STUDY DESIGN Observational longitudinal cohort study. SUBJECTS A regional cohort of ninety-one 17-year-olds born at <32 weeks gestation compared to sixty-two term-born controls. OUTCOME MEASURES Echocardiographic measures of cardiac structure and function. RESULTS Left ventricular and right atrial volume and left ventricular mass, indexed to body surface area, were significantly smaller in preterm-born adolescents compared to term-born controls even when adjusted for sex. There were no between group differences in cardiac function. Within those born preterm we found a significant association between gestational age and birthweight z-score and measures of cardiac function at 17 years. Within the preterm group, those with a diagnosis of bronchopulmonary dysplasia had higher left ventricular posterior wall thickness, higher mitral deceleration time and lower left atrial area and tricuspid annular plane of systolic excursion. CONCLUSIONS Adolescents born very prematurely, who have received modern intensive care, have measurable differences in heart structure compared to their term-born peers but heart function is preserved. For those born preterm, gestational age, birthweight and bronchopulmonary dysplasia are associated with differences in cardiac function.
Collapse
|
7
|
Knighton NJ, Cottle BK, Tiwari S, Mondal A, Kaza AK, Sachse FB, Hitchcock RW. Toward cardiac tissue characterization using machine learning and light-scattering spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200330RR. [PMID: 34729970 PMCID: PMC8562351 DOI: 10.1117/1.jbo.26.11.116001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE The non-destructive characterization of cardiac tissue composition provides essential information for both planning and evaluating the effectiveness of surgical interventions such as ablative procedures. Although several methods of tissue characterization, such as optical coherence tomography and fiber-optic confocal microscopy, show promise, many barriers exist that reduce effectiveness or prevent adoption, such as time delays in analysis, prohibitive costs, and limited scope of application. Developing a rapid, low-cost non-destructive means of characterizing cardiac tissue could improve planning, implementation, and evaluation of cardiac surgical procedures. AIM To determine whether a new light-scattering spectroscopy (LSS) system that analyzes spectra via neural networks is capable of predicting the nuclear densities (NDs) of ventricular tissues. APPROACH We developed an LSS system with a fiber-optics probe and applied it for measurements on cardiac tissues from an ovine model. We quantified the ND in the cardiac tissues using fluorescent labeling, confocal microscopy, and image processing. Spectra acquired from the same cardiac tissues were analyzed with spectral clustering and convolutional neural networks (CNNs) to assess the feasibility of characterizing the ND of tissue via LSS. RESULTS Spectral clustering revealed distinct groups of spectra correlated to ranges of ND. CNNs classified three groups of spectra with low, medium, or high ND with an accuracy of 95.00 ± 11.77 % (mean and standard deviation). Our analyses revealed the sensitivity of the classification accuracy to wavelength range and subsampling of spectra. CONCLUSIONS LSS and machine learning are capable of assessing ND in cardiac tissues. We suggest that the approach is useful for the diagnosis of cardiac diseases associated with changes of ND, such as hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Nathan J. Knighton
- University of Utah, Department of Biomedical Engineering, Salt Lake City, United States
- University of Utah, Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, United States
| | - Brian K. Cottle
- University of Utah, Department of Biomedical Engineering, Salt Lake City, United States
- University of Utah, Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, United States
| | - Sarthak Tiwari
- University of Utah, Department of Biomedical Engineering, Salt Lake City, United States
- University of Utah, Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, United States
| | - Abhijit Mondal
- Boston Children’s Hospital, Harvard Medical School, Department of Cardiac Surgery, Boston, United States
| | - Aditya K. Kaza
- Boston Children’s Hospital, Harvard Medical School, Department of Cardiac Surgery, Boston, United States
| | - Frank B. Sachse
- University of Utah, Department of Biomedical Engineering, Salt Lake City, United States
- University of Utah, Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, United States
| | - Robert W. Hitchcock
- University of Utah, Department of Biomedical Engineering, Salt Lake City, United States
| |
Collapse
|
8
|
Tanner AR, Lynch CS, Kennedy VC, Ali A, Winger QA, Rozance PJ, Anthony RV. CSH RNA Interference Reduces Global Nutrient Uptake and Umbilical Blood Flow Resulting in Intrauterine Growth Restriction. Int J Mol Sci 2021; 22:ijms22158150. [PMID: 34360913 PMCID: PMC8348624 DOI: 10.3390/ijms22158150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 01/03/2023] Open
Abstract
Deficiency of the placental hormone chorionic somatomammotropin (CSH) can lead to the development of intrauterine growth restriction (IUGR). To gain insight into the physiological consequences of CSH RNA interference (RNAi), the trophectoderm of hatched blastocysts (nine days of gestational age; dGA) was infected with a lentivirus expressing either a scrambled control or CSH-specific shRNA, prior to transfer into synchronized recipient sheep. At 90 dGA, umbilical hemodynamics and fetal measurements were assessed by Doppler ultrasonography. At 120 dGA, pregnancies were fitted with vascular catheters to undergo steady-state metabolic studies with the 3H2O transplacental diffusion technique at 130 dGA. Nutrient uptake rates were determined and tissues were subsequently harvested at necropsy. CSH RNAi reduced (p ≤ 0.05) both fetal and uterine weights as well as umbilical blood flow (mL/min). This ultimately resulted in reduced (p ≤ 0.01) umbilical IGF1 concentrations, as well as reduced umbilical nutrient uptakes (p ≤ 0.05) in CSH RNAi pregnancies. CSH RNAi also reduced (p ≤ 0.05) uterine nutrient uptakes as well as uteroplacental glucose utilization. These data suggest that CSH is necessary to facilitate adequate blood flow for the uptake of oxygen, oxidative substrates, and hormones essential to support fetal and uterine growth.
Collapse
Affiliation(s)
- Amelia R. Tanner
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (A.R.T.); (C.S.L.); (V.C.K.); (A.A.); (Q.A.W.)
| | - Cameron S. Lynch
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (A.R.T.); (C.S.L.); (V.C.K.); (A.A.); (Q.A.W.)
| | - Victoria C. Kennedy
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (A.R.T.); (C.S.L.); (V.C.K.); (A.A.); (Q.A.W.)
| | - Asghar Ali
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (A.R.T.); (C.S.L.); (V.C.K.); (A.A.); (Q.A.W.)
| | - Quinton A. Winger
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (A.R.T.); (C.S.L.); (V.C.K.); (A.A.); (Q.A.W.)
| | - Paul J. Rozance
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Russell V. Anthony
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (A.R.T.); (C.S.L.); (V.C.K.); (A.A.); (Q.A.W.)
- Correspondence:
| |
Collapse
|
9
|
Unravelling the impact of intrauterine growth restriction on heart development: insights into mitochondria and sexual dimorphism from a non-hominoid primate. Clin Sci (Lond) 2021; 135:1767-1772. [PMID: 34313297 DOI: 10.1042/cs20210524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
Fetal exposure to an unfavorable intrauterine environment programs an individual to have a greater susceptibility later in life to non-communicable diseases, such as coronary heart disease, but the molecular processes are poorly understood. An article in Clinical Science recently reported novel details on the effects of maternal nutrient reduction (MNR) on fetal heart development using a primate model that is about 94% genetically similar to humans and is also mostly monotocous. MNR adversely impacted fetal left ventricular (LV) mitochondria in a sex-dependent fashion with a greater effect on male fetuses, although mitochondrial transcripts increased more so in females. Increased expression for several respiratory chain and adenosine triphosphate (ATP) synthase proteins were observed. However, fetal LV mitochondrial complex I and complex II/III activities were significantly decreased, likely contributing to a 73% decreased LV ATP content and increased LV lipid peroxidation. Moreover, MNR fetal LV mitochondria showed sparse and disarranged cristae. This study indicates that mitochondria are targets of the remodeling and imprinting processes in a sex-dependent manner. Mitochondrial ROS production and inadequate energy production add another layer of complexity. Altogether these observations raise the possibility that dysfunctional mitochondria in the fetus may contribute in turn to epigenetic memory of in utero stress in the adult. The role of mitoepigenetics and involvement of mitochondrial and genomic non-coding RNAs in mitochondrial functions and nuclei-mitochondria crosstalk with in utero stress awaits further investigation.
Collapse
|
10
|
Belfort MB, Sacks SB. Preterm Birth and Heart Failure in Infancy and Beyond: Born With a Broken Heart? JAMA Pediatr 2021; 175:673-675. [PMID: 33818589 DOI: 10.1001/jamapediatrics.2021.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Mandy Brown Belfort
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Suzanne Brown Sacks
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
11
|
Fetal Growth Restriction and Hypertension in the Offspring: Mechanistic Links and Therapeutic Directions. J Pediatr 2020; 224:115-123.e2. [PMID: 32450071 PMCID: PMC8086836 DOI: 10.1016/j.jpeds.2020.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
|
12
|
Bassareo PP, Mercuro G. Comment on how foetal growth restriction and preterm birth affects cardiac morphology and function during infancy. Acta Paediatr 2020; 109:863. [PMID: 29245172 DOI: 10.1111/apa.14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- PP Bassareo
- Department of Medical Sciences and Public Health “M. Aresu” University of Cagliari Cagliari Italy
| | - G Mercuro
- Department of Medical Sciences and Public Health “M. Aresu” University of Cagliari Cagliari Italy
| |
Collapse
|
13
|
Pendergrast LA, Leszczynski EC, Visker JR, Triplett AN, Ferguson DP. Early life undernutrition reduces maximum treadmill running capacity in adulthood in mice. Appl Physiol Nutr Metab 2020; 45:240-250. [DOI: 10.1139/apnm-2019-0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Undernutrition during early life causes chronic disease with specific impairments to the heart and skeletal muscle. The purpose of this study was to determine the effects of early life undernutrition on adult exercise capacity as a result of cardiac and skeletal muscle function. Pups were undernourished during gestation (GUN) or lactation (PUN) using a cross-fostering nutritive mouse model. At postnatal day 21, all mice were weaned and refed a control diet. At postnatal day 67, mice performed a maximal treadmill test. Echocardiography and Doppler blood flow analysis was performed at postnatal day 72, following which skeletal muscle cross-sectional area (CSA) and fiber type were determined. Maximal running capacity was reduced (diet: P = 0.0002) in GUN and PUN mice. Left ventricular mass (diet: P = 0.03) and posterior wall thickness during systole (diet × sex: P = 0.03) of GUN and PUN mice was reduced, causing PUN mice to have reduced (diet: P = 0.04) stroke volume. Heart rate of GUN mice showed a trend (diet: P = 0.07) towards greater resting values than other groups. PUN mice had greater CSA of soleus fibers. PUN had a reduced (diet: P = 0.03) proportion of type-IIX fibers in the extensor digitorum longus (EDL) and a greater (diet: P = 0.008) percentage of type-IIB fibers in the EDL. In conclusion, gestational and postnatal undernourishment impairs exercise capacity.
Collapse
Affiliation(s)
- Logan A. Pendergrast
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| | - Eric C. Leszczynski
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| | - Joseph R. Visker
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| | - Ashley N. Triplett
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| | - David P. Ferguson
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
14
|
Darby JRT, Varcoe TJ, Orgeig S, Morrison JL. Cardiorespiratory consequences of intrauterine growth restriction: Influence of timing, severity and duration of hypoxaemia. Theriogenology 2020; 150:84-95. [PMID: 32088029 DOI: 10.1016/j.theriogenology.2020.01.080] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/28/2022]
Abstract
At birth, weight of the neonate is used as a marker of the 9-month journey as a fetus. Those neonates born less than the 10th centile for their gestational age are at risk of being intrauterine growth restricted. However, this depends on their genetic potential for growth and the intrauterine environment in which they grew. Alterations in the supply of oxygen and nutrients to the fetus will decrease fetal growth, but these alterations occur due to a range of causes that are maternal, placental or fetal in nature. Consequently, IUGR neonates are a heterogeneous population. For this reason, it is likely that these neonates will respond differently to interventions compared not only to normally grown fetuses, but also to other neonates that are IUGR but have travelled a different path to get there. Thus, a range of models of IUGR should be studied to determine the effects of IUGR on the development and function of the heart and lung and subsequently the impact of interventions to improve development of these organs. Here we focus on a range of models of IUGR caused by manipulation of the maternal, placental or fetal environment on cardiorespiratory outcomes.
Collapse
Affiliation(s)
- Jack R T Darby
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Tamara J Varcoe
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Sandra Orgeig
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.
| |
Collapse
|
15
|
Garcia-Canadilla P, de Vries T, Gonzalez-Tendero A, Bonnin A, Gratacos E, Crispi F, Bijnens B, Zhang C. Structural coronary artery remodelling in the rabbit fetus as a result of intrauterine growth restriction. PLoS One 2019; 14:e0218192. [PMID: 31226127 PMCID: PMC6588274 DOI: 10.1371/journal.pone.0218192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a fetal condition that affects up to 10% of all pregnancies and is associated with cardiovascular structural and functional remodelling that persists postnatally. Some studies have reported an increase in myocardial coronary blood flow in severe IUGR fetuses which has been directly associated to the dilatation of the coronary arteries. However, a direct measurement of the coronaries’ lumen diameter in IUGR has not been reported before. The aim of this paper is to perform, for the first time, a quantitative analysis of the effects of IUGR in cardiac geometry and coronary vessel size in a well-known rabbit model of IUGR using synchrotron-based X-ray Phase Contrast Tomography Imaging (X-PCI). Eight rabbit fetal hearts were imaged non-destructively with X-PCI. 3D reconstructions of the coronary arterial tree were obtained after semi-automatic image segmentation. Different morphometric features including vessel lumen diameter of the three main coronaries were automatically quantified. IUGR fetuses had more globular hearts and dilated coronary arteries as compared to controls. We have quantitatively shown that IUGR leads to structural coronary vascular tree remodelling and enlargement as an adaptation mechanism in response to an adverse environment of restricted oxygen and nutrients and increased perfusion pressure.
Collapse
Affiliation(s)
- Patricia Garcia-Canadilla
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail:
| | - Tom de Vries
- Medical Image Analysis, Technische Universiteit Eindhoven, Eindhoven, Netherlands
| | - Anna Gonzalez-Tendero
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anne Bonnin
- European Synchrotron Radiation Facility, Grenoble, France
- Paul Scherrer Institute, Villigen, Switzerland
| | - Eduard Gratacos
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Fatima Crispi
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Bart Bijnens
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institución Catalana de Investigación y Estudios Avanzados (ICREA), Barcelona, Spain
| | - Chong Zhang
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
16
|
Ferguson DP, Monroe TO, Heredia CP, Fleischmann R, Rodney GG, Taffet GE, Fiorotto ML. Postnatal undernutrition alters adult female mouse cardiac structure and function leading to limited exercise capacity. J Physiol 2019; 597:1855-1872. [PMID: 30730556 DOI: 10.1113/jp277637] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Impaired growth during fetal life can reprogramme heart development and increase the risk for long-term cardiovascular dysfunction. It is uncertain if the developmental window during which the heart is vulnerable to reprogramming as a result of inadequate nutrition extends into the postnatal period. We found that adult female mice that had been undernourished only from birth to 3 weeks of age had disproportionately smaller hearts compared to males, with thinner ventricle walls and more mononucleated cardiomyocytes. In females, but not males, cardiac diastolic function, and heart rate responsiveness to adrenergic stimulation were limited and maximal exercise capacity was compromised. These data suggest that the developmental window during which the heart is vulnerable to reprogramming by inadequacies in nutrient intake may extend into postnatal life and such individuals could be at increased risk for a cardiac event as a result of strenuous exercise. ABSTRACT Adults who experienced undernutrition during critical windows of development are at increased risk for cardiovascular disease. The contribution of cardiac function to this increased disease risk is uncertain. We evaluated the effect of a short episode of postnatal undernutrition on cardiovascular function in mice at the whole animal, organ, and cellular levels. Pups born to control mouse dams were suckled from birth to postnatal day (PN) 21 on dams fed either a control (20% protein) or a low protein (8% protein) isocaloric diet. After PN21 offspring were fed the same control diet until adulthood. At PN70 V ̇ O 2 , max was measured by treadmill test. At PN80 cardiac function was evaluated by echocardiography and Doppler analysis at rest and following β-adrenergic stimulation. Isolated cardiomyocyte nucleation and Ca2+ transients (with and without β-adrenergic stimulation) were measured at PN90. Female mice that were undernourished and then refed (PUN), unlike male mice, had disproportionately smaller hearts and their exercise capacity, cardiac diastolic function, and heart rate responsiveness to adrenergic stimulation were limited. A reduced left ventricular end diastolic volume, impaired early filling, and decreased stored energy at the beginning of diastole contributed to these impairments. Female PUN mice had more mononucleated cardiomyocytes; under resting conditions binucleated cells had a functional profile suggestive of increased basal adrenergic activation. Thus, a brief episode of early postnatal undernutrition in the mouse can produce persistent changes to cardiac structure and function that limit exercise/functional capacity and thereby increase the risk for the development of a wide variety of cardiovascular morbidities.
Collapse
Affiliation(s)
- David P Ferguson
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Kinesiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Tanner O Monroe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Celia Pena Heredia
- Section of Geriatrics, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ryan Fleischmann
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - George E Taffet
- Section of Geriatrics, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marta L Fiorotto
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
17
|
Sebastiani G, García-Beltran C, Pie S, Guerra A, López-Bermejo A, de Toledo JS, de Zegher F, Rosés F, Ibáñez L. The sequence of prenatal growth restraint and postnatal catch-up growth: normal heart but thicker intima-media and more pre-peritoneal fat in late infancy. Pediatr Obes 2019; 14:e12476. [PMID: 30362284 DOI: 10.1111/ijpo.12476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/17/2018] [Accepted: 08/31/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND The sequence of prenatal growth restraint and postnatal catch-up growth leads to a thicker intima-media and more pre-peritoneal fat by age 3-6 years. OBJECTIVES To study whether carotid intima-media thickness (cIMT) and pre-peritoneal fat differ already between catch-up small-for-gestational-age (SGA) infants and appropriate-for-gestational-age (AGA) controls in late infancy (ages 1 and 2 years) and whether such differences - if any - are accompanied by differences in cardiac morphology and function. METHODS Longitudinal assessments included body height and weight; fasting glucose, insulin, Insulin-like growth factor (IGF-I), high-molecular-weight adiponectin; body composition (by absorptiometry); cIMT, aortic IMT, pre-peritoneal fat partitioning (by ultrasound); cardiac morphometry and function (by echocardiography) in AGA and SGA infants at birth, at age 1 year (N = 87), and again at age 2 years (N = 68). RESULTS Catch-up SGA infants had already a thicker cIMT than AGA controls at ages 1 and 2 years, and more pre-peritoneal fat by age 2 years (all p values between <0.01 and <0.0001); all cardiac and endocrine-metabolic results were similar in AGA and SGA infants at ages 1 and 2 years. CONCLUSIONS From late infancy onwards, catch-up SGA infants have a thicker cIMT and more pre-peritoneal fat than AGA controls, but their cardiac morphology and function remain reassuringly similar.
Collapse
Affiliation(s)
- G Sebastiani
- Endocrinology Unit, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, Esplugues, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Health Institute Carlos III, Madrid, Spain
| | - C García-Beltran
- Endocrinology Unit, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, Esplugues, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Health Institute Carlos III, Madrid, Spain
| | - S Pie
- Pediatric Cardiology Department, Hospital Materno-Infantil Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain
| | - A Guerra
- Pediatric Cardiology Department, Hospital Materno-Infantil Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain
| | - A López-Bermejo
- Department of Pediatrics, Dr. Josep Trueta Hospital, Girona Institute for Biomedical Research, Girona, Spain
| | - J S de Toledo
- Cardiology Department, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, Esplugues, Spain
| | - F de Zegher
- Pediatric and Adolescent Endocrinology, University Hospital Gasthuisberg, Leuven, Belgium.,Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - F Rosés
- Pediatric Cardiology Department, Hospital Materno-Infantil Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain.,Paediatric Cardiology Department, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - L Ibáñez
- Endocrinology Unit, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, Esplugues, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
18
|
Lawrence KM, Hennessy-Strahs S, McGovern PE, Mejaddam AY, Rossidis AC, Baumgarten HD, Bansal E, Villeda M, Han J, Gou Z, Zhao S, Rychik J, Peranteau WH, Davey MG, Flake AW, Gaynor JW, Bartoli CR. Fetal hypoxemia causes abnormal myocardial development in a preterm ex utero fetal ovine model. JCI Insight 2018; 3:124338. [PMID: 30568044 DOI: 10.1172/jci.insight.124338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023] Open
Abstract
In utero hypoxia is a major cause of neonatal morbidity and mortality and predisposes to adult cardiovascular disease. No therapies exist to correct fetal hypoxia. In a new ex utero fetal support system, we tested the hypothesis that hypoxemic support of the fetus impairs myocardial development, whereas normoxic support allows normal myocardial development. Preterm fetal lambs were connected via umbilical vessels to a low-resistance oxygenator and placed in a sterile-fluid environment. Control normoxic fetuses received normal fetal oxygenation, and hypoxemic fetuses received subphysiologic oxygenation. Fetuses with normal in utero development served as normal controls. Hypoxemic fetuses exhibited decreased maximum cardiac output in both ventricles, diastolic function, myocyte and myocyte nuclear size, and increased myocardial capillary density versus control normoxic fetuses. There were no differences between control normoxic fetuses in the fetal support system and normal in utero controls. Chronic fetal hypoxemia resulted in significant abnormalities in myocyte architecture and myocardial capillary density as well as systolic and diastolic cardiac function, whereas control fetuses showed no differences. This ex utero fetal support system has potential to become a significant research tool and novel therapy to correct fetal hypoxia.
Collapse
Affiliation(s)
- Kendall M Lawrence
- Center for Fetal Research, Department of Surgery, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Samson Hennessy-Strahs
- Division of Cardiovascular Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patrick E McGovern
- Center for Fetal Research, Department of Surgery, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Ali Y Mejaddam
- Center for Fetal Research, Department of Surgery, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Avery C Rossidis
- Center for Fetal Research, Department of Surgery, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Heron D Baumgarten
- Center for Fetal Research, Department of Surgery, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Esha Bansal
- Division of Cardiovascular Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maryann Villeda
- Division of Cardiovascular Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jiancheng Han
- Center for Fetal Research, Department of Surgery, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Zhongshan Gou
- Center for Fetal Research, Department of Surgery, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Sheng Zhao
- Center for Fetal Research, Department of Surgery, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Jack Rychik
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - William H Peranteau
- Center for Fetal Research, Department of Surgery, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Marcus G Davey
- Center for Fetal Research, Department of Surgery, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Alan W Flake
- Center for Fetal Research, Department of Surgery, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - J William Gaynor
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Carlo R Bartoli
- Division of Cardiovascular Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Jonker SS, Kamna D, LoTurco D, Kailey J, Brown LD. IUGR impairs cardiomyocyte growth and maturation in fetal sheep. J Endocrinol 2018; 239:253-265. [PMID: 30143557 PMCID: PMC6510659 DOI: 10.1530/joe-18-0382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/15/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022]
Abstract
Placental insufficiency causes intrauterine growth restriction (IUGR), a common complication of pregnancy. In skeletal muscle, IUGR reduces fetal myofibril size, reduces myoblast proliferation and reduces expression of genes in cell cycle regulation clusters. The myocardium is striated like skeletal muscle, and IUGR also reduces cell cycle activity and maturation in cardiomyocytes, despite cardiac output preferentially directed to the coronary circulation. We hypothesized that cardiomyocyte growth restriction would be accompanied by similar changes in cell cycle regulation genes and would reduce cardiomyocyte cell cycle activity, number, maturity and size. Pregnant ewes were housed in elevated ambient temperatures from ~40 to ~115 days of gestation (dGA) to produce placental insufficiency and IUGR; fetal hearts were studied at ~134 dGA. Hearts were biopsied for mRNA analysis and then dissociated into individual myocytes (Control n = 8; IUGR n = 15) or dissected (Control n = 9; IUGR n = 13). IUGR fetuses had low circulating insulin and insulin-like growth factor 1 (IGF1) and high circulating cortisol. Bodies and hearts of IUGR fetuses were lighter than those of Controls. Cardiomyocytes of IUGR fetuses were smaller, less mature, less active in the cell cycle and less numerous than in Controls. Further, there was a pattern of downregulation of cell cycle genes in IUGR ventricles. IUGR growth profiles in heart and skeletal muscle suggest similar regulation despite differences in blood and nutrient delivery prioritization. IGF1 signaling is suggested as a mechanism regulating altered growth in IUGR striated muscle and a potential therapeutic candidate.
Collapse
Affiliation(s)
- Sonnet S Jonker
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Daniel Kamna
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Dan LoTurco
- Department of Pediatrics, Perinatal Research Center, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
| | - Jenai Kailey
- Department of Pediatrics, Perinatal Research Center, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
| | - Laura D Brown
- Department of Pediatrics, Perinatal Research Center, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
20
|
Camm EJ, Botting KJ, Sferruzzi-Perri AN. Near to One's Heart: The Intimate Relationship Between the Placenta and Fetal Heart. Front Physiol 2018; 9:629. [PMID: 29997513 PMCID: PMC6029139 DOI: 10.3389/fphys.2018.00629] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/09/2018] [Indexed: 01/19/2023] Open
Abstract
The development of the fetal heart is exquisitely controlled by a multitude of factors, ranging from humoral to mechanical forces. The gatekeeper regulating many of these factors is the placenta, an external fetal organ. As such, resistance within the placental vascular bed has a direct influence on the fetal circulation and therefore, the developing heart. In addition, the placenta serves as the interface between the mother and fetus, controlling substrate exchange and release of hormones into both circulations. The intricate relationship between the placenta and fetal heart is appreciated in instances of clinical placental pathology. Abnormal umbilical cord insertion is associated with congenital heart defects. Likewise, twin-to-twin transfusion syndrome, where monochorionic twins have unequal sharing of their placenta due to inter-twin vascular anastomoses, can result in cardiac remodeling and dysfunction in both fetuses. Moreover, epidemiological studies have suggested a link between placental phenotypic traits and increased risk of cardiovascular disease in adult life. To date, the mechanistic basis of the relationships between the placenta, fetal heart development and later risk of cardiac dysfunction have not been fully elucidated. However, studies using environmental exposures and gene manipulations in experimental animals are providing insights into the pathways involved. Likewise, surgical instrumentation of the maternal and fetal circulations in large animal species has enabled the manipulation of specific humoral and mechanical factors to investigate their roles in fetal cardiac development. This review will focus on such studies and what is known to date about the link between the placenta and heart development.
Collapse
Affiliation(s)
- Emily J Camm
- Department of Physiology, Development and Neuroscience and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Kimberley J Botting
- Department of Physiology, Development and Neuroscience and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
21
|
Botting KJ, Loke XY, Zhang S, Andersen JB, Nyengaard JR, Morrison JL. IUGR decreases cardiomyocyte endowment and alters cardiac metabolism in a sex- and cause-of-IUGR-specific manner. Am J Physiol Regul Integr Comp Physiol 2018; 315:R48-R67. [PMID: 29561647 DOI: 10.1152/ajpregu.00180.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intrauterine growth restriction (IUGR) increases the risk of ischemic heart disease in adulthood. Studies in rats suggest cardiac vulnerability is more pronounced in males and in offspring that were exposed to hypoxia in utero. Therefore, we aimed to test the hypotheses that 1) IUGR adolescent males, but not females, have fewer cardiomyocytes and altered expression of cardiometabolic genes compared with controls; and 2) IUGR due to hypoxia has a greater effect on these parameters compared with IUGR due to nutrient restriction. IUGR was induced in guinea pigs by maternal hypoxia (MH; 10% O2, n = 9) or maternal nutrient restriction (MNR; ~30% reduction in food intake, n = 9) in the second half of pregnancy and compared with control ( n = 11). At 120 days of age, postmortem was performed and the left ventricle perfusion fixed for stereological determination of cardiomyocyte number or snap frozen to determine the abundance of cardiometabolic genes and proteins by quantitative RT-PCR and Western blotting, respectively. MH reduced the number of cardiomyocytes in female ( P < 0.05), but not male or MNR, adolescent offspring. Furthermore, IUGR males had decreased expression of genes responsible for fatty acid activation in the sarcoplasm ( FACS) and transport into the mitochondria ( AMPK-a2 and ACC; P < 0.05) and females exposed to MH had increased activation/phosphorylation of AMP-activated protein kinase-α ( P < 0.05). We postulate that the changes in cardiomyocyte endowment and cardiac gene expression observed in the present study are a direct result of in utero programming, as offspring at this age did not suffer from obesity, hypertension, or left ventricular hypertrophy.
Collapse
Affiliation(s)
- K J Botting
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia , Adelaide, South Australia , Australia.,Discipline of Physiology, School of Medical Science, The University of Adelaide , Adelaide, South Australia , Australia
| | - X Y Loke
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia , Adelaide, South Australia , Australia
| | - S Zhang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia , Adelaide, South Australia , Australia
| | - J B Andersen
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University , Aarhus , Denmark
| | - J R Nyengaard
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University , Aarhus , Denmark
| | - J L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia , Adelaide, South Australia , Australia.,Discipline of Physiology, School of Medical Science, The University of Adelaide , Adelaide, South Australia , Australia
| |
Collapse
|