1
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
2
|
Singal S, Srivastava AK, Kotnala RK, Rajesh. Single-frequency impedance analysis of biofunctionalized dendrimer-encapsulated Pt nanoparticles-modified screen-printed electrode for biomolecular detection. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-3977-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Kavosi B, Hallaj R, Teymourian H, Salimi A. Au nanoparticles/PAMAM dendrimer functionalized wired ethyleneamine–viologen as highly efficient interface for ultra-sensitive α-fetoprotein electrochemical immunosensor. Biosens Bioelectron 2014; 59:389-96. [DOI: 10.1016/j.bios.2014.03.049] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 03/07/2014] [Accepted: 03/24/2014] [Indexed: 11/16/2022]
|
4
|
Qoronfleh MW. Role and challenges of proteomics in pharma and biotech: technical, scientific and commercial perspective. Expert Rev Proteomics 2014; 3:179-95. [PMID: 16608432 DOI: 10.1586/14789450.3.2.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Contemporary proteomics, currently in its exponential growth phase, is a bewildering array of tools. Proteomic methods are the result of a convergence of rapidly improving mass spectrometry technologies, protein chemistry and separation sciences, genomics and bioinformatics. Strides in improving proteomics technologies to map and measure proteomes and subproteomes are being made. However, no single proteomic platform appears ideally suited to address all research needs or accomplish ambitious goals satisfactorily. However, proteomics is in a unique position to contribute to protein discovery and to public health in terms of better biomarkers, diagnostics and treatment of disease. While the potential is great, many challenges and issues remain to be solved. Fundamental issues, such as biological variability, pre-analytic factors and analytical reproducibility, remain to be resolved. Neither an all-genetic approach nor an all-proteomic approach will solve biological complexity. Proteomics will be the foundation for constructing and extracting useful knowledge to pharma and biotech depicted in the following path: data --> structured data --> information --> information architecture --> knowledge --> useful knowledge.
Collapse
Affiliation(s)
- M Walid Qoronfleh
- Core Technology Alliance CTA, University of Michigan, Ann Arbor, MI 48109-1274, USA.
| |
Collapse
|
5
|
Abstract
The cornerstone of proteomics resides in using traditional methods of protein chemistry, to extract and resolve complex mixtures, in concert with the powerful engines of mass spectrometry to decipher peptide and protein identities. The broad utility of proteomics technologies to map protein interactions, understand regulatory mechanisms and identify biomarkers associated with disease states and drug treatments necessitates a targeted biochemical approach tailored to the characteristics of the tissue, fluid or cellular extract being studied. The application of affinity methods in proteomic studies to focus on particular classes of molecules is being used with increasing frequency and comprises the subject of this review. An overview of successfully applied affinity methods is provided, along with speculation on the use of innovative approaches. Sample preparation and processing are critical for proteomics with affinity reagents, as only functional and active proteins can be isolated in most cases. Considerations for methods of sample preparation to optimize affinity capture and release are also discussed.
Collapse
Affiliation(s)
- Gregory J Opiteck
- Clinical Discovery Technologies, Bristol-Myers Squibb, PO Box 5400, Princeton, NJ 08543-5400, USA.
| | | |
Collapse
|
6
|
Bai HX, Liu XH, Yang F, Yang XR, Wang EK. A Prefractionation Method Can Separate Proteomic Proteins into Multigroups by One-step Extraction. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201000140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
|
8
|
Otani M, Taniguchi T, Sakai A, Seta J, Kadoyama K, Nakamura-Hirota T, Matsuyama S, Sano K, Takano M. Phosphoproteome Profiling Using a Fluorescent Phosphosensor Dye in Two-Dimensional Polyacrylamide Gel Electrophoresis. Appl Biochem Biotechnol 2011; 164:804-18. [DOI: 10.1007/s12010-011-9175-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
|
9
|
Abstract
The complementary disciplines of genomics and proteomics offer better insights into the molecular mechanisms of diseases. While genomics hunts for defining our static genetic substrate, proteomics explores the structure and function of proteins expressed by a cell or tissue type under specified conditions. In the past decade, proteomics has been revolutionized by the application of techniques such as two-dimensional gel electrophoresis (2DGE), mass spectrometry (MS), and protein arrays. These techniques have tremendous potential for biomarker development, target validation, diagnosis, prognosis, and optimization of treatment in medical care, especially in the field of islet and diabetes research. This chapter will highlight the contributions of proteomic technologies toward the dissection of complex network of signaling molecules regulating islet function, the identification of potential biomarkers, and the understanding of mechanisms involved in the pathogenesis of diabetes.
Collapse
|
10
|
Munge BS, Fisher J, Millord LN, Krause CE, Dowd RS, Rusling JF. Sensitive electrochemical immunosensor for matrix metalloproteinase-3 based on single-wall carbon nanotubes. Analyst 2010; 135:1345-50. [PMID: 20358056 PMCID: PMC2923849 DOI: 10.1039/c0an00028k] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel electrochemical immunosensor for the detection of matrix metalloproteinase-3 (MMP-3), a cancer biomarker protein, based on vertically aligned single-wall carbon nanotube (SWCNT) arrays is presented. Detection was based on a sandwich immunoassay consisting of horseradish peroxidase (14-16 labels) conjugated to a secondary antibody and/or a polymer bead loaded with multi-enzyme labels. Performance was optimized by effective minimization of non-specific binding (NSB) events using Bovine serum albumin (BSA), Tween-20 and optimization of the primary antibody and secondary antibody concentrations. Results provided a detection limit of 0.4 ng mL(-1) (7.7 pM) for the 14-16 label sensor protocol and 4 pg mL(-1) (77 fM) using a multiply enzyme labeled polymeric bead amplification strategy in 10 microL of calf serum. This immunosensor based on SWCNT arrays offers great promise for a rapid, simple, cost-effective method for clinical screening of cancer biomarkers for point-of-care diagnosis.
Collapse
Affiliation(s)
- Bernard S Munge
- Salve Regina University, Department of Chemistry, Newport, Rhode Island 02840-4192, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Caterino M, Ruoppolo M, Fulcoli G, Huynth T, Orrù S, Baldini A, Salvatore F. Transcription factor TBX1 overexpression induces downregulation of proteins involved in retinoic acid metabolism: a comparative proteomic analysis. J Proteome Res 2009; 8:1515-26. [PMID: 19178302 DOI: 10.1021/pr800870d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
TBX1 haploinsufficiency is considered a major contributor to the del22q11.2/DiGeorge syndrome (DGS) phenotype. We have used proteomic tools to look at all the major proteins involved in the TBX1-mediated pathways in an attempt to better understand the molecular interactions instrumental to its cellular functions. We found more than 90 proteins that could be targeted by TBX1 through different mechanisms. The most interesting observation is that overexpression of TBX1 results in down-regulation of two proteins involved in retinoic acid metabolism.
Collapse
Affiliation(s)
- Marianna Caterino
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy, Dipartimento di Biochimica e Biotecnologie Mediche, Universita di Napoli Federico II, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Rusling JF, Sotzing G, Papadimitrakopoulosa F. Designing nanomaterial-enhanced electrochemical immunosensors for cancer biomarker proteins. Bioelectrochemistry 2009; 76:189-94. [PMID: 19403342 DOI: 10.1016/j.bioelechem.2009.03.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/23/2009] [Accepted: 03/23/2009] [Indexed: 11/30/2022]
Abstract
Detection of multiple cancer biomarker proteins in human serum and tissue at point-of-care is a viable approach for early cancer detection, but presents a major challenge to bioanalytical device development. This article reviews recent approaches developed in our laboratories combining nanoparticle decorated electrodes and multilabeled secondary antibody labeled particles to achieve high sensitivity for the detection of cancer biomarker proteins. Two nanomaterial-based sensor platforms were used: (a) upright single wall carbon nanotube forests and (b) layers of densely packed 5 nm gold nanoparticles. Both platforms feature pendant carboxylate groups for easy attachment of enzymes or antibodies by amidization. In quality performance tests, the biocatalytic responses for determination of hydrogen peroxide of AuNP layers with attached horseradish peroxidase (HRP) on electrodes gave somewhat better detection limit and sensitivity than single wall carbon nanotube (SWNT) forest platforms with HRP attached. Evaluation of these sensors as platforms for sandwich immunoassays for cancer biomarker prostate specific antigen (PSA) in serum showed that both approaches gave accurate results for human serum samples from cancer patients. The best detection limit (0.5 pg mL(-1)) and sensitivity were obtained by combining the AuNP immunosensors with binding of 1 mum diameter magnetic particles decorated with secondary antibodies and 7500 HRP labels.
Collapse
Affiliation(s)
- James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA.
| | | | | |
Collapse
|
13
|
Yu YQ, Fournier J, Gilar M, Gebler JC. Phosphopeptide enrichment using microscale titanium dioxide solid phase extraction. J Sep Sci 2009; 32:1189-99. [DOI: 10.1002/jssc.200800652] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
HIRANO T, KITAGAWA S, OHTANI H. Methacrylate-ester-based Reversed Phase Monolithic Columns for High Speed Separation Prepared by Low Temperature UV Photo-polymerization. ANAL SCI 2009; 25:1107-13. [DOI: 10.2116/analsci.25.1107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tomohiko HIRANO
- Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology
| | - Shinya KITAGAWA
- Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology
| | - Hajime OHTANI
- Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology
| |
Collapse
|
15
|
Alterations in the proteome of pulmonary alveolar type II cells in the rat after hepatic ischemia-reperfusion. Crit Care Med 2008; 36:1846-54. [PMID: 18496381 DOI: 10.1097/ccm.0b013e31816f49cb] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Hepatic ischemia-reperfusion can be associated with acute lung injury. Alveolar epithelial type II cells (ATII) play an important role in maintaining lung homeostasis in acute lung injury. DESIGN To study potentially new mechanisms of hepatic ischemia-reperfusion-induced lung injury, we examined how liver ischemia-reperfusion altered the proteome of ATII. SETTING Laboratory investigation. SUBJECTS Spontaneously breathing male Zucker rats. INTERVENTIONS Rats were anesthetized with isoflurane. The vascular supply to the left and medial lobe of the liver was clamped for 75 mins and then reperfused. Sham-operated rats were used as controls. After 8 hrs, rats were killed. MEASUREMENTS AND MAIN RESULTS Bronchoalveolar lavage and differential cell counts were performed, and tumor necrosis factor-alpha and cytokine-induced neutrophil chemotactic factor-1 in plasma were determined by enzyme-linked immunosorbent assay. ATII were isolated, lysed, tryptically digested, and labeled using isobaric tags (iTRAQ). The samples were fractionated by cation exchange chromatography, separated by high-performance liquid-chromatography, and identified using electrospray tandem mass spectrometry. Spectra were interrogated and quantified using ProteinProspector. Quantitative proteomics provided quantitative data for 94 and 97 proteins in the two groups. Significant changes in ATII protein content included 30% to 40% increases in adenosine triphosphate synthases, adenosine triphosphate/adenosine diphosphate translocase, and catalase (all p < .001). Following liver ischemia-reperfusion, there was also a significant increase in the percentage of neutrophils in bronchoalveolar lavage (48% +/- 26%) compared with sham-operated controls (5% +/- 3%) (p < .01), and plasma tumor necrosis factor-alpha levels were also significantly increased. CONCLUSIONS The proteins identified by quantitative proteomics indicated significant changes in moderators of cell metabolism and host defense in ATII. These findings provide new insights into possible mechanisms responsible for hepatic ischemia-reperfusion-related acute lung injury and suggest that ATII cells in the lung sense and respond to hepatic injury.
Collapse
|
16
|
Thongboonkerd V. Urinary proteomics: towards biomarker discovery, diagnostics and prognostics. MOLECULAR BIOSYSTEMS 2008; 4:810-5. [DOI: 10.1039/b802534g] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Spisak S, Tulassay Z, Molnar B, Guttman A. Protein microchips in biomedicine and biomarker discovery. Electrophoresis 2007; 28:4261-4273. [PMID: 17979160 DOI: 10.1002/elps.200700539] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Protein microarray technology is of high recent interest, especially for generating confirmatory and complementary information for transcriptomic studies. In this paper, the advantages, technical limitations, main application fields, and some early results of protein microarrays are reviewed. Today protein microchip technology is mostly available in the form of printed glass slides, bioaffinity surfaces, and tissue microarray (TMA)-based techniques. The advantages of glass slide-based microchips are the simplicity of their application and their relatively low cost. Affinity surface-based protein chip techniques are applicable to minute amounts of starting material (< 1 microg), but interrogation of these chips requires expensive instrumentation, such as mass spectrometers. TMAs are useful for parallel testing of antibody specificities on a broad range of histological specimens in a single slide. Protein microarrays have been successfully implemented for serum tumor marker profiling, cell physiology studies, and mRNA expression study verification. Some of the bottlenecks of the technology are protein instability, problems with nonspecific interactions, and the lack of amplification techniques to generate sufficient amounts of the lower abundance proteins. In spite of the current difficulties, protein microchips are envisioned to be available for routine biomedical and diagnostic applications provided that the ongoing technological developments are successful in improving sensitivity, specificity, and reducing costs.
Collapse
Affiliation(s)
- Sandor Spisak
- 2nd Department of Internal Medicine, Semmelweis University Faculty of Medicine, Budapest, Hungary
| | | | | | | |
Collapse
|
18
|
Lee CL, Jiang PP, Sit WH, Wan JMF. Proteome of human T lymphocytes with treatment of cyclosporine and polysaccharopeptide: Analysis of significant proteins that manipulate T cells proliferation and immunosuppression. Int Immunopharmacol 2007; 7:1311-24. [PMID: 17673146 DOI: 10.1016/j.intimp.2007.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Revised: 05/21/2007] [Accepted: 05/24/2007] [Indexed: 11/25/2022]
Abstract
The aberrant activation of T lymphocyte proliferation is one of the key events in organ transplant recipients and autoimmune disorders. The present study adopted a gel-based proteomics approach to define the proteins representative of the T cell proliferation and to discover the molecules that play critical roles during the suppression of T cell proliferation. Human T lymphocytes were isolated from healthy donors and primed with phytohemagglutinin (PHA) to undergo proliferation. Two medical fungal products with specific T cell activation inhibitory properties, cyclosporine A (CsA) and polysaccharopeptide (PSP), were used to study the proteins that manipulate T cell proliferation. After demonstrating their similar effects on cell proliferation, cell survival and interleuklin-2 (IL-2) secretion, significant quantitative protein alterations were detected between the CsA- and PSP-treated T cell proteome. These altered proteins were identified by MALDI-TOF and classified into 3 categories: (i) proteins affected by both CsA and PSP, (ii) proteins affected by CsA alone, and (iii) proteins affected by PSP alone. Most of these altered proteins have functional significance in protein degradation, the antioxidant pathway, energy metabolism and immune cell regulation.
Collapse
Affiliation(s)
- Cheuk-Lun Lee
- School of Biological Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | | | | | | |
Collapse
|
19
|
Proll G, Steinle L, Pröll F, Kumpf M, Moehrle B, Mehlmann M, Gauglitz G. Potential of label-free detection in high-content-screening applications. J Chromatogr A 2007; 1161:2-8. [PMID: 17612548 DOI: 10.1016/j.chroma.2007.06.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 01/08/2023]
Abstract
The classical approach of high-content screening (HCS) is based on multiplexed, functional cell-based screening and combines several analytical technologies that have been used before separately to achieve a better level of automation (scale-up) and higher throughput. New HCS methods will help to overcome the bottlenecks, e.g. in the present development chain for lead structures for the pharmaceutical industry or during the identification and validation process of new biomarkers. In addition, there is a strong need in analytical and bioanalytical chemistry for functional high-content assays which can be provided by different hyphenated techniques. This review discusses the potential of a label-free optical biosensor based on reflectometric interference spectroscopy (RIfS) as a bridging technology for different HCS approaches. Technical requirements of RIfS are critically assessed by means of selected applications and compared to the performance characteristics of surface plasmon resonance (SPR) which is currently the leading technology in the area of label-free optical biosensors.
Collapse
Affiliation(s)
- Guenther Proll
- Institute of Physical and Theoretical Chemistry, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
The EIPeptiDi tool: enhancing peptide discovery in ICAT-based LC MS/MS experiments. BMC Bioinformatics 2007; 8:255. [PMID: 17631686 PMCID: PMC1939855 DOI: 10.1186/1471-2105-8-255] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 07/15/2007] [Indexed: 12/25/2022] Open
Abstract
Background Isotope-coded affinity tags (ICAT) is a method for quantitative proteomics based on differential isotopic labeling, sample digestion and mass spectrometry (MS). The method allows the identification and relative quantification of proteins present in two samples and consists of the following phases. First, cysteine residues are either labeled using the ICAT Light or ICAT Heavy reagent (having identical chemical properties but different masses). Then, after whole sample digestion, the labeled peptides are captured selectively using the biotin tag contained in both ICAT reagents. Finally, the simplified peptide mixture is analyzed by nanoscale liquid chromatography-tandem mass spectrometry (LC-MS/MS). Nevertheless, the ICAT LC-MS/MS method still suffers from insufficient sample-to-sample reproducibility on peptide identification. In particular, the number and the type of peptides identified in different experiments can vary considerably and, thus, the statistical (comparative) analysis of sample sets is very challenging. Low information overlap at the peptide and, consequently, at the protein level, is very detrimental in situations where the number of samples to be analyzed is high. Results We designed a method for improving the data processing and peptide identification in sample sets subjected to ICAT labeling and LC-MS/MS analysis, based on cross validating MS/MS results. Such a method has been implemented in a tool, called EIPeptiDi, which boosts the ICAT data analysis software improving peptide identification throughout the input data set. Heavy/Light (H/L) pairs quantified but not identified by the MS/MS routine, are assigned to peptide sequences identified in other samples, by using similarity criteria based on chromatographic retention time and Heavy/Light mass attributes. EIPeptiDi significantly improves the number of identified peptides per sample, proving that the proposed method has a considerable impact on the protein identification process and, consequently, on the amount of potentially critical information in clinical studies. The EIPeptiDi tool is available at with a demo data set. Conclusion EIPeptiDi significantly increases the number of peptides identified and quantified in analyzed samples, thus reducing the number of unassigned H/L pairs and allowing a better comparative analysis of sample data sets.
Collapse
|
21
|
Liu X, Miller BR, Rebec GV, Clemmer DE. Protein expression in the striatum and cortex regions of the brain for a mouse model of Huntington's disease. J Proteome Res 2007; 6:3134-42. [PMID: 17625815 PMCID: PMC2577606 DOI: 10.1021/pr070092s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Liquid chromatography (LC) coupled with mass spectrometry (MS) and database assignment methods have been used to conduct a large-scale proteome survey of the R6/2 mouse model of Huntington's disease (HD). Although the neuropathological mechanisms of HD are not known, the mutant huntingtin gene that causes the disease is thought to alter gene transcription, leading to a cascade of neurotoxic events. In this report, we have focused on characterizing changes in the brain proteome associated with HD pathophysiology. Differences in the relative abundances of proteins (R6/2 compared to wild type) in brain tissue from the striatum and cortex, two primary loci of dysfunction in HD, were assessed by using a label-free approach based on calibrations to internal standards. In total, assignments were made for approximately 400 proteins. A set of criteria was used to establish 160 high confidence assignments, approximately 30% of which appear to show differences in expression relative to wild type (WT) animals. Many of the proteins that were differentially expressed are known to be associated with neurotransmission and likely play key roles in HD etiology. This study is the first to report that the majority of differentially expressed proteins in the striatum are up-regulated, while the majority of the expressed proteins in the cortex are down-regulated. The differentially expressed proteins identified in this proteomic screen may be potential biomarkers and drug targets for HD and may further our understanding of the disease pathology.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
22
|
Ichibangase T, Moriya K, Koike K, Imai K. A Proteomics Method Revealing Disease-Related Proteins in Livers of Hepatitis-Infected Mouse Model. J Proteome Res 2007; 6:2841-9. [PMID: 17559251 DOI: 10.1021/pr070094c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this post-genome era, a sensitive quantitative method is required for differential profiling analyses of clinical proteomes to understand the disease progress. Here, we adopt the FD-LC-MS/MS method, consisting of fluorogenic derivatization (FD), separation by liquid chromatography (LC), and identification by LC-tandem mass spectrometry (MS/MS), to reveal disease-related proteins in livers of hepatocarcinogenesis in transgenic (Tg) and non-transgenic (NTg) mice at three developmental stages. After 6 months, the expression of apoptosis-related proteins is suppressed. After 12 months, proteins related to respiration, the electron-transfer system, and anti-oxidation are significantly up-regulated. After 16 months, proteins related to defense, beta-oxidation, and apoptosis are significantly suppressed. This fluctuating expression of proteins could explain the progression of hepatocarcinogenesis. The method would be useful for clinical proteomics analysis because of its high resolution, sensitivity, and reproducibility.
Collapse
Affiliation(s)
- Tomoko Ichibangase
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, Japan
| | | | | | | |
Collapse
|
23
|
Liu X, Valentine SJ, Plasencia MD, Trimpin S, Naylor S, Clemmer DE. Mapping the human plasma proteome by SCX-LC-IMS-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1249-64. [PMID: 17553692 PMCID: PMC2195767 DOI: 10.1016/j.jasms.2007.04.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 04/07/2007] [Accepted: 04/07/2007] [Indexed: 05/10/2023]
Abstract
The advent of on-line multidimensional liquid chromatography-mass spectrometry has significantly impacted proteomic analyses of complex biological fluids such as plasma. However, there is general agreement that additional advances to enhance the peak capacity of such platforms are required to enhance the accuracy and coverage of proteome maps of such fluids. Here, we describe the combination of strong-cation-exchange and reversed-phase liquid chromatographies with ion mobility and mass spectrometry as a means of characterizing the complex mixture of proteins associated with the human plasma proteome. The increase in separation capacity associated with inclusion of the ion mobility separation leads to generation of one of the most extensive proteome maps to date. The map is generated by analyzing plasma samples of five healthy humans; we report a preliminary identification of 9087 proteins from 37,842 unique peptide assignments. An analysis of expected false-positive rates leads to a high-confidence identification of 2928 proteins. The results are catalogued in a fashion that includes positions and intensities of assigned features observed in the datasets as well as pertinent identification information such as protein accession number, mass, and homology score/confidence indicators. Comparisons of the assigned features reported here with other datasets shows substantial agreement with respect to the first several hundred entries; there is far less agreement associated with detection of lower abundance components.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | | | | | - Sarah Trimpin
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - Stephen Naylor
- Predictive Physiology & Medicine Inc., Bloomington, IN 47404
| | - David E. Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| |
Collapse
|
24
|
Zhang CX, Weber BV, Thammavong J, Grover TA, Wells DS. Identification of carboxyl-terminal peptide fragments of parathyroid hormone in human plasma at low-picomolar levels by mass spectrometry. Anal Chem 2007; 78:1636-43. [PMID: 16503617 DOI: 10.1021/ac051711o] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For decades, researchers have tried to identify the primary structures of circulating carboxyl-terminal parathyroid hormone (C-PTH) peptide fragments that may be present at only picomolar levels in human plasma. Although immunoassays and radiosequencing techniques have provided valuable fragment characterizations, no analysis has successfully determined their exact primary structures. In this work, for the first time, four human C-PTH peptide fragments, hPTH(34-84), hPTH(37-84), hPTH(38-84), and hPTH(45-84), have been identified from human plasma using MS-based methods. C-PTH peptide fragments were isolated from plasma samples by immunoaffinity extraction. The eluate was analyzed by capillary LC fractionation followed by MALDI-TOF-MS or by on-line coupling of nano-LC with ESI-TOF-MS. Both the MALDI- and the ESI-based approaches were capable of detecting C-PTH peptide fragments in human plasma at <10 pmol/L. The MALDI-TOF approach was effective in preliminary searches for C-PTH peptide fragments, but the use of high laser power limited the resolution necessary for accurate C-PTH peptide identification. The high mass resolution (10,000) and accuracy (10 ppm) attained by the ESI-TOF approach enabled unambiguous identification of these peptides. The four C-PTH peptide fragments identified in plasma samples from patients with chronic renal insufficiency were also found in the plasma of healthy women receiving recombinant human PTH either by subcutaneous injection or by intravenous infusion. This newly developed analytical capability should greatly enhance the understanding of PTH metabolism and parathyroid gland function.
Collapse
Affiliation(s)
- Chao-Xuan Zhang
- NPS Pharmaceuticals, 383 Colorow Drive, Salt lake City, Utah 84108, USA.
| | | | | | | | | |
Collapse
|
25
|
Lee H. Pharmaceutical Applications of Liquid Chromatography Coupled with Mass Spectrometry (LC/MS). J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-200053022] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Heewon Lee
- a Boehringer Ingelheim Pharmaceuticals, Inc. , Ridgefield, Connecticut, USA
| |
Collapse
|
26
|
Huang J, Kang J. A simple peptide mapping method by partial filling micellar electrokinetic capillary chromatography with a zwitterionic–nonionic mixed micelle. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 846:364-7. [PMID: 16963322 DOI: 10.1016/j.jchromb.2006.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 08/13/2006] [Accepted: 08/20/2006] [Indexed: 10/24/2022]
Abstract
A partial filling micellar electrokinetic capillary chromatography (PF-MEKC) method with a mixed micelle system composed of a zwitterionic surfactant named 3-(N,N-dimethylhexadecylammonium)propanesulfonate (PAPS) and a nonionic surfactant polyethylene glycol dodecyl ether (Brij 35) for peptide mapping is described. The method was demonstrated by the separation of tryptic digestion of bovine serum albumin (BSA). The optimal mixed micelle solution was 50 mM NH(4)OH-HCOOH buffer (pH 2.0) containing 32 mM PAPS and 0.6% (m/v) Brij 35. It was found that the mixed micelle system permitted a highly selective separation of the tryptic digestion. The high separation selectivity was probably due to the ion-pairing interaction between the zwitterionic surfactant molecules and the peptides.
Collapse
Affiliation(s)
- Jing Huang
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | | |
Collapse
|
27
|
Wu D, Tomonaga T, Sogawa K, Satoh M, Sunaga M, Nezu M, Oh-Ishi M, Kodera Y, Maeda T, Ochiai T, Nomura F. Detection of Biomarkers for Alcoholism by Two-Dimensional Differential Gel Electrophoresis. Alcohol Clin Exp Res 2007; 31:S67-71. [PMID: 17331169 DOI: 10.1111/j.1530-0277.2006.00289.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Up to now, gamma-glutamyltransferase (gamma-GTP) and carbohydrate-deficient transferrin (CDT) have been used as markers for alcoholism most widely, but they are not satisfactory regarding sensitivity/specificity. Therefore, for novel markers need to be searched. METHODS To detect new biomarkers for alcoholism, albumin and immunoglobulinG were first removed from serum. Then, protein profiles of 12 serum samples before and after 3 months of abstinence treatment were examined using agarose 2-dimensional differential gel electrophoresis (agarose2-D DIGE). Two-dimensional differential gel electrophoresis images were analyzed using Shimadzu 2-D Evolution Software. RESULTS Eight spots whose expression were significantly altered after abstinence were detected. Of these, 2 proteins increased and 6 proteins decreased after treatment. CONCLUSIONS Altered expressions of several serum proteins after abstinence therapy were detected. They are promising markers for clinical application of alcoholism.
Collapse
Affiliation(s)
- Di Wu
- Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Proteomics, the comprehensive analysis of a protein complement in a cell, tissue or biological fluid at a given time, is a key player in the family of -omic disciplines, which encompass genomics (gene analysis), transcriptomics (gene expression analysis) and metabolomics (metabolite profiling). This review summarizes the state of the art of proteomics technology and puts it into perspective for food-related research. Learning from proteomic experiences in the pharmaceutical context, this article may help to translate proteomics into nutrition and health. RECENT FINDINGS Mass spectrometric technology has progressed enormously with regard to mass accuracy, resolution and peptide sequencing power. Likewise, upstream separation, depletion and enrichment techniques now allow us to deal with the large complexity and wide dynamic range of proteomic samples more efficiently. Consequently, proteomic studies now provide a broader, but still far from complete, coverage of a given proteome. SUMMARY Proteomics adapted and applied to the context of nutrition and health has the potential to deliver biomarkers for health and comfort, reveal early indicators of disease disposition, assist in differentiating dietary responders from non-responders, and, last but not least, discover bioactive, beneficial food components.
Collapse
Affiliation(s)
- Martin Kussmann
- Bioanalytical Science Department, Nestlé Research Center, Nestec Ltd., Lausanne, Switzerland.
| | | |
Collapse
|
29
|
Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong JD, Kim SN, Gillespie J, Gutkind JS, Papadimitrakopoulos F, Rusling JF. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc 2006; 128:11199-205. [PMID: 16925438 PMCID: PMC2482602 DOI: 10.1021/ja062117e] [Citation(s) in RCA: 456] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We describe herein the combination of electrochemical immunosensors using single-wall carbon nanotube (SWNT) forest platforms with multi-label secondary antibody-nanotube bioconjugates for highly sensitive detection of a cancer biomarker in serum and tissue lysates. Greatly amplified sensitivity was attained by using bioconjugates featuring horseradish peroxidase (HRP) labels and secondary antibodies (Ab(2)) linked to carbon nanotubes (CNT) at high HRP/Ab(2) ratio. This approach provided a detection limit of 4 pg mL(-)(1) (100 amol mL(-)(1)), for prostate specific antigen (PSA) in 10 microL of undiluted calf serum, a mass detection limit of 40 fg. Accurate detection of PSA in human serum samples was demonstrated by comparison to standard ELISA assays. PSA was quantitatively measured in prostate tissue samples for which PSA could not be differentiated by the gold standard immunohistochemical staining method. These easily fabricated SWNT immunosensors show excellent promise for clinical screening of cancer biomarkers and point-of-care diagnostics.
Collapse
Affiliation(s)
- Xin Yu
- Department of Chemistry, 55 N. Eagleville Rd., University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Temporini C, Perani E, Mancini F, Bartolini M, Calleri E, Lubda D, Felix G, Andrisano V, Massolini G. Optimization of a trypsin-bioreactor coupled with high-performance liquid chromatography–electrospray ionization tandem mass spectrometry for quality control of biotechnological drugs. J Chromatogr A 2006; 1120:121-31. [PMID: 16472537 DOI: 10.1016/j.chroma.2006.01.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 11/07/2005] [Accepted: 01/11/2006] [Indexed: 10/25/2022]
Abstract
The optimization of a silica-based trypsin bioreactor and its use in the quality control of biotechnological drugs like peptides and proteins is described. Five bioreactors based on monolithic material have been prepared, with different amount of bound trypsin. The performances of these bioreactors were compared to the proteolytic activity of a bioreactor based on silica material. The trypsin-based chromatographic columns were coupled on-line with an LC/ESI/MS/MS system for digestion and identification of proteins. First, human serum albumin has been used as test protein to compare the ability of the bioreactors to hydrolyse high-molecular-weight proteins. The best chromatographic material (epoxy monolithic silica) and the optimum amount of enzyme bound (7.13 mg) have been identified to obtain the highest protein recovery and an analytical reproducibility of the whole digestion, separation and identification process. The optimized enzyme-reactor has been used for the on-line digestion of some biotechnological drugs such as somatotropin. Somatotropin for parentheral use has been analyzed, without sample pre-treatment, with both an on-line procedure and the traditional off-line procedure described in the European Pharmacopoeia. It was found that the cleavage efficiency (aminoacidic recovery, %AA) achieved within minutes by the developed protocol is at least comparable or even better than the conventional 4h consuming method.
Collapse
Affiliation(s)
- C Temporini
- Dipartimento di Chimica Farmaceutica, Università di Pavia, Via Taramelli 12, I-27100 Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Luxembourg SL, Mize TH, McDonnell LA, Heeren RMA. High-spatial resolution mass spectrometric imaging of peptide and protein distributions on a surface. Anal Chem 2006; 76:5339-44. [PMID: 15362890 DOI: 10.1021/ac049692q] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For the first time macromolecular ion microscope images have been recorded using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Single-shot, mass-resolved images of the spatial distributions of intact peptide and protein ions over an area of 200 microm in diameter were obtained in less than 1 ms at a repetition rate of 12 Hz. The magnifying ion optics of the ion microscope allowed ion images to be obtained with a lateral resolution of 4 microm. These results prove the concept of high-resolution MALDI-MS imaging in microscope mode without the need for a tight laser focus and the accompanying sensitivity losses. The ion microscopy approach offers an improvement of several orders of magnitude in speed of acquisition compared to the conventional (microprobe) approach to MALDI-MS imaging.
Collapse
Affiliation(s)
- Stefan L Luxembourg
- FOM institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
32
|
Kulkarni PP, She YM, Smith SD, Roberts EA, Sarkar B. Proteomics of Metal Transport and Metal-Associated Diseases. Chemistry 2006; 12:2410-22. [PMID: 16134204 DOI: 10.1002/chem.200500664] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proteomics technology has the potential to identify groups of proteins that have similar biological function. However, few attempts have been made to identify and characterize metal-binding proteins by using proteomics strategies. Many transition metals are essential to sustain life. Copper, iron, and zinc are the most abundant transition metals relevant to biological systems. In addition to their important biological functions, metals can also catalyze the formation of damaging free radical species. Hence, their intracellular transport is tightly regulated. Despite recent insights into the intracellular transport of copper and other metals, our overall understanding of intracellular metal metabolism remains incomplete and it is likely that many metal-binding proteins remain undiscovered. Furthermore, the protein targets for metals during metal-associated disease states or during exposure to toxic levels of environmental metals are yet to be unravelled. A proteomics strategy for the analysis of metal-transporting or metal-binding proteins has the potential to uncover how a large number of proteins function in normal or metal-associated diseased states. Here we discuss the principal aspects of metal metabolism, and the recent developments in the area of the proteomics of metal transport.
Collapse
Affiliation(s)
- Prasad P Kulkarni
- Department of Biochemistry, University of Toronto, Medical Sciences Building, Toronto, ON, M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
33
|
Hirsch J, Hansen KC, Choi S, Noh J, Hirose R, Roberts JP, Matthay MA, Burlingame AL, Maher JJ, Niemann CU. Warm ischemia-induced alterations in oxidative and inflammatory proteins in hepatic Kupffer cells in rats. Mol Cell Proteomics 2006; 5:979-86. [PMID: 16500929 DOI: 10.1074/mcp.m500320-mcp200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aim of the study was to investigate the impact of ischemia/reperfusion injury on the proteome of Kupffer cells. Lean Zucker rats (n = 6 each group) were randomized to 75 min of warm ischemia or sham operation. After reperfusion for 8 h, Kupffer cells were isolated by enzymatic perfusion and density gradient centrifugation. Proteins were tryptically digested into peptides and differentially labeled with iTRAQ (isobaric tags for relative and absolute quantitation) reagent. After fractionation by cation exchange chromatography, peptides were identified by mass spectrometry (ESI-LC-MS/MS). Spectra were interrogated against the Swiss-Prot database and quantified using ProteinProspector. The results for heat shock protein 70 and myeloperoxidase were validated by ELISA. Quantitative information for more than 1559 proteins was obtained. In the ischemia group proteins involved in inflammation were significantly up-regulated. The ratio for calgranulin B in the ischemia/sham group was 1.81 +/- 0.97 (p < 0.0001), for complement C3 the ratio was 1.81 +/- 0.49 (p < 0.0001), and for myeloperoxidase the ratio was 1.30 +/- 0.32. Myeloperoxidase was only recently documented in Kupffer cells. The antioxidative proteins Cu,Zn-superoxide dismutase (1.34 +/- 0.19; p < 0.001) and catalase (1.23 +/- 0.43; p < 0.001) were also elevated. In conclusion, ischemia/reperfusion injury induces alterations in the Kupffer cell proteome. Isotope ratio mass spectrometry is a powerful tool to investigate these reactions. The ability to simultaneously monitor several pathways involved in reperfusion stress may result in important mechanistic insight and possibly new treatment options.
Collapse
Affiliation(s)
- Jan Hirsch
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-0446, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
For the first time, a novel prefractionation method used in proteomic analysis was developed, which is performed by a novel aqueous two-phase system (NATPS) composed of n-butanol, (NH(4))(2)SO(4), and water. It can separate proteomic proteins into multigroups by one-step extraction. The phase-separation conditions of n-butanol solutions were studied in the presence of commonly used inorganic salts. The NATPS was subsequently developed. Using human serum albumin, zein, and gamma-globulin as model proteins, the separation effectiveness of the NATPS for protein was studied under affection factors, i.e., pH, n-butanol volume, protein, or salt concentration. The model and actual protein samples were separated by the NATPS and then directly used for gel electrophoresis without separating the target proteins from phase-forming reagents. It revealed that the NATPS could separate proteomic proteins into multigroups by one-step extraction. The NATPS has the advantages of rapidity, simplicity, low cost, biocompability, and high efficiency. It need not separate target proteins from the phase-forming reagents. The NATPS has great significance in separation and extraction of proteomic proteins, as well as in methodology.
Collapse
Affiliation(s)
- Haixin Bai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, Jilin 130022, China
| | | | | |
Collapse
|
35
|
Kumpf M, Gauglitz G. Biomolecular interaction analysis under electrophoretic flow conditions. Anal Bioanal Chem 2006; 384:1129-33. [PMID: 16465503 DOI: 10.1007/s00216-005-0283-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2005] [Revised: 12/10/2005] [Accepted: 12/12/2005] [Indexed: 10/25/2022]
Abstract
Combining the advantages of electrophoresis with the advantages of biomolecular interaction analysis (BIA) enables the biospecific detection of separated molecules; for example it permits differentiation between a complementary single-stranded DNA and a single nucleotide polymorphism. In order to integrate these two techniques, it is necessary to investigate whether it is possible to detect a biomolecular interaction under electrophoretic flow conditions. To this end a novel detection system was developed for electrophoresis that utilizes a label-free and time-resolved detection technique: reflectometric interference spectroscopy (RIfS). The biological functions of important analytes were investigated using this system. Although RIfS can be used as a postcolumn detector, it is also possible to use it to detect relevant substances under electrophoretic flow conditions. DNA-LNA, biotin-streptavidin and protein-protein interactions were detected using this coupled electrophoresis-RIfS set-up.
Collapse
Affiliation(s)
- Michael Kumpf
- Institute of Physical and Theoretical Chemistrym, IPTC, Eberhard-Karls-University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany.
| | | |
Collapse
|
36
|
Lei Z, Elmer AM, Watson BS, Dixon RA, Mendes PJ, Sumner LW. A Two-dimensional Electrophoresis Proteomic Reference Map and Systematic Identification of 1367 Proteins from a Cell Suspension Culture of the Model Legume Medicago truncatula. Mol Cell Proteomics 2005; 4:1812-25. [PMID: 16048909 DOI: 10.1074/mcp.d500005-mcp200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteome of a Medicago truncatula cell suspension culture was analyzed using two-dimensional electrophoresis and nanoscale HPLC coupled to a tandem Q-TOF mass spectrometer (QSTAR Pulsar i) to yield an extensive protein reference map. Coomassie Brilliant Blue R-250 was used to visualize more than 1661 proteins, which were excised, subjected to in-gel trypsin digestion, and analyzed using nanoscale HPLC/MS/MS. The resulting spectral data were queried against a custom legume protein database using the MASCOT search engine. A total of 1367 of the 1661 proteins were identified with high rigor, yielding an identification success rate of 83% and 907 unique protein accession numbers. Functional annotation of the M. truncatula suspension cell proteins revealed a complete tricarboxylic acid cycle, a nearly complete glycolytic pathway, a significant portion of the ubiquitin pathway with the associated proteolytic and regulatory complexes, and many enzymes involved in secondary metabolism such as flavonoid/isoflavonoid, chalcone, and lignin biosynthesis. Proteins were also identified from most other functional classes including primary metabolism, energy production, disease/defense, protein destination/storage, protein synthesis, transcription, cell growth/division, and signal transduction. This work represents the most extensive proteomic description of M. truncatula suspension cells to date and provides a reference map for future comparative proteomic and functional genomic studies of the response of these cells to biotic and abiotic stress.
Collapse
Affiliation(s)
- Zhentian Lei
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73402, USA
| | | | | | | | | | | |
Collapse
|
37
|
Shadforth I, Crowther D, Bessant C. Protein and peptide identification algorithms using MS for use in high-throughput, automated pipelines. Proteomics 2005; 5:4082-95. [PMID: 16196103 DOI: 10.1002/pmic.200402091] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Current proteomics experiments can generate vast quantities of data very quickly, but this has not been matched by data analysis capabilities. Although there have been a number of recent reviews covering various aspects of peptide and protein identification methods using MS, comparisons of which methods are either the most appropriate for, or the most effective at, their proposed tasks are not readily available. As the need for high-throughput, automated peptide and protein identification systems increases, the creators of such pipelines need to be able to choose algorithms that are going to perform well both in terms of accuracy and computational efficiency. This article therefore provides a review of the currently available core algorithms for PMF, database searching using MS/MS, sequence tag searches and de novo sequencing. We also assess the relative performances of a number of these algorithms. As there is limited reporting of such information in the literature, we conclude that there is a need for the adoption of a system of standardised reporting on the performance of new peptide and protein identification algorithms, based upon freely available datasets. We go on to present our initial suggestions for the format and content of these datasets.
Collapse
Affiliation(s)
- Ian Shadforth
- Cranfield Centre for Bioinformatics and IT, Cranfield University, Silsoe, UK
| | | | | |
Collapse
|
38
|
Stasyk T, Dubrovska A, Lomnytska M, Yakymovych I, Wernstedt C, Heldin CH, Hellman U, Souchelnytskyi S. Phosphoproteome profiling of transforming growth factor (TGF)-beta signaling: abrogation of TGFbeta1-dependent phosphorylation of transcription factor-II-I (TFII-I) enhances cooperation of TFII-I and Smad3 in transcription. Mol Biol Cell 2005; 16:4765-80. [PMID: 16055503 PMCID: PMC1237082 DOI: 10.1091/mbc.e05-03-0257] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 07/07/2005] [Accepted: 07/18/2005] [Indexed: 01/08/2023] Open
Abstract
Transforming growth factor-beta (TGFbeta) signaling involves activation of a number of signaling pathways, several of which are controlled by phosphorylation events. Here, we describe a phosphoproteome profiling of MCF-7 human breast epithelial cells treated with TGFbeta1. We identified 32 proteins that change their phosphorylation upon treatment with TGFbeta1; 26 of these proteins are novel targets of TGFbeta1. We show that Smad2 and Smad3 have different effects on the dynamics of TGFbeta1-induced protein phosphorylation. The identified proteins belong to nine functional groups, e.g., proteins regulating RNA processing, cytoskeletal rearrangements, and proteasomal degradation. To evaluate the proteomics findings, we explored the functional importance of TGFbeta1-dependent phosphorylation of one of the targets, i.e., transcription factor-II-I (TFII-I). We confirmed that TGFbeta1 stimulated TFII-I phosphorylation at serine residues 371 and 743. Abrogation of the phosphorylation by replacement of Ser371 and Ser743 with alanine residues resulted in enhanced complex formation between TFII-I and Smad3, and enhanced cooperation between TFII-I and Smad3 in transcriptional regulation, as evaluated by a microarray-based measurement of expression of endogenous cyclin D2, cyclin D3, and E2F2 genes, and by a luciferase reporter assay. Thus, TGFbeta1-dependent phosphorylation of TFII-I may modulate TGFbeta signaling at the transcriptional level.
Collapse
Affiliation(s)
- Taras Stasyk
- Ludwig Institute for Cancer Research, Uppsala University, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kaneko K, Yamanobe T, Onoda M, Mawatari KI, Nakagomi K, Fujimori S. Analysis of urinary calculi obtained from a patient with idiopathic hypouricemia using micro area x-ray diffractometry and LC-MS. ACTA ACUST UNITED AC 2005; 33:415-21. [PMID: 16133578 DOI: 10.1007/s00240-005-0480-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
Urolithiasis is a common complication in patients with hypouricemia. Using a microarea x-ray diffractometer and nanoflow liquid chromatography-mass spectrometry (LC-MS) following SDS-polyacrylamide gel electrophoresis (PAGE), recurrent urinary calculi complicating a hypouricemic patient were analyzed. Analysis with the microarea x-ray diffractometer showed that one of the calculi was composed of calcium oxalate monohydrate and hydroxyapatite. The other was found to be formed from calcium oxalate dihydrate. After determination with LC-MS, both were found to contain uromodulin, albumin, osteopontin, protein Z, and defensins. Lysozyme and calgranulin A were also identified in these calculi. Defensins, which were antimicrobial peptides, and lysozyme, a mucopeptide glycohydrolase, were identified as new organic components of urinary stones. The role of these proteins in the process of urolithiasis is of particular interest.
Collapse
Affiliation(s)
- Kiyoko Kaneko
- Department of Analytical Chemistry, School of Pharmaceutical Sciences, Teikyo University, Suwarashi 1091-1, Sagamiko-cho, Tsukui-gun, Kanagawa, 199-0195, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Ottens AK, Kobeissy FH, Wolper RA, Haskins WE, Hayes RL, Denslow ND, Wang KKW. A Multidimensional Differential Proteomic Platform Using Dual-Phase Ion-Exchange Chromatography−Polyacrylamide Gel Electrophoresis/Reversed-Phase Liquid Chromatography Tandem Mass Spectrometry. Anal Chem 2005; 77:4836-45. [PMID: 16053296 DOI: 10.1021/ac050478r] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Differential proteomic analysis has arisen as a large-scale means to discern proteome-wide changes upon treatment, injury, or disease. Tandem protein separation methods are required for large-scale differential proteomic analysis. Here, a novel multidimensional platform for resolving and differentially analyzing complex biological samples is presented. The platform, collectively termed CAX-PAGE/RPLC-MSMS, combines biphasic ion-exchange chromatography with polyacrylamide gel electrophoresis for protein separation, quantification, and differential band targeting, followed by capillary reversed-phase liquid chromatography and data-dependent tandem mass spectrometry for quantitative and qualitative peptide analysis. CAX-PAGE provides high protein resolving power with a theoretical peak capacity of 3570, extendable to 7600, a wide protein mass range verified from 16 to 273 kDa, and reproducible differential sample comparison without the added expense of fluorescent dyes and imaging equipment. Demonstrated using a neuroproteomic model, CAX-PAGE revealed an increased number of differential proteins, 137, compared with 82 found by 2D difference gel electrophoresis. When combined with RPLC-MSMS for protein identification, an additional quantification step is performed for internal validation, confirming a 2-fold or greater change in 89% of identified differential targets.
Collapse
Affiliation(s)
- Andrew K Ottens
- Center for Neuroproteomics and Biomarker Research, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Loyet KM, Ouyang W, Eaton DL, Stults JT. Proteomic profiling of surface proteins on Th1 and Th2 cells. J Proteome Res 2005; 4:400-9. [PMID: 15822916 DOI: 10.1021/pr049810q] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We utilized mass spectrometry to profile cell surface protein differential expression on primary human T helper (Th1 and Th2) cells with the stable isotope labeling by amino acids in cell culture (SILAC) approach. Proteomic and microarray analyses were done concurrently and results were compared for 38 different genes. Although microarray studies displayed wide variability between donors for mRNA expression, these two approaches were shown to be corroborative for most gene products with the exception of a small subset of uncorrelated protein and message levels. The greatest differing Th1 to Th2 ratios were observed for BST2 (bone marrow stromal protein 2) and TRIM (T cell receptor interacting molecule). Both showed greater Th1 expression by proteomic methods, even though mRNA levels were approximately equal for both. To validate this method, we compared protein expression levels of a recently cloned molecule, B and T cell lymphocyte attenuator (BTLA), on Th1 and Th2 cell populations and showed greater protein expression on Th1 cells, which agrees with a previous analysis of higher BTLA mRNA expression in Th1 cells.(1).
Collapse
Affiliation(s)
- Kelly M Loyet
- Protein Chemistry Department, Immunology Department, Genentech, South San Francisco, California 94080, USA.
| | | | | | | |
Collapse
|
42
|
Marouga R, David S, Hawkins E. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 2005; 382:669-78. [PMID: 15900442 DOI: 10.1007/s00216-005-3126-3] [Citation(s) in RCA: 436] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 01/17/2005] [Accepted: 01/24/2005] [Indexed: 01/18/2023]
Abstract
Two-dimensional (2D) gel electrophoresis is a powerful technique enabling simultaneous visualization of relatively large portions of the proteome. However, the well documented issues of variation and lack of sensitivity and quantitative capabilities of existing labeling reagents, has limited the use of this technique as a quantitative tool. Two-dimensional difference gel electrophoresis (2D DIGE) builds on this technique by adding a highly accurate quantitative dimension. 2D DIGE enables multiple protein extracts to be separated on the same 2D gel. This is made possible by labeling of each extract using spectrally resolvable, size and charge-matched fluorescent dyes known as CyDye DIGE fluors. 2D DIGE involves use of a reference sample, known as an internal standard, which comprises equal amounts of all biological samples in the experiment. Including the internal standard on each gel in the experiment with the individual biological samples means that the abundance of each protein spot on a gel can be measured relative (i.e. as a ratio) to its corresponding spot in the internal standard present on the same gel. Ettan DIGE is the system of technologies that has been optimized to fully benefit from the advantages provided by 2D DIGE.
Collapse
Affiliation(s)
- Rita Marouga
- GE Healthcare, Björkgatan 30, 75184 Uppsala, Sweden.
| | | | | |
Collapse
|
43
|
Ruotolo BT, McLean JA, Gillig KJ, Russell DH. The influence and utility of varying field strength for the separation of tryptic peptides by ion mobility-mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:158-165. [PMID: 15694766 DOI: 10.1016/j.jasms.2004.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 10/26/2004] [Accepted: 10/28/2004] [Indexed: 05/24/2023]
Abstract
The influence of field strength on the separation of tryptic peptides by drift tube-based ion mobility-mass spectrometry is reported. Operating the ion mobility drift tube at elevated field strengths (expressed in V cm(-1) torr(-1)) reduces separation times and increases ion transmission efficiencies. Several accounts in the literature suggest that performing ion mobility separation at elevated field strength can change the selectivity of ion separation. To evaluate the field strength dependant selectivity of ion mobility separation, we examined a data set of 65 singly charged tryptic peptide ion signals (mass range 500-2500 m/z) at six different field strengths and four different drift gas compositions (He, N2, Ar, and CH4). Our results clearly illustrate that changing the field strength from low field (15 V cm(-1) torr(-1)) to high field (66 V cm(-1) torr(-1)) does not significantly alter the selectivity or peak capacity of IM-MS. The implications of these results are discussed in the context of separation methodologies that rely on the field strength dependence of ion mobility for separation selectivity, e.g., high-field asymmetric ion mobility spectrometry (FAIMS).
Collapse
Affiliation(s)
- Brandon T Ruotolo
- Laboratory for Biological Mass Spectrometry, Department of Chemistry, Texas A&M University College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
44
|
Liu S, Zhang C, Campbell JL, Zhang H, Yeung KKC, Han VKM, Lajoie GA. Formation of phosphopeptide-metal ion complexes in liquid chromatography/electrospray mass spectrometry and their influence on phosphopeptide detection. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:2747-56. [PMID: 16136520 DOI: 10.1002/rcm.2105] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Despite major advances in mass spectrometry, the detection of phosphopeptides by liquid chromatography with electrospray mass spectrometry (LC/ES-MS) still remains very challenging in proteomics analysis. Phosphopeptides do not protonate efficiently due to the presence of one or more acidic phosphate groups, making their detection difficult. However, other mechanisms also contribute to the difficulties in phosphopeptide analysis by LC/ES-MS. We report here on one such undocumented problem: the formation of phosphopeptide-metal ion complexes during LC/ES-MS. It is demonstrated that both synthetic phosphopeptides and phosphopeptides from bovine beta-casein and alpha-casein form phosphopeptide-metal ion complexes containing iron and aluminum ions, resulting in a dramatic decrease in signal intensity of the protonated phosphopeptides. The interaction of phosphopeptides with metal ions on the surface of the C18 stationary phase is also shown to alter their chromatographic behavior on reversed-phase columns such that the phosphopeptides, especially multiply phosphorylated peptides, become strongly retained and very difficult to elute. The sources of iron and aluminum are from the solvents, stainless steel, glassware and C18 material. It was also found that, upon addition of EDTA, the formation of the phosphopeptide-metal ion complex is diminished, and the phosphopeptides that did not elute from the LC column can now be detected efficiently as protonated molecules. The sensitivity of detection was greatly increased such that a tetra-phosphorylated peptide, RELEELNVPGEIVEpSLpSpSpSEESITR from the tryptic digestion of bovine beta-casein, was detected at a limit of detection of 25 fmol, which is 400 times lower than without EDTA.
Collapse
Affiliation(s)
- Suya Liu
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Methods in Proteomics. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1871-0069(05)01025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
46
|
Monton MRN, Terabe S. Recent Developments in Capillary Electrophoresis-Mass Spectrometry of Proteins and Peptides. ANAL SCI 2005; 21:5-13. [PMID: 15675508 DOI: 10.2116/analsci.21.5] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many researchers have invested considerable efforts toward improving capillary electrophoresis (CE)-mass spectrometry (MS) systems so they can be applied better to standard analyses. This review highlights the developments in CE-MS of proteins and peptides over the last five years. It includes the developments in interfaces, sample-enrichment techniques, microfabricated devices, and some applications, largely in capillary zone electrophoresis (CZE), capillary isoelectric focusing (CIEF) and capillary isotachophoresis formats.
Collapse
Affiliation(s)
- Maria Rowena N Monton
- Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan.
| | | |
Collapse
|
47
|
Koerner T, Oleschuk RD. Porous polymer monolith assisted electrospray from a glass microdevice. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:3279-86. [PMID: 16217844 DOI: 10.1002/rcm.2181] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The coupling of a lab-on-a-chip microfluidic device to a nanoelectrospray ionization mass spectrometer has the potential to automate many routine analytical procedures and produce a powerful analytical tool. However, past coupling strategies have relied on complex manufacturing steps including drilling and etching the device to attach a capillary or building a nanospray emitter directly into the device. This study shows that a nanospray emitter can be easily fabricated using a porous polymer monolith (PPM) at the end of a glass microdevice. These devices are able to obtain a stable electrospray at a variety of flow rates (50-500 nL/min) but optimal results are obtained at lower flow rates (50-100 nL/min) compatible with electroosmotic flow processes. The PPM is photo-patterned so that it can be placed in any position within the channel of the device with no dead volume. The porous character and the hydrophobic nature of the PPM both aid in development of a stable electrospray process. Total ion current traces for the constant infusion of leucine-enkephalin and PPG show relative standard errors as low as 4%, and produce mass spectra with good signal-to-noise (S/N 43) from only 2 fmol of material. In addition, multiple experiments in a given day show good repeatability with variability as low as 13%, and the multiple flow paths inherent in the PPM limit sprayer clogging.
Collapse
Affiliation(s)
- Terry Koerner
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | | |
Collapse
|
48
|
Fujii K, Nakano T, Hike H, Usui F, Bando Y, Tojo H, Nishimura T. Fully automated online multi-dimensional protein profiling system for complex mixtures. J Chromatogr A 2004; 1057:107-13. [PMID: 15584229 DOI: 10.1016/j.chroma.2004.09.078] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For high throughput proteome analysis of highly complex protein mixtures, we have constructed a fully automated online system for multi-dimensional protein profiling, which utilizes a combination of two-dimensional liquid chromatography and tandem mass spectrometry (2D-LC-MS-MS), based on our well-established offline system described previously [K. Fujii, T. Nakano, T. Kawamura, F. Usui, Y. Bando, R. Wang, T. Nishimura, J. Proteome Res. 3 (2004) 712]. A two-valve switching system on a programmable auto sample injector is utilized for online two-dimensional chromatography with strong cation-exchange (SCX) and reversed-phase (RP) separations. The SCX separation is carried out during the equilibration of RP chromatography and the entire sequence of analysis was performed under fully automated conditions within 4 h, based on six SCX fractionations, and 40 min running time for the two-dimensional RP chromatography. In order to evaluate its performance in the detection and identification of proteins, digests of six standard proteins and yeast 20S proteasome have been analyzed and their results were compared to those obtained by the one-dimensional reversed-phase chromatography system (ID-LC-MS-MS). The 2D-LC-MS-MS system demonstrated that both the number of peptide fragments detected and the protein coverage had more than doubled. Furthermore, this multi-dimensional protein profiling system was also applied to the human 26S proteasome, which is one of the highly complex protein mixtures. Consequently, 723 peptide fragments were identified as 31 proteasome components, together with other coexisting proteins in the sample. The identification could be comprehensively performed with a 63% sequence coverage on an average, and additionally, with modifications at the N-terminus. These results indicated that the online 2D-LC-MS-MS system being described here is capable of analyzing highly complex protein mixtures in a high throughput manner, and that it would be applicable to dynamic proteomics.
Collapse
Affiliation(s)
- Kiyonaga Fujii
- Clinical Proteome Center, Tokyo Medical University, 2-6-1, Nishi-shinjuku Shinjuku-ku, Tokyo 163-0217, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Proteomics is an increasingly powerful and indispensable technology in molecular cell biology. It can be used to identify the components of small protein complexes and large organelles, to determine post-translational modifications and in sophisticated functional screens. The key - but little understood - technology in mass-spectrometry-based proteomics is peptide sequencing, which we describe and review here in an easily accessible format.
Collapse
Affiliation(s)
- Hanno Steen
- Department of Systems Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
50
|
Roussel C, Dayon L, Jensen H, Girault HH. On-line cysteine modification for protein analysis: new probes for electrochemical tagging nanospray mass spectrometry. J Electroanal Chem (Lausanne) 2004. [DOI: 10.1016/j.jelechem.2004.03.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|