1
|
Barman P, Chakraborty P, Guha S, Kaja A, Bhaumik R, Bhaumik SR. TAP-MS analysis of FACT interactions and regulation by a ubiquitin ligase, San1. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195077. [PMID: 39855624 DOI: 10.1016/j.bbagrm.2025.195077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 12/20/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
An evolutionarily conserved heterodimeric FACT (Facilitates chromatin transcription) regulates transcription, DNA repair, replication and other cellular processes via its interactions with other proteins. FACT is recently found to be regulated via ubiquitylation and 26S proteasomal degradation, alteration of which is associated with aberrant transcription and genome integrity. However, there has not been a systematic study to analyze FACT interactions proteome-wide in the presence and absence of its UPS (Ubiquitin-proteasome system) regulation, which could reveal new FACT interactors with mechanistic and functional implications. Here, we have adopted a proteome-wide approach via TAP (Tandem affinity purification)-mediated pull-down of FACT and its interactors from the soluble and insoluble cellular fractions followed by MS (Mass-spectrometry) analysis. We find distinct interactors of FACT in the soluble and insoluble fractions in addition to a common set in both. While a set of all these interactors overlaps with previously known FACT partners, many are new, which are involved in different cellular processes such as transcription, DNA repair and chromatin regulation. Further, an intrinsically disordered ubiquitin ligase, San1, that ubiquitylates the Spt16 component of FACT for proteasomal degradation to regulate chromatin, transcription and genome integrity is found to influence the interactions of FACT with a set of proteins including epigenetic, transcription and DNA repair factors. Collectively, our results unveil proteome-wide FACT interactions and regulation by a ubiquitin ligase, hence shedding much light on FACT networks with functional and mechanistic implications.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Amala Kaja
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Rhea Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA.
| |
Collapse
|
2
|
Malheiros JM, Reolon HG, Bosquini BG, Baldi F, Lourenco D, Fragomeni BO, Silva RMO, Paz CCP, Stafuzza NB. Identification of biological pathways and putative candidate genes for residual feed intake in a tropically adapted beef cattle breed by plasma proteome analysis. J Proteomics 2025; 312:105361. [PMID: 39638144 DOI: 10.1016/j.jprot.2024.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/11/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
This study identified potential biomarkers for feed efficiency by blood plasma proteome analysis of a tropically adapted beef cattle breed. Two experimental groups were selected based on residual feed intake (RFI). The proteome was investigated by LC-MS/MS in a data-dependent acquisition mode. After quality control, 123 differentially abundant proteins (DAPs) were identified between the two experimental groups. Among DAPs with the highest absolute log-fold change values, the PRDM2, KRT5, UGGT1, DENND5B, B2M, SLC44A2, SLC7A2, PTPRC, and FETUB were highlighted as potential biomarkers because of their functions that may contribute to RFI. Furthermore, functional enrichment analysis revealed several biological processes, molecular functions and pathways that contributes to RFI, such as cell signaling, cellular responses to stimuli, immune system, calcium, hormones, metabolism and functions of proteins, lipids and carbohydrates. Protein-protein interaction analysis identified 32 and 11 DAPs as important nodes based on their interactions in the high- and low-RFI groups, respectively. This study represents the first comprehensive profiling of the blood plasma proteome of a tropically adapted beef cattle breed and provides valuable insights into the potential roles of these DAPs in key biological processes and pathways, contributing to our understanding of the mechanisms underlying feed efficiency in tropically adapted beef cattle. SIGNIFICANCE: LC-MS/MS analysis was performed to investigate changes in the blood plasma proteome associated with residual feed intake (RFI) in a tropically adapted beef cattle breed (Bos taurus taurus). Some putative biomarkers were identified to distinguish the high-RFI to low-RFI animals, based on their log-fold change value or on their protein-protein interaction network, which provide helpful sources in developing novel selection strategies for breeding programs. Our findings also revealed valuable insights into the metabolic pathways and biological processes that contribute to RFI in beef cattle, such as those closely linked to cell signaling, cellular responses to stimuli, immune system, calcium, hormones, metabolism and functions of proteins, lipids and carbohydrates.
Collapse
Affiliation(s)
- Jessica M Malheiros
- Beef Cattle Research Center, Animal Science Institute, 14174-000 Sertãozinho, SP, Brazil
| | - Henrique G Reolon
- Beef Cattle Research Center, Animal Science Institute, 14174-000 Sertãozinho, SP, Brazil
| | - Bruna G Bosquini
- Beef Cattle Research Center, Animal Science Institute, 14174-000 Sertãozinho, SP, Brazil
| | - Fernando Baldi
- Department of Animal Science, School of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900 Jaboticabal, SP, Brazil
| | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, 30602 Athens, GA, USA.
| | - Breno O Fragomeni
- Department of Animal Science, University of Connecticut, 06269 Storrs, CT, USA.
| | | | - Claudia C P Paz
- Sustainable Livestock Research Center, Animal Science Institute, 15130-000 São José do Rio Preto, SP, Brazil
| | - Nedenia B Stafuzza
- Beef Cattle Research Center, Animal Science Institute, 14174-000 Sertãozinho, SP, Brazil.
| |
Collapse
|
3
|
Ahn JH, Guo Y, Lyons H, Mackintosh SG, Lau BK, Edmondson RD, Byrum SD, Storey AJ, Tackett AJ, Cai L, Sabari BR, Wang GG. The phenylalanine-and-glycine repeats of NUP98 oncofusions form condensates that selectively partition transcriptional coactivators. Mol Cell 2025; 85:708-725.e9. [PMID: 39922194 DOI: 10.1016/j.molcel.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/21/2024] [Accepted: 12/30/2024] [Indexed: 02/10/2025]
Abstract
Recurrent cancer-causing fusions of NUP98 produce higher-order assemblies known as condensates. How NUP98 oncofusion-driven condensates activate oncogenes remains poorly understood. Here, we investigate NUP98-PHF23, a leukemogenic chimera of the disordered phenylalanine-and-glycine (FG)-repeat-rich region of NUP98 and the H3K4me3/2-binding plant homeodomain (PHD) finger domain of PHF23. Our integrated analyses using mutagenesis, proteomics, genomics, and condensate reconstitution demonstrate that the PHD domain targets condensate to the H3K4me3/2-demarcated developmental genes, while FG repeats determine the condensate composition and gene activation. FG repeats are necessary to form condensates that partition a specific set of transcriptional regulators, notably the KMT2/MLL H3K4 methyltransferases, histone acetyltransferases, and BRD4. FG repeats are sufficient to partition transcriptional regulators and activate a reporter when tethered to a genomic locus. NUP98-PHF23 assembles the chromatin-bound condensates that partition multiple positive regulators, initiating a feedforward loop of reading-and-writing the active histone modifications. This network of interactions enforces an open chromatin landscape at proto-oncogenes, thereby driving cancerous transcriptional programs.
Collapse
Affiliation(s)
- Jeong Hyun Ahn
- Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Benjamin K Lau
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ling Cai
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Gang Greg Wang
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Chowdhury O, Bammidi S, Gautam P, Babu VS, Liu H, Shang P, Xin Y, Mahally E, Nemani M, Koontz V, Lathrop K, Kedziora KM, Franks J, Sun M, Smith JW, DeVine LR, Cole RN, Stepicheva N, Strizhakova A, Chattopadhyay S, Hose S, Zigler JS, Sahel JA, Qian J, Guha P, Handa JT, Ghosh S, Sinha D. Activated mTOR Signaling in the RPE Drives EMT, Autophagy, and Metabolic Disruption, Resulting in AMD-Like Pathology in Mice. Aging Cell 2025:e70018. [PMID: 39957408 DOI: 10.1111/acel.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025] Open
Abstract
The mechanistic target of rapamycin (mTOR) complexes 1 and 2 (mTORC1/2) are crucial for various physiological functions. Although the role of mTORC1 in retinal pigmented epithelium (RPE) homeostasis and age-related macular degeneration (AMD) pathogenesis is established, the function of mTORC2 remains unclear. We investigated both complexes in RPE health and disease. Therefore, in this study, we have attempted to demonstrate that the specific overexpression of mammalian lethal with Sec13 protein 8 (mLST8) in the mouse RPE activates both mTORC1 and mTORC2, inducing epithelial-mesenchymal transition (EMT)-like changes and subretinal/RPE deposits resembling early AMD-like pathogenesis. Aging in these mice leads to RPE degeneration, causing retinal damage, impaired debris clearance, and metabolic and mitochondrial dysfunction. Inhibition of mTOR with TORIN1 in vitro or βA3/A1-crystallin in vivo normalized mTORC1/2 activity and restored function, revealing a novel role for the mTOR complexes in regulating RPE function, impacting retinal health and disease.
Collapse
Affiliation(s)
- Olivia Chowdhury
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sridhar Bammidi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Pooja Gautam
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vishnu Suresh Babu
- Department of Ophthalmology, The Wilmer Eye Institute, the Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Peng Shang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ying Xin
- Department of Ophthalmology, The Wilmer Eye Institute, the Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Emma Mahally
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mihir Nemani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Victoria Koontz
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kira Lathrop
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Katarzyna M Kedziora
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jonathan Franks
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ming Sun
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joshua W Smith
- Johns Hopkins Mass Spectrometry and Proteomics Facility, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lauren R DeVine
- Johns Hopkins Mass Spectrometry and Proteomics Facility, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Robert N Cole
- Johns Hopkins Mass Spectrometry and Proteomics Facility, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nadezda Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anastasia Strizhakova
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jacob Samuel Zigler
- Department of Ophthalmology, The Wilmer Eye Institute, the Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institut De La Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Jiang Qian
- Department of Ophthalmology, The Wilmer Eye Institute, the Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Prasun Guha
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Nevada, USA
| | - James T Handa
- Department of Ophthalmology, The Wilmer Eye Institute, the Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Ophthalmology, The Wilmer Eye Institute, the Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Cai W, Dubreuil N, Abu Nada L, Zhou WBS, Basiri T, Hadad A, Charde P, Ducret M, Tamimi F. Dental Calculus Formation Rate: The Role of Salivary Proteome and Metaproteome. J Clin Periodontol 2025. [PMID: 39953744 DOI: 10.1111/jcpe.14142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/23/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Dental calculus accumulation varies across individuals. While various factors contribute to its accumulation, the role of salivary composition remains underexplored. This study aims to compare individuals suffering from rapid rates of dental calculus formation rates with those having slow formation rates in terms of salivary electrochemical properties as well as its proteomic, metaproteomic and elemental composition. METHODS A total of 26 patients with a history of dental calculus were recruited. Saliva samples were collected and evaluated for electrochemical properties as well as elemental, proteomic and metaproteomic composition. Patients were provided scaling treatment to remove all calculus. Six months after the dental cleaning patients were re-assessed for the presence of dental calculus. Based on the dental calculus formation rate participants were categorised into slow (57.7%) and rapid calculus formers (42.3%) that were then assessed for differences in salivary composition. RESULTS Rapid calculus formers exhibited a more neutral zeta-potential and lower concentration of salivary calcium ions than their slow-forming counterparts. Proteomic analysis identified 895 proteins across all samples. Of these, 38 proteins were exclusive to the rapid formation group, while 24 proteins were specific to the slow group. The rapid group demonstrated augmented pathways related to cell binding (e.g., cytoskeletal regulation by Rho GTPase and integrin signalling), inflammatory mediation (e.g., chemokine and cytokine signalling) and neurodegenerative disorders (e.g., 5-Hydroxytryptamine degradation, Huntington's disease and Parkinson's disease) and significant enrichment in peptidase inhibitor activity. In contrast, the slow group demonstrated enrichment mainly in immune response. Metaproteomic analysis for salivary bacteria showed significant predominance of Streptococci in the rapid group and elevated levels of Rothia in the slow group. CONCLUSION The saliva of patients with rapid calculus formation rates differs from that of patients with slow rates of calculus formation in terms of electrochemical properties as well as proteomic, metaproteomic and elemental composition.
Collapse
Affiliation(s)
- Wenji Cai
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | | | - Lina Abu Nada
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, UAE
| | - Wen Bo Sam Zhou
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Tayebeh Basiri
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Amir Hadad
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| | - Priti Charde
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| | - Maxime Ducret
- Faculté d'Odontologie, Université de Lyon, Lyon, France
| | - Faleh Tamimi
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Zhang H, Bensaddek D. Optimized Time-Segmented Acquisition Expands Peptide and Protein Identification in TIMS-TOF Pro Mass Spectrometry. J Proteome Res 2025; 24:526-536. [PMID: 39842810 PMCID: PMC11811991 DOI: 10.1021/acs.jproteome.4c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
We introduce here a novel approach, termed time-segmented acquisition (Seg), to enhance the identification of peptides and proteins in trapped ion mobility spectrometry (TIMS)-time-of-flight (TOF) mass spectrometry. Our method exploits the positive correlation between ion mobility values and reversed-phase liquid chromatography (LC) retention time to improve ion separation and resolution. By dividing the LC retention time into multiple segments and applying a segment-specific narrower ion mobility range within the TIMS tunnel, we achieved better separation and higher resolution of ion mobility. In comparison to conventional TIMS methods, which typically scan a static ion mobility range (either from 0.6 to 1.6 [Wide] or from 0.85 to 1.3 [Narrow], V × s/cm2), the Seg method demonstrates marked improvements in identification rates. Compared to Wide scanning, the Seg method increases peptide identifications by 17-27% and protein identifications by 6-16% depending on the gradient length and the sample load. The enhancement in peptide identification is even more pronounced when compared to Narrow scanning, with an increase of 34-86%. These findings highlight the potential of the Seg dda-PASEF method in expanding the capabilities of TIMS-TOF mass spectrometry, especially for peptide-focused analyses, such as post-translational modifications and peptidomics.
Collapse
Affiliation(s)
- Huoming Zhang
- Corelabs, King Abdullah University of Science and Technology, Thuwal 23500-6900, Kingdom of Saudi Arabia
| | - Dalila Bensaddek
- Corelabs, King Abdullah University of Science and Technology, Thuwal 23500-6900, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Leydon AR, Downing B, Solano Sanchez J, Loll-Krippleber R, Belliveau NM, Rodriguez-Mias RA, Bauer AJ, Watson IJ, Bae L, Villén J, Brown GW, Nemhauser JL. A function of TPL/TBL1-type corepressors is to nucleate the assembly of the preinitiation complex. J Cell Biol 2025; 224:e202404103. [PMID: 39652081 PMCID: PMC11627113 DOI: 10.1083/jcb.202404103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/04/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024] Open
Abstract
The plant corepressor TPL is recruited to diverse chromatin contexts, yet its mechanism of repression remains unclear. Previously, we leveraged the fact that TPL retains its function in a synthetic transcriptional circuit in the yeast model Saccharomyces cerevisiae to localize repressive function to two distinct domains. Here, we employed two unbiased whole-genome approaches to map the physical and genetic interactions of TPL at a repressed locus. We identified SPT4, SPT5, and SPT6 as necessary for repression with SPT4 acting as a bridge connecting TPL to SPT5 and SPT6. We discovered the association of multiple additional constituents of the transcriptional preinitiation complex at TPL-repressed promoters, specifically those involved early in transcription initiation. These findings were validated in yeast and plants, including a novel method to analyze the conditional loss of function of essential genes in plants. Our findings support a model where TPL nucleates preassembly of the transcription activation machinery to facilitate the rapid onset of transcription once repression is relieved.
Collapse
Affiliation(s)
| | - Benjamin Downing
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | | | | | | | - Andrew J. Bauer
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | - Lena Bae
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Grant W. Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON, USA
| | | |
Collapse
|
8
|
Polasky DA, Lu L, Yu F, Li K, Shortreed MR, Smith LM, Nesvizhskii AI. Quantitative proteome-wide O-glycoproteomics analysis with FragPipe. Anal Bioanal Chem 2025; 417:921-930. [PMID: 38877149 PMCID: PMC11648966 DOI: 10.1007/s00216-024-05382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
Identification of O-glycopeptides from tandem mass spectrometry data is complicated by the near complete dissociation of O-glycans from the peptide during collisional activation and by the combinatorial explosion of possible glycoforms when glycans are retained intact in electron-based activation. The recent O-Pair search method provides an elegant solution to these problems, using a collisional activation scan to identify the peptide sequence and total glycan mass, and a follow-up electron-based activation scan to localize the glycosite(s) using a graph-based algorithm in a reduced search space. Our previous O-glycoproteomics methods with MSFragger-Glyco allowed for extremely fast and sensitive identification of O-glycopeptides from collisional activation data but had limited support for site localization of glycans and quantification of glycopeptides. Here, we report an improved pipeline for O-glycoproteomics analysis that provides proteome-wide, site-specific, quantitative results by incorporating the O-Pair method as a module within FragPipe. In addition to improved search speed and sensitivity, we add flexible options for oxonium ion-based filtering of glycans and support for a variety of MS acquisition methods and provide a comparison between all software tools currently capable of O-glycosite localization in proteome-wide searches.
Collapse
Affiliation(s)
- Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| | - Lei Lu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pharmaceutical Chemistry, University of San Francisco, San Francisco, CA, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kai Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Pan JM, Betts H, Cubbon A, He L, Bolt EL, Soultanas P. The human HELQ helicase and XRN2 exoribonuclease cooperate in R-loop resolution. Open Biol 2025; 15:240112. [PMID: 39965657 DOI: 10.1098/rsob.240112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
The human HELQ helicase is a superfamily 2, 3'-5 helicase homologous to POLQ and RNA helicases of the Ski2-like subfamily. It is involved in diverse aspects of DNA repair and is an emerging prognosis biomarker and novel drug target for cancer therapy. HELQ interacts with RPA through its inherently disordered N-HELQ domain and hence is recruited to RPA-bound DNA substrates. Our study reveals a novel role for HELQ in R-loop resolution. We show in cells and in vitro that HELQ is recruited by RPA at R-loops, which are then resolved if HELQ is catalytically active as an ATPase/helicase. Furthermore, we identify a functional interaction of HELQ with XRN2, a nuclear 5' to 3' exoribonuclease, which we suggest coordinates R-loop unwinding by HELQ with RNA digestion by XRN2. Collectively, we assign a new biological function for HELQ in genome stability in metazoans through its involvement with XRN2 in R-loop metabolism.
Collapse
Affiliation(s)
- J M Pan
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - H Betts
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - A Cubbon
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - L He
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - E L Bolt
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - P Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
10
|
Ahmed KA, Yeap HL, Coppin CW, Liu JW, Pandey G, Taylor PW, Lee SF, Oakeshott JG. Seminal fluid proteins in the Queensland fruit fly: Tissue origins, effects of mating and comparative genomics. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104247. [PMID: 39667437 DOI: 10.1016/j.ibmb.2024.104247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
In many insect species, the ability of males to inhibit their mates from remating is an important component of fitness. This ability is also essential for the effective management of insect pests, including tephritid fruit flies, using the Sterile Insect Technique. Here we apply transcriptomics and proteomics to male reproductive tissues before and after mating to characterize components of semen that might mediate remating inhibition in Queensland fruit fly. We found 144 genes whose transcripts were enriched, or proteins expressed, in reproductive tissue and which also varied in amount after mating. Some were associated with testes, accessory glands and ejaculatory apodeme, but those from the ejaculatory apodeme were over-represented compared to those not enriched in reproductive tissue or mating responsive. These included 13 related genes clustered within one Mb on chromosome 5. Functional annotations implicated a broad range of biochemical processes in the genes/proteins enriched in reproductive tissue and mating responsive, with cuticle structure most commonly implicated among the subset of these that were apodeme-enriched and a kinase involved in vitellogenesis implicated for one of the 13 clustered genes. We did not find a homolog of the much studied Drosophila melanogaster Sex Peptide but comparative genomics indicated that some of the tissue-enriched, mating responsive genes/proteins were rapidly evolving in tephritids (including in the Queensland fruit fly lineage), suggesting recent adaptation to new functional niches. Our results provide a set of candidate mediators of remating inhibition for further functional testing.
Collapse
Affiliation(s)
- Khandaker Asif Ahmed
- Applied BioSciences, Macquarie University, NSW, 2109, Australia; CSIRO Environment, Black Mountain, ACT, 2601, Australia; CSIRO Australian Animal Health Laboratory (AAHL), Australian Centre for Disease Preparedness (ACDP), East Geelong, VIC, 3220, Australia.
| | - Heng Lin Yeap
- CSIRO Environment, Black Mountain, ACT, 2601, Australia; CSIRO Health and Biosecurity, Parkville, VIC, 3052, Australia
| | | | - Jian-Wei Liu
- CSIRO Environment, Black Mountain, ACT, 2601, Australia
| | - Gunjan Pandey
- Applied BioSciences, Macquarie University, NSW, 2109, Australia; CSIRO Environment, Black Mountain, ACT, 2601, Australia
| | | | - Siu Fai Lee
- Applied BioSciences, Macquarie University, NSW, 2109, Australia; CSIRO Environment, Black Mountain, ACT, 2601, Australia.
| | - John G Oakeshott
- Applied BioSciences, Macquarie University, NSW, 2109, Australia; CSIRO Environment, Black Mountain, ACT, 2601, Australia.
| |
Collapse
|
11
|
Masuda D, Okada T, Sairyou M, Takafuji K, Ohama T, Koseki M, Nishida M, Sakata Y, Yamashita S. Proteomic Analysis of Human Chylomicron Remnants Isolated by Apolipoprotein B-48 Immunoprecipitation. J Atheroscler Thromb 2025; 32:226-238. [PMID: 39085140 PMCID: PMC11802255 DOI: 10.5551/jat.64920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
AIM Postprandial hypertriglyceridemia (PHTG) is an independent risk factor for coronary heart diseases. PHTG exhibits accumulation of apoB-48 containing chylomicron remnants (CM-Rs) and apoB-100 containing VLDL remnants (VLDL-Rs), which are both known to be atherogenic. However, unlike VLDL-Rs, structural and functional characterization of CM-Rs remains to be elucidated due to challenges in separating CM-Rs from VLDL-Rs. Recently, we successfully isolated CM-Rs and VLDL-Rs utilizing anti-apoB-48 or apoB-100 specific antibodies. This study aimed to characterize the proteome of CM-Rs along with that of VLDL-Rs. METHODS Eight healthy subjects were enrolled. Venous blood was drawn 3 hours after high-fat-containing meals. We isolated CM-Rs and VLDL-Rs from sera through combination of ultracentrifugation and immunoprecipitation using apoB-48 or apoB-100 specific antibodies, followed by shotgun proteomic analysis. RESULTS We identified 42 CM-Rs or VLDL-Rs-associated proteins, including 11 potential newly identified proteins such as platelet basic protein (PPBP) and platelet factor 4, which are chemokines secreted from platelets. ApoA-I, apoA-IV, and clusterin, which are also known as HDL-associated proteins, were significantly more abundant in CM-Rs. Interestingly, apoC-I, which reduces the activity of lipoprotein lipase and eventually inhibits catabolism of remnant proteins, was also more abundant in CM-Rs. Moreover, we identified proteins involved in complement regulation such as complement C3 and vitronectin, and those involved in acute-phase response such as PPBP, serum amyloid A protein 2, and protein S100-A8, in both CM-Rs and VLDL-Rs. CONCLUSIONS We have firstly characterized the proteome of CM-Rs. These findings may provide an explanation for the atherogenic properties of CM-Rs.
Collapse
Affiliation(s)
- Daisaku Masuda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Cardiology, Rinku General Medical Center, Izumisano, Osaka, Japan
| | - Takeshi Okada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Community Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masami Sairyou
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuaki Takafuji
- Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tohru Ohama
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Makoto Nishida
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Health Care Division, Health and Counseling Center, Osaka University, Osaka, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shizuya Yamashita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Community Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Cardiology, Rinku General Medical Center, Izumisano, Osaka, Japan
| |
Collapse
|
12
|
Carvalho RPR, Costa RVD, Carvalho IRD, Viana AGA, Lopez CR, Oliveira MS, Guimarães-Ervilha LO, Sousa WVD, Bastos DSS, Miranda ED, Nogueira FCS, Machado-Neves M. Dose-related effects of eugenol: Exploring renal functionality and morphology in healthy Wistar rats. Food Chem Toxicol 2025; 196:115244. [PMID: 39793947 DOI: 10.1016/j.fct.2025.115244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Eugenol has pharmacological properties, but its impact on renal function is limitedly studied. Thus, this study evaluated the effects of eugenol at 10, 20, and 40 mg kg-1, administered via gavage for 60 days, on histological, biochemical, oxidative, and proteomic parameters in rat kidneys. Adult Wistar rats treated with 10 mg kg-1 of eugenol had kidneys with low total antioxidant capacity, high nitric oxide content, and high percentual of blood vessels, with no damage to renal function or morphology. The kidney proteome revealed an upregulation of proteins associated with energy metabolism, oxidative stress, and mitochondrial function. Eugenol at 20 mg kg-1 did not alter kidney histology but inhibited Na+/K+ ATPase activity. This dose elicited an upregulation of proteins associated with mitochondrial function and cellular defense. Finally, 40 mg kg-1 eugenol had more pronounced effects on the kidney, increasing serum sodium, potassium, and chloride levels, inhibiting Na+/K+ ATPase activity, triggering an adaptive response to oxidative stress, and showing apical brush border thinness in proximal tubules. We concluded that eugenol exerted dose-dependent effects on kidney function and morphology. These findings highlight the importance of careful consideration of eugenol's dosage in therapeutic applications.
Collapse
Affiliation(s)
| | - Rosiany Vieira da Costa
- Laboratory of Structural Biology, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Isadora Ribeiro de Carvalho
- Laboratory of Structural Biology, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Arabela Guedes Azevedo Viana
- Laboratory of Structural Biology, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Camilo Ramirez Lopez
- Laboratory of Structural Biology, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Mariana Souza Oliveira
- Laboratory of Structural Biology, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Luiz Otavio Guimarães-Ervilha
- Laboratory of Structural Biology, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Wassali Valadares de Sousa
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Proteomic Unit, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Department of Genetics, Institute of Biology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Silva Sena Bastos
- Laboratory of Structural Biology, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Edgar Diaz Miranda
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, School of Medicine, Columbia, MO, USA
| | - Fábio César Sousa Nogueira
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Proteomic Unit, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana Machado-Neves
- Laboratory of Structural Biology, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil; Department of Veterinary, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Fay CX, Zunica ERM, Awad E, Bradley W, Church C, Liu J, Liu H, Crossman DK, Mobley JA, Kirwan JP, Axelrod CL, Westin E, Kesterson RA, Wallis D. Global proteomics and affinity mass spectrometry analysis of human Schwann cells indicates that variation in and loss of neurofibromin (NF1) alters protein expression and cellular and mitochondrial metabolism. Sci Rep 2025; 15:3883. [PMID: 39890807 PMCID: PMC11785952 DOI: 10.1038/s41598-024-84493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 12/24/2024] [Indexed: 02/03/2025] Open
Abstract
In efforts to evaluate potential biomarkers and drug targets for Neurofibromatosis Type I (NF1) we utilized affinity mass spectrometry and global proteomics to investigate how variation within and loss of NF1 affect immortalized human Schwann cells. We used Strep tagged mNf1 cDNAs (both wild type (WT) and variant) to affinity purity NF1 Protein-Protein interactors (PPIs) from the Schwann cells. We were able to identify 98 PPIs and show that some of these PPIs bind differentially to variant proteins. Next, we evaluated global proteomes. We identified over 1900 proteins in immortalized human Schwann cells both with and without NF1 expression. We identified 148 proteins with differential expression levels based on genotype. Following Ingenuity Pathway analysis (IPA) we found multiple pathways were altered including decreases in "oxidative phosphorylation," increases in "mitochondrial dysfunction", and "glycolysis", as well as changes in "Myelination Signaling Pathway." When we evaluated the proteome of NF1 null cells stably transfected with tagged mNf1 cDNAs we again identified an overall trend of metabolic differences pertaining to "oxidative phosphorylation", "mitochondria dysfunction", and "glycolysis" in the variant cDNA expressing cells. We then validated differential expression of the following proteins: LAMC1, CYB5R3, and SOD2 that are observed in the altered pathways. Finally, consistent with our proteomics findings, we show that NF1 is required to maintain mitochondrial respiratory function in Schwann cells by stabilizing NADH-linked oxidative phosphorylation and electron transfer. Taken together, these data indicate that NF1 plays a significant role in mitochondrial metabolism that results in proteomic changes in Schwann cells and may serve as a future drug target.
Collapse
Affiliation(s)
- Christian X Fay
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | - Elias Awad
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - William Bradley
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Cameron Church
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jian Liu
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hui Liu
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David K Crossman
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - James A Mobley
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - John P Kirwan
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | - Erik Westin
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | - Deeann Wallis
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
14
|
Starble RM, Sun EG, Gbyli R, Radda J, Lu J, Jensen TB, Sun N, Khudaverdyan N, Hu B, Melnick MA, Zhao S, Roper N, Wang GG, Song J, Politi K, Wang S, Xiao AZ. Epigenetic priming promotes acquisition of tyrosine kinase inhibitor resistance and oncogene amplification in human lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.26.634826. [PMID: 39974875 PMCID: PMC11838195 DOI: 10.1101/2025.01.26.634826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
In mammalian cells, gene copy number is tightly controlled to maintain gene expression and genome stability. However, a common molecular feature across cancer types is oncogene amplification, which promotes cancer progression by drastically increasing the copy number and expression of tumor-promoting genes. For example, in tyrosine kinase inhibitor (TKI)-resistant lung adenocarcinoma (LUAD), oncogene amplification occurs in over 40% of patients' tumors. Despite the prevalence of oncogene amplification in TKI-resistant tumors, the mechanisms facilitating oncogene amplification are not fully understood. Here, we find that LUADs exhibit a unique chromatin signature demarcated by strong CTCF and cohesin deposition in drug-naïve tumors, which correlates with the boundaries of oncogene amplicons in TKI-resistant LUAD cells. We identified a global chromatin priming effect during the acquisition of TKI resistance, marked by a dynamic increase of H3K27Ac, cohesin loading, and inter-TAD interactions, which occurs before the onset of oncogene amplification. Furthermore, we have found that the METTL7A protein, which was previously reported to localize to the endoplasmic reticulum and inner nuclear membrane, has a novel chromatin regulatory function by binding to amplified loci and regulating cohesin recruitment and inter-TAD interactions. Surprisingly, we discovered that METTL7A remodels the chromatin landscape prior to large-scale copy number gains. Furthermore, while METTL7A depletion has little effect on the chromatin structure and proliferation of drug-naïve cells, METTL7A depletion prevents the formation and maintenance of TKI resistant-clones, highlighting the specific role of METTL7A as cells are becoming resistant. In summary, we discovered an unexpected mechanism required for the acquisition of TKI resistance regulated by a largely uncharacterized factor, METTL7A. This discovery sheds light into the maintenance of oncogene copy number and paves the way to the development of new therapeutics for preventing TKI resistance in LUAD.
Collapse
|
15
|
Pidgeon R, Mitchell S, Shamash M, Suleiman L, Dridi L, Maurice CF, Castagner B. Diet-derived urolithin A is produced by a dehydroxylase encoded by human gut Enterocloster species. Nat Commun 2025; 16:999. [PMID: 39856097 PMCID: PMC11760930 DOI: 10.1038/s41467-025-56266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Urolithin A (uroA) is a polyphenol derived from the multi-step metabolism of dietary ellagitannins by the human gut microbiota. Once absorbed, uroA can trigger mitophagy and aryl hydrocarbon receptor signaling pathways, altering host immune function, mitochondrial health, and intestinal barrier integrity. Most individuals harbor a microbiota capable of uroA production; however, the mechanisms underlying the dehydroxylation of its catechol-containing precursor (uroC) are unknown. Here, we use a combination of untargeted bacterial transcriptomics, proteomics, and comparative genomics to uncover an inducible uroC dehydroxylase (ucd) operon in Enterocloster species. We show that the ucd operon encodes a predicted molybdopterin-dependent enzyme complex that dehydroxylates urolithins at a specific position (9-OH). By interrogating publicly available metagenomics datasets, we observed that uroC-metabolizing Enterocloster species and ucd operon genes are prevalent in human feces. In ex vivo experiments with human fecal samples, only samples actively transcribing ucd could produce uroA, possibly explaining differences in urolithin metabolism between individuals. Collectively, this work identifies Enterocloster species and the ucd operon as important contributors to uroA production and establishes a multi-omics framework to further our mechanistic understanding of polyphenol metabolism by the human gut microbiota.
Collapse
Affiliation(s)
- Reilly Pidgeon
- Department of Pharmacology & Therapeutics, McGill University, 3655 Prom. Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Sacha Mitchell
- Department of Pharmacology & Therapeutics, McGill University, 3655 Prom. Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Michael Shamash
- Department of Microbiology & Immunology, McGill University, 3775 University Street, Montreal, Quebec, H3A 2B4, Canada
| | - Layan Suleiman
- Department of Pharmacology & Therapeutics, McGill University, 3655 Prom. Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Lharbi Dridi
- Department of Pharmacology & Therapeutics, McGill University, 3655 Prom. Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Corinne F Maurice
- Department of Microbiology & Immunology, McGill University, 3775 University Street, Montreal, Quebec, H3A 2B4, Canada
- McGill Centre for Microbiome Research, Montreal, Quebec, Canada
| | - Bastien Castagner
- Department of Pharmacology & Therapeutics, McGill University, 3655 Prom. Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada.
- McGill Centre for Microbiome Research, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
Venkataraman M, Infante V, Sabat G, Sanos-Giles K, Ané JM, Pfleger BF. A Novel Membrane-Associated Protein Aids Bacterial Colonization of Maize. ACS Synth Biol 2025; 14:206-215. [PMID: 39707987 PMCID: PMC11747777 DOI: 10.1021/acssynbio.4c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
The soil environment affected by plant roots and their exudates, termed the rhizosphere, significantly impacts crop health and is an attractive target for engineering desirable agricultural traits. Engineering microbes in the rhizosphere is one approach to improving crop yields that directly minimizes the number of genetic modifications made to plants. Soil microbes have the potential to assist with nutrient acquisition, heat tolerance, and drought response if they can persist in the rhizosphere in the correct numbers. Unfortunately, the mechanisms by which microbes adhere and persist on plant roots are poorly understood, limiting their application. This study examined the membrane proteome shift upon adherence to roots in two bacteria of interest, Klebsiella variicola and Pseudomonas putida. From this surface proteome data, we identified a novel membrane protein from a nonlaboratory isolate of P. putida that increases binding to maize roots using unlabeled proteomics. When this protein was moved from the environmental isolate to a common lab strain (P. putida KT2440), we observed increased binding capabilities of P. putida KT2440 to both abiotic mimic surfaces and maize roots. We observed a similar increased binding capability to maize roots when the protein was heterologously expressed in K. variicola and Stutzerimonas stutzeri. With the discovery of this novel binding protein, we outline a strategy for harnessing natural selection and wild isolates to build more persistent strains of bacteria for field applications and plant growth promotion.
Collapse
Affiliation(s)
- Maya Venkataraman
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA 53706
| | - Valentina Infante
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI, USA 53706
| | - Grzegorz Sabat
- Biotechnology Center, University of Wisconsin – Madison, Madison, WI, USA 53706
| | - Kai Sanos-Giles
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA 53706
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI, USA 53706
- Department of Plant and Agroecosystem Sciences, University of Wisconsin – Madison, Madison, WI, USA 53705
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA 53706
| |
Collapse
|
17
|
Chen MY, Cheng TW, Pan YC, Mou CY, Chiang YW, Lin WC, Hu CMJ, Mou KY. Endotoxin-Free Outer Membrane Vesicles for Safe and Modular Anticancer Immunotherapy. ACS Synth Biol 2025; 14:148-160. [PMID: 39763210 PMCID: PMC11744915 DOI: 10.1021/acssynbio.4c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Bacterial outer membrane vesicles (OMVs) have emerged as promising vehicles for anticancer drug delivery due to their inherent tumor tropism, immune-stimulatory properties, and potential for functionalization with therapeutic proteins. Despite their advantages, the high lipopolysaccharide (LPS) endotoxin content in the OMVs raises significant safety and regulatory challenges. In this work, we produce LPS-attenuated and LPS-free OMVs and systematically assess the effects of LPS modification on OMVs' physicochemical characteristics, membrane protein content, immune-stimulatory capacity, tolerability, and anticancer efficacy. Our findings reveal that LPS removal increased the maximal tolerated dose of the OMVs by over 25-fold. When adjusted for comparable safety profiles, LPS-free OMVs exhibit superior anticancer effects compared with wild-type OMVs. Mechanistic investigations indicate that the LPS removal obviates immune cell death caused by LPS and reduces the negatory effects of wild type of OMVs on tumor immune cell infiltrates. We further show the functionality of the LPS-free OMV through the incorporation of an IL-2 variant protein (Neo-2/15). This functionalization augments OMV's ability of the OMV to inhibit tumor growth and promote lymphocyte infiltration into the tumor microenvironment. This study presents a safe and functionalizable OMV with improved translational prospect.
Collapse
Affiliation(s)
- Mei-Yi Chen
- Chemical
Biology and Molecular Biophysics Program, Taiwan International Graduate
Program, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nangang
(Nankang) Dist., Taipei City 115201, Taiwan
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Ting-Wei Cheng
- Chemical
Biology and Molecular Biophysics Program, Taiwan International Graduate
Program, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nangang
(Nankang) Dist., Taipei City 115201, Taiwan
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chung Pan
- Chemical
Biology and Molecular Biophysics Program, Taiwan International Graduate
Program, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nangang
(Nankang) Dist., Taipei City 115201, Taiwan
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Yuan Mou
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Wei Chiang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wan-Chen Lin
- Chemical
Biology and Molecular Biophysics Program, Taiwan International Graduate
Program, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nangang
(Nankang) Dist., Taipei City 115201, Taiwan
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Che-Ming Jack Hu
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Kurt Yun Mou
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
18
|
Beenken KE, Campbell MJ, Byrum SD, Edmondson RD, Mackintosh SG, Tackett AJ, Smeltzer MS. Staphylococcus aureus Proteins Implicated in the Reduced Virulence of sarA and sarA/agr Mutants in Osteomyelitis. Microorganisms 2025; 13:181. [PMID: 39858949 PMCID: PMC11767506 DOI: 10.3390/microorganisms13010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Using a murine osteomyelitis model, we recently demonstrated that Staphylococcus aureus sarA and sarA/agr mutants generated in the USA300 strain LAC are attenuated to a greater extent than an isogenic agr mutant and that this can be attributed to a significant extent to the increased production of extracellular proteases in both mutants. Based on this, we used a mass-based proteomics approach to compare the proteomes of LAC, its isogenic agr, sarA, and sarA/agr mutants, and isogenic derivatives of all four of these strains unable to produce the extracellular proteases aureolysin, SspA, SspB, ScpA, or SplA-F. This allowed us to identify proteins that were present in reduced amounts in sarA, and sarA/agr mutants owing to the increased production of extracellular proteases. A total of 1039 proteins were detected in conditioned media (CM) from overnight cultures of LAC, and protease-mediated degradation was shown to contribute to the reduced abundance of 224 of these (21.6%) in CM from the sarA and sarA/agr mutants. Among these were specific proteins previously implicated in the pathogenesis and therapeutic recalcitrance of S. aureus osteomyelitis. This demonstrates that the ability of sarA to limit protease production plays a key role in post-translational remodeling of the S. aureus proteome to a degree that can be correlated with reduced virulence in our osteomyelitis model, and that it does so irrespective of the functional status of agr. This also suggests that at least some of these 224 proteins may be viable targets for prophylactic or therapeutic intervention.
Collapse
Affiliation(s)
- Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.J.C.); (M.S.S.)
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (R.D.E.); (S.G.M.); (A.J.T.)
| | - Mara J. Campbell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.J.C.); (M.S.S.)
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (R.D.E.); (S.G.M.); (A.J.T.)
| | - Rick D. Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (R.D.E.); (S.G.M.); (A.J.T.)
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (R.D.E.); (S.G.M.); (A.J.T.)
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (R.D.E.); (S.G.M.); (A.J.T.)
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.J.C.); (M.S.S.)
| |
Collapse
|
19
|
Samani EK, Hasan SMN, Waas M, Keszei AFA, Xu X, Heydari M, Hill ME, McLaurin J, Kislinger T, Mazhab-Jafari MT. Unveiling the structural proteome of an Alzheimer's disease rat brain model. Structure 2025; 33:51-61.e3. [PMID: 39615488 DOI: 10.1016/j.str.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 12/08/2024]
Abstract
Studying native protein structures at near-atomic resolution in a crowded environment presents challenges. Consequently, understanding the structural intricacies of proteins within pathologically affected tissues often relies on mass spectrometry and proteomic analysis. Here, we utilized cryoelectron microscopy (cryo-EM) and the Build and Retrieve (BaR) method to investigate protein complexes' structural characteristics such as post-translational modification, active site occupancy, and arrested conformational state in Alzheimer's disease (AD) using brain lysate from a rat model (TgF344-AD). Our findings reveal novel insights into the architecture of these complexes, corroborated through mass spectrometry analysis. Interestingly, it has been shown that the dysfunction of these protein complexes extends beyond AD, implicating them in cancer, as well as other neurodegenerative disorders such as Parkinson's disease, Huntington's disease, and schizophrenia. By elucidating these structural details, our work not only enhances our understanding of disease pathology but also suggests new avenues for future approaches in therapeutic intervention.
Collapse
Affiliation(s)
- Elnaz Khalili Samani
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - S M Naimul Hasan
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Matthew Waas
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Alexander F A Keszei
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Xiaoxiao Xu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mahtab Heydari
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Mary Elizabeth Hill
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - JoAnne McLaurin
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Mohammad T Mazhab-Jafari
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Li K, Teo GC, Yang KL, Yu F, Nesvizhskii AI. diaTracer enables spectrum-centric analysis of diaPASEF proteomics data. Nat Commun 2025; 16:95. [PMID: 39747075 PMCID: PMC11696033 DOI: 10.1038/s41467-024-55448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Data-independent acquisition has become a widely used strategy for peptide and protein quantification in liquid chromatography-tandem mass spectrometry-based proteomics studies. The integration of ion mobility separation into data-independent acquisition analysis, such as the diaPASEF technology available on Bruker's timsTOF platform, further improves the quantification accuracy and protein depth achievable using data-independent acquisition. We introduce diaTracer, a spectrum-centric computational tool optimized for diaPASEF data. diaTracer performs three-dimensional (mass to charge ratio, retention time, ion mobility) peak tracing and feature detection to generate precursor-resolved "pseudo-tandem mass spectra", facilitating direct ("spectral-library free") peptide identification and quantification from diaPASEF data. diaTracer is available as a stand-alone tool and is fully integrated into the widely used FragPipe computational platform. We demonstrate the performance of diaTracer and FragPipe using diaPASEF data from triple-negative breast cancer, cerebrospinal fluid, and plasma samples, data from phosphoproteomics and human leukocyte antigens immunopeptidomics experiments, and low-input data from a spatial proteomics study. We also show that diaTracer enables unrestricted identification of post-translational modifications from diaPASEF data using open/mass-offset searches.
Collapse
Affiliation(s)
- Kai Li
- Gilbert S. Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Guo Ci Teo
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kevin L Yang
- Gilbert S. Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| | - Alexey I Nesvizhskii
- Gilbert S. Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Park M, Nam JS, Kim T, Yoon G, Kim S, Lee C, Lee CG, Park S, Bejoymohandas KS, Yang J, Kwon YH, Lee YJ, Seo JK, Min D, Park T, Kwon T. Rational Design of Biocompatible Ir(III) Photosensitizer to Overcome Drug-Resistant Cancer via Oxidative Autophagy Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407236. [PMID: 39540573 PMCID: PMC11727131 DOI: 10.1002/advs.202407236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/25/2024] [Indexed: 11/16/2024]
Abstract
Autophagy is a crucial quality control mechanism that degrades damaged cellular components through lysosomal fusion with autophagosomes. However, elevated autophagy levels can promote drug resistance in cancer cells, enhancing their survival. Downregulation of autophagy through oxidative stress is a clinically promising strategy to counteract drug resistance, yet precise control of oxidative stress in autophagic proteins remains challenging. Here, a molecular design strategy of biocompatible neutral Ir(III) photosensitizers is demonstrated, B2 and B4, for precise reactive oxygen species (ROS) control at lysosomes to inhibit autophagy. The underlying molecular mechanisms for the biocompatibility and lysosome selectivity of Ir(III) complexes are explored by comparing B2 with the cationic or the non-lysosome-targeting analogs. Also, the biological mechanisms for autophagy inhibition via lysosomal oxidation are explored. Proteome analyses reveal significant oxidation of proteins essential for autophagy, including lysosomal and fusion-mediator proteins. These findings are verified in vitro, using mass spectrometry, live cell imaging, and a model SNARE complex. The anti-tumor efficacy of the precise lysosomal oxidation strategy is further validated in vivo with B4, engineered for red light absorbance. This study is expected to inspire the therapeutic use of spatiotemporal ROS control for sophisticated modulation of autophagy.
Collapse
Affiliation(s)
- Mingyu Park
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- X‐dynamic Research CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Jung Seung Nam
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- X‐dynamic Research CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- Institute for Cancer GeneticsDepartment of Genetics and DevelopmentColumbia University Medical CenterNew YorkNY10032USA
- Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNY10032USA
| | - Taehyun Kim
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohangGyeongbuk37673Republic of Korea
| | - Gwangsu Yoon
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- X‐dynamic Research CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Seoyoon Kim
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Chaiheon Lee
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- X‐dynamic Research CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Chae Gyu Lee
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Sungjin Park
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohangGyeongbuk37673Republic of Korea
| | - Kochan S. Bejoymohandas
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohangGyeongbuk37673Republic of Korea
| | - Jihyeon Yang
- Research CenterO2MEDi inc.Ulsan44919Republic of Korea
| | - Yoon Hee Kwon
- Research CenterO2MEDi inc.Ulsan44919Republic of Korea
| | - Yoo Jin Lee
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Jeong Kon Seo
- Research CenterO2MEDi inc.Ulsan44919Republic of Korea
| | - Duyoung Min
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Taiho Park
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohangGyeongbuk37673Republic of Korea
| | - Tae‐Hyuk Kwon
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- X‐dynamic Research CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- Research CenterO2MEDi inc.Ulsan44919Republic of Korea
| |
Collapse
|
22
|
Guo Y, Gao M, Liu X, Zhang H, Wang Y, Yan T, Wang B, Han X, Qi Y, Zhu H, Situ C, Li Y, Guo X. Single-Cell Multi-Omics Analysis of In Vitro Post-Ovulatory-Aged Oocytes Revealed Aging-Dependent Protein Degradation. Mol Cell Proteomics 2025; 24:100882. [PMID: 39571909 PMCID: PMC11728983 DOI: 10.1016/j.mcpro.2024.100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Once ovulated, the oocyte has to be fertilized in a short time window or it will undergo post-ovulation aging (POA), whose underlying mechanisms are still not elucidated. Here, we optimized single-cell proteomics methods and performed single-cell transcriptomic, proteomic, and phosphoproteomic analysis of fresh, POA, and melatonin-treated POA oocytes. POA oocytes showed downregulation of most differentially expressed proteins, with little correlation with mRNA expression, and the protein changes can be rescued by melatonin treatment. MG132 treatment rescued the decreased fertilization and polyspermy rates and upregulated fragmentation and parthenogenesis rates of POA oocytes. MG132-treated oocytes displayed health status at proteome, phosphoproteome, and fertilization ability similar to fresh oocytes, suggesting that protein stabilization might be the underlying mechanism for melatonin to rescue POA. The important roles of proteasome-mediated protein degradation during oocyte POA revealed by single-cell multi-omics analyses offer new perspectives for increasing oocyte quality during POA and improving assisted reproduction technologies.
Collapse
Affiliation(s)
- Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Mengmeng Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xiaofei Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Haotian Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yue Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Tong Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Bing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China; School of Medicine, Southeast University, Nanjing, China
| | - Xudong Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China; School of Medicine, Southeast University, Nanjing, China
| | - Yaling Qi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Hui Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.
| | - Yan Li
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
23
|
Kleuter M, Yu Y, Verdegaal L, Pancaldi F, America AH, van der Goot AJ, Trindade LM. Characterizing the extractable proteins from tomato leaves - A proteomics study. Food Chem X 2025; 25:102114. [PMID: 39829998 PMCID: PMC11741079 DOI: 10.1016/j.fochx.2024.102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
The ambition to utilize agricultural by-products has spotlighted tomato leaves as a promising source for plant-based proteins. High-yielding protein extractability is key for its industrial use, but previous studies reported decreased protein extractability at later stages of plant development. This study investigated the underlying factors in protein extractability through a comprehensive proteomics analysis across four plant developmental stages (vegetative, flowering, fruit-forming, mature-fruit). The findings linked reduced yields to a shift in leaf function, from anabolic to catabolic processes and (a)biotic stress responses. This functional shift is accompanied by decreased protein synthesis and increased protein degradation, leading to an overall decrease of the soluble protein fraction. Furthermore, incomplete extraction of soluble proteins from leaves of later developmental stages, suggested the presence of inhibitory molecules hindering the extraction process. These findings indicate that breeding strategies towards increased amounts of soluble proteins and reduced concentration of inhibitory molecules could enhance protein extraction yields.
Collapse
Affiliation(s)
- Marietheres Kleuter
- Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands
| | - Yafei Yu
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, 6700, AA, Wageningen, the Netherlands
| | - Lukas Verdegaal
- Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands
| | - Francesco Pancaldi
- Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands
| | - Antoine H.P. America
- BU Bioscience, Wageningen Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands
| | - Atze Jan van der Goot
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, 6700, AA, Wageningen, the Netherlands
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands
| |
Collapse
|
24
|
Taschner M, Dickinson JB, Roisné-Hamelin F, Gruber S. 4G cloning: rapid gene assembly for expression of multisubunit protein complexes in diverse hosts. Life Sci Alliance 2025; 8:e202402899. [PMID: 39622624 PMCID: PMC11612967 DOI: 10.26508/lsa.202402899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
Multisubunit protein complexes are central to many cellular processes, and studying their activities and structures in vitro requires reconstitution via recombinant expression and purification. Obtaining targets at sufficient purity and scale typically involves screening several protein variants and expression hosts. Existing cloning strategies enable co-expression but are often time-consuming, labor-intensive, and host-specific, or involve error-prone steps. We present a novel vector set and assembly strategy to overcome these limitations, enabling expression construct generation for multisubunit complexes in a single step. This modular system can be extended to additional hosts or include new tags. We demonstrate its utility by constructing expression vectors for structural maintenance of chromosomes complexes in various hosts, streamlining workflows, and improving productivity.
Collapse
Affiliation(s)
- Michael Taschner
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Joe Bradley Dickinson
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Florian Roisné-Hamelin
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
25
|
Steinbach MK, Leipert J, Matzanke T, Tholey A. Digital Microfluidics for Sample Preparation in Low-Input Proteomics. SMALL METHODS 2025; 9:e2400495. [PMID: 39205538 PMCID: PMC11740955 DOI: 10.1002/smtd.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Low-input proteomics, also referred to as micro- or nanoproteomics, has become increasingly popular as it allows one to elucidate molecular processes in rare biological materials. A major prerequisite for the analytics of minute protein amounts, e.g., derived from low cell numbers, down to single cells, is the availability of efficient sample preparation methods. Digital microfluidics (DMF), a technology allowing the handling and manipulation of low liquid volumes, has recently been shown to be a powerful and versatile tool to address the challenges in low-input proteomics. Here, an overview is provided on recent advances in proteomics sample preparation using DMF. In particular, the capability of DMF to isolate proteomes from cells and small model organisms, and to perform all necessary chemical sample preparation steps, such as protein denaturation and proteolytic digestion on-chip, are highlighted. Additionally, major prerequisites to making these steps compatible with follow-up analytical methods such as liquid chromatography-mass spectrometry will be discussed.
Collapse
Affiliation(s)
- Max K. Steinbach
- Systematic Proteome Research & BioanalyticsInstitute for Experimental MedicineChristian‐Albrechts‐Universität zu Kiel24105KielGermany
| | - Jan Leipert
- Systematic Proteome Research & BioanalyticsInstitute for Experimental MedicineChristian‐Albrechts‐Universität zu Kiel24105KielGermany
| | - Theo Matzanke
- Systematic Proteome Research & BioanalyticsInstitute for Experimental MedicineChristian‐Albrechts‐Universität zu Kiel24105KielGermany
| | - Andreas Tholey
- Systematic Proteome Research & BioanalyticsInstitute for Experimental MedicineChristian‐Albrechts‐Universität zu Kiel24105KielGermany
| |
Collapse
|
26
|
Uszkoreit J, Marcus K, Eisenacher M. A Review of Protein Inference. Methods Mol Biol 2025; 2859:53-64. [PMID: 39436596 DOI: 10.1007/978-1-0716-4152-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Protein inference is an often neglected though crucial step in most proteomic experiments. In the bottom-up proteomic approach, the actual molecules of interest, the proteins, are digested into peptides before measurement on a mass spectrometer. This approach introduces a loss of information: The actual proteins must be inferred based on the identified peptides. While this might seem trivial, there are certain problems, one of the biggest being the presence of peptides that are shared among proteins. These amino acid sequences can, based on the database used for identification, belong to more than one protein. If such peptides are identified in a sample, it cannot be said which proteins actually were in the sample, but only an estimate on the most probable proteins or protein groups can be given based on a predefined inference strategy.Here we describe the effect of the chosen database for peptide identification on the number of shared peptides. Afterward, the mainly used protein inference methods will be sketched, and the necessity of stringent false discovery rate on peptide and protein level is discussed. Finally, we explain how the tool "PIA or protein inference algorithms" can be used together with the workflow environment KNIME and OpenMS to perform protein inference in a common proteomic experiment.
Collapse
Affiliation(s)
- Julian Uszkoreit
- Medical Bioinformatics, Medical Faculty, Ruhr University Bochum, Bochum, Germany.
- Medizinisches Proteom-Center, Medical Faculty, Ruhr University Bochum, Bochum, Germany.
| | - Katrin Marcus
- Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr University Bochum, Bochum, Germany
- Medizinisches Proteom-Center, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Martin Eisenacher
- Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr University Bochum, Bochum, Germany
- Medizinisches Proteom-Center, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
27
|
Brocke SA, Reidel B, Ehre C, Rebuli ME, Robinette C, Schichlein KD, Brooks CA, Jaspers I. Profiling endogenous airway proteases and antiproteases and modeling proteolytic activation of Influenza HA using in vitro and ex vivo human airway surface liquid samples. PLoS One 2024; 19:e0306197. [PMID: 39739661 DOI: 10.1371/journal.pone.0306197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025] Open
Abstract
Imbalance of airway proteases and antiproteases has been implicated in diseases such as COPD and environmental exposures including cigarette smoke and ozone. To initiate infection, endogenous proteases are commandeered by respiratory viruses upon encountering the airway epithelium. The airway proteolytic environment likely contains redundant antiproteases and proteases with diverse catalytic mechanisms, however a proteomic profile of these enzymes and inhibitors in airway samples has not been reported. The objective of this study was to first profile extracellular proteases and antiproteases using human airway epithelial cell cultures and ex vivo nasal epithelial lining fluid (NELF) samples. Secondly, we present an optimized method for probing the proteolytic environment of airway surface liquid samples (in vitro and ex vivo) using fluorogenic peptides modeling the cleavage sites of respiratory viruses. We detected 48 proteases in the apical wash of cultured human nasal epithelial cells (HNECs) (n = 6) and 57 in NELF (n = 13) samples from healthy human subjects using mass-spectrometry based proteomics. Additionally, we detected 29 and 48 antiproteases in the HNEC apical washes and NELF, respectively. We observed large interindividual variability in rate of cleavage of an Influenza H1 peptide in the ex vivo clinical samples. Since protease and antiprotease levels have been found to be altered in the airways of smokers, we compared proteolytic cleavage in ex vivo nasal lavage samples from male/female smokers and non-smokers. There was a statistically significant increase in proteolysis of Influenza H1 in NLF from male smokers compared to female smokers. Furthermore, we measured cleavage of the S1/S2 site of SARS-CoV, SARS-CoV-2, and SARS-CoV-2 Delta peptides in various airway samples, suggesting the method could be used for other viruses of public health relevance. This assay presents a direct and efficient method of evaluating the proteolytic environment of human airway samples in assessment of therapeutic treatment, exposure, or underlying disease.
Collapse
Affiliation(s)
- Stephanie A Brocke
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| | - Boris Reidel
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - Meghan E Rebuli
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC, United States of America
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| | - Carole Robinette
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Kevin D Schichlein
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| | - Christian A Brooks
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC, United States of America
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
28
|
Maynard DM, Gochuico BR, Pri Chen H, Bleck CKE, Zerfas PM, Introne WJ, Gahl WA, Malicdan MCV. Insights into the renal pathophysiology in Hermansky-Pudlak syndrome-1 from urinary extracellular vesicle proteomics and a new mouse model. FEBS Lett 2024. [PMID: 39739361 DOI: 10.1002/1873-3468.15088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/07/2024] [Accepted: 12/01/2024] [Indexed: 01/02/2025]
Abstract
Hermansky-Pudlak syndrome type 1 (HPS-1) is a rare, autosomal recessive disorder caused by defects in the biogenesis of lysosome-related organelles complex-3 (BLOC-3). Impaired kidney function is among its clinical manifestations. To investigate HPS-1 renal involvement, we employed 1D-gel-LC-MS/MS and compared the protein composition of urinary extracellular vesicles (uEVs) from HPS-1 patients to normal control individuals. We identified 1029 proteins, 149 of which were altered in HPS-1 uEVs. Ingenuity Pathway Analysis revealed disruptions in mitochondrial function and the LXR/RXR pathway that regulates lipid metabolism, which is supported by our novel Hps1 knockout mouse. Serum concentration of the LXR/RXR pathway protein ApoA1 in our patient cohort was positively correlated with kidney function (with the estimated glomerular filtration rate or eGFR). uEVs can be used to study epithelial cell protein trafficking in HPS-1 and may provide outcome measures for HPS-1 therapeutic interventions.
Collapse
Affiliation(s)
- Dawn M Maynard
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Bernadette R Gochuico
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Hadass Pri Chen
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Christopher K E Bleck
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patricia M Zerfas
- Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Wendy J Introne
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - William A Gahl
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - May C V Malicdan
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRI, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Waas M, Karamboulas C, Wu BZ, Khan S, Poon S, Meens J, Govindarajan M, Khoo A, Mejia-Guerrero S, Ha A, Liu LY, Nixon KCJ, Walton J, Bratman SV, Huang SH, Goldstein D, Gaiti F, Ailles L, Kislinger T. Molecular correlates for HPV-negative head and neck cancer engraftment prognosticate patient outcomes. Nat Commun 2024; 15:10869. [PMID: 39738080 DOI: 10.1038/s41467-024-55203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
There is a pressing need to improve risk stratification and treatment selection for HPV-negative head and neck squamous cell carcinoma (HNSCC) due to the adverse side effects of treatment. One of the most important prognostic features is lymph nodes involvement. Previously, we demonstrated that tumor formation in patient-derived xenografts (i.e. engraftment) was associated with poor clinical outcomes in patients with HPV-negative HNSCC. However, assessing engraftment is challenging in clinical settings. Here, we perform transcriptomic and proteomic profiling of 88 HNSCC patients and find the relationship between engraftment and clinical outcomes is recapitulated by molecular phenotype. We identify LAMC2 and TGM3 as candidate prognostic biomarkers and validated their utility in an independent cohort containing 404 HPV-negative HNSCC patients. Strikingly, these markers significantly improve prediction of outcomes beyond nodal status alone and can significantly stratify patients without any nodal involvement. Overall, our study demonstrates how the molecular characteristics of engraftment can inform patient prognostication.
Collapse
Affiliation(s)
- Matthew Waas
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Christina Karamboulas
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Benson Z Wu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Stephanie Poon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jalna Meens
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Meinusha Govindarajan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Amanda Khoo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Annie Ha
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Lydia Y Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kevin C J Nixon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Joseph Walton
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Scott V Bratman
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, and Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Shao Hui Huang
- Radiation Medicine Program, Princess Margaret Cancer Centre, and Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - David Goldstein
- Department of Otolaryngology-Head and Neck Surgery, Princess Margaret Cancer Centre, and University of Toronto, Toronto, ON, Canada
| | - Federico Gaiti
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Laurie Ailles
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Kalló G, Zaman K, Potor L, Hendrik Z, Méhes G, Tóth C, Gergely P, Tőzsér J, Balla G, Balla J, Prokai L, Csősz É. Identification of Protein Networks and Biological Pathways Driving the Progression of Atherosclerosis in Human Carotid Arteries Through Mass Spectrometry-Based Proteomics. Int J Mol Sci 2024; 25:13665. [PMID: 39769427 PMCID: PMC11728284 DOI: 10.3390/ijms252413665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Vulnerable atherosclerotic plaques, especially hemorrhaged lesions, are the major cause of mortalities related to vascular pathologies. The early identification of vulnerable plaques helps to stratify patients at risk of developing acute vascular events. In this study, proteomics analyses of human carotid artery samples collected from patients with atheromatous plaques and complicated lesions, respectively, as well as from healthy controls were performed. The proteins isolated from the carotid artery samples were analyzed by a bottom-up shotgun approach that relied on nanoflow liquid chromatography-tandem mass spectrometry analyses (LC-MS/MS) using both data-dependent (DDA) and data-independent (DIA) acquisitions. The data obtained by high-resolution DIA analyses displayed a stronger distinction among groups compared to DDA analyses. Differentially expressed proteins were further examined using Ingenuity Pathway Analysis® with focus on pathological and molecular processes driving atherosclerosis. From the more than 150 significantly regulated canonical pathways, atherosclerosis signaling and neutrophil extracellular trap signaling were verified by protein-targeted data extraction. The results of our study are expected to facilitate a better understanding of the disease progression's molecular drivers and provide inspiration for further multiomics and hypothesis-driven studies.
Collapse
Affiliation(s)
- Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (J.T.)
| | - Khadiza Zaman
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - László Potor
- HUN-REN-DE Vascular Pathophysiology Research Group 11003, University of Debrecen, 4032 Debrecen, Hungary; (L.P.); (J.B.)
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zoltán Hendrik
- Department of Forensic Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.H.); (P.G.)
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Csaba Tóth
- Division of Vascular Surgery, Department of Surgery, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Péter Gergely
- Department of Forensic Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.H.); (P.G.)
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (J.T.)
| | - György Balla
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - József Balla
- HUN-REN-DE Vascular Pathophysiology Research Group 11003, University of Debrecen, 4032 Debrecen, Hungary; (L.P.); (J.B.)
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Laszlo Prokai
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (J.T.)
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (J.T.)
| |
Collapse
|
31
|
Waas M, Govindarajan M, Khoo A, Zuo C, Aastha A, He J, Woolman M, Ha A, Lin B, Kislinger T. Protocol for generating high-fidelity proteomic profiles using DROPPS. STAR Protoc 2024; 5:103397. [PMID: 39423124 PMCID: PMC11513556 DOI: 10.1016/j.xpro.2024.103397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/12/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024] Open
Abstract
Deep mass spectrometry-based proteomic profiling of rare cell populations has been constrained by sample input requirements. Here, we present a protocol for droplet-based one-pot preparation for proteomic samples (DROPPS), an accessible low-input platform that generates high-fidelity proteomic profiles of 100-2,500 cells. We describe steps for depositing cellular material, cell lysis, and digesting proteins in the same microliter-droplet well. We anticipate DROPPS will accelerate biology-driven proteomic research for a multitude of rare cell populations. For complete details on the use and execution of this protocol, please refer to Waas et al.1.
Collapse
Affiliation(s)
- Matthew Waas
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada.
| | - Meinusha Govindarajan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Amanda Khoo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Charlotte Zuo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Aastha Aastha
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Jilin He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Michael Woolman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Annie Ha
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Brian Lin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
32
|
Fashemi BE, Rougeau AK, Salazar AM, Bark SJ, Chappidi R, Brown JW, Cho CJ, Mills JC, Mysorekar IU. IFRD1 is required for maintenance of bladder epithelial homeostasis. iScience 2024; 27:111282. [PMID: 39628564 PMCID: PMC11613175 DOI: 10.1016/j.isci.2024.111282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/21/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
The maintenance of homeostasis and rapid regeneration of the urothelium following stress are critical for bladder function. Here, we identify a key role for IFRD1 in maintaining urothelial homeostasis in a mouse model. We demonstrate that the murine bladder expresses IFRD1 at homeostasis, particularly in the urothelium, and its loss alters the global transcriptome with significant accumulation of endolysosomes and dysregulated uroplakin expression pattern. We show that IFRD1 interacts with mRNA-translation-regulating factors in human urothelial cells. Loss of Ifrd1 leads to disrupted proteostasis, enhanced endoplasmic reticulum (ER stress) with activation of the PERK arm of the unfolded protein response pathway, and increased oxidative stress. Ifrd1-deficient bladders exhibit urothelial cell apoptosis/exfoliation, enhanced basal cell proliferation, reduced differentiation into superficial cells, increased urothelial permeability, and aberrant voiding behavior. These findings highlight a crucial role for IFRD1 in urothelial homeostasis, suggesting its potential as a therapeutic target for bladder dysfunction.
Collapse
Affiliation(s)
- Bisiayo E. Fashemi
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amala K. Rougeau
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Arnold M. Salazar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Steven J. Bark
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Rayvanth Chappidi
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey W. Brown
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles J. Cho
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Jason C. Mills
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Indira U. Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
33
|
Schiml VC, Walter JM, Hagen LH, Varnai A, Bergaust LL, De Leon AVP, Elsgaard L, Bakken LR, Arntzen MØ. Microbial consortia driving (ligno)cellulose transformation in agricultural woodchip bioreactors. Appl Environ Microbiol 2024; 90:e0174224. [PMID: 39526802 DOI: 10.1128/aem.01742-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Freshwater ecosystems can be largely affected by neighboring agriculture fields where potential fertilizer nitrate run-off may leach into surrounding water bodies. To counteract this eutrophic driver, farmers in certain areas are utilizing denitrifying woodchip bioreactors (WBRs) in which a consortium of microorganisms convert the nitrate into nitrogen gases in anoxia, fueled by the degradation of lignocellulose. Polysaccharide-degrading strategies have been well described for various aerobic and anaerobic systems, including the use of carbohydrate-active enzymes, utilization of lytic polysaccharide monooxygenases (LPMOs) and other redox enzymes, as well as the use of cellulosomes and polysaccharide utilization loci (PULs). However, for denitrifying microorganisms, the lignocellulose-degrading strategies remain largely unknown. Here, we have applied a combination of enrichment techniques, gas measurements, multi-omics approaches, and amplicon sequencing of fungal ITS and procaryotic 16S rRNA genes to identify microbial drivers for lignocellulose transformation in woodchip bioreactors and their active enzymes. Our findings highlight a microbial community enriched for (ligno)cellulose-degrading denitrifiers with key players from the taxa Giesbergeria, Cellulomonas, Azonexus, and UBA5070 (Fibrobacterota). A wide substrate specificity is observed among the many expressed carbohydrate-active enzymes (CAZymes) including PULs from Bacteroidetes. This suggests a broad degradation of lignocellulose subfractions, including enzymes with auxiliary activities whose functionality is still puzzling under strict anaerobic conditions. IMPORTANCE Freshwater ecosystems face significant threats from agricultural runoff, which can lead to eutrophication and subsequent degradation of water quality. One solution to mitigate this issue is using denitrifying woodchip bioreactors (WBRs), where microorganisms convert nitrate into nitrogen gases utilizing lignocellulose as a carbon source. Despite the well-documented polysaccharide-degrading strategies in various systems, the mechanisms employed by denitrifying microorganisms in WBRs remain largely unexplored. This study fills a critical knowledge gap by revealing the degrading strategies of denitrifying microbial communities in WBRs. By integrating state-of-the-art techniques, we have identified key microbial drivers including Giesbergeria, Cellulomonas, Azonexus, and UBA5070 (Fibrobacterota) playing significant roles in lignocellulose transformation and showcasing a broad substrate specificity and complex metabolic capability. Our findings advance the understanding of microbial ecology in WBRs and by revealing the enzymatic activities, this research may inform efforts to improve water quality, protect aquatic ecosystems, and reduce greenhouse gas emissions from WBRs.
Collapse
Affiliation(s)
- Valerie C Schiml
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Juline M Walter
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Live H Hagen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Aniko Varnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Linda L Bergaust
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Arturo Vera Ponce De Leon
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Lars Elsgaard
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
34
|
Gallagher ER, Oloko PT, Fitch TC, Brown EM, Spruce LA, Holzbaur ELF. Lysosomal damage triggers a p38 MAPK-dependent phosphorylation cascade to promote lysophagy via the small heat shock protein HSP27. Curr Biol 2024; 34:5739-5757.e8. [PMID: 39541976 DOI: 10.1016/j.cub.2024.10.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Maintenance of lysosomal integrity is essential for cell viability. Upon injury, lysosomes may be targeted for degradation via a selective form of autophagy known as lysophagy. The engulfment of a damaged lysosome by an autophagosome is mediated by the recruitment of adaptor proteins, including SQSTM1/p62. p62 promotes lysophagy via the formation of phase-separated condensates in a mechanism that is regulated by the heat shock protein HSP27. Here, we demonstrate a direct interaction between HSP27 and p62. We used structural modeling to predict the binding interface between HSP27 and p62 and identify several disease-associated mutations that map to this interface. We used proteomics to identify post-translational modifications of HSP27 that regulate HSP27 recruitment to stressed lysosomes, finding robust phosphorylation at several serine residues. Next, we characterized the upstream signaling mechanism leading to HSP27 phosphorylation and found that p38 mitogen-activated protein kinase (MAPK) and its effector kinase MAP kinase-activated protein kinase 2 (MK2) are activated upon lysosomal damage by the kinase mTOR and the production of intracellular reactive oxygen species (ROS). Increased ROS activates p38 MAPK, which in turn allows MK2-dependent phosphorylation of HSP27. Depletion of HSP27 or the inhibition of HSP27 phosphorylation alters the dynamics of p62 condensates on stressed lysosomes, significantly inhibiting p62-dependent lysophagy. Thus, we define a novel lysosomal quality control mechanism in which lysosomal injury triggers a p38 MAPK/MK2 signaling cascade promoting p62-dependent lysophagy. Further, this signaling cascade is activated by many cellular stressors, including oxidative and heat stress, suggesting that other forms of selective autophagy may be regulated by p38 MAPK/MK2/HSP27.
Collapse
Affiliation(s)
- Elizabeth R Gallagher
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Peace T Oloko
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tessa C Fitch
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elizabeth M Brown
- CHOP-Penn Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lynn A Spruce
- CHOP-Penn Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Jain A, Heremans I, Rademaker G, Detomasi TC, Hernandez GA, Zhang J, Gupta S, von Linde T, Lange M, Spacci M, Rohweder P, Anderson D, Citron YR, Olzmann JA, Dawson DW, Craik CS, Bommer G, Perera RM, Zoncu R. Leucine Aminopeptidase LyLAP enables lysosomal degradation of membrane proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628212. [PMID: 39713462 PMCID: PMC11661280 DOI: 10.1101/2024.12.13.628212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Proteolysis of hydrophobic helices is required for complete breakdown of every transmembrane protein trafficked to the lysosome and sustains high rates of endocytosis. However, the lysosomal mechanisms for degrading hydrophobic domains remain unknown. Combining lysosomal proteomics with functional genomic data mining, we identify Lysosomal Leucine Aminopeptidase (LyLAP; formerly Phospholipase B Domain-Containing 1) as the hydrolase most tightly associated with elevated endocytic activity. Untargeted metabolomics and biochemical reconstitution demonstrate that LyLAP is not a phospholipase, but a processive monoaminopeptidase with strong preference for N-terminal leucine - an activity necessary and sufficient for breakdown of hydrophobic transmembrane domains. LyLAP is upregulated in pancreatic ductal adenocarcinoma (PDA), which relies on macropinocytosis for nutrient uptake, and its ablation led to buildup of undigested hydrophobic peptides, which compromised lysosomal membrane integrity and inhibited PDA cell growth. Thus, LyLAP enables lysosomal degradation of membrane proteins, and may represent a vulnerability in highly endocytic cancer cells. One sentence summary LyLAP degrades transmembrane proteins to sustain high endocytosis and lysosomal membrane stability in pancreatic cancer.
Collapse
|
36
|
Sheedy CJ, Chowdhury SP, Ali BA, Miyamoto J, Pang EZ, Bacal J, Tavasoli KU, Richardson CD, Gardner BM. PEX1 G843D remains functional in peroxisome biogenesis but is rapidly degraded by the proteasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627778. [PMID: 39713301 PMCID: PMC11661142 DOI: 10.1101/2024.12.10.627778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The PEX1/PEX6 AAA-ATPase is required for the biogenesis and maintenance of peroxisomes. Mutations in HsPEX1 and HsPEX6 disrupt peroxisomal matrix protein import and are the leading cause of Peroxisome Biogenesis Disorders (PBDs). The most common disease-causing mutation in PEX1 is the HsPEX1G843D allele, which results in a reduction of peroxisomal protein import. Here we demonstrate that in vitro the homologous yeast mutant, ScPex1G700D, reduces the stability of Pex1's active D2 ATPase domain and impairs assembly with Pex6, but can still form an active AAA-ATPase motor. In vivo, ScPex1G700D exhibits only a slight defect in peroxisome import. We generated model human HsPEX1G843D cell lines and show that PEX1G843D is rapidly degraded by the proteasome, but that induced overexpression of PEX1G843D can restore peroxisome import. Additionally, we found that the G843D mutation reduces PEX1's affinity for PEX6, and that impaired assembly is sufficient to induce degradation of PEX1WT. Lastly, we found that fusing a deubiquitinase to PEX1G843D significantly hinders its degradation in mammalian cells. Altogether, our findings suggest a novel regulatory mechanism for PEX1/PEX6 hexamer assembly and highlight the potential of protein stabilization as a therapeutic strategy for PBDs arising from the G843D mutation and other PEX1 hypomorphs.
Collapse
Affiliation(s)
- Connor J Sheedy
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- These authors contributed equally
| | - Soham P Chowdhury
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- These authors contributed equally
| | - Bashir A Ali
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julia Miyamoto
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Eric Z Pang
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julien Bacal
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Katherine U Tavasoli
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Chris D Richardson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Brooke M Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
37
|
Lee C, Quintana A, Suppanz I, Gomez-Auli A, Mittler G, Cissé II. Light-induced targeting enables proteomics on endogenous condensates. Cell 2024; 187:7079-7090.e17. [PMID: 39426378 PMCID: PMC11793346 DOI: 10.1016/j.cell.2024.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/23/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
Endogenous condensates with transient constituents are notoriously difficult to study with common biological assays like mass spectrometry and other proteomics profiling. Here, we report a method for light-induced targeting of endogenous condensates (LiTEC) in living cells. LiTEC combines the identification of molecular zip codes that target the endogenous condensates with optogenetics to enable controlled and reversible partitioning of an arbitrary cargo, such as enzymes commonly used in proteomics, into the condensate in a blue light-dependent manner. We demonstrate a proof of concept by combining LiTEC with proximity-based biotinylation (BioID) and uncover putative components of transcriptional condensates in mouse embryonic stem cells. Our approach opens the road to genome-wide functional studies of endogenous condensates.
Collapse
Affiliation(s)
- Choongman Lee
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Andrea Quintana
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ida Suppanz
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Proteomics Facility, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Alejandro Gomez-Auli
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Proteomics Facility, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Gerhard Mittler
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Proteomics Facility, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ibrahim I Cissé
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.
| |
Collapse
|
38
|
Houston S, Marshall S, Gomez A, Cameron CE. Proteomic analysis of the Treponema pallidum subsp. pallidum SS14 strain: coverage and comparison with the Nichols strain proteome. Front Microbiol 2024; 15:1505893. [PMID: 39723147 PMCID: PMC11668736 DOI: 10.3389/fmicb.2024.1505893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Strains of the syphilis spirochete, Treponema pallidum ssp. pallidum, group into one of two deep-branching clades: the Nichols clade or the globally dominant Street Strain 14 (SS14) clade. To date, in-depth proteome-wide analyses have focused on Nichols clade strains. Methods The T. pallidum SS14 clade reference strain (SS14) proteome was characterized via protein detection and quantification analyses using mass spectrometry, and comparison was made to the Nichols clade reference strain (Nichols) proteome. Results Approximately two thirds of all proteins from T. pallidum SS14 were detected and quantitated, allowing confirmation of expression of 259 proteins for the first time in this strain, including 11 known/putative outer membrane proteins (OMPs). SS14 and Nichols proteome comparative analyses demonstrated similar protein expression/quantification profiles between the two strains, and showed that inter-strain amino acid sequence differences are located primarily within predicted surface-exposed regions in 16 known/putative OMPs. Discussion This study provides the first comparative analyses of the proteomes from the T. pallidum SS14 and Nichols strains. The findings inform syphilis vaccine design by confirming the expression of known/predicted OMP vaccine candidates in SS14 treponemes, and via the finding that most inter-strain variable residues found in OMPs are predicted to be located in surface-exposed, host-facing regions of these proteins.
Collapse
Affiliation(s)
- Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Steven Marshall
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Alloysius Gomez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, United States
| |
Collapse
|
39
|
Solosky AM, Claudio IM, Chappel JR, Kirkwood-Donelson KI, Janech MG, Bland AM, Gulland FMD, Neely BA, Baker ES. Proteomic and Lipidomic Plasma Evaluations Reveal Biomarkers for Domoic Acid Toxicosis in California Sea Lions. J Proteome Res 2024; 23:5577-5585. [PMID: 39582169 PMCID: PMC11752080 DOI: 10.1021/acs.jproteome.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Domoic acid is a neurotoxin secreted by the marine diatom genus Pseudo-nitzschia during toxic algal bloom events. California sea lions (Zalophus californianus) are exposed to domoic acid through the ingestion of fish that feed on toxic diatoms, resulting in domoic acid toxicosis (DAT), which can vary from mild to fatal. Sea lions with mild disease can be treated if toxicosis is detected early after exposure. Therefore, rapid diagnosis of DAT is essential but also challenging. In this work, we performed multiomics analyses, specifically proteomic and lipidomic, on blood samples from 31 California sea lions. Fourteen sea lions were diagnosed with DAT based on clinical signs and post-mortem histological examination of brain tissue, and 17 had no evidence of DAT. Proteomic analyses revealed 31 statistically significant proteins in the DAT individuals compared to the non-DAT individuals (adjusted p < 0.05). Of these proteins, 19 were decreased in the DAT group of which three were apolipoproteins that are known to transport lipids in the blood, prompting lipidomic analyses. In the lipidomic analyses, 331 lipid species were detected with high confidence and multidimensional separations, and 29 were found to be statistically significant (adjusted p < 0.05 and log2(FC) < -1 or >1) in the DAT versus non-DAT comparison. Of these, 28 were lower in the DAT individuals, while only 1 was higher. Furthermore, 15 of the 28 lower concentration lipids were triglycerides, illustrating their putative connection with the perturbed apolipoproteins and potential use in rapid DAT diagnoses.
Collapse
Affiliation(s)
- Amie M Solosky
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Iliana M Claudio
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jessie R Chappel
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Kaylie I Kirkwood-Donelson
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, United States
| | - Michael G Janech
- Department of Biology, College of Charleston, Charleston, South Carolina 29412, United States
| | - Alison M Bland
- Department of Biology, College of Charleston, Charleston, South Carolina 29412, United States
| | - Frances M D Gulland
- Wildlife Health Center, University of California, Davis, California 95616, United States
| | - Benjamin A Neely
- Chemical Sciences Division, National Institute of Standards and Technology, Charleston, South Carolina 29412, United States
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
40
|
Khalil MI, Wang J, Yang C, Vu L, Yin C, Chadha S, Nabors H, Vocelle D, May DG, Chrisopolus RJ, Zhou L, Roux KJ, Bernard MP, Mi QS, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 promotes cancer immune evasion by degrading MHC class I proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626106. [PMID: 39677690 PMCID: PMC11642734 DOI: 10.1101/2024.11.29.626106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The loss of major histocompatibility complex class I (MHC-I) molecules has been proposed as a mechanism by which cancer cells evade tumor-specific T cells in immune checkpoint inhibitor (ICI)-refractory patients. Nevertheless, the mechanism by which cancer cells downregulate MHC-I is poorly understood. We report here that membrane-associated RING-CH-type finger 8 (MARCHF8), upregulated by human papillomavirus (HPV), ubiquitinates and degrades MHC-I proteins in HPV-positive head and neck cancer (HPV+ HNC). MARCHF8 knockdown restores MHC-I levels on HPV+ HNC cells. We further reveal that Marchf8 knockout significantly suppresses tumor growth and increases the infiltration of natural killer (NK) and T cells in the tumor microenvironment (TME). Furthermore, Marchf8 knockout markedly increases crosstalk between the cytotoxic NK cells and CD8 + T cells with macrophages and enhances the tumor cell-killing activity of CD8 + T cells. CD8 + T cell depletion in mice abrogates Marchf8 knockout-driven tumor suppression and T cell infiltration. Interestingly, Marchf8 knockout, in combination with anti-PD-1 treatment, synergistically suppresses tumor growth in mice bearing ICI-refractory tumors. Taken together, our finding suggests that MARCHF8 could be a promising target for novel immunotherapy for HPV+ HNC patients. One Sentence Summary Targeting MARCHF8 restores MHC-I proteins, induces antitumor CD8 + T cell activity, and suppresses the growth of ICI-refractory tumors.
Collapse
|
41
|
Maldonado H, Dreger M, Bedgood LD, Kyriakou T, Wolanska KI, Rigby ME, Marotta VE, Webster JM, Wang J, Rusilowicz-Jones EV, Marshall JF, Coulson JM, Macpherson IR, Hurlstone A, Morgan MR. A trafficking regulatory subnetwork governs α Vβ 6 integrin-HER2 cross-talk to control breast cancer invasion and drug resistance. SCIENCE ADVANCES 2024; 10:eadk9944. [PMID: 39630893 PMCID: PMC11616693 DOI: 10.1126/sciadv.adk9944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
HER2 and αVβ6 integrin are independent predictors of breast cancer survival and metastasis. We identify an αVβ6/HER2 cross-talk mechanism driving invasion, which is dysregulated in drug-resistant HER2+ breast cancer cells. Proteomic analyses reveal ligand-bound αVβ6 recruits HER2 and a trafficking subnetwork, comprising guanosine triphosphatases RAB5 and RAB7A and the Rab regulator guanine nucleotide dissociation inhibitor 2 (GDI2). The RAB5/RAB7A/GDI2 functional module mediates direct cross-talk between αVβ6 and HER2, affecting receptor trafficking and signaling. Acute exposure to trastuzumab increases recruitment of the subnetwork to αVβ6, but trastuzumab resistance decouples GDI2 recruitment. GDI2, RAB5, and RAB7A cooperate to regulate migration and transforming growth factor-β activation to promote invasion. However, these mechanisms are dysregulated in trastuzumab-resistant cells. In patients, RAB5A, RAB7A, and GDI2 expression correlates with patient survival and αVβ6 expression predicts relapse following trastuzumab treatment. Thus, the RAB5/RAB7A/GDI2 subnetwork regulates αVβ6-HER2 cross-talk to drive breast cancer invasion but is subverted in trastuzumab-resistant cells to drive αVβ6-independent and HER2-independent tumor progression.
Collapse
Affiliation(s)
- Horacio Maldonado
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Marcel Dreger
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Lara D. Bedgood
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Theano Kyriakou
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Katarzyna I. Wolanska
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Megan E. Rigby
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Valeria E. Marotta
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Justine M. Webster
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Jun Wang
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Emma V. Rusilowicz-Jones
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - John F. Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Judy M. Coulson
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Iain R. Macpherson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Adam Hurlstone
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Mark R. Morgan
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| |
Collapse
|
42
|
Steinz MM, Beard N, Shorter E, Lanner JT. Stable oxidative posttranslational modifications alter the gating properties of RyR1. J Gen Physiol 2024; 156:e202313515. [PMID: 39499505 PMCID: PMC11540854 DOI: 10.1085/jgp.202313515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/03/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
The ryanodine receptor type 1 (RyR1) is a Ca2+ release channel that regulates skeletal muscle contraction by controlling Ca2+ release from the sarcoplasmic reticulum (SR). Posttranslational modifications (PTMs) of RyR1, such as phosphorylation, S-nitrosylation, and carbonylation are known to increase RyR1 open probability (Po), contributing to SR Ca2+ leak and skeletal muscle dysfunction. PTMs on RyR1 have been linked to muscle dysfunction in diseases like breast cancer, rheumatoid arthritis, Duchenne muscle dystrophy, and aging. While reactive oxygen species (ROS) and oxidative stress induce PTMs, the impact of stable oxidative modifications like 3-nitrotyrosine (3-NT) and malondialdehyde adducts (MDA) on RyR1 gating remains unclear. Mass spectrometry and single-channel recordings were used to study how 3-NT and MDA modify RyR1 and affect Po. Both modifications increased Po in a dose-dependent manner, with mass spectrometry identifying 30 modified residues out of 5035 amino acids per RyR1 monomer. Key modifications were found in domains critical for protein interaction and channel activation, including Y808/3NT in SPRY1, Y1081/3NT and H1254/MDA in SPRY2&3, and Q2107/MDA and Y2128/3NT in JSol, near the binding site of FKBP12. Though these modifications did not directly overlap with FKBP12 binding residues, they promoted FKBP12 dissociation from RyR1. These findings provide detailed insights into how stable oxidative PTMs on RyR1 residues alter channel gating, advancing our understanding of RyR1-mediated Ca2+ release in conditions associated with oxidative stress and muscle weakness.
Collapse
Affiliation(s)
- Maarten M. Steinz
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology lab, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Beard
- Faculty or Science and Technology, University of Canberra, Canberra, Australia
| | - Emily Shorter
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology lab, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T. Lanner
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology lab, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
A Avelar R, Gupta R, Carvette G, da Veiga Leprevost F, Jasti M, Colina J, Teitel J, Nesvizhskii AI, O'Connor CM, Hatzoglou M, Shenolikar S, Arvan P, Narla G, DiFeo A. Integrated stress response plasticity governs normal cell adaptation to chronic stress via the PP2A-TFE3-ATF4 pathway. Cell Death Differ 2024; 31:1761-1775. [PMID: 39349971 PMCID: PMC11618521 DOI: 10.1038/s41418-024-01378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024] Open
Abstract
The integrated stress response (ISR) regulates cell fate during conditions of stress by leveraging the cell's capacity to endure sustainable and efficient adaptive stress responses. Protein phosphatase 2A (PP2A) activity modulation has been shown to be successful in achieving both therapeutic efficacy and safety across various cancer models. However, the molecular mechanisms driving its selective antitumor effects remain unclear. Here, we show for the first time that ISR plasticity relies on PP2A activation to regulate drug response and dictate cellular survival under conditions of chronic stress. We demonstrate that genetic and chemical modulation of the PP2A leads to chronic proteolytic stress and triggers an ISR to dictate whether the cell lives or dies. More specifically, we uncovered that the PP2A-TFE3-ATF4 pathway governs ISR cell plasticity during endoplasmic reticular and cellular stress independent of the unfolded protein response. We further show that normal cells reprogram their genetic signatures to undergo ISR-mediated adaptation and homeostatic recovery thereby avoiding toxicity following PP2A-mediated stress. Conversely, oncogenic specific cytotoxicity induced by chemical modulation of PP2A is achieved by activating chronic and irreversible ISR in cancer cells. Our findings propose that a differential response to chemical modulation of PP2A is determined by intrinsic ISR plasticity, providing a novel biological vulnerability to selectively induce cancer cell death and improve targeted therapeutic efficacy.
Collapse
Affiliation(s)
- Rita A Avelar
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Riya Gupta
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Grace Carvette
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | | | - Medhasri Jasti
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Jose Colina
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Jessica Teitel
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Caitlin M O'Connor
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Shirish Shenolikar
- Duke-NUS Medical School, Singapore, Singapore
- Duke University School of Medicine, Durham, NC, USA
| | - Peter Arvan
- Division of Metabolism Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Goutham Narla
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Analisa DiFeo
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
44
|
Ahmed U, Stadelmann T, Heid D, Würtz B, Pfannstiel J, Ochsenreither K, Eisele T. A novel, robust peptidyl-lys metalloendopeptidase from Trametes coccinea recombinantly expressed in Komagataella phaffii. Appl Microbiol Biotechnol 2024; 108:103. [PMID: 38229299 DOI: 10.1007/s00253-023-12986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/11/2023] [Accepted: 12/24/2023] [Indexed: 01/18/2024]
Abstract
A novel peptidyl-lys metalloendopeptidase (Tc-LysN) from Tramates coccinea was recombinantly expressed in Komagataella phaffii using the native pro-protein sequence. The peptidase was secreted into the culture broth as zymogen (~38 kDa) and mature enzyme (~19.8 kDa) simultaneously. The mature Tc-LysN was purified to homogeneity with a single step anion-exchange chromatography at pH 7.2. N-terminal sequencing using TMTpro Zero and mass spectrometry of the mature Tc-LysN indicated that the pro-peptide was cleaved between the amino acid positions 184 and 185 at the Kex2 cleavage site present in the native pro-protein sequence. The pH optimum of Tc-LysN was determined to be 5.0 while it maintained ≥60% activity between pH values 4.5-7.5 and ≥30% activity between pH values 8.5-10.0, indicating its broad applicability. The temperature maximum of Tc-LysN was determined to be 60 °C. After 18 h of incubation at 80 °C, Tc-LysN still retained ~20% activity. Organic solvents such as methanol and acetonitrile, at concentrations as high as 40% (v/v), were found to enhance Tc-LysN's activity up to ~100% and ~50%, respectively. Tc-LysN's thermostability, ability to withstand up to 8 M urea, tolerance to high concentrations of organic solvents, and an acidic pH optimum make it a viable candidate to be employed in proteomics workflows in which alkaline conditions might pose a challenge. The nano-LC-MS/MS analysis revealed bovine serum albumin (BSA)'s sequence coverage of 84% using Tc-LysN which was comparable to the sequence coverage of 90% by trypsin peptides. KEY POINTS: •A novel LysN from Trametes coccinea (Tc-LysN) was expressed in Komagataella phaffii and purified to homogeneity •Tc-LysN is thermostable, applicable over a broad pH range, and tolerates high concentrations of denaturants •Tc-LysN was successfully applied for protein digestion and mass spectrometry fingerprinting.
Collapse
Affiliation(s)
- Uzair Ahmed
- Faculty of Mechanical and Process Engineering, Hochschule Offenburg, 77652, Offenburg, Germany
- Department of Chemical and Process Engineering, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Tobias Stadelmann
- Faculty of Mechanical and Process Engineering, Hochschule Offenburg, 77652, Offenburg, Germany
| | - Daniel Heid
- Faculty of Mechanical and Process Engineering, Hochschule Offenburg, 77652, Offenburg, Germany
| | - Berit Würtz
- Mass Spectrometry Unit Core Facility, University of Hohenheim, 70599, Stuttgart, Germany
| | - Jens Pfannstiel
- Mass Spectrometry Unit Core Facility, University of Hohenheim, 70599, Stuttgart, Germany
| | - Katrin Ochsenreither
- Department of Chemical and Process Engineering, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Thomas Eisele
- Faculty of Mechanical and Process Engineering, Hochschule Offenburg, 77652, Offenburg, Germany.
| |
Collapse
|
45
|
Deetanya P, Limsardsanakij K, Sabat G, Pattaradilokrat S, Chaisuekul C, Wangkanont K. Kunitz-type trypsin inhibitor from durian (Durio zibethinus) employs a distinct loop for trypsin inhibition. Protein Sci 2024; 33:e5230. [PMID: 39565068 PMCID: PMC11577449 DOI: 10.1002/pro.5230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/30/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024]
Abstract
Kunitz-type trypsin inhibitors are ubiquitous in plants. They have been proposed to be a part of a defense mechanism against herbivores. Trypsin inhibitors also have potential applications in the biotechnology industry, such as in mammalian cell culture. We discovered that durian (Durio zibethinus) seed contains Kunitz-type trypsin inhibitors as identified by N-terminal sequencing and mass spectrometry. Eleven new trypsin inhibitors were cloned. The D. zibethinus trypsin inhibitors (DzTIs) that are likely expressed in the seed were produced as recombinant proteins and tested for trypsin inhibitory activity. Their inhibitory activity and crystal structures are similar to the soybean trypsin inhibitor. Surprisingly, a crystal structure of the complex between DzTI-4, the DzTI with the lowest inhibitory constant, and bovine trypsin revealed that DzTI-4 utilized a novel tryptophan-containing β1-β2 loop to bind trypsin. Site-direct mutagenesis confirmed the inhibitory role of this loop. DzTI-4 was not toxic to the HEK293 cells and could be used in place of the soybean trypsin inhibitor for culturing the cells under serum-free conditions. DzTI-4 was not toxic to mealworms. However, a mixture of DzTIs extracted from durian seed prevented weight gain in mealworms, suggesting that multiple trypsin inhibitors are required to achieve the antinutritional effect. This study highlights the biochemical diversity of the inhibitory mechanism of Kunitz-type trypsin inhibitors and provides clues for further application of these inhibitors.
Collapse
Affiliation(s)
- Peerapon Deetanya
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
| | | | - Grzegorz Sabat
- Mass Spectrometry Core Facility, Biotechnology CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Chatchawan Chaisuekul
- Integrative Insect Ecology Research Unit, Department of Biology, Faculty of ScienceChulalongkorn UniversityBangkokThailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
| |
Collapse
|
46
|
Kelliher JM, Xu Y, Flynn MC, Babinski M, Canon S, Cavanna E, Clum A, Corilo YE, Fujimoto G, Giberson C, Johnson LY, Li KJ, Li PE, Li V, Lo CC, Lynch W, Piehowski P, Prime K, Purvine S, Rodriguez F, Roux S, Shakya M, Smith M, Sarrafan S, Cholia S, McCue LA, Mungall C, Hu B, Eloe-Fadrosh EA, Chain PS. Standardized and accessible multi-omics bioinformatics workflows through the NMDC EDGE resource. Comput Struct Biotechnol J 2024; 23:3575-3583. [PMID: 39963423 PMCID: PMC11832004 DOI: 10.1016/j.csbj.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 02/20/2025] Open
Abstract
Accessible and easy-to-use standardized bioinformatics workflows are necessary to advance microbiome research from observational studies to large-scale, data-driven approaches. Standardized multi-omics data enables comparative studies, data reuse, and applications of machine learning to model biological processes. To advance broad accessibility of standardized multi-omics bioinformatics workflows, the National Microbiome Data Collaborative (NMDC) has developed the Empowering the Development of Genomics Expertise (NMDC EDGE) resource, a user-friendly, open-source web application (https://nmdc-edge.org). Here, we describe the design and main functionality of the NMDC EDGE resource for processing metagenome, metatranscriptome, natural organic matter, and metaproteome data. The architecture relies on three main layers (web application, orchestration, and execution) to ensure flexibility and expansion to future workflows. The orchestration and execution layers leverage best practices in software containers and accommodate high-performance computing and cloud computing services. Further, we have adopted a robust user research process to collect feedback for continuous improvement of the resource. NMDC EDGE provides an accessible interface for researchers to process multi-omics microbiome data using production-quality workflows to facilitate improved data standardization and interoperability.
Collapse
Affiliation(s)
- Julia M. Kelliher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Yan Xu
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Mark C. Flynn
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Michal Babinski
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shane Canon
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eric Cavanna
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alicia Clum
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yuri E. Corilo
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Grant Fujimoto
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Leah Y.D. Johnson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kaitlyn J. Li
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Po-E Li
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Valerie Li
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Chien-Chi Lo
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Wendi Lynch
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Paul Piehowski
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kaelan Prime
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Samuel Purvine
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Simon Roux
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Migun Shakya
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Montana Smith
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Setareh Sarrafan
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shreyas Cholia
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lee Ann McCue
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chris Mungall
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bin Hu
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Emiley A. Eloe-Fadrosh
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Patrick S.G. Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
47
|
Haidar-Ahmad N, Tomaro K, Lavallée-Adam M, Campbell-Valois FX. The promiscuous biotin ligase TurboID reveals the proxisome of the T3SS chaperone IpgC in Shigella flexneri. mSphere 2024; 9:e0055324. [PMID: 39480076 PMCID: PMC11580435 DOI: 10.1128/msphere.00553-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
Promiscuous biotin ligases derived from the bacterial enzyme BirA are used to identify proteins vicinal to a bait protein, thereby defining its proxisome. Despite the popularity of this approach, surprisingly little is known about its use in prokaryotes. Here, we compared the activity of four widely used promiscuous biotin ligases in the cytoplasm of Shigella flexneri, a pathogenic subgroup of Escherichia coli. Our data indicate that the kinetics of TurboID's biotinylating activity is the highest of those tested. In addition, TurboID showed reduced interaction with the natural BirA binding partners, BccP and the biotin operator, when compared to its ancestor BioID. We therefore evaluated the ability of TurboID to probe the proxisome of the type III secretion system (T3SS) chaperone IpgC and the transcriptional activator MxiE. When the T3SS is inactive (off-state), these proteins are inhibited by forming complexes with the T3SS substrates OspD1 and IpaBC, respectively. In contrast, when the T3SS is active (on-state), OspD1 and IpaBC are secreted allowing MxiE and IpgC to interact together and activate their target genes. The results obtained with the IpgC and TurboID fusions capture a good fraction of these known interactions. It also suggests that the availability of IpgC increases in the on-state, resulting in a greater number of proteins detected in its vicinity. Among these is the T3SS ATPase SpaL (also known as Spa47 or SctN), further supporting the notion that chaperones escort their substrate to the T3SS. Interestingly, a specific subset of proteins conserved in E. coli completes the IpgC proxisome in the on-state.IMPORTANCEPromiscuous biotin ligases are widely used to study protein function in eukaryotes. Strikingly, their use in prokaryotes has been rare. Indeed, the small volume and the cytoplasmic location of the biotin ligase's natural binding partners in these organisms pose unique challenges that can interfere with the study of the proxisome of proteins of interest. Here, we evaluated four of the most common promiscuous biotin ligases and found TurboID was best suited for use in the cytoplasm of Shigella flexneri. Using this method, we extended the proxisome of IpgC beyond its known direct binding partners involved in the regulation of the type III secretion system (T3SS) signaling cascade. Of particular interest for further study are transcription factors and housekeeping proteins that are enriched around IpgC when the T3SS is active. We propose a model in which the increased availability of IpgC in the on-state may allow cross-talk of the T3SS with other cellular processes.
Collapse
Affiliation(s)
- Nathaline Haidar-Ahmad
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, Host-Microbe Interactions Laboratory, University of Ottawa, Ottawa, Ontario, Canada
| | - Kyle Tomaro
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, Host-Microbe Interactions Laboratory, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - François-Xavier Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, Host-Microbe Interactions Laboratory, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
48
|
Büchler LR, Blomgren LKM, Bürer C, Zanotelli VRT, Froese DS. Evidence for interaction of 5,10-methylenetetrahydrofolate reductase (MTHFR) with methylenetetrahydrofolate dehydrogenase (MTHFD1) and general control nonderepressible 1 (GCN1). Biochimie 2024:S0300-9084(24)00265-7. [PMID: 39571719 DOI: 10.1016/j.biochi.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/07/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
5,10-Methylenetetrahydrofolate reductase (MTHFR) is a folate cycle enzyme required for the intracellular synthesis of methionine. MTHFR was previously shown to be partially phosphorylated at 16 residues, which was abrogated by conversion of threonine 34 to alanine (T34A) or truncation of the first 37 amino acids (i.e. expression of amino acids 38-656), and promoted by methionine supplementation. Here, we over-expressed wild-type MTHFR (MTFHRWT), as well as the variants MTHFRT34A and MTHFR38-656 in 293T cells to provide further insights into these mechanisms. We demonstrate that following incubation in high methionine conditions (100-1000 μM) MTHFRWT is almost completely phosphorylated, but in methionine restricted conditions (0-10 μM) phosphorylation is reduced, while MTHFRT34A always remains unphosphorylated. Following affinity purification coupled mass spectrometry of an empty vector, MTHFRWT, MTHFRT34A and MTHFR38-656 in three separate experiments, we identified 134 proteins consistently pulled-down by all three MTHFR protein variants, of which 5 were indicated to be likely true interactors (SAINT prediction threshold of 0.95 and 2 fold-change). Amongst these were the folate cycle enzyme methylenetetrahydrofolate dehydrogenase (MTHFD1) and the amino acid starvation sensor general control nonderepressible 1 (GCN1). Immunoprecipitation-immunoblotting of MTHFRWT replicated interaction with both proteins. An AlphaFold 3 generated model of the MTHFR-MTHFD1 interaction places the MTHFD1 dehydrogenase/cyclohydrolase domain in direct contact with the MTHFR catalytic domain, suggesting their interaction may facilitate direct delivery of methylenetetrahydrofolate. Overall, we confirm methionine availability increases MTHFR phosphorylation, and identified potential interaction of MTHFR with MTHFD1 and GCN1.
Collapse
Affiliation(s)
- Linda R Büchler
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Linnea K M Blomgren
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Céline Bürer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Vito R T Zanotelli
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
49
|
Lodovichi S, Nepomuceno TC, Woods NT, Rix U, Koomen JM, Pellicioli A, Galli A, Monteiro ANA. SART1 modulates poly-(ADP-ribose) chain accumulation and PARP1 chromatin localization. iScience 2024; 27:111252. [PMID: 39569366 PMCID: PMC11576398 DOI: 10.1016/j.isci.2024.111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 02/23/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
PARP1 inhibitors (PARPis) are used for treatment of cancers with mutations in BRCA1 or BRCA2 that are deficient in homologous recombination. The identification of modulators of PARP1 activity is critical to understand and overcome resistance to PARPis. We integrated data from three omics-scale screens to discover new regulators of PARP1 activity. We identified SART1 and show that its silencing leads to an increase in poly-ADP ribosylation and chromatin-bound PARP1. SART1 is recruited to chromatin following DNA damage and limits PARP1 chromatin retention and activity. The SART1 N-terminus is sufficient to regulate the accumulation of PAR chains and PARP1 on chromatin, an activity dependent on the RGG/RG box. Silencing of SART1 leads to an increased sensitivity of cells to DNA damage induced by IR, irrespective of BRCA1 status and to PARPis only in absence of BRCA1. These results suggest that SART1 could be clinically utilized to improve PARPi efficacy.
Collapse
Affiliation(s)
- Samuele Lodovichi
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR, 56125 Pisa, Italy
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20131 Milano, Italy
| | - Thales C Nepomuceno
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Nicholas T Woods
- Gastrointestinal Cancer Program, Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John M Koomen
- Molecular Oncology and Molecular Medicine Program, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Achille Pellicioli
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20131 Milano, Italy
| | - Alvaro Galli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR, 56125 Pisa, Italy
| | - Alvaro N A Monteiro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
50
|
Tsuchiya J, Mino S, Fujiwara F, Okuma N, Ichihashi Y, Morris RM, Nunn BL, Timmins-Schiffman E, Sawabe T. Time course transcriptomic profiling suggests Crp/Fnr transcriptional regulation of nosZ gene in a N 2O-reducing thermophile. iScience 2024; 27:111074. [PMID: 39507244 PMCID: PMC11539149 DOI: 10.1016/j.isci.2024.111074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
Nitrosophilus labii HRV44T is a thermophilic chemolithoautotroph possessing clade II type nitrous oxide (N2O) reductase (NosZ) that has an outstanding activity in reducing N2O to dinitrogen gas. Here, we attempt to understand molecular responses of HRV44T to N2O. Time course transcriptome and proteomic mass spectrometry analyses under anaerobic conditions revealed that most of transcripts and peptides related to denitrification were constitutively detected, even in the absence of any nitrogen oxides as electron acceptors. Gene expressions involved in electron transport to NosZ were upregulated within 3 h in response to N2O, rather than upregulation of nos genes. Two genes encoding Crp/Fnr transcriptional regulators observed upstream of nap and nor gene clusters had significant negative correlations with nosZ expression. Statistical path analysis further inferred a significant causal relationship between the gene expression of nosZ and that of one Crp/Fnr regulators. Our findings contribute to understanding the transcriptional regulation in clade II type N2O-reducers.
Collapse
Affiliation(s)
- Jiro Tsuchiya
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Sayaka Mino
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Fuki Fujiwara
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nao Okuma
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | | | - Robert M. Morris
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Brook L. Nunn
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Tomoo Sawabe
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| |
Collapse
|