1
|
Yarbro JM, Han X, Dasgupta A, Yang K, Liu D, Shrestha HK, Zaman M, Wang Z, Yu K, Lee DG, Vanderwall D, Niu M, Sun H, Xie B, Chen PC, Jiao Y, Zhang X, Wu Z, Chepyala SR, Fu Y, Li Y, Yuan ZF, Wang X, Poudel S, Vagnerova B, He Q, Tang A, Ronaldson PT, Chang R, Yu G, Liu Y, Peng J. Human and mouse proteomics reveals the shared pathways in Alzheimer's disease and delayed protein turnover in the amyloidome. Nat Commun 2025; 16:1533. [PMID: 39934151 PMCID: PMC11814087 DOI: 10.1038/s41467-025-56853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Murine models of Alzheimer's disease (AD) are crucial for elucidating disease mechanisms but have limitations in fully representing AD molecular complexities. Here we present the comprehensive, age-dependent brain proteome and phosphoproteome across multiple mouse models of amyloidosis. We identified shared pathways by integrating with human metadata and prioritized components by multi-omics analysis. Collectively, two commonly used models (5xFAD and APP-KI) replicate 30% of the human protein alterations; additional genetic incorporation of tau and splicing pathologies increases this similarity to 42%. We dissected the proteome-transcriptome inconsistency in AD and 5xFAD mouse brains, revealing that inconsistent proteins are enriched within amyloid plaque microenvironment (amyloidome). Our analysis of the 5xFAD proteome turnover demonstrates that amyloid formation delays the degradation of amyloidome components, including Aβ-binding proteins and autophagy/lysosomal proteins. Our proteomic strategy defines shared AD pathways, identifies potential targets, and underscores that protein turnover contributes to proteome-transcriptome discrepancies during AD progression.
Collapse
Affiliation(s)
- Jay M Yarbro
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xian Han
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Abhijit Dasgupta
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Computer Science and Engineering, SRM University AP, Andhra Pradesh, India
| | - Ka Yang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Danting Liu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Him K Shrestha
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Masihuz Zaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhen Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kaiwen Yu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dong Geun Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David Vanderwall
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mingming Niu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Huan Sun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ping-Chung Chen
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yun Jiao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xue Zhang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhiping Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Surendhar R Chepyala
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yingxue Fu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xusheng Wang
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Barbora Vagnerova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Qianying He
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Andrew Tang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Rui Chang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Gang Yu
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, USA
- Department of Biomedical Informatics & Data Science, Yale University School of Medicine, West Haven, CT, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
2
|
Van Leene C, Van Moortel L, De Bosscher K, Gevaert K. Exploring protein conformations with limited proteolysis coupled to mass spectrometry. Trends Biochem Sci 2025; 50:143-155. [PMID: 39706777 DOI: 10.1016/j.tibs.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
Limited proteolysis coupled to mass spectrometry (LiP-MS) has emerged as a powerful proteomic tool for studying protein conformations. Since its introduction in 2014, LiP-MS has expanded its scope to explore complex biological systems and shed light on disease mechanisms, and has been used for protein drug research. This review discusses the evolution of the technique, recent technical advances, including enhanced protocols and integration of machine learning, and diverse applications across various experimental models. Despite its achievements, challenges in protein extraction and conformotypic peptide identification remain. Ongoing methodological refinements will be crucial to overcome these challenges and enhance the capabilities of the technique. However, LiP-MS offers significant potential for future discoveries in structural proteomics and medical research.
Collapse
Affiliation(s)
- Chloé Van Leene
- Vlaams Instituut voor Biotechnologie (VIB) Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Laura Van Moortel
- Vlaams Instituut voor Biotechnologie (VIB) Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- Vlaams Instituut voor Biotechnologie (VIB) Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- Vlaams Instituut voor Biotechnologie (VIB) Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Fay CX, Zunica ERM, Awad E, Bradley W, Church C, Liu J, Liu H, Crossman DK, Mobley JA, Kirwan JP, Axelrod CL, Westin E, Kesterson RA, Wallis D. Global proteomics and affinity mass spectrometry analysis of human Schwann cells indicates that variation in and loss of neurofibromin (NF1) alters protein expression and cellular and mitochondrial metabolism. Sci Rep 2025; 15:3883. [PMID: 39890807 PMCID: PMC11785952 DOI: 10.1038/s41598-024-84493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 12/24/2024] [Indexed: 02/03/2025] Open
Abstract
In efforts to evaluate potential biomarkers and drug targets for Neurofibromatosis Type I (NF1) we utilized affinity mass spectrometry and global proteomics to investigate how variation within and loss of NF1 affect immortalized human Schwann cells. We used Strep tagged mNf1 cDNAs (both wild type (WT) and variant) to affinity purity NF1 Protein-Protein interactors (PPIs) from the Schwann cells. We were able to identify 98 PPIs and show that some of these PPIs bind differentially to variant proteins. Next, we evaluated global proteomes. We identified over 1900 proteins in immortalized human Schwann cells both with and without NF1 expression. We identified 148 proteins with differential expression levels based on genotype. Following Ingenuity Pathway analysis (IPA) we found multiple pathways were altered including decreases in "oxidative phosphorylation," increases in "mitochondrial dysfunction", and "glycolysis", as well as changes in "Myelination Signaling Pathway." When we evaluated the proteome of NF1 null cells stably transfected with tagged mNf1 cDNAs we again identified an overall trend of metabolic differences pertaining to "oxidative phosphorylation", "mitochondria dysfunction", and "glycolysis" in the variant cDNA expressing cells. We then validated differential expression of the following proteins: LAMC1, CYB5R3, and SOD2 that are observed in the altered pathways. Finally, consistent with our proteomics findings, we show that NF1 is required to maintain mitochondrial respiratory function in Schwann cells by stabilizing NADH-linked oxidative phosphorylation and electron transfer. Taken together, these data indicate that NF1 plays a significant role in mitochondrial metabolism that results in proteomic changes in Schwann cells and may serve as a future drug target.
Collapse
Affiliation(s)
- Christian X Fay
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | - Elias Awad
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - William Bradley
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Cameron Church
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jian Liu
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hui Liu
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David K Crossman
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - James A Mobley
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - John P Kirwan
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | - Erik Westin
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | - Deeann Wallis
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
4
|
Pauper M, Hentschel A, Tiburcy M, Beltran S, Ruck T, Schara-Schmidt U, Roos A. Proteomic Profiling Towards a Better Understanding of Genetic Based Muscular Diseases: The Current Picture and a Look to the Future. Biomolecules 2025; 15:130. [PMID: 39858524 PMCID: PMC11763865 DOI: 10.3390/biom15010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Proteomics accelerates diagnosis and research of muscular diseases by enabling the robust analysis of proteins relevant for the manifestation of neuromuscular diseases in the following aspects: (i) evaluation of the effect of genetic variants on the corresponding protein, (ii) prediction of the underlying genetic defect based on the proteomic signature of muscle biopsies, (iii) analysis of pathophysiologies underlying different entities of muscular diseases, key for the definition of new intervention concepts, and (iv) patient stratification according to biochemical fingerprints as well as (v) monitoring the success of therapeutic interventions. This review presents-also through exemplary case studies-the various advantages of mass proteomics in the investigation of genetic muscle diseases, discusses technical limitations, and provides an outlook on possible future application concepts. Hence, proteomics is an excellent large-scale analytical tool for the diagnostic workup of (hereditary) muscle diseases and warrants systematic profiling of underlying pathophysiological processes. The steady development may allow to overcome existing limitations including a quenched dynamic range and quantification of different protein isoforms. Future directions may include targeted proteomics in diagnostic settings using not only muscle biopsies but also liquid biopsies to address the need for minimally invasive procedures.
Collapse
Affiliation(s)
- Marc Pauper
- Centro Nacional de Análisis Genómico (CNAG), Baldiri Reixac 4, 08028 Barcelona, Spain; (M.P.); (S.B.)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany;
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University, 37075 Göttingen, Germany;
- ZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Sergi Beltran
- Centro Nacional de Análisis Genómico (CNAG), Baldiri Reixac 4, 08028 Barcelona, Spain; (M.P.); (S.B.)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany;
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, University Duisburg-Essen, 45147 Essen, Germany;
| | - Andreas Roos
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany;
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, University Duisburg-Essen, 45147 Essen, Germany;
- Brain and Mind Research Institute, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
5
|
Lu G, Ma F, Wei P, Ma M, Tran VNH, Baldo BA, Li L. Cocaine-Induced Remodeling of the Rat Brain Peptidome: Quantitative Mass Spectrometry Reveals Anatomically Specific Patterns of Cocaine-Regulated Peptide Changes. ACS Chem Neurosci 2025; 16:128-140. [PMID: 39810605 PMCID: PMC11736046 DOI: 10.1021/acschemneuro.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Addiction to psychostimulants, including cocaine, causes widespread morbidity and mortality and is a major threat to global public health. Currently, no pharmacotherapies can successfully treat psychostimulant addiction. The neuroactive effects of cocaine and other psychostimulants have been studied extensively with respect to their modulation of monoamine systems (particularly dopamine); effects on neuropeptide systems have received less attention. Here, we employed mass spectrometry (MS) methods to characterize cocaine-induced peptidomic changes in the rat brain. Label-free peptidomic analysis using liquid chromatography coupled with tandem MS (LC-MS/MS) was used to describe the dynamic changes of endogenous peptides in five brain regions (nucleus accumbens, dorsal striatum, prefrontal cortex, amygdala, and hypothalamus) following an acute systemic cocaine challenge. The improved sensitivity and specificity of this method, coupled with quantitative assessment, enabled the identification of 1376 peptides derived from 89 protein precursors. Our data reveal marked, region-specific changes in peptide levels in the brain induced by acute cocaine exposure, with peptides in the cholecystokinin and melanin-concentrating hormone families being significantly affected. These findings offer new insights into the region-specific effects of cocaine and could pave the way for developing new therapies to treat substance use disorders and related psychiatric conditions.
Collapse
Affiliation(s)
- Gaoyuan Lu
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Fengfei Ma
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Pingli Wei
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Min Ma
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Vu Ngoc Huong Tran
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Brian A Baldo
- Department of Psychiatry, University of Wisconsin─Madison, Madison, Wisconsin 53719, United States
- Neuroscience Training Program, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
6
|
Kaplelach AK, Murchison CF, Kojima K, Mobley JA, Arrant AE. Increased levels of extracellular matrix proteins associated with extracellular vesicles from brains of aged mice. Aging Cell 2025; 24:e14359. [PMID: 39377264 PMCID: PMC11709096 DOI: 10.1111/acel.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 10/09/2024] Open
Abstract
Extracellular vesicles (EVs) are secreted by all major cell types of the brain, providing a mode of intercellular communication and a pathway for disposal of cellular debris. EVs help maintain healthy brain function, but may also contribute to diseases affecting the brain. EVs might contribute to aging of the brain, as aging-related processes such as inflammation and cellular senescence may alter EV cargo, promoting further inflammation and senescence. However, the effects of aging on brain EVs and the function of EVs in the aging brain remain poorly understood. To address this question, we measured the levels and protein cargo of EVs isolated from the brains of 4-, 12-, and 22-month-old C57BL/6J mice. We detected no changes in EV levels, but observed age-dependent changes in EV proteins. EV fractions from aged (22 month old) brains contained higher levels of extracellular matrix proteins than EV fractions from young (4 month old) brains, with intermediate levels in 12-month-old brains. Specifically, EV fractions from aged mice contained elevated levels of hyaluronan and proteoglycan link proteins 1 and 2 and several chondroitin sulfate proteoglycans (CSPGs). Analysis of extracellular matrix in several brain regions of aged mice revealed increased immunolabeling for the CSPG aggrecan, but reduced labeling with Wisteria floribunda agglutinin, which binds to chondroitin sulfate side chains of CSPGs. These data are consistent with prior studies showing changes to the composition of extracellular matrix in aged brains, and indicate a novel association of EVs with changes in the extracellular matrix of the aging brain.
Collapse
Affiliation(s)
- Azariah K. Kaplelach
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Department of NeurologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Charles F. Murchison
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Department of NeurologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Kyoko Kojima
- Institutional Research Core Program/Mass Spectrometry, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - James A. Mobley
- Institutional Research Core Program/Mass Spectrometry, University of Alabama at BirminghamBirminghamAlabamaUSA
- Department of Anesthesiology and Perioperative MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Andrew E. Arrant
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Department of NeurologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
7
|
Kalló G, Zaman K, Potor L, Hendrik Z, Méhes G, Tóth C, Gergely P, Tőzsér J, Balla G, Balla J, Prokai L, Csősz É. Identification of Protein Networks and Biological Pathways Driving the Progression of Atherosclerosis in Human Carotid Arteries Through Mass Spectrometry-Based Proteomics. Int J Mol Sci 2024; 25:13665. [PMID: 39769427 PMCID: PMC11728284 DOI: 10.3390/ijms252413665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Vulnerable atherosclerotic plaques, especially hemorrhaged lesions, are the major cause of mortalities related to vascular pathologies. The early identification of vulnerable plaques helps to stratify patients at risk of developing acute vascular events. In this study, proteomics analyses of human carotid artery samples collected from patients with atheromatous plaques and complicated lesions, respectively, as well as from healthy controls were performed. The proteins isolated from the carotid artery samples were analyzed by a bottom-up shotgun approach that relied on nanoflow liquid chromatography-tandem mass spectrometry analyses (LC-MS/MS) using both data-dependent (DDA) and data-independent (DIA) acquisitions. The data obtained by high-resolution DIA analyses displayed a stronger distinction among groups compared to DDA analyses. Differentially expressed proteins were further examined using Ingenuity Pathway Analysis® with focus on pathological and molecular processes driving atherosclerosis. From the more than 150 significantly regulated canonical pathways, atherosclerosis signaling and neutrophil extracellular trap signaling were verified by protein-targeted data extraction. The results of our study are expected to facilitate a better understanding of the disease progression's molecular drivers and provide inspiration for further multiomics and hypothesis-driven studies.
Collapse
Affiliation(s)
- Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (J.T.)
| | - Khadiza Zaman
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - László Potor
- HUN-REN-DE Vascular Pathophysiology Research Group 11003, University of Debrecen, 4032 Debrecen, Hungary; (L.P.); (J.B.)
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zoltán Hendrik
- Department of Forensic Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.H.); (P.G.)
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Csaba Tóth
- Division of Vascular Surgery, Department of Surgery, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Péter Gergely
- Department of Forensic Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.H.); (P.G.)
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (J.T.)
| | - György Balla
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - József Balla
- HUN-REN-DE Vascular Pathophysiology Research Group 11003, University of Debrecen, 4032 Debrecen, Hungary; (L.P.); (J.B.)
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Laszlo Prokai
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (J.T.)
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (J.T.)
| |
Collapse
|
8
|
Remes PM, Jacob CC, Heil LR, Shulman N, MacLean BX, MacCoss MJ. Hybrid Quadrupole Mass Filter-Radial Ejection Linear Ion Trap and Intelligent Data Acquisition Enable Highly Multiplex Targeted Proteomics. J Proteome Res 2024; 23:5476-5486. [PMID: 39475161 PMCID: PMC11956834 DOI: 10.1021/acs.jproteome.4c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Targeted mass spectrometry (MS) methods are powerful tools for the selective and sensitive analysis of peptides identified in global discovery experiments. Selected reaction monitoring (SRM) is the most widely accepted clinical MS method due to its reliability and performance. However, SRM and parallel reaction monitoring (PRM) are limited in throughput and are typically used for assays with around 100 targets or fewer. Here we introduce a new MS platform featuring a quadrupole mass filter, collision cell, and linear ion trap architecture, capable of targeting 5000-8000 peptides per hour. This high multiplexing capability is facilitated by acquisition rates of 70-100 Hz and real-time chromatogram alignment. We present a Skyline external software tool for building targeted methods based on data-independent acquisition chromatogram libraries or unscheduled analysis of heavy labeled standards. Our platform demonstrates ∼10× lower limits of quantitation (LOQs) than traditional SRM on a triple quadrupole instrument for highly multiplexed assays, due to parallel product ion accumulation. Finally, we explore how analytical figures of merit vary with method duration and the number of analytes, providing insights into optimizing assay performance.
Collapse
Affiliation(s)
- Philip M Remes
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Cristina C Jacob
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Lilian R Heil
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Nicholas Shulman
- Department of Genome Sciences, University of Washington, 3720 15th St. NE, Seattle, Washington 98195, United States
| | - Brendan X MacLean
- Department of Genome Sciences, University of Washington, 3720 15th St. NE, Seattle, Washington 98195, United States
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, 3720 15th St. NE, Seattle, Washington 98195, United States
| |
Collapse
|
9
|
Hamza H, Ghosh M, Löffler MW, Rammensee HG, Planz O. Identification and relative abundance of naturally presented and cross-reactive influenza A virus MHC class I-restricted T cell epitopes. Emerg Microbes Infect 2024; 13:2306959. [PMID: 38240239 PMCID: PMC10854457 DOI: 10.1080/22221751.2024.2306959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024]
Abstract
Cytotoxic T lymphocytes are key for controlling viral infection. Unravelling CD8+ T cell-mediated immunity to distinct influenza virus strains and subtypes across prominent HLA types is relevant for combating seasonal infections and emerging new variants. Using an immunopeptidomics approach, naturally presented influenza A virus-derived ligands restricted to HLA-A*24:02, HLA-A*68:01, HLA-B*07:02, and HLA-B*51:01 molecules were identified. Functional characterization revealed multifunctional memory CD8+ T cell responses for nine out of sixteen peptides. Peptide presentation kinetics was optimal around 12 h post infection and presentation of immunodominant epitopes shortly after infection was not always persistent. Assessment of immunogenic epitopes revealed that they are highly conserved across the major zoonotic reservoirs and may contain a single substitution in the vicinity of the anchor residues. These findings demonstrate how the identified epitopes promote T cell pools, possibly cross-protective in individuals and can be potential targets for vaccination.
Collapse
Affiliation(s)
- Hazem Hamza
- Institute for Immunology, University of Tübingen, Tübingen, Germany
- Virology Laboratory, Environmental Research Division, National Research Centre, Giza, Egypt
| | - Michael Ghosh
- Institute for Immunology, University of Tübingen, Tübingen, Germany
| | - Markus W Löffler
- Institute for Immunology, University of Tübingen, Tübingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, Tübingen, Germany
- Centre for Clinical Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Institute for Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence CMFI (EXC2124) "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Oliver Planz
- Institute for Immunology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Helm J, Mereiter S, Oliveira T, Gattinger A, Markovitz DM, Penninger JM, Altmann F, Stadlmann J. Non-targeted N-glycome profiling reveals multiple layers of organ-specific diversity in mice. Nat Commun 2024; 15:9725. [PMID: 39521793 PMCID: PMC11550822 DOI: 10.1038/s41467-024-54134-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
N-glycosylation is one of the most common protein modifications in eukaryotes, with immense importance at the molecular, cellular, and organismal level. Accurate and reliable N-glycan analysis is essential to obtain a systems-wide understanding of fundamental biological processes. Due to the structural complexity of glycans, their analysis is still highly challenging. Here we make publicly available a consistent N-glycome dataset of 20 different mouse tissues and demonstrate a multimodal data analysis workflow that allows for unprecedented depth and coverage of N-glycome features. This highly scalable, LC-MS/MS data-driven method integrates the automated identification of N-glycan spectra, the application of non-targeted N-glycome profiling strategies and the isomer-sensitive analysis of glycan structures. Our delineation of critical sub-structural determinants and glycan isomers across the mouse N-glycome uncovered tissue-specific glycosylation patterns, the expression of non-canonical N-glycan structures and highlights multiple layers of N-glycome complexity that derive from organ-specific regulations of glycobiological pathways.
Collapse
Affiliation(s)
- Johannes Helm
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna, Austria
| | - Stefan Mereiter
- Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Tiago Oliveira
- Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Anna Gattinger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Softwarepark 11, Hagenberg, Austria
| | - David M Markovitz
- Division of Infectious Diseases, Department of Internal Medicine, and the Programs in Immunology, Cellular and Molecular Biology, and Cancer Biology, University of Michigan, Ann Arbor, MI, USA
| | - Josef M Penninger
- Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver Campus, 2350 Health Sciences Mall, Vancouver, BC, Canada
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Friedrich Altmann
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna, Austria
| | - Johannes Stadlmann
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna, Austria.
- BOKU Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna, Austria.
| |
Collapse
|
11
|
Yarbro JM, Han X, Dasgupta A, Yang K, Liu D, Shrestha HK, Zaman M, Wang Z, Yu K, Lee DG, Vanderwall D, Niu M, Sun H, Xie B, Chen PC, Jiao Y, Zhang X, Wu Z, Fu Y, Li Y, Yuan ZF, Wang X, Poudel S, Vagnerova B, He Q, Tang A, Ronaldson PT, Chang R, Yu G, Liu Y, Peng J. Human-mouse proteomics reveals the shared pathways in Alzheimer's disease and delayed protein turnover in the amyloidome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620263. [PMID: 39484428 PMCID: PMC11527136 DOI: 10.1101/2024.10.25.620263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Murine models of Alzheimer's disease (AD) are crucial for elucidating disease mechanisms but have limitations in fully representing AD molecular complexities. We comprehensively profiled age-dependent brain proteome and phosphoproteome (n > 10,000 for both) across multiple mouse models of amyloidosis. We identified shared pathways by integrating with human metadata, and prioritized novel components by multi-omics analysis. Collectively, two commonly used models (5xFAD and APP-KI) replicate 30% of the human protein alterations; additional genetic incorporation of tau and splicing pathologies increases this similarity to 42%. We dissected the proteome-transcriptome inconsistency in AD and 5xFAD mouse brains, revealing that inconsistent proteins are enriched within amyloid plaque microenvironment (amyloidome). Determining the 5xFAD proteome turnover demonstrates that amyloid formation delays the degradation of amyloidome components, including Aβ-binding proteins and autophagy/lysosomal proteins. Our proteomic strategy defines shared AD pathways, identify potential new targets, and underscores that protein turnover contributes to proteome-transcriptome discrepancies during AD progression.
Collapse
Affiliation(s)
- Jay M Yarbro
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- These authors contributed equally
| | - Xian Han
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- These authors contributed equally
| | - Abhijit Dasgupta
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Current address: Department of Computer Science and Engineering, SRM University AP, Andhra Pradesh 522240, India
- These authors contributed equally
| | - Ka Yang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- These authors contributed equally
| | - Danting Liu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Him K Shrestha
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Masihuz Zaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhen Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kaiwen Yu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dong Geun Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David Vanderwall
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mingming Niu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Huan Sun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ping-Chung Chen
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yun Jiao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xue Zhang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhiping Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yingxue Fu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xusheng Wang
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Barbora Vagnerova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Qianying He
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Andrew Tang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Rui Chang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Gang Yu
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Cancer Research Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
12
|
Yang YY, Cao Z, Wang Y. Mass Spectrometry-Based Proteomics for Assessing Epitranscriptomic Regulations. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39422510 DOI: 10.1002/mas.21911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
Epitranscriptomics is a rapidly evolving field that explores chemical modifications in RNA and how they contribute to dynamic and reversible regulations of gene expression. These modifications, for example, N6-methyladenosine (m6A), are crucial in various RNA metabolic processes, including splicing, stability, subcellular localization, and translation efficiency of mRNAs. Mass spectrometry-based proteomics has become an indispensable tool in unraveling the complexities of epitranscriptomics, offering high-throughput, precise protein identification, and accurate quantification of differential protein expression. Over the past two decades, advances in mass spectrometry, including the improvement of high-resolution mass spectrometers and innovative sample preparation methods, have allowed researchers to perform in-depth analyses of epitranscriptomic regulations. This review focuses on the applications of bottom-up proteomics in the field of epitranscriptomics, particularly in identifying and quantifying epitranscriptomic reader, writer, and eraser (RWE) proteins and in characterizing their functions, posttranslational modifications, and interactions with other proteins. Together, by leveraging modern proteomics, researchers can gain deep insights into the intricate regulatory networks of RNA modifications, advancing fundamental biology, and fostering potential therapeutic applications.
Collapse
Affiliation(s)
- Yen-Yu Yang
- Department of Chemistry, University of California, Riverside, California, USA
| | - Zhongwen Cao
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA
| |
Collapse
|
13
|
Avella I, Schulte L, Hurka S, Damm M, Eichberg J, Schiffmann S, Henke M, Timm T, Lochnit G, Hardes K, Vilcinskas A, Lüddecke T. Proteogenomics-guided functional venomics resolves the toxin arsenal and activity of Deinagkistrodon acutus venom. Int J Biol Macromol 2024; 278:135041. [PMID: 39182889 DOI: 10.1016/j.ijbiomac.2024.135041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Snakebite primarily impacts rural communities of Africa, Asia, and Latin America. The sharp-nosed viper (Deinagkistrodon acutus) is among the snakes of highest medical importance in Asia. Despite various studies on its venom using modern venomics techniques, a comprehensive understanding of composition and function of this species' venom remains lacking. We combined proteogenomics with extensive bioactivity profiling to present the first genome-level catalogue of D. acutus venom proteins and their exochemistry. Our analysis identified an unusually simple venom containing 45 components from 20 distinct protein families. Relative toxin abundances indicate that C-type lectin and C-type lectin-related protein (CTL), snake venom metalloproteinase (svMP), snake venom serine protease (svSP), and phospholipase A2 (PLA2) constitute 90 % of the venom. Bioassays targeting key aspects of viperid envenomation showed considerable concentration-dependent cytotoxicity, particularly in kidney and lung cells, and potent protease and PLA2 activity. Factor Xa and thrombin activities were minor, and no plasmin activity was observed. Effects on haemolysis, intracellular calcium (Ca2+) release, and nitric oxide (NO) synthesis were negligible. Our analysis provides the first holistic genome-based overview of the toxin arsenal of D. acutus, predicting the molecular and functional basis of its life-threatening effects, and opens novel avenues for treating envenomation by this highly dangerous snake.
Collapse
Affiliation(s)
- Ignazio Avella
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany.
| | - Lennart Schulte
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Sabine Hurka
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Bioeconomy (BioKreativ) "SymBioÖkonomie", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Maik Damm
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Johanna Eichberg
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Susanne Schiffmann
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt am Main, Germany
| | - Marina Henke
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt am Main, Germany
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Günther Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Kornelia Hardes
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Tim Lüddecke
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
14
|
Podieh F, Overboom MC, Knol JC, Piersma SR, Goeij-de Haas R, Pham TV, Jimenez CR, Hordijk PL. AAMP and MTSS1 Are Novel Negative Regulators of Endothelial Barrier Function Identified in a Proteomics Screen. Cells 2024; 13:1609. [PMID: 39404373 PMCID: PMC11476176 DOI: 10.3390/cells13191609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Cell-cell adhesion in endothelial monolayers is tightly controlled and crucial for vascular integrity. Recently, we reported on the importance of fast protein turnover for maintenance of endothelial barrier function. Specifically, continuous ubiquitination and degradation of the Rho GTPase RhoB is crucial to preserve quiescent endothelial integrity. Here, we sought to identify other barrier regulators, which are characterized by a short half-life, using a proteomics approach. Following short-term inhibition of ubiquitination with E1 ligase inhibitor MLN7243 or Cullin E3 ligase inhibitor MLN4924 in primary human endothelial cells, we identified sixty significantly differentially expressed proteins. Intriguingly, our data showed that AAMP and MTSS1 are novel negative regulators of endothelial barrier function and that their turnover is tightly controlled by ubiquitination. Mechanistically, AAMP regulates the stability and activity of RhoA and RhoB, and colocalizes with F-actin and cortactin at membrane ruffles, possibly regulating F-actin dynamics. Taken together, these findings demonstrate the critical role of protein turnover of specific proteins in the regulation of endothelial barrier function, contributing to our options to target dysregulation of vascular permeability.
Collapse
Affiliation(s)
- Fabienne Podieh
- Department of Physiology, Microcirculation, Amsterdam Cardiovascular Science, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; (F.P.)
| | - Max C. Overboom
- Department of Physiology, Microcirculation, Amsterdam Cardiovascular Science, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; (F.P.)
| | - Jaco C. Knol
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Sander R. Piersma
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Richard Goeij-de Haas
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Thang V. Pham
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Connie R. Jimenez
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Peter L. Hordijk
- Department of Physiology, Microcirculation, Amsterdam Cardiovascular Science, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; (F.P.)
| |
Collapse
|
15
|
Koenig N, Baa-Puyoulet P, Lafont A, Lorenzo-Colina I, Navratil V, Leprêtre M, Sugier K, Delorme N, Garnero L, Queau H, Gaillard JC, Kielbasa M, Ayciriex S, Calevro F, Chaumot A, Charles H, Armengaud J, Geffard O, Degli Esposti D. Proteogenomic reconstruction of organ-specific metabolic networks in an environmental sentinel species, the amphipod Gammarus fossarum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101323. [PMID: 39276751 DOI: 10.1016/j.cbd.2024.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Metabolic pathways are affected by the impacts of environmental contaminants underlying a large variability of toxic effects across different species. However, the systematic reconstruction of metabolic pathways remains limited in environmental sentinel species due to the lack of available genomic data in many taxa of animal diversity. In this study we used a multi-omics approach to reconstruct the most comprehensive map of metabolic pathways for a crustacean model in biomonitoring, the amphipod Gammarus fossarum in order to improve the knowledge of the metabolism of this sentinel species. We revisited the assembly of RNA-seq data by de novo approaches to reduce RNA contaminants and transcript redundancy. We also acquired extensive mass spectrometry shotgun proteomic data on several organs from a reference population of G. fossarum males and females to identify organ-specific metabolic profiles. The G. fossarum metabolic pathway reconstruction (available through the metabolic database GamfoCyc) was performed by adapting the genomic tool CycADS and we identified 377 pathways representing 7630 annotated enzymes, 2610 enzymatic reactions and the expression of 858 enzymes was experimentally validated by proteomics. To our knowledge, our analysis provides for the first time a systematic metabolic pathway reconstruction and the proteome profiles of these pathways at the organ level in this sentinel species. As an example, we show an elevated abundance in enzymes involved in ATP biosynthesis and fatty acid beta-oxidation indicative of the high-energy requirement of the gills, or the key anabolic and detoxification role of the hepatopancreatic caeca, as exemplified by the specific expression of the retinoid biosynthetic pathways and glutathione synthesis. In conclusion, the multi-omics data integration performed in this study provides new resources to investigate metabolic processes in crustacean amphipods and their role in mediating the effects of environmental contaminant exposures in sentinel species. SYNOPSIS: This study provide the first evidence that it is possible to combine multiple omics data to exhaustively describe the metabolic network of a model species in ecotoxicology, Gammarus fossarum, for which a reference genome is not yet available.
Collapse
Affiliation(s)
- Natacha Koenig
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | | | - Amélie Lafont
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Isis Lorenzo-Colina
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Vincent Navratil
- PRABI, Rhône-Alpes Bioinformatics Center, Université Lyon 1, Villeurbanne, France, UMS 3601, Institut Français de Bioinformatique, IFB-Core, Évry, France
| | - Maxime Leprêtre
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Kevin Sugier
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Nicolas Delorme
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Laura Garnero
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Hervé Queau
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Jean-Charles Gaillard
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI-Li2D, F-30207 Bagnols-sur-Céze, France
| | - Mélodie Kielbasa
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI-Li2D, F-30207 Bagnols-sur-Céze, France
| | - Sophie Ayciriex
- University of Lyon, CNRS, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | | | - Arnaud Chaumot
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Hubert Charles
- INRAE, INSA Lyon, BF2I, UMR203, 69621 Villeurbanne, France
| | - Jean Armengaud
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI-Li2D, F-30207 Bagnols-sur-Céze, France
| | - Olivier Geffard
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Davide Degli Esposti
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France.
| |
Collapse
|
16
|
Reisman EG, Botella J, Huang C, Schittenhelm RB, Stroud DA, Granata C, Chandrasiri OS, Ramm G, Oorschot V, Caruana NJ, Bishop DJ. Fibre-specific mitochondrial protein abundance is linked to resting and post-training mitochondrial content in the muscle of men. Nat Commun 2024; 15:7677. [PMID: 39227581 PMCID: PMC11371815 DOI: 10.1038/s41467-024-50632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
Analyses of mitochondrial adaptations in human skeletal muscle have mostly used whole-muscle samples, where results may be confounded by the presence of a mixture of type I and II muscle fibres. Using our adapted mass spectrometry-based proteomics workflow, we provide insights into fibre-specific mitochondrial differences in the human skeletal muscle of men before and after training. Our findings challenge previous conclusions regarding the extent of fibre-type-specific remodelling of the mitochondrial proteome and suggest that most baseline differences in mitochondrial protein abundances between fibre types reported by us, and others, might be due to differences in total mitochondrial content or a consequence of adaptations to habitual physical activity (or inactivity). Most training-induced changes in different mitochondrial functional groups, in both fibre types, were no longer significant in our study when normalised to changes in markers of mitochondrial content.
Collapse
Affiliation(s)
- Elizabeth G Reisman
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Javier Botella
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Metabolic Research Unit, School of Medicine and Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC, Australia
| | - Cheng Huang
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, VIC, Australia
| | - Cesare Granata
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Institute for Clinical Diabetology, German, Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Owala S Chandrasiri
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Georg Ramm
- Ramaciotti Centre for Cryo EM, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Viola Oorschot
- Ramaciotti Centre for Cryo EM, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nikeisha J Caruana
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - David J Bishop
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
17
|
Mendes ML, Borrmann KF, Dittmar G. Eleven shades of PASEF. Expert Rev Proteomics 2024; 21:367-376. [PMID: 39435569 DOI: 10.1080/14789450.2024.2413092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/30/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION The introduction of trapped ion mobility spectrometry (TIMS) in combination with fast high-resolution time-of-flight (TOF) mass spectrometry to the proteomics field led to a jump in protein identifications and quantifications, as well as a lowering of the limit of detection for proteins from biological samples. Parallel Accumulation-Serial Fragmentation (PASEF) is a driving force for this development and has been adapted to discovery as well as targeted proteomics. AREAS COVERED Over the last decade, the PASEF concept has been optimized and led to the implementation of eleven new measurement techniques. In this review, we describe all currently described PASEF measurement techniques and their application to clinical proteomics. Literature was searched using PubMed and Google Scholar search engines. EXPERT OPINION The use of a dual TIMS tunnel has revolutionized the depth and the speed of proteomics measurements. Currently, we witness how this technique is pushing clinical proteomics forward.
Collapse
Affiliation(s)
- Marta L Mendes
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Klara F Borrmann
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Gunnar Dittmar
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
18
|
Calvete JJ, Lomonte B, Saviola AJ, Calderón Celis F, Ruiz Encinar J. Quantification of snake venom proteomes by mass spectrometry-considerations and perspectives. MASS SPECTROMETRY REVIEWS 2024; 43:977-997. [PMID: 37155340 DOI: 10.1002/mas.21850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/24/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
The advent of soft ionization mass spectrometry-based proteomics in the 1990s led to the development of a new dimension in biology that conceptually allows for the integral analysis of whole proteomes. This transition from a reductionist to a global-integrative approach is conditioned to the capability of proteomic platforms to generate and analyze complete qualitative and quantitative proteomics data. Paradoxically, the underlying analytical technique, molecular mass spectrometry, is inherently nonquantitative. The turn of the century witnessed the development of analytical strategies to endow proteomics with the ability to quantify proteomes of model organisms in the sense of "an organism for which comprehensive molecular (genomic and/or transcriptomic) resources are available." This essay presents an overview of the strategies and the lights and shadows of the most popular quantification methods highlighting the common misuse of label-free approaches developed for model species' when applied to quantify the individual components of proteomes of nonmodel species (In this essay we use the term "non-model" organisms for species lacking comprehensive molecular (genomic and/or transcriptomic) resources, a circumstance that, as we detail in this review-essay, conditions the quantification of their proteomes.). We also point out the opportunity of combining elemental and molecular mass spectrometry systems into a hybrid instrumental configuration for the parallel identification and absolute quantification of venom proteomes. The successful application of this novel mass spectrometry configuration in snake venomics represents a proof-of-concept for a broader and more routine application of hybrid elemental/molecular mass spectrometry setups in other areas of the proteomics field, such as phosphoproteomics, metallomics, and in general in any biological process where a heteroatom (i.e., any atom other than C, H, O, N) forms integral part of its mechanism.
Collapse
Affiliation(s)
- Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Bruno Lomonte
- Unidad de Proteómica, Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| |
Collapse
|
19
|
Matzkin LM, Bono JM, Pigage HK, Allan CW, Diaz F, McCoy JR, Green CC, Callan JB, Delahunt SP. Females translate male mRNA transferred during mating. iScience 2024; 27:110442. [PMID: 39108707 PMCID: PMC11300900 DOI: 10.1016/j.isci.2024.110442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 08/13/2024] Open
Abstract
Although RNA is found in the seminal fluid of diverse organisms, it is unknown whether it is functional within females. We developed a proteomic method (VESPA, Variant Enabled SILAC Proteomic Analysis) to test the hypothesis that Drosophila male seminal fluid RNA is translated by females. We found 67 male-derived, female-translated proteins (mdFTPs) in female lower reproductive tracts, many with predicted functions relevant to reproduction. Knockout experiments indicate that mdFTPs play diverse roles in postmating interactions, affecting fertilization success, and the formation/persistence of the insemination reaction mass, a trait hypothesized to be involved in sexual conflict. These findings advance our understanding of reproduction by revealing a mechanism of postmating molecular interactions between the sexes that strengthens and extends male influences on reproduction in previously unrecognized ways. Given the diverse species that carry RNA in seminal fluid, this discovery has broad significance for understanding molecular mechanisms of cooperation and conflict during reproduction.
Collapse
Affiliation(s)
- Luciano M. Matzkin
- Department of Entomology, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Ecology and Evolutionary Biology, Tucson, AZ, USA
| | - Jeremy M. Bono
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| | - Helen K. Pigage
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| | - Carson W. Allan
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Fernando Diaz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - John R. McCoy
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| | - Clinton C. Green
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| | - Jeffrey B. Callan
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| | - Stephen P. Delahunt
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| |
Collapse
|
20
|
Chang G, Aroge FA, Venkateshappa R, Claydon TW, Sun B. Development of an Absolute Quantification Method for hERG Using PRM with Single Isotopologue in-Sample Calibration. ACS OMEGA 2024; 9:33972-33982. [PMID: 39130540 PMCID: PMC11308013 DOI: 10.1021/acsomega.4c04541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 08/13/2024]
Abstract
The human ether-à-go-go-related gene (KCNH2)-encoded protein hERG constitutes the α subunit of the Kv11.1 channel and contributes to the I kr current, which plays an important role in the cardiac action potential. Genetically and xenobiotically triggered malfunctions of hERG can cause arrhythmia. The expression of hERG in various study systems was assessed mainly as the fold change relative to the corresponding control. Here, we developed a simple and sensitive quantitation method using targeted mass spectrometry, i.e., the parallel reaction monitoring approach, to measure the absolute quantity of hERG in copy number. Such measurements do not require controls, and the obtained values can be compared with similar results for any other protein. To effectively avoid matrix effects, we used the heavy-match-light (HML) in-sample calibration approach that requires only a single isotopologue to achieve copy-number quantitation. No significant difference was observed in the results obtained by HML and by the classic standard addition in-sample calibration approach. Using four proteotypic peptides, we quantified the average number of copies of hERG in the HEK293T heterologous expression system as 3.6 ± 0.5 × 106 copies/cell, i.e., 1 million copies/cell for the fully assembled Kv11.1 channel.
Collapse
Affiliation(s)
- Ge Chang
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Fabusuyi A. Aroge
- School
of Mechatronic Systems Engineering, Simon
Fraser University, Surrey, British Columbia V3T0A3, Canada
| | - Ravichandra Venkateshappa
- Department
of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Tom W. Claydon
- Department
of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Bingyun Sun
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| |
Collapse
|
21
|
Duan H, Ning Z, Zhang A, Figeys D. Spectral entropy as a measure of the metaproteome complexity. Proteomics 2024; 24:e2300570. [PMID: 38794877 DOI: 10.1002/pmic.202300570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
The diversity and complexity of the microbiome's genomic landscape are not always mirrored in its proteomic profile. Despite the anticipated proteomic diversity, observed complexities of microbiome samples are often lower than expected. Two main factors contribute to this discrepancy: limitations in mass spectrometry's detection sensitivity and bioinformatics challenges in metaproteomics identification. This study introduces a novel approach to evaluating sample complexity directly at the full mass spectrum (MS1) level rather than relying on peptide identifications. When analyzing under identical mass spectrometry conditions, microbiome samples displayed significantly higher complexity, as evidenced by the spectral entropy and peptide candidate entropy, compared to single-species samples. The research provides solid evidence for the complexity of microbiome in proteomics indicating the optimization potential of the bioinformatics workflow.
Collapse
Affiliation(s)
- Haonan Duan
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Zhibin Ning
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ailing Zhang
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Aguilan JT, Lim J, Racine-Brzostek S, Fischer J, Silvescu C, Cornett S, Nieves E, Mendu DR, Aliste CM, Semple S, Angeletti R, Weiss LM, Cole A, Prystowsky M, Pullman J, Sidoli S. Effect of dynamic exclusion and the use of FAIMS, DIA and MALDI-mass spectrometry imaging with ion mobility on amyloid protein identification. Clin Proteomics 2024; 21:47. [PMID: 38961380 PMCID: PMC11223398 DOI: 10.1186/s12014-024-09500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
Amyloidosis is a disease characterized by local and systemic extracellular deposition of amyloid protein fibrils where its excessive accumulation in tissues and resistance to degradation can lead to organ failure. Diagnosis is challenging because of approximately 36 different amyloid protein subtypes. Imaging methods like immunohistochemistry and the use of Congo red staining of amyloid proteins for laser capture microdissection combined with liquid chromatography tandem mass spectrometry (LMD/LC-MS/MS) are two diagnostic methods currently used depending on the expertise of the pathology laboratory. Here, we demonstrate a streamlined in situ amyloid peptide spatial mapping by Matrix Assisted Laser Desorption Ionization-Mass Spectrometry Imaging (MALDI-MSI) combined with Trapped Ion Mobility Spectrometry for potential transthyretin (ATTR) amyloidosis subtyping. While we utilized the standard LMD/LC-MS/MS workflow for amyloid subtyping of 31 specimens from different organs, we also evaluated the potential introduction in the MS workflow variations in data acquisition parameters like dynamic exclusion, or testing Data Dependent Acquisition combined with High-Field Asymmetric Waveform Ion Mobility Spectrometry (DDA FAIMS) versus Data Independent Acquisition (DIA) for enhanced amyloid protein identification at shorter acquisition times. We also demonstrate the use of Mascot's Error Tolerant Search and PEAKS de novo sequencing for the sequence variant analysis of amyloidosis specimens.
Collapse
Affiliation(s)
- Jennifer T Aguilan
- Laboratory for Macromolecular Analysis and Proteomics Facility, Albert Einstein College of Medicine, New York, 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, New York, 10461, USA
- Montefiore Medical Center, Moses and Weiler Campus, New York, 10461, USA
| | - Jihyeon Lim
- Janssen Research and Development, Malvern, PA, USA
| | | | | | | | | | - Edward Nieves
- Laboratory for Macromolecular Analysis and Proteomics Facility, Albert Einstein College of Medicine, New York, 10461, USA
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Damodara Rao Mendu
- Clinical Chemistry Laboratory, Mount Sinai School of Medicine, New York, USA
| | - Carlos-Madrid Aliste
- Laboratory for Macromolecular Analysis and Proteomics Facility, Albert Einstein College of Medicine, New York, 10461, USA
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, New York, 10461, USA
| | | | - Ruth Angeletti
- Laboratory for Macromolecular Analysis and Proteomics Facility, Albert Einstein College of Medicine, New York, 10461, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, New York, 10461, USA
- Montefiore Medical Center, Moses and Weiler Campus, New York, 10461, USA
| | - Adam Cole
- Montefiore Medical Center, Moses and Weiler Campus, New York, 10461, USA
| | - Michael Prystowsky
- Department of Pathology, Albert Einstein College of Medicine, New York, 10461, USA
- Montefiore Medical Center, Moses and Weiler Campus, New York, 10461, USA
| | - James Pullman
- Montefiore Medical Center, Moses and Weiler Campus, New York, 10461, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
23
|
Bharti R, Dey G, Khan D, Myers A, Huffman OG, Saygin C, Braley C, Richards E, Sangwan N, Willard B, Lathia JD, Fox PL, Lin F, Jha BK, Brown JM, Yu JS, Dwidar M, Joehlin-Price A, Vargas R, Michener CM, Longworth MS, Reizes O. Cell surface CD55 traffics to the nucleus leading to cisplatin resistance and stemness by inducing PRC2 and H3K27 trimethylation on chromatin in ovarian cancer. Mol Cancer 2024; 23:121. [PMID: 38853277 PMCID: PMC11163727 DOI: 10.1186/s12943-024-02028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Platinum resistance is the primary cause of poor survival in ovarian cancer (OC) patients. Targeted therapies and biomarkers of chemoresistance are critical for the treatment of OC patients. Our previous studies identified cell surface CD55, a member of the complement regulatory proteins, drives chemoresistance and maintenance of cancer stem cells (CSCs). CSCs are implicated in tumor recurrence and metastasis in multiple cancers. METHODS Protein localization assays including immunofluorescence and subcellular fractionation were used to identify CD55 at the cell surface and nucleus of cancer cells. Protein half-life determinations were used to compare cell surface and nuclear CD55 stability. CD55 deletion mutants were generated and introduced into cancer cells to identify the nuclear trafficking code, cisplatin sensitivity, and stem cell frequency that were assayed using in vitro and in vivo models. Detection of CD55 binding proteins was analyzed by immunoprecipitation followed by mass spectrometry. Target pathways activated by CD55 were identified by RNA sequencing. RESULTS CD55 localizes to the nucleus of a subset of OC specimens, ascites from chemoresistant patients, and enriched in chemoresistant OC cells. We determined that nuclear CD55 is glycosylated and derived from the cell surface pool of CD55. Nuclear localization is driven by a trafficking code containing the serine/threonine (S/T) domain of CD55. Nuclear CD55 is necessary for cisplatin resistance, stemness, and cell proliferation in OC cells. CD55 S/T domain is necessary for nuclear entry and inducing chemoresistance to cisplatin in both in vitro and in vivo models. Deletion of the CD55 S/T domain is sufficient to sensitize chemoresistant OC cells to cisplatin. In the nucleus, CD55 binds and attenuates the epigenetic regulator and tumor suppressor ZMYND8 with a parallel increase in H3K27 trimethylation and members of the Polycomb Repressive Complex 2. CONCLUSIONS For the first time, we show CD55 localizes to the nucleus in OC and promotes CSC and chemoresistance. Our studies identify a therapeutic mechanism for treating platinum resistant ovarian cancer by blocking CD55 nuclear entry.
Collapse
Affiliation(s)
- Rashmi Bharti
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Goutam Dey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Alex Myers
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Olivia G Huffman
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Caner Saygin
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue Cleveland Clinic, Cleveland, OH, 44195, USA
- Present address: Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Chad Braley
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Elliott Richards
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue Cleveland Clinic, Cleveland, OH, 44195, USA
- Reproductive, Endocrinology, and Infertility, Obstetrics and Gynecology Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Naseer Sangwan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue Cleveland Clinic, Cleveland, OH, 44195, USA
- Microbiome Analytics and Composition Core Facility, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Belinda Willard
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue Cleveland Clinic, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue Cleveland Clinic, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Feng Lin
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Babal Kant Jha
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Center for Immunotherapy & Precision Immuno-oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - J Mark Brown
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
| | - Jennifer S Yu
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
| | - Mohammed Dwidar
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue Cleveland Clinic, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Microbial Culturing and Engineering Facility, Cleveland Clinic, Cleveland, OH, USA
| | - Amy Joehlin-Price
- Anatomic Pathology, Pathology and Lab Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Roberto Vargas
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Gynecologic Oncology, Obstetrics and Gynecologic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Chad M Michener
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Gynecologic Oncology, Obstetrics and Gynecologic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Michelle S Longworth
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue Cleveland Clinic, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
24
|
Adnane M, de Almeida AM, Chapwanya A. Unveiling the power of proteomics in advancing tropical animal health and production. Trop Anim Health Prod 2024; 56:182. [PMID: 38825622 DOI: 10.1007/s11250-024-04037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/04/2024]
Abstract
Proteomics, the large-scale study of proteins in biological systems has emerged as a pivotal tool in the field of animal and veterinary sciences, mainly for investigating local and rustic breeds. Proteomics provides valuable insights into biological processes underlying animal growth, reproduction, health, and disease. In this review, we highlight the key proteomics technologies, methodologies, and their applications in domestic animals, particularly in the tropical context. We also discuss advances in proteomics research, including integration of multi-omics data, single-cell proteomics, and proteogenomics, all of which are promising for improving animal health, adaptation, welfare, and productivity. However, proteomics research in domestic animals faces challenges, such as sample preparation variation, data quality control, privacy and ethical considerations relating to animal welfare. We also provide recommendations for overcoming these challenges, emphasizing the importance of following best practices in sample preparation, data quality control, and ethical compliance. We therefore aim for this review to harness the full potential of proteomics in advancing our understanding of animal biology and ultimately improve animal health and productivity in local breeds of diverse animal species in a tropical context.
Collapse
Affiliation(s)
- Mounir Adnane
- Department of Biomedicine, Institute of Veterinary Sciences, University of Tiaret, Tiaret, 14000, Algeria.
| | - André M de Almeida
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - Aspinas Chapwanya
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, 00265, Saint Kitts and Nevis
| |
Collapse
|
25
|
Remes PM, Jacob CC, Heil LR, Shulman N, MacLean BX, MacCoss MJ. Hybrid Quadrupole Mass Filter - Radial Ejection Linear Ion Trap and Intelligent Data Acquisition Enable Highly Multiplex Targeted Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596848. [PMID: 38854069 PMCID: PMC11160808 DOI: 10.1101/2024.05.31.596848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Targeted mass spectrometry (MS) methods are powerful tools for selective and sensitive analysis of peptides identified by global discovery experiments. Selected reaction monitoring (SRM) is currently the most widely accepted MS method in the clinic, due to its reliability and analytical performance. However, due to limited throughput and the difficulty in setting up and analyzing large scale assays, SRM and parallel reaction monitoring (PRM) are typically used only for very refined assays of on the order of 100 targets or less. Here we introduce a new MS platform with a quadrupole mass filter, collision cell, linear ion trap architecture that has increased acquisition rates compared to the analogous hardware found in the Orbitrap™ Tribrid™ series instruments. The platform can target more analytes than existing SRM and PRM instruments - in the range of 5000 to 8000 peptides per hour. This capability for high multiplexing is enabled by acquisition rates of 70-100 Hz for peptide applications, and the incorporation of real-time chromatogram alignment that adjusts for retention time drift and enables narrow time scheduled acquisition windows. Finally, we describe a Skyline external software tool that implements the building of targeted methods based on data independent acquisition chromatogram libraries or unscheduled analysis of heavy labeled standards. We show that the platform delivers ~10x lower LOQs than traditional SRM analysis for a highly multiplex assay and also demonstrate how analytical figures of merit change while varying method duration with a constant number of analytes, or by keeping a constant time duration while varying the number of analytes.
Collapse
Affiliation(s)
- Philip M Remes
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134
| | - Cristina C Jacob
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134
| | - Lilian R Heil
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134
| | - Nicholas Shulman
- Department of Genome Sciences, University of Washington, 3720 15th St. NE, Seattle WA 98195
| | - Brendan X MacLean
- Department of Genome Sciences, University of Washington, 3720 15th St. NE, Seattle WA 98195
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, 3720 15th St. NE, Seattle WA 98195
| |
Collapse
|
26
|
Böttger F, Radonic T, Bahce I, Monkhorst K, Piersma SR, Pham TV, Dingemans AC, Hillen LM, Santarpia M, Giovannetti E, Smit EF, Burgers SA, Jimenez CR. Identification of protein biomarkers for prediction of response to platinum-based treatment regimens in patients with non-small cell lung cancer. Mol Oncol 2024; 18:1417-1436. [PMID: 38010703 PMCID: PMC11161729 DOI: 10.1002/1878-0261.13555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
The majority of patients with resected stage II-IIIA non-small cell lung cancer (NSCLC) are treated with platinum-based adjuvant chemotherapy (ACT) in a one-size-fits-all approach. However, a significant number of patients do not derive clinical benefit, and no predictive patient selection biomarker is currently available. Using mass spectrometry-based proteomics, we have profiled tumour resection material of 2 independent, multi-centre cohorts of in total 67 patients with NSCLC who underwent ACT. Unsupervised cluster analysis of both cohorts revealed a poor response/survival sub-cluster composed of ~ 25% of the patients, that displayed a strong epithelial-mesenchymal transition signature and stromal phenotype. Beyond this stromal sub-population, we identified and validated platinum response prediction biomarker candidates involved in pathways relevant to the mechanism of action of platinum drugs, such as DNA damage repair, as well as less anticipated processes such as those related to the regulation of actin cytoskeleton. Integration with pre-clinical proteomics data supported a role for several of these candidate proteins in platinum response prediction. Validation of one of the candidates (HMGB1) in a third independent patient cohort using immunohistochemistry highlights the potential of translating these proteomics results to clinical practice.
Collapse
Affiliation(s)
- Franziska Böttger
- Department of Medical Oncology, Cancer Center AmsterdamAmsterdam UMC – location VUmcThe Netherlands
- OncoProteomics Laboratory, Cancer Center AmsterdamAmsterdam UMC – location VUmcThe Netherlands
| | - Teodora Radonic
- Department of PathologyAmsterdam UMC – location VUmcThe Netherlands
| | - Idris Bahce
- Department of Pulmonary DiseasesAmsterdam UMC – location VUmcThe Netherlands
| | - Kim Monkhorst
- Division of PathologyThe Netherlands Cancer Institute – Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, Cancer Center AmsterdamAmsterdam UMC – location VUmcThe Netherlands
- OncoProteomics Laboratory, Cancer Center AmsterdamAmsterdam UMC – location VUmcThe Netherlands
| | - Thang V. Pham
- Department of Medical Oncology, Cancer Center AmsterdamAmsterdam UMC – location VUmcThe Netherlands
- OncoProteomics Laboratory, Cancer Center AmsterdamAmsterdam UMC – location VUmcThe Netherlands
| | - Anne‐Marie C. Dingemans
- Department of Pulmonary Diseases, GROW School for Oncology & Developmental BiologyMaastricht University Medical CenterThe Netherlands
- Department of Pulmonary DiseasesErasmus Medical CentreRotterdamThe Netherlands
| | - Lisa M. Hillen
- Department of PathologyMaastricht University Medical CenterThe Netherlands
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”University of MessinaItaly
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center AmsterdamAmsterdam UMC – location VUmcThe Netherlands
- Cancer Pharmacology LabFondazione Pisana per la ScienzaPisaItaly
| | - Egbert F. Smit
- Division of Thoracic OncologyThe Netherlands Cancer Institute – Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
- Department of Pulmonary DiseasesLeiden University Medical CenterThe Netherlands
| | - Sjaak A. Burgers
- Division of Thoracic OncologyThe Netherlands Cancer Institute – Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
| | - Connie R. Jimenez
- Department of Medical Oncology, Cancer Center AmsterdamAmsterdam UMC – location VUmcThe Netherlands
- OncoProteomics Laboratory, Cancer Center AmsterdamAmsterdam UMC – location VUmcThe Netherlands
| |
Collapse
|
27
|
Suárez-Martínez E, Piersma SR, Pham TV, Bijnsdorp IV, Jimenez CR, Carnero A. Protein homeostasis maintained by HOOK1 levels promotes the tumorigenic and stemness properties of ovarian cancer cells through reticulum stress and autophagy. J Exp Clin Cancer Res 2024; 43:150. [PMID: 38807192 PMCID: PMC11134651 DOI: 10.1186/s13046-024-03071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Ovarian cancer has a high mortality rate mainly due to its resistance to currently used therapies. This resistance has been associated with the presence of cancer stem cells (CSCs), interactions with the microenvironment, and intratumoral heterogeneity. Therefore, the search for new therapeutic targets, particularly those targeting CSCs, is important for improving patient prognosis. HOOK1 has been found to be transcriptionally altered in a substantial percentage of ovarian tumors, but its role in tumor initiation and development is still not fully understood. METHODS The downregulation of HOOK1 was performed in ovarian cancer cell lines using CRISPR/Cas9 technology, followed by growth in vitro and in vivo assays. Subsequently, migration (Boyden chamber), cell death (Western-Blot and flow cytometry) and stemness properties (clonal heterogeneity analysis, tumorspheres assay and flow cytometry) of the downregulated cell lines were analysed. To gain insights into the specific mechanisms of action of HOOK1 in ovarian cancer, a proteomic analysis was performed, followed by Western-blot and cytotoxicity assays to confirm the results found within the mass spectrometry. Immunofluorescence staining, Western-blotting and flow cytometry were also employed to finish uncovering the role of HOOK1 in ovarian cancer. RESULTS In this study, we observed that reducing the levels of HOOK1 in ovarian cancer cells reduced in vitro growth and migration and prevented tumor formation in vivo. Furthermore, HOOK1 reduction led to a decrease in stem-like capabilities in these cells, which, however, did not seem related to the expression of genes traditionally associated with this phenotype. A proteome study, along with other analysis, showed that the downregulation of HOOK1 also induced an increase in endoplasmic reticulum stress levels in these cells. Finally, the decrease in stem-like properties observed in cells with downregulated HOOK1 could be explained by an increase in cell death in the CSC population within the culture due to endoplasmic reticulum stress by the unfolded protein response. CONCLUSION HOOK1 contributes to maintaining the tumorigenic and stemness properties of ovarian cancer cells by preserving protein homeostasis and could be considered an alternative therapeutic target, especially in combination with inducers of endoplasmic reticulum or proteotoxic stress such as proteasome inhibitors.
Collapse
Affiliation(s)
- Elisa Suárez-Martínez
- Instituto de Biomedicina de Sevilla (IBIS), HUVR/CSIC/Universidad de Sevilla, Avda. Manuel Siurot S/N; Campus HUVR, Ed. IBIS,, Seville, 41013, Spain
- CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Sander R Piersma
- OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, VU University Medical Center, CCA 1-60, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Thang V Pham
- OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, VU University Medical Center, CCA 1-60, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Irene V Bijnsdorp
- OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, VU University Medical Center, CCA 1-60, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Connie R Jimenez
- OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, VU University Medical Center, CCA 1-60, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), HUVR/CSIC/Universidad de Sevilla, Avda. Manuel Siurot S/N; Campus HUVR, Ed. IBIS,, Seville, 41013, Spain.
- CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
28
|
Karim N, Yang Y, Salemi M, Phinney BS, Durbin-Johnson BP, Rocke DM, Rice RH. Human Keratinocyte Responses to Woodsmoke Chemicals. Chem Res Toxicol 2024; 37:675-684. [PMID: 38598786 PMCID: PMC11110105 DOI: 10.1021/acs.chemrestox.3c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
Air pollution consists of complex mixtures of chemicals with serious deleterious health effects from acute and chronic exposure. To help understand the mechanisms by which adverse effects occur, the present work examines the responses of cultured human epidermal keratinocytes to specific chemicals commonly found in woodsmoke. Our earlier findings with liquid smoke flavoring (aqueous extract of charred wood) revealed that such extracts stimulated the expression of genes associated with oxidative stress and proinflammatory response, activated the aryl hydrocarbon receptor, thereby inducing cytochrome P4501A1 activity, and induced cross-linked envelope formation, a lethal event ordinarily occurring during terminal differentiation. The present results showed that furfural produced transcriptional responses resembling those of liquid smoke, cyclohexanedione activated the aryl hydrocarbon receptor, and several chemicals induced envelope formation. Of these, syringol permeabilized the cells to the egress of lactate dehydrogenase at a concentration close to that yielding envelope formation, while furfural induced envelope formation without permeabilization detectable in this way. Furfural (but not syringol) stimulated the incorporation of amines into cell proteins in extracts in the absence of transglutaminase activity. Nevertheless, both chemicals substantially increased the amount of cellular protein incorporated into envelopes and greatly altered the envelope protein profile. Moreover, the proportion of keratin in the envelopes was dramatically increased. These findings are consistent with the chemically induced protein cross-linking in the cells. Elucidating mechanisms by which this phenomenon occurs may help understand how smoke chemicals interact with proteins to elicit cellular responses, interpret bioassays of complex pollutant mixtures, and suggest additional sensitive ways to monitor exposures.
Collapse
Affiliation(s)
- Noreen Karim
- Department
of Environmental Toxicology, University
of California Davis, Davis, California 95616-8588, United States
| | - Yatian Yang
- Department
of Environmental Toxicology, University
of California Davis, Davis, California 95616-8588, United States
| | - Michelle Salemi
- Proteomics
Core Facility, University of California
Davis, Davis, California 95616, United States
| | - Brett S. Phinney
- Proteomics
Core Facility, University of California
Davis, Davis, California 95616, United States
| | - Blythe P. Durbin-Johnson
- Division
of Biostatistics, Department of Public Health Sciences, Clinical and
Translational Science Center Biostatistics Core, University of California Davis, Davis, California 95616, United States
| | - David M. Rocke
- Division
of Biostatistics, Department of Public Health Sciences, Clinical and
Translational Science Center Biostatistics Core, University of California Davis, Davis, California 95616, United States
| | - Robert H. Rice
- Department
of Environmental Toxicology, University
of California Davis, Davis, California 95616-8588, United States
| |
Collapse
|
29
|
Liu X, Abad L, Chatterjee L, Cristea IM, Varjosalo M. Mapping protein-protein interactions by mass spectrometry. MASS SPECTROMETRY REVIEWS 2024:10.1002/mas.21887. [PMID: 38742660 PMCID: PMC11561166 DOI: 10.1002/mas.21887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Protein-protein interactions (PPIs) are essential for numerous biological activities, including signal transduction, transcription control, and metabolism. They play a pivotal role in the organization and function of the proteome, and their perturbation is associated with various diseases, such as cancer, neurodegeneration, and infectious diseases. Recent advances in mass spectrometry (MS)-based protein interactomics have significantly expanded our understanding of the PPIs in cells, with techniques that continue to improve in terms of sensitivity, and specificity providing new opportunities for the study of PPIs in diverse biological systems. These techniques differ depending on the type of interaction being studied, with each approach having its set of advantages, disadvantages, and applicability. This review highlights recent advances in enrichment methodologies for interactomes before MS analysis and compares their unique features and specifications. It emphasizes prospects for further improvement and their potential applications in advancing our knowledge of PPIs in various biological contexts.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Lawrence Abad
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Lopamudra Chatterjee
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Yuki Y, Kurokawa S, Sugiura K, Kashima K, Maruyama S, Yamanoue T, Honma A, Mejima M, Takeyama N, Kuroda M, Kozuka-Hata H, Oyama M, Masumura T, Nakahashi-Ouchida R, Fujihashi K, Hiraizumi T, Goto E, Kiyono H. MucoRice-CTB line 19A, a new marker-free transgenic rice-based cholera vaccine produced in an LED-based hydroponic system. FRONTIERS IN PLANT SCIENCE 2024; 15:1342662. [PMID: 38559768 PMCID: PMC10978600 DOI: 10.3389/fpls.2024.1342662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
We previously established the selection-marker-free rice-based oral cholera vaccine (MucoRice-CTB) line 51A for human use by Agrobacterium-mediated co-transformation and conducted a double-blind, randomized, placebo-controlled phase I trial in Japan and the United States. Although MucoRice-CTB 51A was acceptably safe and well tolerated by healthy Japanese and U.S. subjects and induced CTB-specific antibodies neutralizing cholera toxin secreted by Vibrio cholerae, we were limited to a 6-g cohort in the U.S. trial because of insufficient production of MucoRice-CTB. Since MucoRice-CTB 51A did not grow in sunlight, we re-examined the previously established marker-free lines and selected MucoRice-CTB line 19A. Southern blot analysis of line 19A showed a single copy of the CTB gene. We resequenced the whole genome and detected the transgene in an intergenic region in chromosome 1. After establishing a master seed bank of MucoRice-CTB line 19A, we established a hydroponic production facility with LED lighting to reduce electricity consumption and to increase production capacity for clinical trials. Shotgun MS/MS proteomics analysis of MucoRice-CTB 19A showed low levels of α-amylase/trypsin inhibitor-like proteins (major rice allergens), which was consistent with the data for line 51A. We also demonstrated that MucoRice-CTB 19A had high oral immunogenicity and induced protective immunity against cholera toxin challenge in mice. These results indicate that MucoRice-CTB 19A is a suitable oral cholera vaccine candidate for Phase I and II clinical trials in humans, including a V. cholerae challenge study.
Collapse
Affiliation(s)
- Yoshikazu Yuki
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- R&D department, HanaVax Inc., Chiba, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Shiho Kurokawa
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Kotomi Sugiura
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Koji Kashima
- Technical Research Institute, Asahi Kogyosha Co., Ltd., Tokyo, Japan
| | - Shinichi Maruyama
- Technical Research Institute, Asahi Kogyosha Co., Ltd., Tokyo, Japan
| | - Tomoyuki Yamanoue
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Ayaka Honma
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mio Mejima
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Natsumi Takeyama
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Research Department, Nisseiken Co., Ltd., Tokyo, Japan
| | - Masaharu Kuroda
- Division of Genome Editing Research, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takehiro Masumura
- Laboratory of Genetic Engineering, Graduate School of Agriculture, Kyoto Prefectural University, Kyoto, Japan
| | - Rika Nakahashi-Ouchida
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan
| | - Kohtaro Fujihashi
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Takashi Hiraizumi
- Technical Research Institute, Asahi Kogyosha Co., Ltd., Tokyo, Japan
| | - Eiji Goto
- Graduate School of Horticulture, Chiba University, Chiba, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- R&D department, HanaVax Inc., Chiba, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Research Institute of Disaster Medicine, Chiba University Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy, and Vaccine (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
31
|
Ubeira FM, González-Warleta M, Martínez-Sernández V, Castro-Hermida JA, Paniagua E, Romarís F, Mezo M. Increased specificity of Fasciola hepatica excretory-secretory antigens combining negative selection on hydroxyapatite and salt precipitation. Sci Rep 2024; 14:3897. [PMID: 38365880 PMCID: PMC10873304 DOI: 10.1038/s41598-024-54290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/10/2024] [Indexed: 02/18/2024] Open
Abstract
A single and rapid method to obtain an antigenic fraction of excretory-secretory antigens (ESAs) from Fasciola hepatica suitable for serodiagnosis of fascioliasis is reported. The procedure consists in the negative selection of F. hepatica ESAs by hydroxyapatite (HA) chromatography (HAC; fraction HAC-NR) followed by antigen precipitation with 50% ammonium sulphate (AS) and subsequent recovery by means of a Millex-GV or equivalent filter (Fi-SOLE fraction). Tested in indirect ELISA, the Fi-SOLE antigens detected natural infections by F. hepatica with 100% sensitivity and 98.9% specificity in sheep, and 97.7% sensitivity and 97.7% specificity in cattle, as determined by ROC analysis. The SDS-PAGE and proteomic nano-UHPLC-Tims-QTOF MS/MS analysis of fractions showed that the relative abundance of L-cathepsins and fragments thereof was 57% in fraction HAC-NR and 93.8% in fraction Fi-SOLE. The second most abundant proteins in fraction HAC-NR were fatty-acid binding proteins (11.9%). In contrast, free heme, and heme:MF6p/FhHDM-1 complexes remained strongly bond to the HA particles during HAC. Interestingly, phosphorylcholine (PC)-bearing antigens, which are a frequent source of cross-reactivity, were detected with an anti-PC mAb (BH8) in ESAs and fraction HAC-NR but were almost absent in fraction Fi-SOLE.
Collapse
Affiliation(s)
- Florencio M Ubeira
- Laboratorio de Parasitología, Facultad de Farmacia, 15782, Santiago de Compostela, Spain.
- Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Universidad de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| | - Marta González-Warleta
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, AGACAL, 15318, Abegondo (A Coruña), Spain
| | - Victoria Martínez-Sernández
- Laboratorio de Parasitología, Facultad de Farmacia, 15782, Santiago de Compostela, Spain
- Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Universidad de Santiago de Compostela, 15705, Santiago de Compostela, Spain
- Servicio de Dermatología Médico-Quirúrgica y Venereología, Complejo Hospitalario Universitario de Pontevedra (CHUP), 36071, Pontevedra, Spain
| | - José Antonio Castro-Hermida
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, AGACAL, 15318, Abegondo (A Coruña), Spain
| | - Esperanza Paniagua
- Laboratorio de Parasitología, Facultad de Farmacia, 15782, Santiago de Compostela, Spain
- Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Universidad de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Fernanda Romarís
- Laboratorio de Parasitología, Facultad de Farmacia, 15782, Santiago de Compostela, Spain
- Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Universidad de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Mercedes Mezo
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, AGACAL, 15318, Abegondo (A Coruña), Spain
| |
Collapse
|
32
|
Gali A, Bijnsdorp IV, Piersma SR, Pham TV, Gutiérrez-Galindo E, Kühnel F, Tsolakos N, Jimenez CR, Hausser A, Alexopoulos LG. Protein kinase D drives the secretion of invasion mediators in triple-negative breast cancer cell lines. iScience 2024; 27:108958. [PMID: 38323010 PMCID: PMC10844833 DOI: 10.1016/j.isci.2024.108958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
The protein kinase D (PKD) family members regulate the fission of cargo vesicles at the Golgi complex and play a pro-oncogenic role in triple-negative breast cancer (TNBC). Whether PKD facilitates the secretion of tumor-promoting factors in TNBC, however, is still unknown. Using the pharmacological inhibition of PKD activity and siRNA-mediated depletion of PKD2 and PKD3, we identified the PKD-dependent secretome of the TNBC cell lines MDA-MB-231 and MDA-MB-468. Mass spectrometry-based proteomics and antibody-based assays revealed a significant downregulation of extracellular matrix related proteins and pro-invasive factors such as LIF, MMP-1, MMP-13, IL-11, M-CSF and GM-CSF in PKD-perturbed cells. Notably, secretion of these proteins in MDA-MB-231 cells was predominantly controlled by PKD2 and enhanced spheroid invasion. Consistently, PKD-dependent secretion of pro-invasive factors was more pronounced in metastatic TNBC cell lines. Our study thus uncovers a novel role of PKD2 in releasing a pro-invasive secretome.
Collapse
Affiliation(s)
- Alexia Gali
- Biomedical Systems Laboratory, National Technical University of Athens, 15780 Athens, Greece
- Protavio Ltd, Demokritos Science Park, 15341 Athens, Greece
| | - Irene V. Bijnsdorp
- Department of Urology, Cancer Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, de Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, OncoProteomics Laboratory, de Boelelaan 1117, , Amsterdam 1081 HV, the Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, OncoProteomics Laboratory, de Boelelaan 1117, , Amsterdam 1081 HV, the Netherlands
| | - Thang V. Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, OncoProteomics Laboratory, de Boelelaan 1117, , Amsterdam 1081 HV, the Netherlands
| | | | - Fiona Kühnel
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Nikos Tsolakos
- Protavio Ltd, Demokritos Science Park, 15341 Athens, Greece
| | - Connie R. Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, OncoProteomics Laboratory, de Boelelaan 1117, , Amsterdam 1081 HV, the Netherlands
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany
- Stuttgart Research Center for Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Leonidas G. Alexopoulos
- Biomedical Systems Laboratory, National Technical University of Athens, 15780 Athens, Greece
- Protavio Ltd, Demokritos Science Park, 15341 Athens, Greece
| |
Collapse
|
33
|
Dumas T, Gomez E, Boccard J, Ramirez G, Armengaud J, Escande A, Mathieu O, Fenet H, Courant F. Mixture effects of pharmaceuticals carbamazepine, diclofenac and venlafaxine on Mytilus galloprovincialis mussel probed by metabolomics and proteogenomics combined approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168015. [PMID: 37879482 DOI: 10.1016/j.scitotenv.2023.168015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Exposure to single molecules under laboratory conditions has led to a better understanding of the mechanisms of action (MeOAs) and effects of pharmaceutical active compounds (PhACs) on non-target organisms. However, not taking the co-occurrence of contaminants in the environment and their possible interactions into account may lead to underestimation of their impacts. In this study, we combined untargeted metabolomics and proteogenomics approaches to assess the mixture effects of diclofenac, carbamazepine and venlafaxine on marine mussels (Mytilus galloprovincialis). Our multi-omics approach and data fusion strategy highlighted how such xenobiotic cocktails induce important cellular changes that can be harmful to marine bivalves. This response is mainly characterized by energy metabolism disruption, fatty acid degradation, protein synthesis and degradation, and the induction of endoplasmic reticulum stress and oxidative stress. The known MeOAs and molecular signatures of PhACs were taken into consideration to gain insight into the mixture effects, thereby revealing a potential additive effect. Multi-omics approaches on mussels as sentinels offer a comprehensive overview of molecular and cellular responses triggered by exposure to contaminant mixtures, even at environmental concentrations.
Collapse
Affiliation(s)
- Thibaut Dumas
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Elena Gomez
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, Geneva 1211, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 1211, Switzerland
| | - Gaëlle Ramirez
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Aurélie Escande
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Olivier Mathieu
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France; Laboratoire de Pharmacologie-Toxicologie, CHU de Montpellier, Montpellier, France
| | - Hélène Fenet
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Frédérique Courant
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
34
|
Maphosa S, Moleleki LN. A computational and secretome analysis approach reveals exclusive and shared candidate type six secretion system substrates in Pectobacterium brasiliense 1692. Microbiol Res 2024; 278:127501. [PMID: 37976736 DOI: 10.1016/j.micres.2023.127501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 11/19/2023]
Abstract
The type 6 secretion system (T6SS) of Gram-negative bacteria (GNB) has implications for bacterial competition, virulence, and survival. For the broad host range pathogen, Pectobacterium brasiliense 1692, T6SS-mediated competition occurs in a tissue-specific manner. However, no other roles have been investigated. The aim of this study was to identify T6SS-associated proteins under virulence inducing conditions. We used Bastion tools to predict 1479 Pbr1692 secreted proteins. Sixteen percent of these overlap between type 1-4 secretion systems (T1SS-T4SS) and T6SS. Using label-free quantitative mass spectrometry of Pbr1692 T6SS active and T6SS inactive strains' secretomes cultured in minimal media supplemented with host extract, 49 T6SS-associated proteins with varied gene ontology predicted functions were identified. We report 19 and 30 T6SS primary substrates and differentially secreted proteins, respectively, in T6SS mutants versus wild type strains. Of the total 49 T6SS-associated proteins presented in this study, 25 were also predicted using the BastionX platform as T6SS exclusive and shared substrates with T1SS-T4SS. This work provides a list of Pbr1692 T6SS secreted effector candidates. These include a potential antibacterial toxin HNH endonuclease and several predicted virulence proteins, including plant cell wall degrading enzymes. A preliminary basis for potential crosstalk between GNB secretion systems is also highlighted.
Collapse
Affiliation(s)
- S Maphosa
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa.
| | - L N Moleleki
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
35
|
Kobeissy F, Goli M, Yadikar H, Shakkour Z, Kurup M, Haidar MA, Alroumi S, Mondello S, Wang KK, Mechref Y. Advances in neuroproteomics for neurotrauma: unraveling insights for personalized medicine and future prospects. Front Neurol 2023; 14:1288740. [PMID: 38073638 PMCID: PMC10703396 DOI: 10.3389/fneur.2023.1288740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2023] [Indexed: 02/12/2024] Open
Abstract
Neuroproteomics, an emerging field at the intersection of neuroscience and proteomics, has garnered significant attention in the context of neurotrauma research. Neuroproteomics involves the quantitative and qualitative analysis of nervous system components, essential for understanding the dynamic events involved in the vast areas of neuroscience, including, but not limited to, neuropsychiatric disorders, neurodegenerative disorders, mental illness, traumatic brain injury, chronic traumatic encephalopathy, and other neurodegenerative diseases. With advancements in mass spectrometry coupled with bioinformatics and systems biology, neuroproteomics has led to the development of innovative techniques such as microproteomics, single-cell proteomics, and imaging mass spectrometry, which have significantly impacted neuronal biomarker research. By analyzing the complex protein interactions and alterations that occur in the injured brain, neuroproteomics provides valuable insights into the pathophysiological mechanisms underlying neurotrauma. This review explores how such insights can be harnessed to advance personalized medicine (PM) approaches, tailoring treatments based on individual patient profiles. Additionally, we highlight the potential future prospects of neuroproteomics, such as identifying novel biomarkers and developing targeted therapies by employing artificial intelligence (AI) and machine learning (ML). By shedding light on neurotrauma's current state and future directions, this review aims to stimulate further research and collaboration in this promising and transformative field.
Collapse
Affiliation(s)
- Firas Kobeissy
- Department of Neurobiology, School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Hamad Yadikar
- Department of Biological Sciences Faculty of Science, Kuwait University, Safat, Kuwait
| | - Zaynab Shakkour
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
| | - Milin Kurup
- Alabama College of Osteopathic Medicine, Dothan, AL, United States
| | | | - Shahad Alroumi
- Department of Biological Sciences Faculty of Science, Kuwait University, Safat, Kuwait
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Kevin K. Wang
- Department of Neurobiology, School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
36
|
Rebak AS, Hendriks IA, Nielsen ML. Characterizing citrullination by mass spectrometry-based proteomics. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220237. [PMID: 37778389 PMCID: PMC10542455 DOI: 10.1098/rstb.2022.0237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/25/2023] [Indexed: 10/03/2023] Open
Abstract
Citrullination is an important post-translational modification (PTM) of arginine, known to play a role in autoimmune disorders, innate immunity response and maintenance of stem cell potency. However, citrullination remains poorly characterized and not as comprehensively understood compared to other PTMs, such as phosphorylation and ubiquitylation. High-resolution mass spectrometry (MS)-based proteomics offers a valuable approach for studying citrullination in an unbiased manner, allowing confident identification of citrullination modification sites and distinction from deamidation events on asparagine and glutamine. MS efforts have already provided valuable insights into peptidyl arginine deaminase targeting along with site-specific information of citrullination in for example synovial fluids derived from rheumatoid arthritis patients. Still, there is unrealized potential for the wider citrullination field by applying MS-based mass spectrometry approaches for proteome-wide investigations. Here we will outline contemporary methods and current challenges for studying citrullination by MS, and discuss how the development of neoteric citrullination-specific proteomics approaches still may improve our understanding of citrullination networks. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- A. S. Rebak
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - I. A. Hendriks
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - M. L. Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
37
|
Pienkowski T, Kowalczyk T, Cysewski D, Kretowski A, Ciborowski M. Glioma and post-translational modifications: A complex relationship. Biochim Biophys Acta Rev Cancer 2023; 1878:189009. [PMID: 37913943 DOI: 10.1016/j.bbcan.2023.189009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Post-translational modifications (PTMs) are common covalent processes in biochemical pathways that alter protein function and activity. These modifications occur through proteolytic cleavage or attachment of modifying groups, such as phosphoryl, methyl, glycosyl, or acetyl groups, with one or more amino acid residues of a single protein. Some PTMs also present crosstalk abilities that affect both protein functionality and structure, creating new proteoforms. Any alteration in organism homeostasis may be a cancer hallmark. Cataloging PTMs and consequently, emerging proteoforms, present new therapeutic targets, approaches, and opportunities to discover additional discriminatory biomarkers in disease diagnostics. In this review, we focus on experimentally confirmed PTMs and their potential crosstalk in glioma research to introduce new opportunities for this tumor type, which emerge within the PTMomics area.
Collapse
Affiliation(s)
- Tomasz Pienkowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Tomasz Kowalczyk
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland; Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| |
Collapse
|
38
|
Chien HJ, Zheng YF, Wang WC, Kuo CY, Hsu YM, Lai CC. Determination of adulteration, geographical origins, and species of food by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2273-2323. [PMID: 35652168 DOI: 10.1002/mas.21780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Food adulteration, mislabeling, and fraud, are rising global issues. Therefore, a number of precise and reliable analytical instruments and approaches have been proposed to ensure the authenticity and accurate labeling of food and food products by confirming that the constituents of foodstuffs are of the kind and quality claimed by the seller and manufacturer. Traditional techniques (e.g., genomics-based methods) are still in use; however, emerging approaches like mass spectrometry (MS)-based technologies are being actively developed to supplement or supersede current methods for authentication of a variety of food commodities and products. This review provides a critical assessment of recent advances in food authentication, including MS-based metabolomics, proteomics and other approaches.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ming Hsu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
39
|
Bailey BL, Nguyen W, Cowman AF, Sleebs BE. Chemo-proteomics in antimalarial target identification and engagement. Med Res Rev 2023; 43:2303-2351. [PMID: 37232495 PMCID: PMC10947479 DOI: 10.1002/med.21975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Humans have lived in tenuous battle with malaria over millennia. Today, while much of the world is free of the disease, areas of South America, Asia, and Africa still wage this war with substantial impacts on their social and economic development. The threat of widespread resistance to all currently available antimalarial therapies continues to raise concern. Therefore, it is imperative that novel antimalarial chemotypes be developed to populate the pipeline going forward. Phenotypic screening has been responsible for the majority of the new chemotypes emerging in the past few decades. However, this can result in limited information on the molecular target of these compounds which may serve as an unknown variable complicating their progression into clinical development. Target identification and validation is a process that incorporates techniques from a range of different disciplines. Chemical biology and more specifically chemo-proteomics have been heavily utilized for this purpose. This review provides an in-depth summary of the application of chemo-proteomics in antimalarial development. Here we focus particularly on the methodology, practicalities, merits, and limitations of designing these experiments. Together this provides learnings on the future use of chemo-proteomics in antimalarial development.
Collapse
Affiliation(s)
- Brodie L. Bailey
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - William Nguyen
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
40
|
Puthenveetil R, Auger SA, Gómez-Navarro N, Rana MS, Das R, Healy LB, Suazo KF, Shi ZD, Swenson RE, Distefano MD, Banerjee A. Orthogonal Enzyme-Substrate Design Strategy for Discovery of Human Protein Palmitoyltransferase Substrates. J Am Chem Soc 2023; 145:22287-22292. [PMID: 37774000 PMCID: PMC10591334 DOI: 10.1021/jacs.3c04359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 10/01/2023]
Abstract
Protein palmitoylation, with more than 5000 substrates, is the most prevalent form of protein lipidation. Palmitoylated proteins participate in almost all areas of cellular physiology and have been linked to several human diseases. Twenty-three zDHHC enzymes catalyze protein palmitoylation with extensive overlap among the substrates of each zDHHC member. Currently, there is no global strategy to delineate the physiological substrates of individual zDHHC enzymes without perturbing the natural cellular pool. Here, we outline a general approach to accomplish this on the basis of synthetic orthogonal substrates that are only compatible with engineered zDHHC enzymes. We demonstrate the utility of this strategy by validating known substrates and use it to identify novel substrates of two human zDHHC enzymes. Finally, we employ this method to discover and explore conserved palmitoylation in a family of host restriction factors against pathogenic viruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Robbins Puthenveetil
- Section
on Structural and Chemical Biology, Neurosciences and Cellular and
Structural Biology Division, Eunice Kennedy Shriver National Institute
of Child Health and Human Development, National
Institutes of Health, Bethesda, Maryland 20817, United States
| | - Shelby A. Auger
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Natalia Gómez-Navarro
- Section
on Structural and Chemical Biology, Neurosciences and Cellular and
Structural Biology Division, Eunice Kennedy Shriver National Institute
of Child Health and Human Development, National
Institutes of Health, Bethesda, Maryland 20817, United States
| | - Mitra Shumsher Rana
- Section
on Structural and Chemical Biology, Neurosciences and Cellular and
Structural Biology Division, Eunice Kennedy Shriver National Institute
of Child Health and Human Development, National
Institutes of Health, Bethesda, Maryland 20817, United States
| | - Riki Das
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Liam Brendan Healy
- Section
on Structural and Chemical Biology, Neurosciences and Cellular and
Structural Biology Division, Eunice Kennedy Shriver National Institute
of Child Health and Human Development, National
Institutes of Health, Bethesda, Maryland 20817, United States
| | - Kiall F. Suazo
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhen-Dan Shi
- The
Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Rolf E. Swenson
- The
Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Mark D. Distefano
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Anirban Banerjee
- Section
on Structural and Chemical Biology, Neurosciences and Cellular and
Structural Biology Division, Eunice Kennedy Shriver National Institute
of Child Health and Human Development, National
Institutes of Health, Bethesda, Maryland 20817, United States
| |
Collapse
|
41
|
Tinklenberg JA, Slick RA, Sutton J, Zhang L, Meng H, Beatka MJ, Vanden Avond M, Prom MJ, Ott E, Montanaro F, Heisner J, Toro R, Hardeman EC, Geurts AM, Stowe DF, Hill RB, Lawlor MW. Different Mouse Models of Nemaline Myopathy Harboring Acta1 Mutations Display Differing Abnormalities Related to Mitochondrial Biology. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1548-1567. [PMID: 37419385 PMCID: PMC10548277 DOI: 10.1016/j.ajpath.2023.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
ACTA1 encodes skeletal muscle-specific α-actin, which polymerizes to form the thin filament of the sarcomere. Mutations in ACTA1 are responsible for approximately 30% of nemaline myopathy (NM) cases. Previous studies of weakness in NM have focused on muscle structure and contractility, but genetic issues alone do not explain the phenotypic heterogeneity observed in patients with NM or NM mouse models. To identify additional biological processes related to NM phenotypic severity, proteomic analysis was performed using muscle protein isolates from wild-type mice in comparison to moderately affected knock-in (KI) Acta1H40Y and the minimally affected transgenic (Tg) ACTA1D286G NM mice. This analysis revealed abnormalities in mitochondrial function and stress-related pathways in both mouse models, supporting an in-depth assessment of mitochondrial biology. Interestingly, evaluating each model in comparison to its wild-type counterpart identified different degrees of mitochondrial abnormality that correlated well with the phenotypic severity of the mouse model. Muscle histology, mitochondrial respiration, electron transport chain function, and mitochondrial transmembrane potential were all normal or minimally affected in the TgACTA1D286G mouse model. In contrast, the more severely affected KI.Acta1H40Y mice displayed significant abnormalities in relation to muscle histology, mitochondrial respirometry, ATP, ADP, and phosphate content, and mitochondrial transmembrane potential. These findings suggest that abnormal energy metabolism is related to symptomatic severity in NM and may constitute a contributor to phenotypic variability and a novel treatment target.
Collapse
Affiliation(s)
- Jennifer A Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rebecca A Slick
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jessica Sutton
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Liwen Zhang
- Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Margaret J Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mark Vanden Avond
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mariah J Prom
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Emily Ott
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Federica Montanaro
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - James Heisner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rafael Toro
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Edna C Hardeman
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David F Stowe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
42
|
Slick RA, Tinklenberg JA, Sutton J, Zhang L, Meng H, Beatka MJ, Vanden Avond M, Prom MJ, Ott E, Montanaro F, Heisner J, Toro R, Granzier H, Geurts AM, Stowe DF, Hill RB, Lawlor MW. Aberrations in Energetic Metabolism and Stress-Related Pathways Contribute to Pathophysiology in the Neb Conditional Knockout Mouse Model of Nemaline Myopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1528-1547. [PMID: 37422147 PMCID: PMC10548278 DOI: 10.1016/j.ajpath.2023.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 07/10/2023]
Abstract
Nemaline myopathy (NM) is a genetically and clinically heterogeneous disease that is diagnosed on the basis of the presence of nemaline rods on skeletal muscle biopsy. Although NM has typically been classified by causative genes, disease severity or prognosis cannot be predicted. The common pathologic end point of nemaline rods (despite diverse genetic causes) and an unexplained range of muscle weakness suggest that shared secondary processes contribute to the pathogenesis of NM. We speculated that these processes could be identified through a proteome-wide interrogation using a mouse model of severe NM in combination with pathway validation and structural/functional analyses. A proteomic analysis was performed using skeletal muscle tissue from the Neb conditional knockout mouse model compared with its wild-type counterpart to identify pathophysiologically relevant biological processes that might impact disease severity or provide new treatment targets. A differential expression analysis and Ingenuity Pathway Core Analysis predicted perturbations in several cellular processes, including mitochondrial dysfunction and changes in energetic metabolism and stress-related pathways. Subsequent structural and functional studies demonstrated abnormal mitochondrial distribution, decreased mitochondrial respiratory function, an increase in mitochondrial transmembrane potential, and extremely low ATP content in Neb conditional knockout muscles relative to wild type. Overall, the findings of these studies support a role for severe mitochondrial dysfunction as a novel contributor to muscle weakness in NM.
Collapse
Affiliation(s)
- Rebecca A Slick
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jennifer A Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jessica Sutton
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Liwen Zhang
- Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Margaret J Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mark Vanden Avond
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mariah J Prom
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Emily Ott
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Federica Montanaro
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom the NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - James Heisner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rafael Toro
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Henk Granzier
- College of Medicine, University of Arizona, Tucson, Arizona
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David F Stowe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, Wisconsin
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
43
|
Le Guillou S, Ciobotaru C, Laubier J, Castille J, Aujean E, Hue-Beauvais C, Cherbuy C, Liuu S, Henry C, David A, Jaffrezic F, Laloë D, Charlier M, Alexandre-Gouabau MC, Le Provost F. Specific Milk Composition of miR-30b Transgenic Mice Associated with Early Duodenum Maturation in Offspring with Lasting Consequences for Growth. J Nutr 2023; 153:2808-2826. [PMID: 37543213 DOI: 10.1016/j.tjnut.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Milk composition is complex and includes numerous components essential for offspring growth and development. In addition to the high abundance of miR-30b microRNA, milk produced by the transgenic mouse model of miR-30b-mammary deregulation displays a significantly altered fatty acid profile. Moreover, wild-type adopted pups fed miR-30b milk present an early growth defect. OBJECTIVE This study aimed to investigate the consequences of miR-30b milk feeding on the duodenal development of wild-type neonates, a prime target of suckled milk, along with comprehensive milk phenotyping. METHODS The duodenums of wild-type pups fed miR-30b milk were extensively characterized at postnatal day (PND)-5, PND-6, and PND-15 using histological, transcriptomic, proteomic, and duodenal permeability analyses and compared with those of pups fed wild-type milk. Milk of miR-30b foster dams collected at mid-lactation was extensively analyzed using proteomic, metabolomic, and lipidomic approaches and hormonal immunoassays. RESULTS At PND-5, wild-type pups fed miR-30b milk showed maturation of their duodenum with 1.5-fold (P < 0.05) and 1.3-fold (P < 0.10) increased expression of Claudin-3 and Claudin-4, respectively, and changes in 8 duodenal proteins (P < 0.10), with an earlier reduction in paracellular and transcellular permeability (183 ng/mL fluorescein sulfonic acid [FSA] and 12 ng/mL horseradish peroxidase [HRP], respectively, compared with 5700 ng/mL FSA and 90 ng/mL HRP in wild-type; P < 0.001). Compared with wild-type milk, miR-30b milk displayed an increase in total lipid (219 g/L compared with 151 g/L; P < 0.05), ceramide (17.6 μM compared with 6.9 μM; P < 0.05), and sphingomyelin concentrations (163.7 μM compared with 76.3 μM; P < 0.05); overexpression of 9 proteins involved in the gut barrier (P < 0.1); and higher insulin and leptin concentrations (1.88 ng/mL and 2.04 ng/mL, respectively, compared with 0.79 ng/mL and 1.06 ng/mL; P < 0.01). CONCLUSIONS miR-30b milk displays significant changes in bioactive components associated with neonatal duodenal integrity and maturation, which could be involved in the earlier intestinal closure phenotype of the wild-type pups associated with a lower growth rate.
Collapse
Affiliation(s)
| | - Céline Ciobotaru
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Johann Laubier
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Johan Castille
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Etienne Aujean
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Cathy Hue-Beauvais
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Claire Cherbuy
- Université Paris-Saclay, INRAE, MICALIS Institute, Jouy-en-Josas, France
| | - Sophie Liuu
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, PAPPSO, Jouy-en-Josas, France
| | - Céline Henry
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, PAPPSO, Jouy-en-Josas, France
| | - Agnès David
- Nantes Université, CRNH-OUEST, INRAE, UMR 1280, PhAN, Nantes, France
| | - Florence Jaffrezic
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Denis Laloë
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Madia Charlier
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | | |
Collapse
|
44
|
Matzkin LM, Bono JM, Pigage HK, Allan CW, Diaz F, McCoy JR, Green CC, Callan JB, Delahunt SP. Females translate male mRNA transferred during mating. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.558997. [PMID: 37790342 PMCID: PMC10542174 DOI: 10.1101/2023.09.22.558997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Although RNA is found in the seminal fluid of diverse organisms, it is unknown whether this RNA is functional within females. Here, we develop an experimental proteomic method called VESPA (Variant Enabled SILAC Proteomic Analysis) to test the hypothesis that Drosophila male seminal fluid RNA is translated by females. We find strong evidence for 67 male-derived, female-translated proteins (mdFTPs) in female lower reproductive tracts at six hours postmating, many with predicted functions relevant to reproduction. Gene knockout experiments indicate that genes coding for mdFTPs play diverse roles in postmating interactions, with effects on fertilization efficiency, and the formation and persistence of the insemination reaction mass, a trait hypothesized to be involved in sexual conflict. These findings advance our understanding of reproduction by revealing a novel mechanism of postmating molecular interactions between the sexes that strengthens and extends male influences on reproductive outcomes in previously unrecognized ways. Given the diverse species known to carry RNA in seminal fluid, this discovery has broad significance for understanding molecular mechanisms of cooperation and conflict during reproduction.
Collapse
Affiliation(s)
- Luciano M. Matzkin
- Department of Entomology, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Ecology and Evolutionary Biology, Tucson, AZ, USA
| | - Jeremy M. Bono
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| | - Helen K. Pigage
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| | - Carson W. Allan
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Fernando Diaz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - John R. McCoy
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| | - Clinton C. Green
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| | - Jeffrey B. Callan
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| | - Stephen P. Delahunt
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| |
Collapse
|
45
|
Pinto AFM, Diedrich JK, Moresco JJ, Yates JR. Differential Precipitation of Proteins: A Simple Protein Fractionation Strategy to Gain Biological Insights with Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2025-2033. [PMID: 37527410 DOI: 10.1021/jasms.3c00182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Differential precipitation of proteins (DiffPOP) is a simple technique for fractionating complex protein mixtures. Using stepwise addition of acidified methanol, ten distinct subsets of proteins can be selectively precipitated by centrifugation and identified by mass spectrometry-based proteomics. We have previously shown that the ability of a protein to resist precipitation can be altered by drug binding, which enabled us to identify a novel drug-target interaction. Here, we show that the addition of DiffPOP to a standard LC-MS proteomics workflow results in a three-dimensional separation of peptides that increases protein coverage and peptide identifications. Importantly, DiffPOP reveals solubility differences between proteoforms, potentially providing valuable insights that are typically lost in bottom-up proteomics.
Collapse
Affiliation(s)
- Antonio F M Pinto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California 92037, United States
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
46
|
McGann CD, Barshop W, Canterbury J, Lin C, Gabriel W, Huang J, Bergen D, Zubraskov V, Melani R, Wilhelm M, McAlister G, Schweppe DK. Real-Time Spectral Library Matching for Sample Multiplexed Quantitative Proteomics. J Proteome Res 2023; 22:2836-2846. [PMID: 37557900 PMCID: PMC11554524 DOI: 10.1021/acs.jproteome.3c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Sample multiplexed quantitative proteomics assays have proved to be a highly versatile means to assay molecular phenotypes. Yet, stochastic precursor selection and precursor coisolation can dramatically reduce the efficiency of data acquisition and quantitative accuracy. To address this, intelligent data acquisition (IDA) strategies have recently been developed to improve instrument efficiency and quantitative accuracy for both discovery and targeted methods. Toward this end, we sought to develop and implement a new real-time spectral library searching (RTLS) workflow that could enable intelligent scan triggering and peak selection within milliseconds of scan acquisition. To ensure ease of use and general applicability, we built an application to read in diverse spectral libraries and file types from both empirical and predicted spectral libraries. We demonstrate that RTLS methods enable improved quantitation of multiplexed samples, particularly with consideration for quantitation from chimeric fragment spectra. We used RTLS to profile proteome responses to small molecule perturbations and were able to quantify up to 15% more significantly regulated proteins in half the gradient time compared to traditional methods. Taken together, the development of RTLS expands the IDA toolbox to improve instrument efficiency and quantitative accuracy for sample multiplexed analyses.
Collapse
Affiliation(s)
| | - Will Barshop
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Jesse Canterbury
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Chuwei Lin
- University of Washington, Seattle, WA 98105
| | | | - Jingjing Huang
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - David Bergen
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Vlad Zubraskov
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Rafael Melani
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | | | - Graeme McAlister
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | | |
Collapse
|
47
|
Kim HS, Parker DJ, Hardiman MM, Munkácsy E, Jiang N, Rogers AN, Bai Y, Brent C, Mobley JA, Austad SN, Pickering AM. Early-adulthood spike in protein translation drives aging via juvenile hormone/germline signaling. Nat Commun 2023; 14:5021. [PMID: 37596266 PMCID: PMC10439225 DOI: 10.1038/s41467-023-40618-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
Protein translation (PT) declines with age in invertebrates, rodents, and humans. It has been assumed that elevated PT at young ages is beneficial to health and PT ends up dropping as a passive byproduct of aging. In Drosophila, we show that a transient elevation in PT during early-adulthood exerts long-lasting negative impacts on aging trajectories and proteostasis in later-life. Blocking the early-life PT elevation robustly improves life-/health-span and prevents age-related protein aggregation, whereas transiently inducing an early-life PT surge in long-lived fly strains abolishes their longevity/proteostasis benefits. The early-life PT elevation triggers proteostatic dysfunction, silences stress responses, and drives age-related functional decline via juvenile hormone-lipid transfer protein axis and germline signaling. Our findings suggest that PT is adaptively suppressed after early-adulthood, alleviating later-life proteostatic burden, slowing down age-related functional decline, and improving lifespan. Our work provides a theoretical framework for understanding how lifetime PT dynamics shape future aging trajectories.
Collapse
Affiliation(s)
- Harper S Kim
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Medical Scientist Training Program, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Danitra J Parker
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, 77030, USA
| | - Madison M Hardiman
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Erin Munkácsy
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Nisi Jiang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Aric N Rogers
- MDI Biological Laboratory, Bar Harbor, ME, 04672, USA
| | - Yidong Bai
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Colin Brent
- USDA-ARS Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - James A Mobley
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | - Steven N Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Andrew M Pickering
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, 77030, USA.
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
48
|
MacKenzie TMG, Cisneros R, Maynard RD, Snyder MP. Reverse-ChIP Techniques for Identifying Locus-Specific Proteomes: A Key Tool in Unlocking the Cancer Regulome. Cells 2023; 12:1860. [PMID: 37508524 PMCID: PMC10377898 DOI: 10.3390/cells12141860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
A phenotypic hallmark of cancer is aberrant transcriptional regulation. Transcriptional regulation is controlled by a complicated array of molecular factors, including the presence of transcription factors, the deposition of histone post-translational modifications, and long-range DNA interactions. Determining the molecular identity and function of these various factors is necessary to understand specific aspects of cancer biology and reveal potential therapeutic targets. Regulation of the genome by specific factors is typically studied using chromatin immunoprecipitation followed by sequencing (ChIP-Seq) that identifies genome-wide binding interactions through the use of factor-specific antibodies. A long-standing goal in many laboratories has been the development of a 'reverse-ChIP' approach to identify unknown binding partners at loci of interest. A variety of strategies have been employed to enable the selective biochemical purification of sequence-defined chromatin regions, including single-copy loci, and the subsequent analytical detection of associated proteins. This review covers mass spectrometry techniques that enable quantitative proteomics before providing a survey of approaches toward the development of strategies for the purification of sequence-specific chromatin as a 'reverse-ChIP' technique. A fully realized reverse-ChIP technique holds great potential for identifying cancer-specific targets and the development of personalized therapeutic regimens.
Collapse
Affiliation(s)
| | - Rocío Cisneros
- Sarafan ChEM-H/IMA Postbaccalaureate Fellow in Target Discovery, Stanford University, Stanford, CA 94305, USA
| | - Rajan D Maynard
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| | - Michael P Snyder
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
49
|
Xia QQ, Walker AK, Song C, Wang J, Singh A, Mobley JA, Xuan ZX, Singer JD, Powell CM. Effects of heterozygous deletion of autism-related gene Cullin-3 in mice. PLoS One 2023; 18:e0283299. [PMID: 37428799 PMCID: PMC10332626 DOI: 10.1371/journal.pone.0283299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/05/2023] [Indexed: 07/12/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a developmental disorder in which children display repetitive behavior, restricted range of interests, and atypical social interaction and communication. CUL3, coding for a Cullin family scaffold protein mediating assembly of ubiquitin ligase complexes through BTB domain substrate-recruiting adaptors, has been identified as a high-risk gene for autism. Although complete knockout of Cul3 results in embryonic lethality, Cul3 heterozygous mice have reduced CUL3 protein, demonstrate comparable body weight, and display minimal behavioral differences including decreased spatial object recognition memory. In measures of reciprocal social interaction, Cul3 heterozygous mice behaved similarly to their wild-type littermates. In area CA1 of hippocampus, reduction of Cul3 significantly increased mEPSC frequency but not amplitude nor baseline evoked synaptic transmission or paired-pulse ratio. Sholl and spine analysis data suggest there is a small yet significant difference in CA1 pyramidal neuron dendritic branching and stubby spine density. Unbiased proteomic analysis of Cul3 heterozygous brain tissue revealed dysregulation of various cytoskeletal organization proteins, among others. Overall, our results suggest that Cul3 heterozygous deletion impairs spatial object recognition memory, alters cytoskeletal organization proteins, but does not cause major hippocampal neuronal morphology, functional, or behavioral abnormalities in adult global Cul3 heterozygous mice.
Collapse
Affiliation(s)
- Qiang-qiang Xia
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| | - Angela K. Walker
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Chenghui Song
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| | - Jing Wang
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| | - Anju Singh
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| | - James A. Mobley
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham Mass Spectrometry & Proteomics Shared Facility, Birmingham, AL, United States of America
| | - Zhong X. Xuan
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| | - Jeffrey D. Singer
- Department of Biology, Portland State University, Portland, OR, United States of America
| | - Craig M. Powell
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| |
Collapse
|
50
|
Aryal S, Anand D, Huang H, Reddy AP, Wilmarth PA, David LL, Lachke SA. Proteomic profiling of retina and retinal pigment epithelium combined embryonic tissue to facilitate ocular disease gene discovery. Hum Genet 2023; 142:927-947. [PMID: 37191732 PMCID: PMC10680127 DOI: 10.1007/s00439-023-02570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
To expedite gene discovery in eye development and its associated defects, we previously developed a bioinformatics resource-tool iSyTE (integrated Systems Tool for Eye gene discovery). However, iSyTE is presently limited to lens tissue and is predominantly based on transcriptomics datasets. Therefore, to extend iSyTE to other eye tissues on the proteome level, we performed high-throughput tandem mass spectrometry (MS/MS) on mouse embryonic day (E)14.5 retina and retinal pigment epithelium combined tissue and identified an average of 3300 proteins per sample (n = 5). High-throughput expression profiling-based gene discovery approaches-involving either transcriptomics or proteomics-pose a key challenge of prioritizing candidates from thousands of RNA/proteins expressed. To address this, we used MS/MS proteome data from mouse whole embryonic body (WB) as a reference dataset and performed comparative analysis-termed "in silico WB-subtraction"-with the retina proteome dataset. In silico WB-subtraction identified 90 high-priority proteins with retina-enriched expression at stringency criteria of ≥ 2.5 average spectral counts, ≥ 2.0 fold-enrichment, false discovery rate < 0.01. These top candidates represent a pool of retina-enriched proteins, several of which are associated with retinal biology and/or defects (e.g., Aldh1a1, Ank2, Ank3, Dcn, Dync2h1, Egfr, Ephb2, Fbln5, Fbn2, Hras, Igf2bp1, Msi1, Rbp1, Rlbp1, Tenm3, Yap1, etc.), indicating the effectiveness of this approach. Importantly, in silico WB-subtraction also identified several new high-priority candidates with potential regulatory function in retina development. Finally, proteins exhibiting expression or enriched-expression in the retina are made accessible in a user-friendly manner at iSyTE ( https://research.bioinformatics.udel.edu/iSyTE/ ), to allow effective visualization of this information and facilitate eye gene discovery.
Collapse
Affiliation(s)
- Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Hongzhan Huang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19713, USA
| | - Ashok P Reddy
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Larry L David
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19713, USA.
| |
Collapse
|