1
|
Ouni E, Ruys SPD, Dolmans MM, Herinckx G, Vertommen D, Amorim CA. Divide-and-Conquer Matrisome Protein (DC-MaP) Strategy: An MS-Friendly Approach to Proteomic Matrisome Characterization. Int J Mol Sci 2020; 21:E9141. [PMID: 33266304 PMCID: PMC7730167 DOI: 10.3390/ijms21239141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/29/2022] Open
Abstract
Currently, the extracellular matrix (ECM) is considered a pivotal complex meshwork of macromolecules playing a plethora of biomolecular functions in health and disease beyond its commonly known mechanical role. Only by unraveling its composition can we leverage related tissue engineering and pharmacological efforts. Nevertheless, its unbiased proteomic identification still encounters some limitations mainly due to partial ECM enrichment by precipitation, sequential fractionation using unfriendly-mass spectrometry (MS) detergents, and resuspension with harsh reagents that need to be entirely removed prior to analysis. These methods can be technically challenging and labor-intensive, which affects the reproducibility of ECM identification and induces protein loss. Here, we present a simple new method applicable to tissue fragments of 10 mg and more. The technique has been validated on human ovarian tissue and involves a standardized procedure for sample processing with an MS-compatible detergent and combined centrifugation. This two-step protocol eliminates the need for laborious sample clarification and divides our samples into 2 fractions, soluble and insoluble, successively enriched with matrisome-associated (ECM-interacting) and core matrisome (structural ECM) proteins.
Collapse
Affiliation(s)
- Emna Ouni
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (E.O.); (M.-M.D.)
| | - Sébastien Pyr dit Ruys
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.P.d.R.); (G.H.); (D.V.)
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (E.O.); (M.-M.D.)
- Gynecology and Andrology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Gaëtan Herinckx
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.P.d.R.); (G.H.); (D.V.)
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.P.d.R.); (G.H.); (D.V.)
| | - Christiani A. Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (E.O.); (M.-M.D.)
| |
Collapse
|
2
|
Wang S, Xiao C, Jiang L, Ling L, Chen X, Guo X. A high sensitive and contaminant tolerant matrix for facile detection of membrane proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chim Acta 2017; 999:114-122. [PMID: 29254561 DOI: 10.1016/j.aca.2017.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
Despite the significance of membrane proteins (MPs) in biological system is indisputable, their specific natures make them notoriously difficult to be analyzed. Particularly, the widely used Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) prefers analyses of hydrophilic cytosolic proteins and has a limited ionization efficiency towards hydrophobic MPs. Herein, a hydrophobic compound (E)-propyl α-Cyano-4-Hydroxyl Cinnamylate (CHCA-C3), a propyl-esterified derivative of α-cyano-4-hydroxycinnamic acid (CHCA), was applied as a contaminant tolerant matrix for high sensitivity MALDI-MS analyses of MPs. With CHCA-C3, the detection limits of hydrophobic peptides were 10- to 100-fold better than those using CHCA. Furthermore, high quality of spectra could be achieved in the presence of high concentration of chaotropes, salts and detergents, as well as human urinary and serum environment. Also, CHCA-C3 could generate uniform sample distribution even in the presence of contaminants. This high contaminant-resistance was revealed to be ascribed to the enhanced hydrophobicity of CHCA-C3 with a lower affinity towards hydrophilic contaminants. The application of CHCA-C3 is further demonstrated by the analysis of trypsin/CNBr digests of bacteriorhodopsin containing seven transmembrane domains (TMDs), which dramatically increased numbers of identified hydrophobic peptides in TMDs and sequence coverage (∼100%). Besides, a combined method by using CHCA-C3 with fluoride solvent and a patterned paraffin plate was established for analysis of integral MPs. We achieved a low detection limit of 10 fmol for integral bacteriorhodopsin, which could not be detected using traditional matrices such as 3,5-dimethoxy-4-hydroxycinamic acid, 2,5-dihydroxyacetophenone even at sample concentration of 10 pmol.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Liyan Jiang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China
| | - Ling Ling
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Yang H, Chan AL, LaVallo V, Cheng Q. Quantitation of Alpha-Glucosidase Activity Using Fluorinated Carbohydrate Array and MALDI-TOF-MS. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2872-2878. [PMID: 26760440 DOI: 10.1021/acsami.5b12518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Quantitation of alpha-glucosidase (α-GD) activity is of significance to diagnosis of many diseases including Pompe disease and type II diabetes. We report here a new method to determine α-GD activity using matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF) mass spectrometry (MS) in combination with carbohydrate microarray and affinity surface chemistry. Carbohydrate probes are synthesized for capture of the enzymatic reaction products and the adducts are loaded onto a fluorinated gold surface to generate an array, which is followed by characterization by MALDI-TOF-MS. The ratio of intensities is used to determine the level of activity of several enzymes. In addition, half maximal inhibitory concentration (IC50) of acarbose and epigallocatechin gallate are also determined using this approach, and the results agree well with the reported values. This method is advantageous as compared to conventional colorimetric techniques that typically suffer matrix interference problems from samples. The use of the polyfluorinated surface has effectively suppressed the interference.
Collapse
Affiliation(s)
- Hyojik Yang
- Department of Chemistry, University of California , Riverside, California 92521, United States
| | - Allen L Chan
- Department of Chemistry, University of California , Riverside, California 92521, United States
| | - Vincent LaVallo
- Department of Chemistry, University of California , Riverside, California 92521, United States
| | - Quan Cheng
- Department of Chemistry, University of California , Riverside, California 92521, United States
| |
Collapse
|
4
|
Zhang J, Zheng X, Ni Y. Selective Enrichment and MALDI-TOF MS Analysis of Small Molecule Compounds with Vicinal Diols by Boric Acid-Functionalized Graphene Oxide. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1291-1298. [PMID: 25990923 DOI: 10.1007/s13361-015-1162-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/10/2015] [Accepted: 04/01/2015] [Indexed: 06/04/2023]
Abstract
In this study, a 4-vinylphenylboronic acid-functionalized graphene oxide (GO) material was prepared via atom-transfer radical polymerization (ATRP) method and applied for the first time as a novel matrix for the selective enrichment and analysis of small-molecule compounds with vicinal diols, which have been the focus of intense research in the field of life science, by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in positive-ion mode. There are two main factors playing a decisive role in assisting laser D/I process comparing to some traditional matrices: (1) GO provides π-conjugated system by itself for laser absorption and energy transfer; (2) the modified 4-vinylphenylboronic acid can selectively capture small-molecule compounds with vicinal diols. The results demonstrate that the novel material has distinct advantages over previously reported matrices in enriching and assisting the highly efficient ionization of target molecules for mass spectrometry analysis. This work indicates a new application branch for graphene-based matrices and provides an alternative solution for small-molecules analysis.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China,
| | | | | |
Collapse
|
5
|
Alfonso-Garrido J, Garcia-Calvo E, Luque-Garcia JL. Sample preparation strategies for improving the identification of membrane proteins by mass spectrometry. Anal Bioanal Chem 2015; 407:4893-905. [PMID: 25967148 DOI: 10.1007/s00216-015-8732-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/31/2022]
Abstract
Despite enormous advances in the mass spectrometry and proteomics fields during the last two decades, the analysis of membrane proteins still remains a challenge for the proteomic community. Membrane proteins play a wide number of key roles in several cellular events, making them relevant target molecules to study in a significant variety of investigations (e.g., cellular signaling, immune surveillance, drug targets, vaccine candidates, etc.). Here, we critically review the several attempts that have been carried out on the different steps of the sample preparation procedure to improve and modify existing conventional proteomic strategies in order to make them suitable for the study of membrane proteins. We also revise novel techniques that have been designed to tackle the difficult but relevant task of identifying and characterizing membrane proteins.
Collapse
Affiliation(s)
- Javier Alfonso-Garrido
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28004, Madrid, Spain
| | | | | |
Collapse
|
6
|
Stoyanovsky DA, Sparvero LJ, Amoscato AA, He RR, Watkins S, Pitt BR, Bayir H, Kagan VE. Improved spatial resolution of matrix-assisted laser desorption/ionization imaging of lipids in the brain by alkylated derivatives of 2,5-dihydroxybenzoic acid. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:403-12. [PMID: 24497278 PMCID: PMC3973445 DOI: 10.1002/rcm.6796] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 05/27/2023]
Abstract
RATIONALE Matrix-assisted laser desorption/ionization (MALDI) is one of the major techniques for mass spectrometry imaging (MSI) of biological systems along with secondary-ion mass spectrometry (SIMS) and desorption electrospray mass spectrometry (DESI). The inherent variability of MALDI-MSI signals within intact tissues is related to the heterogeneity of both the sample surface and the matrix crystallization. To circumvent some of these limitations of MALDI-MSI, we have developed improved matrices for lipid analysis based on structural modification of the commonly used matrix 2,5-dihydroxybenzoic acid (DHB). METHODS We have synthesized DHB containing -C6H13 and -C12H25 alkyl chains and applied these matrices to rat brain using a capillary sprayer. We utilized a Bruker Ultraflex II MALDI-TOF/TOF mass spectrometer to analyze lipid extracts and tissue sections, and examined these sections with polarized light microscopy and differential interference contrast microscopy. RESULTS O-alkylation of DHB yields matrices, which, when applied to brain sections, follow a trend of phase transition from crystals to an oily layer in the sequence DHB → DHB-C6H13 → DHB-C12H25 . MALDI-MSI images acquired with DHB-C12H25 exhibited a considerably higher density of lipids than DHB. CONCLUSIONS Comparative experiments with DHB and DHB-C12H25 are presented, which indicate that the latter matrix affords higher lateral resolution than the former.
Collapse
Affiliation(s)
- D A Stoyanovsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Minerva L, Ceulemans A, Baggerman G, Arckens L. MALDI MS imaging as a tool for biomarker discovery: methodological challenges in a clinical setting. Proteomics Clin Appl 2014; 6:581-95. [PMID: 23090913 DOI: 10.1002/prca.201200033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/12/2022]
Abstract
MALDI MS imaging (MSI) is an analytical tool capable of providing spatial distribution and relative abundance of biomolecules directly in tissue. After 15 years of intense efforts to improve the acquisition and quality of molecular images, MSI has matured into an asset of the proteomic toolbox. The power of MSI lies in the ability to differentiate tissue regions that are not histologically distinct but are characterized by different MS profiles. Recently, MSI has been gaining momentum in biomedical research and has found applications in disease diagnosis and prognosis, biomarker discovery, and drug therapy. Although the technology holds great promise, MSI is still faced with a set of methodological challenges presented by the clinical setting. There is a growing awareness regarding this topic and efforts are being taken to develop clear and practical standards to overcome these challenges. This review presents an overview of MALDI MSI as a biomarker discovery tool and recent methodological progress in the field.
Collapse
Affiliation(s)
- Laurens Minerva
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
8
|
Fukuyama Y, Tanimura R, Maeda K, Watanabe M, Kawabata SI, Iwamoto S, Izumi S, Tanaka K. Alkylated Dihydroxybenzoic Acid as a MALDI Matrix Additive for Hydrophobic Peptide Analysis. Anal Chem 2012; 84:4237-43. [DOI: 10.1021/ac300540r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yuko Fukuyama
- Koichi Tanaka Laboratory of Advanced
Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Ritsuko Tanimura
- Koichi Tanaka Laboratory of Advanced
Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Kazuki Maeda
- Department of Mathematical and
Life Sciences, Graduate School of Science, Hiroshima University,1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526,
Japan
| | - Makoto Watanabe
- Koichi Tanaka Laboratory of Advanced
Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shin-Ichirou Kawabata
- Koichi Tanaka Laboratory of Advanced
Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shinichi Iwamoto
- Koichi Tanaka Laboratory of Advanced
Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shunsuke Izumi
- Department of Mathematical and
Life Sciences, Graduate School of Science, Hiroshima University,1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526,
Japan
| | - Koichi Tanaka
- Koichi Tanaka Laboratory of Advanced
Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|
9
|
Vertommen A, Panis B, Swennen R, Carpentier SC. Challenges and solutions for the identification of membrane proteins in non-model plants. J Proteomics 2011; 74:1165-81. [PMID: 21354347 DOI: 10.1016/j.jprot.2011.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/04/2011] [Accepted: 02/16/2011] [Indexed: 01/27/2023]
Abstract
The workhorse for proteomics in non-model plants is classical two-dimensional electrophoresis, a combination of iso-electric focusing and SDS-PAGE. However, membrane proteins with multiple membrane spanning domains are hardly detected on classical 2-DE gels because of their low abundance and poor solubility in aqueous media. In the current review, solutions that have been proposed to handle these two problems in non-model plants are discussed. An overview of alternative techniques developed for membrane proteomics is provided together with a comparison of their strong and weak points. Subsequently, strengths and weaknesses of the different techniques and methods to evaluate the identification of membrane proteins are discussed. Finally, an overview of recent plant membrane proteome studies is provided with the used separation technique and the number of identified membrane proteins listed.
Collapse
Affiliation(s)
- A Vertommen
- Laboratory of Tropical Crop Improvement, Department of Biosystems, K.U. Leuven, Kasteelpark Arenberg 13, B-3001 Heverlee, Belgium
| | | | | | | |
Collapse
|
10
|
Qian J, Cole RB, Cai Y. Synthesis and characterization of a 'fluorous' (fluorinated alkyl) affinity reagent that labels primary amine groups in proteins/peptides. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:1-11. [PMID: 20963855 DOI: 10.1002/jms.1854] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 09/27/2010] [Indexed: 05/30/2023]
Abstract
Strong non-covalent interactions such as biotin-avidin affinity play critical roles in protein/peptide purification. A new type of 'fluorous' (fluorinated alkyl) affinity approach has gained popularity due especially to its low level of non-specific binding to proteins/peptides. We have developed a novel water-soluble fluorous labeling reagent that is reactive (via an active sulfo-N-hydroxylsuccinimidyl ester group) to primary amine groups in proteins/peptides. After fluorous affinity purification, the bulky fluorous tag moiety and the long oligoethylene glycol (OEG) spacer of this labeling reagent can be trimmed via the cleavage of an acid labile linker. Upon collision-induced dissociation, the labeled peptide ion yields a characteristic fragment that can be retrieved from the residual portion of the fluorous affinity tag, and this fragment ion can serve as a marker to indicate that the relevant peptide has been successfully labeled. As a proof of principle, the newly synthesized fluorous labeling reagent was evaluated for peptide/protein labeling ability in phosphate-buffered saline (PBS). Results show that both the aqueous environment protein/peptide labeling and the affinity enrichment/separation process were highly efficient.
Collapse
Affiliation(s)
- Jiang Qian
- The Research Institute for Children, Children's Hospital, New Orleans, LA 70118, USA
| | | | | |
Collapse
|
11
|
Abstract
Imaging mass spectrometry (IMS) using matrix-assisted laser desorption ionization (MALDI) is a new and effective tool for molecular studies of complex biological samples such as tissue sections. As histological features remain intact throughout the analysis of a section, distribution maps of multiple analytes can be correlated with histological and clinical features. Spatial molecular arrangements can be assessed without the need for target-specific reagents, allowing the discovery of diagnostic and prognostic markers of different cancer types and enabling the determination of effective therapies.
Collapse
Affiliation(s)
- Kristina Schwamborn
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-2195, USA
| | | |
Collapse
|
12
|
Abstract
Imaging mass spectrometry (IMS) technology is an effective tool that is able to assess complex molecular mixtures in cells, tissues, or other sample types with high chemical specificity, allowing concurrent analysis of a variety of molecular species in a wide mass range, from small metabolites to large macromolecules such as proteins. Simultaneous localization of molecules, detection of post-translational modifications, and relative quantitative information can be obtained in a single experiment. Images generated by MS are unique because they are derived from direct molecular measurements and do not rely on target-specific reagents such as antibodies. Thus, the ability to map spatial distributions coupled with the mass accuracy and chemical specificity for MS-based detection makes IMS an effective discovery tool. Further structural assessment of compounds, including MS/MS fragmentation analysis, can be utilized in an imaging experiment to achieve accurate molecular identifications.
Collapse
Affiliation(s)
- Sarah A Schwartz
- David H. Murdock Research Institute, North Carolina Research Campus, Kannapolis, NC, USA
| | | |
Collapse
|
13
|
Ye X, Johann DJ, Hakami RM, Xiao Z, Meng Z, Ulrich RG, Issaq HJ, Veenstra TD, Blonder J. Optimization of protein solubilization for the analysis of the CD14 human monocyte membrane proteome using LC-MS/MS. J Proteomics 2009; 73:112-22. [PMID: 19709643 PMCID: PMC3159575 DOI: 10.1016/j.jprot.2009.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 12/24/2022]
Abstract
Proteomic profiling of membrane proteins is of vital importance in the search for disease biomarkers and drug development. However, the slow pace in this field has resulted mainly from the difficulty to analyze membrane proteins by mass spectrometry (MS). The objective of this investigation was to explore and optimize solubilization of membrane proteins for shotgun membrane proteomics of the CD14 human monocytes by examining different systems that rely on: i) an organic solvent (methanol) ii) an acid-labile detergent 3-[3-(1,1-bisalkyloxyethyl)pyridin-1-yl]propane-1-sulfonate (PPS), iii) a combination of both agents (methanol+PPS). Solubilization efficiency of different buffers was first compared using bacteriorhodopsin as a model membrane protein. Selected approaches were then applied on a membrane subproteome isolated from a highly enriched human monocyte population that was approximately 98% positive for CD14 expression as determined by FACS analysis. A methanol-based buffer yielded 194 proteins of which 93 (48%) were mapped as integral membrane proteins. The combination of methanol and acid-cleavable detergent gave similar results; 203 identified proteins of which 93 (46%) were mapped integral membrane proteins. However, employing PPS 216 proteins were identified of which 75 (35%) were mapped as integral membrane proteins. These results indicate that methanol alone or in combination with PPS yielded significantly higher membrane protein identification/enrichment than the PPS alone.
Collapse
Affiliation(s)
- Xiaoying Ye
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Inc., NCI at Frederick, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Leinweber BD, Tsaprailis G, Monks TJ, Lau SS. Improved MALDI-TOF imaging yields increased protein signals at high molecular mass. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:89-95. [PMID: 18926723 PMCID: PMC2671225 DOI: 10.1016/j.jasms.2008.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/31/2008] [Accepted: 09/08/2008] [Indexed: 05/02/2023]
Abstract
Matrix assisted laser desorption ionization (MALDI) mass spectrum images are created from an array of mass spectra collected over a tissue surface. We have increased the mass range of proteins that can be detected in tissue sections from kidneys, heart, lung and brain of different rodent species by a modification of the sandwich technique, which involves co-crystallizing matrix with analyte. A tissue section is placed upon a drop of sinapinic acid matrix dissolved in 90% ethanol and 0.5% Triton X-100. Once the matrix has dried, a seed layer of sinapinic crystals is added as a dispersion in xylene. Additional layers of sinapinic acid are added as solutions in 90% ethanol followed by 50% acetonitrile. Numerous peaks with signal to noise ratio of four or greater are observed between 25 kDa to 50 kDa. This represents approximately 10 times as many peaks as are detected using traditional matrix spotting and spraying.
Collapse
Affiliation(s)
| | | | | | - Serrine S. Lau
- All correspondence should be addressed: Dr. Serrine S. Lau, Southwest Environmental Health Sciences Center, Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703, E. Mabel Street, Tucson, AZ 85721-0207, TEL: (520) 626-0460, FAX: (520) 626-6944, E-mail:
| |
Collapse
|
15
|
Abstract
Imaging MS (IMS) is an emerging technology that permits the direct analysis and determination of the distribution of molecules in tissue sections. Biological molecules such as proteins, peptides, lipids, xenobiotics, and metabolites can be analyzed in a high-throughput manner with molecular specificity not readily achievable through other means. Tissues are analyzed intact and thus spatial localization of molecules within a tissue is preserved. Several studies are presented that focus on the unique types of information obtainable by IMS, such as Abeta isoform distributions in Alzheimer's plaques, protein maps in mouse brain, and spatial protein distributions in human breast carcinoma. The analysis of a biopsy taken 100 years ago from a patient with amyloidosis illustrates the use of IMS with formalin-fixed tissues. Finally, the registration and correlation of IMS with MRI is presented.
Collapse
|
16
|
Seeley EH, Caprioli RM. Imaging mass spectrometry: Towards clinical diagnostics. Proteomics Clin Appl 2008; 2:1435-43. [PMID: 21136792 DOI: 10.1002/prca.200800013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Indexed: 11/11/2022]
Abstract
Imaging MS (IMS) has emerged as a powerful tool for biomarker discovery. A key advantage of this technique is its ability to probe the proteome directly from a tissue section with preservation of the spatial relationships of the sample and minimal sample preparation. This allows for direct correlation of protein expression with histology. Here, we present the latest developments in imaging MS and their relevance to clinical mass spectral analysis. IMS allows for high throughput analysis of tissue samples and is fully compatible with biostatistical analysis without prior knowledge of protein expression. Several studies are presented of applications in which direct tissue mass spectral analysis has provided insight into clinical questions not readily available by other means. Examples include the determination of lymph node status from investigation of primary breast tumors, prediction of response of breast tumors to chemotherapy, classification and prediction of progression of lung lesions, and exploration of 'molecular' margins in invasive disease.
Collapse
Affiliation(s)
- Erin H Seeley
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|
17
|
Riederer BM. Non-covalent and covalent protein labeling in two-dimensional gel electrophoresis. J Proteomics 2008; 71:231-44. [DOI: 10.1016/j.jprot.2008.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 05/03/2008] [Accepted: 05/06/2008] [Indexed: 12/16/2022]
|
18
|
Altelaar AFM, Luxembourg SL, McDonnell LA, Piersma SR, Heeren RMA. Imaging mass spectrometry at cellular length scales. Nat Protoc 2008; 2:1185-96. [PMID: 17546014 DOI: 10.1038/nprot.2007.117] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Imaging mass spectrometry (IMS) allows the direct investigation of both the identity and the spatial distribution of the molecular content directly in tissue sections, single cells and many other biological surfaces. In this protocol, we present the steps required to retrieve the molecular information from tissue sections using matrix-enhanced (ME) and metal-assisted (MetA) secondary ion mass spectrometry (SIMS) as well as matrix-assisted laser desorption/ionization (MALDI) IMS. These techniques require specific sample preparation steps directed at optimal signal intensity with minimal redistribution or modification of the sample analytes. After careful sample preparation, different IMS methods offer a unique discovery tool in, for example, the investigation of (i) drug transport and uptake, (ii) biological processing steps and (iii) biomarker distributions. To extract the relevant information from the huge datasets produced by IMS, new bioinformatics approaches have been developed. The duration of the protocol is highly dependent on sample size and technique used, but on average takes approximately 5 h.
Collapse
Affiliation(s)
- A F Maarten Altelaar
- FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Duvall JR, Wu F, Snider BB. Structure reassignment and synthesis of Jenamidines A1/A2, synthesis of (+)-NP25302, and formal synthesis of SB-311009 analogues. J Org Chem 2007; 71:8579-90. [PMID: 17064037 PMCID: PMC2528249 DOI: 10.1021/jo061650+] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The proposed structures of jenamidines A, B, and C (1-3) were revised to jenamidines A1/A2, B1/B2, and C (8-10). Jenamidines A1/A2 (8) were synthesized from activated proline derivative 43 by conversion to 26 in two steps and 50% overall yield. Acylation of 26 with acid chloride 38d gave 39d, which was deprotected with TFA and then mild base to give 8 in 45% yield from 26. (-)-trans-2,5-Dimethylproline ethyl ester (49) was prepared by the enantioselective Michael reaction of ethyl 2-nitropropionate (51) and methyl vinyl ketone (50) using modified dihydroquinine 60 as the catalyst. Further elaboration converted 49 to natural (+)-NP25302 (12). A Wittig reaction of proline NCA (76) with ylide 79 gave 72 as a 9/1 E/Z mixture in 27% yield, completing a one-step formal synthesis of SB-311009 analogues.
Collapse
Affiliation(s)
- Jeremy R Duvall
- Department of Chemistry, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | |
Collapse
|
20
|
Affiliation(s)
- Anna E Speers
- Department of Pharmacology, University of Colorado School of Medicine, P.O. Box 6511, MS 8303, Aurora, Colorado 80045, USA
| | | |
Collapse
|
21
|
Långström B, Andrén PE, Lindhe O, Svedberg M, Hall H. In Vitro Imaging Techniques in Neurodegenerative Diseases. Mol Imaging Biol 2007; 9:161-75. [PMID: 17318669 DOI: 10.1007/s11307-007-0088-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neurodegeneration induces various changes in the brain, changes that may be investigated using neuroimaging techniques. The in vivo techniques are useful for the visualization of major changes, and the progressing abnormalities may also be followed longitudinally. However, to study and quantify minor abnormalities, neuroimaging of postmortem brain tissue is used. These in vitro methods are complementary to the in vivo techniques and contribute to the knowledge of pathophysiology and etiology of the neurodegenerative diseases. In vitro radioligand autoradiography has given great insight in the involvement of different neuronal receptor systems in these diseases. Data on the dopamine and cholinergic systems in neurodegeneration are discussed in this review. Also, the amyloid plaques are studied using in vitro radioligand autoradiography. Using one of the newer methods, imaging matrix-assisted laser desorption ionization mass spectrometry, the distribution of a large number of peptides and proteins may be detected in vitro on brain cryosections. In this overview, we describe in vitro imaging techniques in the neurodegenerative diseases as a complement to in vivo positron emission tomography and single photon emission computed tomography imaging.
Collapse
Affiliation(s)
- Bengt Långström
- Department of Biochemistry and Organic Chemistry, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
22
|
Chaurand P, Norris JL, Cornett DS, Mobley JA, Caprioli RM. New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry. J Proteome Res 2007; 5:2889-900. [PMID: 17081040 DOI: 10.1021/pr060346u] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Molecular imaging of tissue by MALDI mass spectrometry is a powerful tool for visualizing the spatial distribution of constituent analytes with high molecular specificity. Although the technique is relatively young, it has already contributed to the understanding of many diverse areas of human health. In recent years, a great many advances in the practice of imaging mass spectrometry have taken place, making the technique more sensitive, robust, and ultimately useful. The purpose of this review is to highlight some of the more recent technological advances that have improved the efficiency of imaging mass spectrometry for clinical applications. Advances in the way MALDI mass spectrometry is integrated with histology, improved methods for automation, and better tools for data analysis are outlined in this review. Refined top-down strategies for the identification and validation of candidate biomarkers found in tissue sections are discussed. A clinical example highlighting the application of these methods to a cohort of clinical samples is described.
Collapse
Affiliation(s)
- Pierre Chaurand
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University Medical Center, Nashville Tennessee 37232-8575, USA
| | | | | | | | | |
Collapse
|
23
|
Klammer AA, MacCoss MJ. Effects of modified digestion schemes on the identification of proteins from complex mixtures. J Proteome Res 2006; 5:695-700. [PMID: 16512685 PMCID: PMC2535816 DOI: 10.1021/pr050315j] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In shotgun proteomics, a complex protein mixture is digested to peptides, separated, and identified by microcapillary liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). In this technology, complete protein digestion is often assumed. We show that, to the contrary, modifications to a standard digestion protocol demonstrate large, reproducible improvements in protein identification, a result consistent with digestion being a limiting factor in the efficiency of protein identification.
Collapse
Affiliation(s)
- Aaron A Klammer
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
24
|
Nordström A, Apon JV, Uritboonthai W, Go EP, Siuzdak G. Surfactant-Enhanced Desorption/Ionization on Silicon Mass Spectrometry. Anal Chem 2005; 78:272-8. [PMID: 16383337 DOI: 10.1021/ac051398q] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Perfluorinated surfactants are demonstrated to dramatically enhance desorption/ionization on fluorinated silicon (DIOS) mass spectrometry. Perfluorooctanesulfonic acid improved the signal-to-noise ratio of tryptic digests and gave a 3-fold increase in the number of peptides identified. Similar results were also obtained using perfluoroundecanoic acid; yet among the seven different surfactants tested, controls such as nonfluorinated sodium dodecyl sulfate or fluorinated molecules with minimal surfactant activity did not enhance the signal. The same surfactants also enhanced the DIOS-MS signal of amino acids, carbohydrates, and other small organic compounds. The signal enhancement may be facilitated by the high surface activity of the perfluorinated surfactants on the fluorinated silicon surfaces allowing for a higher concentration of analyte to be absorbed.
Collapse
Affiliation(s)
- Anders Nordström
- Department of Molecular Biology, The Scripps Center for Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
25
|
Norris JL, Hangauer MJ, Porter NA, Caprioli RM. Nonacid cleavable detergents applied to MALDI mass spectrometry profiling of whole cells. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1319-26. [PMID: 16220468 DOI: 10.1002/jms.914] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Although cleavable detergents were first synthesized a number of years ago, they have only recently been successfully applied to problems involving biological molecules. Recent reports have demonstrated that these compounds are useful for applications involving both 2D PAGE and mass spectrometry. However, most cleavable surfactants have utilized acid-labile functional groups to affect cleavage. In applications where extreme pH is required, acid cleavable detergents have limited usefulness. We report the synthesis of fluoride cleavable silane compounds and photolabile cinnamate esters as cleavable detergents having alternative cleavage chemistries than previously reported cleavable detergents. These compounds were applied to whole cell analysis using MALDI mass spectrometry, and it was demonstrated that their use results in an increase in the number of proteins analyzed by increasing protein solubility.
Collapse
Affiliation(s)
- Jeremy L Norris
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232-8575, USA
| | | | | | | |
Collapse
|