1
|
Shao F, Lee PW, Li H, Hsieh K, Wang TH. Emerging platforms for high-throughput enzymatic bioassays. Trends Biotechnol 2023; 41:120-133. [PMID: 35863950 PMCID: PMC9789168 DOI: 10.1016/j.tibtech.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 12/27/2022]
Abstract
Enzymes have essential roles in catalyzing biological reactions and maintaining metabolic systems. Many in vitro enzymatic bioassays have been developed for use in industrial and research fields, such as cell biology, enzyme engineering, drug screening, and biofuel production. Of note, many of these require the use of high-throughput platforms. Although the microtiter plate remains the standard for high-throughput enzymatic bioassays, microfluidic arrays and droplet microfluidics represent emerging methods. Each has seen significant advances and offers distinct advantages; however, drawbacks in key performance metrics, including reagent consumption, reaction manipulation, reaction recovery, real-time measurement, concentration gradient range, and multiplexity, remain. Herein, we compare recent high-throughput platforms using the aforementioned metrics as criteria and provide insights into remaining challenges and future research trends.
Collapse
Affiliation(s)
- Fangchi Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pei-Wei Lee
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hui Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Chantipmanee N, Xu Y. Toward nanofluidics‐based mass spectrometry for exploring the unknown complex and heterogenous subcellular worlds. VIEW 2022. [DOI: 10.1002/viw.20220036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Nattapong Chantipmanee
- Department of Chemical Engineering Graduate School of Engineering Osaka Metropolitan University Sakai Japan
| | - Yan Xu
- Department of Chemical Engineering Graduate School of Engineering Osaka Metropolitan University Sakai Japan
- Japan Science and Technology Agency (JST) PRESTO Kawaguchi Japan
- Japan Science and Technology Agency (JST) CREST Kawaguchi Japan
| |
Collapse
|
3
|
Clausse V, Fang Y, Tao D, Tagad HD, Sun H, Wang Y, Karavadhi S, Lane K, Shi ZD, Vasalatiy O, LeClair CA, Eells R, Shen M, Patnaik S, Appella E, Coussens NP, Hall MD, Appella DH. Discovery of Novel Small-Molecule Scaffolds for the Inhibition and Activation of WIP1 Phosphatase from a RapidFire Mass Spectrometry High-Throughput Screen. ACS Pharmacol Transl Sci 2022; 5:993-1006. [PMID: 36268125 PMCID: PMC9578142 DOI: 10.1021/acsptsci.2c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/28/2022]
Abstract
Wild-type P53-induced phosphatase 1 (WIP1), also known as PPM1D or PP2Cδ, is a serine/threonine protein phosphatase induced by P53 after genotoxic stress. WIP1 inhibition has been proposed as a therapeutic strategy for P53 wild-type cancers in which it is overexpressed, but this approach would be ineffective in P53-negative cancers. Furthermore, there are several cancers with mutated P53 where WIP1 acts as a tumor suppressor. Therefore, activating WIP1 phosphatase might also be a therapeutic strategy, depending on the P53 status. To date, no specific, potent WIP1 inhibitors with appropriate pharmacokinetic properties have been reported, nor have WIP1-specific activators. Here, we report the discovery of new WIP1 modulators from a high-throughput screen (HTS) using previously described orthogonal biochemical assays suitable for identifying both inhibitors and activators. The primary HTS was performed against a library of 102 277 compounds at a single concentration using a RapidFire mass spectrometry assay. Hits were further evaluated over a range of 11 concentrations with both the RapidFire MS assay and an orthogonal fluorescence-based assay. Further biophysical, biochemical, and cell-based studies of confirmed hits revealed a WIP1 activator and two inhibitors, one competitive and one uncompetitive. These new scaffolds are prime candidates for optimization which might enable inhibitors with improved pharmacokinetics and a first-in-class WIP1 activator.
Collapse
Affiliation(s)
- Victor Clausse
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yuhong Fang
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Dingyin Tao
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Harichandra D. Tagad
- Laboratory
of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hongmao Sun
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Yuhong Wang
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Surendra Karavadhi
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Kelly Lane
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Zhen-Dan Shi
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Olga Vasalatiy
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Christopher A. LeClair
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Rebecca Eells
- Reaction
Biology Corporation, 1 Great Valley Parkway, Suite 2, Malvern, Pennsylvania 19355, United States
| | - Min Shen
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Samarjit Patnaik
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ettore Appella
- Laboratory
of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nathan P. Coussens
- Molecular
Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Matthew D. Hall
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Daniel H. Appella
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
4
|
Picache JA, Zheng W, Chen CZ. Therapeutic Strategies For Tay-Sachs Disease. Front Pharmacol 2022; 13:906647. [PMID: 35865957 PMCID: PMC9294361 DOI: 10.3389/fphar.2022.906647] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Tay-Sachs disease (TSD) is an autosomal recessive disease that features progressive neurodegenerative presentations. It affects one in 100,000 live births. Currently, there is no approved therapy or cure. This review summarizes multiple drug development strategies for TSD, including enzyme replacement therapy, pharmaceutical chaperone therapy, substrate reduction therapy, gene therapy, and hematopoietic stem cell replacement therapy. In vitro and in vivo systems are described to assess the efficacy of the aforementioned therapeutic strategies. Furthermore, we discuss using MALDI mass spectrometry to perform a high throughput screen of compound libraries. This enables discovery of compounds that reduce GM2 and can lead to further development of a TSD therapy.
Collapse
|
5
|
Knizner KT, Bagley MC, Pu F, Elsen NL, Williams JD, Muddiman DC. Normalization techniques for high-throughput screening by infrared matrix-assisted laser desorption electrospray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4869. [PMID: 35678360 PMCID: PMC9287052 DOI: 10.1002/jms.4869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 05/29/2023]
Abstract
Mass spectrometry (MS) is an effective analytical tool for high-throughput screening (HTS) in the drug discovery field. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) MS is a high-throughput platform that has achieved analysis times of sub-seconds-per-sample. Due to the high-throughput analysis speed, methods are needed to increase the analyte signal while decreasing the variability in IR-MALDESI-MS analyses to improve data quality and reduce false-positive hits. The Z-factor is used as a statistic of assay quality that can be improved by reducing the variation of target ion abundances or increasing signal. Herein we report optimal solvent compositions for increasing measured analyte abundances with direct analysis by IR-MALDESI-MS. We also evaluate normalization strategies, such as adding a normalization standard that is similar or dissimilar in structure to the model target drug, to reduce the variability of measured analyte abundances with direct analyses by IR-MALDESI-MS in both positive and negative ionization modes.
Collapse
Affiliation(s)
- Kevan T. Knizner
- FTMS Laboratory for Human Health Research, Department of ChemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Michael C. Bagley
- FTMS Laboratory for Human Health Research, Department of ChemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Fan Pu
- Drug Discovery Science and TechnologyAbbVie Inc.North ChicagoIllinoisUSA
| | - Nathaniel L. Elsen
- Drug Discovery Science and TechnologyAbbVie Inc.North ChicagoIllinoisUSA
| | - Jon D. Williams
- Drug Discovery Science and TechnologyAbbVie Inc.North ChicagoIllinoisUSA
| | - David C. Muddiman
- FTMS Laboratory for Human Health Research, Department of ChemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Molecular Education, Technology and Research Innovation Center (METRIC)North Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
6
|
Knizner KT, Bagley MC, Garrard KP, Hauschild JP, Pu F, Elsen NL, Williams JD, Muddiman DC. Optimized C-Trap Timing of an Orbitrap 240 Mass Spectrometer for High-Throughput Screening and Native MS by IR-MALDESI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:328-334. [PMID: 35073091 PMCID: PMC9944060 DOI: 10.1021/jasms.1c00319] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Infrared matrix-assisted laser desorption ionization (IR-MALDESI) is a hybrid mass spectrometry ionization source that combines the benefits of electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) making it a great analytical tool for high-throughput screening (HTS) analyses. IR-MALDESI is coupled to an Orbitrap Exploris 240 mass spectrometer that utilizes a bent quadrupole (C-trap) to inject accumulated ions into the high-field Orbitrap mass analyzer. Here, we present a study on the optimized C-trap timing for HTS analyses by IR-MALDESI mass spectrometry. The timing between initial ion generation and the C-trap opening time was optimized to reduce unnecessary ambient ion accumulation in the mass spectrometer. The time in which the C-trap was held open, the ion accumulation time, was further optimized to maximize the accumulation of analyte ions generated using IR-MALDESI. The resulting C-trap opening scheme benefits small-molecule HTS analyses by IR-MALDESI by maximizing target ion abundances, minimizing ambient ion abundances, and minimizing the total analysis time per sample. The proposed C-trap timing scheme for HTS does not translate to large molecules; a NIST monoclonal antibody standard reference material was analyzed to demonstrate that larger analytes require longer ion accumulation times and that IR-MALDESI can measure intact antibodies in their native state.
Collapse
Affiliation(s)
- Kevan T. Knizner
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Michael C. Bagley
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Kenneth P. Garrard
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
- Precision Engineering Consortium, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Fan Pu
- Drug Discovery Science and Technology, AbbVie Inc., North Chicago, Illinois 60064, USA
| | - Nathaniel L. Elsen
- Drug Discovery Science and Technology, AbbVie Inc., North Chicago, Illinois 60064, USA
| | - Jon D. Williams
- Drug Discovery Science and Technology, AbbVie Inc., North Chicago, Illinois 60064, USA
| | - David C. Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
- Molecular Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
7
|
Ha NS, de Raad M, Han LZ, Golini A, Petzold CJ, Northen TR. Faster, better, and cheaper: harnessing microfluidics and mass spectrometry for biotechnology. RSC Chem Biol 2021; 2:1331-1351. [PMID: 34704041 PMCID: PMC8496484 DOI: 10.1039/d1cb00112d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
High-throughput screening technologies are widely used for elucidating biological activities. These typically require trade-offs in assay specificity and sensitivity to achieve higher throughput. Microfluidic approaches enable rapid manipulation of small volumes and have found a wide range of applications in biotechnology providing improved control of reaction conditions, faster assays, and reduced reagent consumption. The integration of mass spectrometry with microfluidics has the potential to create high-throughput, sensitivity, and specificity assays. This review introduces the widely-used mass spectrometry ionization techniques that have been successfully integrated with microfluidics approaches such as continuous-flow system, microchip electrophoresis, droplet microfluidics, digital microfluidics, centrifugal microfluidics, and paper microfluidics. In addition, we discuss recent applications of microfluidics integrated with mass spectrometry in single-cell analysis, compound screening, and the study of microorganisms. Lastly, we provide future outlooks towards online coupling, improving the sensitivity and integration of multi-omics into a single platform.
Collapse
Affiliation(s)
- Noel S Ha
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
| | - Markus de Raad
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
| | - La Zhen Han
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| | - Amber Golini
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| | - Christopher J Petzold
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
| | - Trent R Northen
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| |
Collapse
|
8
|
McLaren DG, Shah V, Wisniewski T, Ghislain L, Liu C, Zhang H, Saldanha SA. High-Throughput Mass Spectrometry for Hit Identification: Current Landscape and Future Perspectives. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:168-191. [PMID: 33482074 DOI: 10.1177/2472555220980696] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
For nearly two decades mass spectrometry has been used as a label-free, direct-detection method for both functional and affinity-based screening of a wide range of therapeutically relevant target classes. Here, we present an overview of several established and emerging mass spectrometry platforms and summarize the unique strengths and performance characteristics of each as they apply to high-throughput screening. Multiple examples from the recent literature are highlighted in order to illustrate the power of each individual technique, with special emphasis given to cases where the use of mass spectrometry was found to be differentiating when compared with other detection formats. Indeed, as many of these examples will demonstrate, the inherent strengths of mass spectrometry-sensitivity, specificity, wide dynamic range, and amenability to complex matrices-can be leveraged to enhance the discriminating power and physiological relevance of assays included in screening cascades. It is our hope that this review will serve as a useful guide to readers of all backgrounds and experience levels on the applicability and benefits of mass spectrometry in the search for hits, leads, and, ultimately, drugs.
Collapse
|
9
|
Münzker L, Petrick JK, Schleberger C, Clavel D, Cornaciu I, Wilcken R, Márquez JA, Klebe G, Marzinzik A, Jahnke W. Fragment-Based Discovery of Non-bisphosphonate Binders of Trypanosoma brucei Farnesyl Pyrophosphate Synthase. Chembiochem 2020; 21:3096-3111. [PMID: 32537808 DOI: 10.1002/cbic.202000246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/29/2020] [Indexed: 12/26/2022]
Abstract
Trypanosoma brucei is the causative agent of human African trypanosomiasis (HAT). Nitrogen-containing bisphosphonates, a current treatment for bone diseases, have been shown to block the growth of the T. brucei parasites by inhibiting farnesyl pyrophosphate synthase (FPPS); however, due to their poor pharmacokinetic properties, they are not well suited for antiparasitic therapy. Recently, an allosteric binding pocket was discovered on human FPPS, but its existence on trypanosomal FPPS was unclear. We applied NMR and X-ray fragment screening to T. brucei FPPS and report herein on four fragments bound to this previously unknown allosteric site. Surprisingly, non-bisphosphonate active-site binders were also identified. Moreover, fragment screening revealed a number of additional binding sites. In an early structure-activity relationship (SAR) study, an analogue of an active-site binder was unexpectedly shown to bind to the allosteric site. Overlaying identified fragment binders of a parallel T. cruzi FPPS fragment screen with the T. brucei FPPS structure, and medicinal chemistry optimisation based on two binders revealed another example of fragment "pocket hopping". The discovery of binders with new chemotypes sets the framework for developing advanced compounds with pharmacokinetic properties suitable for the treatment of parasitic infections by inhibition of FPPS in T. brucei parasites.
Collapse
Affiliation(s)
- Lena Münzker
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| | - Joy Kristin Petrick
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| | - Christian Schleberger
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| | - Damien Clavel
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, CEDEX 9, France
| | - Irina Cornaciu
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, CEDEX 9, France.,ALPX, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, CEDEX 9, France
| | - Rainer Wilcken
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| | - José A Márquez
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, CEDEX 9, France.,ALPX, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, CEDEX 9, France
| | - Gerhard Klebe
- Institut für Pharmazie, Philipps-Universität Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Andreas Marzinzik
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| | - Wolfgang Jahnke
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| |
Collapse
|
10
|
Krenkel H, Hartmane E, Piras C, Brown J, Morris M, Cramer R. Advancing Liquid Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Toward Ultrahigh-Throughput Analysis. Anal Chem 2020; 92:2931-2936. [PMID: 31967792 PMCID: PMC7145281 DOI: 10.1021/acs.analchem.9b05202] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Label-free high-throughput screening using mass spectrometry has the potential to provide rapid large-scale sample analysis at a speed of more than one sample per second. Such speed is important for compound library, assay and future clinical screening of millions of samples within a reasonable time frame. Herein, we present a liquid atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) setup for high-throughput large-scale sample analysis (>5 samples per second) for three substance classes (peptides, antibiotics, and lipids). Liquid support matrices (LSM) were used for the analysis of standard substances as well as complex biological fluids (milk). Throughput and analytical robustness were mainly dependent on the complexity of the sample composition and the current limitations of the commercial hardware. However, the ultimate limits of liquid AP-MALDI in sample throughput can be conservatively estimated to be beyond 10-20 samples per second. This level of analytical speed is highly competitive compared with other label-free MS methods, including electrospray ionization and solid state MALDI, as well as MS methods using multiplexing by labeling, which in principle can also be used in combination with liquid AP-MALDI MS.
Collapse
Affiliation(s)
- Henriette Krenkel
- Department of Chemistry , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| | - Evita Hartmane
- Department of Chemistry , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| | - Cristian Piras
- Department of Chemistry , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| | - Jeffery Brown
- Department of Chemistry , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom.,Waters Corporation , Stamford Avenue , Wilmslow SK9 4AX , United Kingdom
| | - Michael Morris
- Waters Corporation , Stamford Avenue , Wilmslow SK9 4AX , United Kingdom
| | - Rainer Cramer
- Department of Chemistry , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| |
Collapse
|
11
|
Schrader RL, Ayrton ST, Kaerner A, Cooks RG. High-throughput, low-cost reaction screening using a modified 3D printer. Analyst 2019; 144:4978-4984. [PMID: 31322145 DOI: 10.1039/c9an00785g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a reaction screening system, based on a 96-well array, and scaled to suit use on the individual scientist's bench. The system was built by modifying a desktop 3D printer and fitting it with a glass syringe and microtiter plate. The effects of experimental variables were characterized, and the performance of the system was optimized. Precise volumes of reaction mixtures (<3% CV) were dispensed into the 96-well array in ca. 40 minutes. The system was used to screen reagents and solvents for the N-alkylation, Katritzky transamination, and Suzuki cross-coupling reactions. Product distributions derived from electrospray mass spectra and represented as heat maps facilitated recognition of optimum conditions. Screening of 96 reaction mixtures was completed in the modest time of approximately 105 minutes (∼65 seconds per reaction mixture). The system is constructed from open-source software and inexpensive 3D printer hardware.
Collapse
Affiliation(s)
- Robert L Schrader
- Purdue University Department of Chemistry, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
12
|
MS methods to study macromolecule-ligand interaction: Applications in drug discovery. Methods 2018; 144:152-174. [PMID: 29890284 DOI: 10.1016/j.ymeth.2018.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022] Open
Abstract
The interaction of small compounds (i.e. ligands) with macromolecules or macromolecule assemblies (i.e. targets) is the mechanism of action of most of the drugs available today. Mass spectrometry is a popular technique for the interrogation of macromolecule-ligand interactions and therefore is also widely used in drug discovery and development. Thanks to its versatility, mass spectrometry is used for multiple purposes such as biomarker screening, identification of the mechanism of action, ligand structure optimization or toxicity assessment. The evolution and automation of the instruments now allows the development of high throughput methods with high sensitivity and a minimized false discovery rate. Herein, all these approaches are described with a focus on the methods for studying macromolecule-ligand interaction aimed at defining the structure-activity relationships of drug candidates, along with their mechanism of action, metabolism and toxicity.
Collapse
|
13
|
Xie Y, Dahlin JL, Oakley AJ, Casarotto MG, Board PG, Baell JB. Reviewing Hit Discovery Literature for Difficult Targets: Glutathione Transferase Omega-1 as an Example. J Med Chem 2018; 61:7448-7470. [PMID: 29652143 DOI: 10.1021/acs.jmedchem.8b00318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early stage drug discovery reporting on relatively new or difficult targets is often associated with insufficient hit triage. Literature reviews of such targets seldom delve into the detail required to critically analyze the associated screening hits reported. Here we take the enzyme glutathione transferase omega-1 (GSTO1-1) as an example of a relatively difficult target and review the associated literature involving small-molecule inhibitors. As part of this process we deliberately pay closer-than-usual attention to assay interference and hit quality aspects. We believe this Perspective will be a useful guide for future development of GSTO1-1 inhibitors, as well serving as a template for future review formats of new or difficult targets.
Collapse
Affiliation(s)
- Yiyue Xie
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia
| | - Jayme L Dahlin
- Department of Pathology , Brigham and Women's Hospital , Boston , Massachusetts 02135 , United States
| | - Aaron J Oakley
- School of Chemistry , University of Wollongong , Wollongong , NSW 2522 , Australia
| | - Marco G Casarotto
- John Curtin School of Medical Research , Australian National University , Canberra , ACT 2600 , Australia
| | - Philip G Board
- John Curtin School of Medical Research , Australian National University , Canberra , ACT 2600 , Australia
| | - Jonathan B Baell
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia.,School of Pharmaceutical Sciences , Nanjing Tech University , Nanjing , 211816 , People's Republic of China
| |
Collapse
|
14
|
Impact of instrument and column parameters on high-throughput liquid chromatography performance. J Chromatogr A 2017; 1523:215-223. [DOI: 10.1016/j.chroma.2017.07.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/21/2022]
|
15
|
The capillary gap sampler, a new microfluidic platform for direct coupling of automated solid-phase microextraction with ESI-MS. Anal Bioanal Chem 2017; 409:6873-6883. [DOI: 10.1007/s00216-017-0652-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
|
16
|
Wei H, Zhang X, Tian X, Wu G. Pharmaceutical applications of affinity-ultrafiltration mass spectrometry: Recent advances and future prospects. J Pharm Biomed Anal 2016; 131:444-453. [PMID: 27668554 DOI: 10.1016/j.jpba.2016.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/20/2016] [Indexed: 11/17/2022]
Abstract
The immunoaffinity of protein with ligand is broadly involved in many bioanalytical methods. Affinity-ultrafiltration mass spectrometry (AUF-MS), a platform based on interaction of protein-ligand affinity, has been developed to fish out interesting molecules from complex matrixes. Here we reviewed the basics of AUF-MS and its recent applications to pharmaceutical field, i.e. target-oriented discovery of lead compounds from combinatorial libraries and natural product extracts, and determination of free drug concentration in biosamples. Selected practical examples were highlighted to illustrate the advances of AUF-MS in pharmaceutical fields. The future prospects were also presented.
Collapse
Affiliation(s)
- Han Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guanghua Wu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
17
|
Renaud JP, Chung CW, Danielson UH, Egner U, Hennig M, Hubbard RE, Nar H. Biophysics in drug discovery: impact, challenges and opportunities. Nat Rev Drug Discov 2016; 15:679-98. [PMID: 27516170 DOI: 10.1038/nrd.2016.123] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the past 25 years, biophysical technologies such as X-ray crystallography, nuclear magnetic resonance spectroscopy, surface plasmon resonance spectroscopy and isothermal titration calorimetry have become key components of drug discovery platforms in many pharmaceutical companies and academic laboratories. There have been great improvements in the speed, sensitivity and range of possible measurements, providing high-resolution mechanistic, kinetic, thermodynamic and structural information on compound-target interactions. This Review provides a framework to understand this evolution by describing the key biophysical methods, the information they can provide and the ways in which they can be applied at different stages of the drug discovery process. We also discuss the challenges for current technologies and future opportunities to use biophysical methods to solve drug discovery problems.
Collapse
Affiliation(s)
- Jean-Paul Renaud
- NovAliX, Boulevard Sébastien Brant, 67405 Illkirch Cedex, France.,Institut de Génétique et Biologie Moléculaire et Cellulaire, CNRS UMR7104/INSERM U964/Université de Strasbourg, 1 rue Laurent Fries - BP10142, 67404 Illkirch Cedex, France.,RiboStruct, 15 rue Neuve, 67540 Ostwald, France
| | - Chun-Wa Chung
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - U Helena Danielson
- Department of Chemistry - BMC and Science for Life Laboratory, Drug Discovery &Development Platform, Uppsala University, SE-751 05 Uppsala, Sweden.,Beactica AB, Uppsala Business Park, 754 50 Uppsala, Sweden
| | - Ursula Egner
- Bayer Pharma AG, Müllerstrasse 178, 13353 Berlin, Germany
| | - Michael Hennig
- Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland.,leadXpro AG, PARK INNOVAARE, CH-5234 Villigen, Switzerland
| | - Roderick E Hubbard
- University of York, Heslington, York, YO10 5DD, UK.,Vernalis (R&D), Granta Park, Cambridge, CB21 6GB, UK
| | - Herbert Nar
- Boehringer Ingelheim GmbH &Co. KG, Birkendorfer Strasse 65, 88400 Biberach, Germany
| |
Collapse
|
18
|
Aretz I, Meierhofer D. Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology. Int J Mol Sci 2016; 17:ijms17050632. [PMID: 27128910 PMCID: PMC4881458 DOI: 10.3390/ijms17050632] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 12/22/2022] Open
Abstract
Mass spectrometry-based metabolome profiling became the method of choice in systems biology approaches and aims to enhance biological understanding of complex biological systems. Genomics, transcriptomics, and proteomics are well established technologies and are commonly used by many scientists. In comparison, metabolomics is an emerging field and has not reached such high-throughput, routine and coverage than other omics technologies. Nevertheless, substantial improvements were achieved during the last years. Integrated data derived from multi-omics approaches will provide a deeper understanding of entire biological systems. Metabolome profiling is mainly hampered by its diversity, variation of metabolite concentration by several orders of magnitude and biological data interpretation. Thus, multiple approaches are required to cover most of the metabolites. No software tool is capable of comprehensively translating all the data into a biologically meaningful context yet. In this review, we discuss the advantages of metabolome profiling and main obstacles limiting progress in systems biology.
Collapse
Affiliation(s)
- Ina Aretz
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany.
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany.
| |
Collapse
|
19
|
A simpler sampling interface of venturi easy ambient sonic-spray ionization mass spectrometry for high-throughput screening enzyme inhibitors. Anal Chim Acta 2016; 913:86-93. [DOI: 10.1016/j.aca.2016.01.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
|
20
|
Haarhoff Z, Wagner A, Picard P, Drexler DM, Zvyaga T, Shou W. Coupling Laser Diode Thermal Desorption with Acoustic Sample Deposition to Improve Throughput of Mass Spectrometry–Based Screening. ACTA ACUST UNITED AC 2015; 21:165-75. [DOI: 10.1177/1087057115607184] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/30/2015] [Indexed: 01/26/2023]
Abstract
The move toward label-free screening in drug discovery has increased the demand for mass spectrometry (MS)–based analysis. Here we investigated the approach of coupling acoustic sample deposition (ASD) with laser diode thermal desorption (LDTD)–tandem mass spectrometry (MS/MS). We assessed its use in a cytochrome P450 (CYP) inhibition assay, where a decrease in metabolite formation signifies CYP inhibition. Metabolite levels for 3 CYP isoforms were measured as CYP3A4-1′-OH-midazolam, CYP2D6-dextrorphan, and CYP2C9-4′-OH-diclofenac. After incubation, samples (100 nL) were acoustically deposited onto a stainless steel 384-LazWell plate, then desorbed by an infrared laser directly from the plate surface into the gas phase, ionized by atmospheric pressure chemical ionization (APCI), and analyzed by MS/MS. Using this method, we achieved a sample analysis speed of 2.14 s/well, with bioanalytical performance comparable to the current online solid-phase extraction (SPE)–based MS method. An even faster readout speed was achieved when postreaction sample multiplexing was applied, where three reaction samples, one for each CYP, were transferred into the same well of the LazWell plate. In summary, LDTD coupled with acoustic sample deposition and multiplexing significantly decreased analysis time to 0.7 s/sample, making this MS-based approach feasible to support high-throughput screening (HTS) assays.
Collapse
|
21
|
Jin DQ, Zhu Y, Fang Q. Swan Probe: A Nanoliter-Scale and High-Throughput Sampling Interface for Coupling Electrospray Ionization Mass Spectrometry with Microfluidic Droplet Array and Multiwell Plate. Anal Chem 2014; 86:10796-803. [DOI: 10.1021/ac503014k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Di-Qiong Jin
- Institute
of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhu
- Institute
of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qun Fang
- Institute
of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Key
Laboratory for Biomedical Engineering of Ministry of Education of
China, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
22
|
Sun S, Kennedy RT. Droplet electrospray ionization mass spectrometry for high throughput screening for enzyme inhibitors. Anal Chem 2014; 86:9309-14. [PMID: 25137241 PMCID: PMC4165461 DOI: 10.1021/ac502542z] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/19/2014] [Indexed: 12/20/2022]
Abstract
High throughput screening (HTS) is important for identifying molecules with desired properties. Mass spectrometry (MS) is potentially powerful for label-free HTS due to its high sensitivity, speed, and resolution. Segmented flow, where samples are manipulated as droplets separated by an immiscible fluid, is an intriguing format for high throughput MS because it can be used to reliably and precisely manipulate nanoliter volumes and can be directly coupled to electrospray ionization (ESI) MS for rapid analysis. In this study, we describe a "MS Plate Reader" that couples standard multiwell plate HTS workflow to droplet ESI-MS. The MS plate reader can reformat 3072 samples from eight 384-well plates into nanoliter droplets segmented by an immiscible oil at 4.5 samples/s and sequentially analyze them by MS at 2 samples/s. Using the system, a label-free screen for cathepsin B modulators against 1280 chemicals was completed in 45 min with a high Z-factor (>0.72) and no false positives (24 of 24 hits confirmed). The assay revealed 11 structures not previously linked to cathepsin inhibition. For even larger scale screening, reformatting and analysis could be conducted simultaneously, which would enable more than 145,000 samples to be analyzed in 1 day.
Collapse
Affiliation(s)
- Shuwen Sun
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert T. Kennedy
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
23
|
Considerations for the design and reporting of enzyme assays in high-throughput screening applications. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.pisc.2013.12.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Gode D, Schmitt C, Engel M, Volmer DA. Screening Dyrk1A inhibitors by MALDI-QqQ mass spectrometry: systematic comparison to established radiometric, luminescence, and LC-UV-MS assays. Anal Bioanal Chem 2014; 406:2841-52. [PMID: 24618988 DOI: 10.1007/s00216-014-7703-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 11/26/2022]
Abstract
Enzyme-catalyzed reactions play key roles in disease pathology, thus making them relevant subjects of therapeutic inhibitor screening experiments. Matrix-assisted laser desorption/ionization (MALDI) assays have been demonstrated to be able to replace established screening approaches. They offer increased sample throughput, but care must be taken to avoid instrumental bias from differences in ionization efficiencies. We compared a MALDI-triple-quadrupole (QqQ) method for the Dyrk1A peptide substrate woodtide to LC-MS, liquid chromatography with ultraviolet detection (LC-UV), luminescence, and radiometric assays. MALDI measurements were performed on a MALDI-QqQ instrument in the multiple-reaction monitoring mode. Different MALDI conditions were investigated to address whether matrix type, sample support, and MRM- or SIM-based detection conditions can be used to accommodate the molar responses of substrate peptide and its phosphorylated form. UV detection served as a reference method. The impact of MALDI matrix on IC50 values was small, even considering that matrix preparations were used that are known to alleviate response differences. IC50 values determined by MALDI were ca. 2-fold lower than those determined by LC-UV. Although MALDI generated lower ion yields for the phosphorylated peptide than for the peptide substrate, we found that a correction of compound potencies was readily possible using correction factors based on unbiased LC-UV results. A thorough method development delivered a robust assay with excellent performance (Z' > 0.91) that was close to that seen for LC-UV.
Collapse
Affiliation(s)
- David Gode
- Institute of Bioanalytical Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | | | | | | |
Collapse
|
25
|
Orton DJ, Wall MJ, Doucette AA. Dual LC-MS platform for high-throughput proteome analysis. J Proteome Res 2013; 12:5963-70. [PMID: 24090060 DOI: 10.1021/pr400738a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a dual-column interface for parallel chromatography to improve throughput during LC-MS experimentation. The system employs a high-voltage switch to operate two capillary column/nanospray emitters fixed at the MS orifice. Sequentially loading one column while operating the second nearly doubles the LC-MS duty cycle. Given the innate run-to-run variation of a nanospray LC-MS (12% RSD peak area; 2% retention time), the intercolumn variability of the platform showed no meaningful difference for proteome analysis, with equal numbers of proteins and peptides identified per column. Applied to GeLC analysis of an E. coli extract, throughput was increased using one of three methods: doubling the number of replicates, increasing the LC gradient length, or sectioning the gel into twice as many fractions. Each method increased the total number of identifications as well as detection throughput (number of peptides/proteins identified per hour). The greatest improvement was achieved by doubling the number of gel slices (10 vs 5). Analysis on the dual column platform provided a 26% increase in peptides identified per hour (24% proteins). This translates into ~50% more total proteins and peptides identified in the experiment using the dual LC-MS platform.
Collapse
Affiliation(s)
- Dennis J Orton
- Department of Pathology, Dalhousie University , 11th Floor Tupper Medical Building, Room 11B, Halifax, NS B3H 4R2, Canada
| | | | | |
Collapse
|
26
|
Li S, Gu XJ, Hao Q, Fan H, Li L, Zhou S, Zhao K, Chan HM, Wang YK. A liquid chromatography/mass spectrometry-based generic detection method for biochemical assay and hit discovery of histone methyltransferases. Anal Biochem 2013; 443:214-21. [PMID: 24018340 DOI: 10.1016/j.ab.2013.08.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/30/2013] [Indexed: 11/19/2022]
Abstract
Epigenetic modifications of the genome, such as DNA methylation and posttranslational modifications of histone proteins, contribute to gene regulation. Growing evidence suggests that histone methyltransferases are associated with the development of various human diseases, including cancer, and are promising drug targets. High-quality generic assays will facilitate drug discovery efforts in this area. In this article, we present a liquid chromatography/mass spectrometry (LC/MS)-based S-adenosyl homocysteine (SAH) detection assay for histone methyltransferases (HMTs) and its applications in HMT drug discovery, including analyzing the activity of newly produced enzymes, developing and optimizing assays, performing focused compound library screens and orthogonal assays for hit confirmations, selectivity profiling against a panel of HMTs, and studying mode of action of select hits. This LC/MS-based generic assay has become a critical platform for our methyltransferase drug discovery efforts.
Collapse
Affiliation(s)
- Shu Li
- Novartis Institutes for BioMedical Research, Cambridge, MA, 02139, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Putri SP, Yamamoto S, Tsugawa H, Fukusaki E. Current metabolomics: technological advances. J Biosci Bioeng 2013; 116:9-16. [PMID: 23466298 DOI: 10.1016/j.jbiosc.2013.01.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 01/01/2023]
Abstract
Metabolomics, the global quantitative assessment of metabolites in a biological system, has played a pivotal role in various fields of science in the post-genomic era. Metabolites are the result of the interaction of the system's genome with its environment and are not merely the end product of gene expression, but also form part of the regulatory system in an integrated manner. Therefore, metabolomics is often considered a powerful tool to provide an instantaneous snapshot of the physiology of a cell. The power of metabolomics lies on the acquisition of analytical data in which metabolites in a cellular system are quantified, and the extraction of the most meaningful elements of the data by using various data analysis tool. In this review, we discuss the latest development of analytical techniques and data analyses methods in metabolomics study.
Collapse
Affiliation(s)
- Sastia P Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
28
|
Lim KB, Ozbal CC, Kassel DB. High-throughput mass spectrometric cytochrome P450 inhibition screening. Methods Mol Biol 2013; 987:25-50. [PMID: 23475665 DOI: 10.1007/978-1-62703-321-3_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We describe here a high-throughput assay to support rapid evaluation of drug discovery compounds for possible drug-drug interaction (DDI). Each compound is evaluated for its DDI potential by incubating over a range of eight concentrations and against a panel of six cytochrome P450 (CYP) enzymes: 1A2, 2C8, 2C9, 2C19, 2D6, and 3A4. The method utilizes automated liquid handling for sample preparation, and online solid-phase extraction/tandem mass spectrometry (SPE/MS/MS) for sample analyses. The system is capable of generating two 96-well assay plates in 30 min, and completes the data acquisition and analysis of both plates in about 30 min. Many laboratories that perform the CYP inhibition screening automate only part of the processes leaving a throughput bottleneck within the workflow. The protocols described in this chapter are aimed to streamline the entire process from assay to data acquisition and processing by incorporating automation and utilizing high-precision instrument to maximize throughput and minimize bottleneck.
Collapse
|
29
|
Barker A, Kettle JG, Nowak T, Pease JE. Expanding medicinal chemistry space. Drug Discov Today 2012; 18:298-304. [PMID: 23117010 DOI: 10.1016/j.drudis.2012.10.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/09/2012] [Accepted: 10/22/2012] [Indexed: 01/13/2023]
Abstract
Clinically useful drugs target a relatively small number of proteins that lie within a clearly defined and chemically accessible space. However, many high value biological targets lie outside this chemical space, and an ability to access such 'intractable' targets not amenable to traditional small molecule intervention would expand treatment options and be a major boost for patients and the pharmaceutical industry. To date, success has been limited but new technologies and approaches are beginning to emerge that could provide novel lead generation capabilities that enable access to new drug target classes. We review these new approaches and their ability to provide the novel leads needed to tackle a new generation of biological targets.
Collapse
Affiliation(s)
- Andy Barker
- AstraZeneca R&D, Oncology iMed, Alderley Park, Macclesfield SK10 4TG, UK
| | | | | | | |
Collapse
|
30
|
Gul S, Gribbon P. Exemplification of the challenges associated with utilising fluorescence intensity based assays in discovery. Expert Opin Drug Discov 2012; 5:681-90. [PMID: 22823207 DOI: 10.1517/17460441.2010.495748] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Despite the advances in the understanding of biological processes, significant challenges still face those engaged in small molecule drug discovery. To complicate matters further, researchers are often overwhelmed with a range of off-the-shelf as well as bespoke assay formats to choose from when initiating a drug discovery programme. Although fluorescence intensity based assays have traditionally been adopted in drug discovery programmes for a wide range of target classes, it is essential to fully validate the chosen readouts to confirm that they accurately reflect the underlying biological mechanism under investigation. AREAS COVERED IN THIS REVIEW This review exemplifies the challenges that are often encountered with fluorescence intensity based assays and particular attention is paid to compound interference, the protease, deacetylating enzyme and kinase enzyme target classes. WHAT THE READER WILL GAIN Designing a critical path in early stage drug discovery, which combines several diverse and minimally overlapping readout modes, will maximise the chance that compound activities will translate between the primary assay (utilised in the initial screening campaign) and secondary assay (utilised to evaluate the confirmed hits identified in the primary assay, usually a cell based assay) formats in a meaningful way. However, this is not always the case as is amply demonstrated across both academia and the pharmaceutical industry. Paying insufficient attention to these points can lead to the early termination of drug discovery programmes, not for want of resources or confidence in the rationale underlying the target, but instead because decision making has been driven by assay data originating from a different biological mechanism than the one under investigation. TAKE HOME MESSAGE Although fluorescence intensity based assays are likely to remain popular for many target classes in drug discovery, in particular in small molecule screening campaigns, it is essential that at the outset they are sufficiently well validated so that compounds are likely to exhibit profiles that are confirmed in subsequent assays.
Collapse
Affiliation(s)
- Sheraz Gul
- European ScreeningPort GmbH, Schnackenburgallee 114, 22525 Hamburg, Germany
| | | |
Collapse
|
31
|
Lim C, Tai S, Chan S. A flow-injection mass spectrometry fingerprinting scaffold for feature selection and quantitation of Cordyceps and Ganoderma extracts in beverage: a predictive artificial neural network modelling strategy. AMB Express 2012; 2:43. [PMID: 22888994 PMCID: PMC3442979 DOI: 10.1186/2191-0855-2-43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 07/24/2012] [Indexed: 12/03/2022] Open
Abstract
Flow-injection mass spectrometry (FI/MS) represents a powerful analytical tool for the quality assessment of herbal formula in dietary supplements. In this study, we described a scaffold (proof-of-concept) adapted from spectroscopy to quantify Cordyceps sinensis and Ganoderma lucidum in a popular Cordyceps sinensis /Ganoderma lucidum -enriched health beverage by utilizing flow-injection/mass spectrometry/artificial neural network (FI/MS/ANN) model fingerprinting method with feature selection capability. Equal proportion of 0.1% formic acid and methanol (v/v) were used to convert extracts of Cordyceps sinensis and Ganoderma lucidum into their respective ions under positive MS polarity condition. No chromatographic separation was performed. The principal m/z values of Cordyceps sinensis and Ganoderma lucidum were identified as: 104.2, 116.2, 120.2, 175.2, 236.3, 248.3, 266.3, 366.6 and 498.6; 439.7, 469.7, 511.7, 551.6, 623.6, 637.7 and 653.6, respectively. ANN models representing Cordyceps sinensis and Ganoderma lucidum were individually trained and validated using three independent sets of matrix-free and matrix-matched calibration curves at concentration levels of 2, 20, 50, 100, 200 and 400 μg mL-1. Five repeat analyses provided a total of 180 spectra for herbal extracts of Cordyceps sinensis and Ganoderma lucidum. Root-mean-square-deviation (RMSE) were highly satisfactory at <4% for both training and validation models. Correlation coefficient (r2) values of between 0.9994 and 0.9997 were reported. Matrix blanks comprised of complex mixture of Lingzhi fermentation solution and collagen. Recovery assessment was performed over two days using six sets of matrix blank (n = 6) spiked at three concentration levels of approximately 83, 166 and 333 mg kg-1. Extraction using acetonitrile provided good overall recovery range of 92-118%. A quantitation limit of 0.2 mg L-1 was reported for both Cordyceps sinensis and Ganoderma lucidum. Intra-day and inter-day RMSE values of 7% or better were achieved. Application of the scaffold in a high-throughput routine environment would imply a significant reduction in effort and time, since the option of having a model driven analytical solution is now available.
Collapse
|
32
|
Li S, Hao Q, Gounarides J, Wang YK. Full utilization of a mass spectrometer using on-demand sharing with multiple LC units. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1074-1082. [PMID: 22899517 DOI: 10.1002/jms.3061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The applicability of liquid chromatography-mass spectrometry (LC/MS) is often limited by throughput. The sharing of a mass spectrometer with multiple LCs significantly improves throughput; however, the reported systems have not been designed to fully utilize the MS duty cycle, and as a result to achieve maximum throughput. To fully utilize the mass spectrometer, the number of LC units that a MS will need to recruit is application dependent and could be significantly larger than the current commercial or published implementations. For the example of a single analyte, the number may approach the peak capacity to a first degree approximation. Here, the construction of a MS system that flexibly recruits any number of LC units demanded by the application is discussed, followed by the method to port a previously developed LC/MS method to the system to fully utilize a mass spectrometer. To demonstrate the performance and operation, a prototypical MS system of eight LC units was constructed. When 1-min chromatographic separations were performed in parallel on the eight LCs of the system, the average LC/MS analysis time per sample was 10.5 s when applied to the analysis of samples in 384-well plate format. This system has been successfully used to conduct large-volume biochemical assays with the analysis of a variety of molecular entities in support of drug discovery efforts. Allowing the recruitment of the number of LC units appropriate for a given application, this system has the potential to be a plug-and-play system to fully utilize a mass spectrometer.
Collapse
Affiliation(s)
- Shu Li
- Analytical Sciences, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
33
|
High-throughput quantitation of large molecules using multiplexed chromatography and high-resolution/accurate mass LC–MS. Bioanalysis 2012; 4:1013-24. [DOI: 10.4155/bio.12.71] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: High-throughput screening with LC–MS has been routinely implemented to various degrees throughout the entire drug-discovery process. One of the major advantages of utilizing LC–MS earlier at the lead discovery stage is reducing the cost of sample analysis while increasing assay selectivity. Avoiding labeling agents and other non-native species in an assay environment can reduce costly sample preparation, while chromatographic separation of the analyte of interest from interferences in the sample matrix has been shown to increase selectivity and sensitivity. Method: In this paper, we utilize high-resolution MS–LC multiplexing to analyze phosphorylated peptides as part of a screening assay. Commonly used enzyme buffers were used to prepare phosphorylated peptide standards of varying concentrations and these were plated into a 96-well plate format for LC–MS analysis. The overall cycle time for analysis from sample to sample, LLOQ, Z’ and coefficient of variance were determined. Conclusion: High-resolution MS coupled with LC multiplexing provides high-quality sample analysis at sampling rates of up to 18 s per sample. Samples analyzed in both simple and complex sample matrixes demonstrated an LOQ of 5 nM with linear response across the working range of the assay. Overall statistical analysis of the large samples produced Z’ = 0.85 for sample sets in sodium citrate solution and Z’ = 0.66 for sample sets in HEPES solution indicating a robust analytical method.
Collapse
|
34
|
Recent development in software and automation tools for high-throughput discovery bioanalysis. Bioanalysis 2012; 4:1097-109. [DOI: 10.4155/bio.12.51] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Bioanalysis with LC–MS/MS has been established as the method of choice for quantitative determination of drug candidates in biological matrices in drug discovery and development. The LC–MS/MS bioanalytical support for drug discovery, especially for early discovery, often requires high-throughput (HT) analysis of large numbers of samples (hundreds to thousands per day) generated from many structurally diverse compounds (tens to hundreds per day) with a very quick turnaround time, in order to provide important activity and liability data to move discovery projects forward. Another important consideration for discovery bioanalysis is its fit-for-purpose quality requirement depending on the particular experiments being conducted at this stage, and it is usually not as stringent as those required in bioanalysis supporting drug development. These aforementioned attributes of HT discovery bioanalysis made it an ideal candidate for using software and automation tools to eliminate manual steps, remove bottlenecks, improve efficiency and reduce turnaround time while maintaining adequate quality. In this article we will review various recent developments that facilitate automation of individual bioanalytical procedures, such as sample preparation, MS/MS method development, sample analysis and data review, as well as fully integrated software tools that manage the entire bioanalytical workflow in HT discovery bioanalysis. In addition, software tools supporting the emerging high-resolution accurate MS bioanalytical approach are also discussed.
Collapse
|
35
|
Yang X, Pu J, Zhao H, Li X, Liao J, Xie Y, Zhu S, Long G, Yuan Y, Liao F. Method to screen aromatic ligands in mixtures for quantitative affinities to target using magnetic separation of bound ligands along with HPLC and UV photometry detection. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0696-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Quinn AM, Simeonov A. Methods for Activity Analysis of the Proteins that Regulate Histone Methylation. CURRENT CHEMICAL GENOMICS 2011; 5:95-105. [PMID: 21966349 PMCID: PMC3180180 DOI: 10.2174/1875397301005010095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/23/2011] [Accepted: 04/25/2011] [Indexed: 12/20/2022]
Abstract
The enzymes that regulate histone methylation states and the protein domains that recognize methylated histone residues have been implicated in a number of human diseases, including cancer, as a result of their ability to affect transcriptional changes by altering chromatin structure. These proteins are recognized as potential therapeutic targets for the treatment of diseases associated with epigenetic disruption; however, few inhibitors of their activity have been identified. The majority of histone demethylase and methyltransferase enzyme inhibitors have been discovered on the basis of their structural similarity to substrates or known inhibitors of enzymes with analogous mechanisms. The general lack of potency and specificity of these compounds indicates that novel chemotypes are needed to address the large number of recently discovered histone-modifying enzymes. High-throughput screening (HTS) allows rapid testing of chemically diverse small molecule libraries, provided assays amenable to HTS exist. Here we review the biochemical and cellular assays available for testing the proteins and enzymes that regulate histone methylation. Progress in the development of high-throughput, sensitive, and robust assays will enable discovery of small molecules for epigenetic therapy.
Collapse
Affiliation(s)
- Amy M Quinn
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3370, USA
| | | |
Collapse
|
37
|
Nanita SC, Stry JJ, Pentz AM, McClory JP, May JH. Fast extraction and dilution flow injection mass spectrometry method for quantitative chemical residue screening in food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7557-7568. [PMID: 21388127 DOI: 10.1021/jf104237y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A prototype multiresidue method based on fast extraction and dilution of samples followed by flow injection mass spectrometric analysis is proposed here for high-throughput chemical screening in complex matrices. The method was tested for sulfonylurea herbicides (triflusulfuron methyl, azimsulfuron, chlorimuron ethyl, sulfometuron methyl, chlorsulfuron, and flupyrsulfuron methyl), carbamate insecticides (oxamyl and methomyl), pyrimidine carboxylic acid herbicides (aminocyclopyrachlor and aminocyclopyrachlor methyl), and anthranilic diamide insecticides (chlorantraniliprole and cyantraniliprole). Lemon and pecan were used as representative high-water and low-water content matrices, respectively, and a sample extraction procedure was designed for each commodity type. Matrix-matched external standards were used for calibration, yielding linear responses with correlation coefficients (r) consistently >0.99. The limits of detection (LOD) were estimated to be between 0.01 and 0.03 mg/kg for all analytes, allowing execution of recovery tests with samples fortified at ≥0.05 mg/kg. Average analyte recoveries obtained during method validation for lemon and pecan ranged from 75 to 118% with standard deviations between 3 and 21%. Representative food processed fractions were also tested, that is, soybean oil and corn meal, yielding individual analyte average recoveries ranging from 62 to 114% with standard deviations between 4 and 18%. An intralaboratory blind test was also performed; the method excelled with 0 false positives and 0 false negatives in 240 residue measurements (20 samples × 12 analytes). The daily throughput of the fast extraction and dilution (FED) procedure is estimated at 72 samples/chemist, whereas the flow injection mass spectrometry (FI-MS) throughput could be as high as 4.3 sample injections/min, making very efficient use of mass spectrometers with negligible instrumental analysis time compared to the sample homogenization, preparation, and data processing steps.
Collapse
Affiliation(s)
- Sergio C Nanita
- DuPont Crop Protection, Stine-Haskell Research Center, Newark, DE 19714, USA.
| | | | | | | | | |
Collapse
|
38
|
Mirnaghi FS, Chen Y, Sidisky LM, Pawliszyn J. Optimization of the Coating Procedure for a High-Throughput 96-Blade Solid Phase Microextraction System Coupled with LC–MS/MS for Analysis of Complex Samples. Anal Chem 2011; 83:6018-25. [DOI: 10.1021/ac2010185] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fatemeh S. Mirnaghi
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Yong Chen
- Supelco Inc., 595 North Harrison Road, Bellefonte, Pennsylvania 16823, United States
| | - Leonard M. Sidisky
- Supelco Inc., 595 North Harrison Road, Bellefonte, Pennsylvania 16823, United States
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
39
|
Yang X, Xie Y, Pu J, Zhao H, Liao J, Yuan Y, Zhu S, Long G, Zhang C, Yuan H, Chen Y, Liao F. Estimation of affinities of ligands in mixtures via magnetic recovery of target-ligand complexes and chromatographic analyses: chemometrics and an experimental model. BMC Biotechnol 2011; 11:44. [PMID: 21545719 PMCID: PMC3096923 DOI: 10.1186/1472-6750-11-44] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 05/05/2011] [Indexed: 11/22/2022] Open
Abstract
Abstract Conclusions This new method is robust and effective for each mixture possessing a limited number of candidate ligands whose molar quantities have moderate differences, and its integration with PCS has promise to routinely practice the mixture-based library strategy.
Collapse
Affiliation(s)
- Xiaolan Yang
- Unit for Analytical Probes and Protein Biotechnology, Key Laboratory of Medical Laboratory Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dunsmore CJ, Malone KJ, Bailey KR, Wear MA, Florance H, Shirran S, Barran PE, Page AP, Walkinshaw MD, Turner NJ. Design and synthesis of conformationally constrained cyclophilin inhibitors showing a cyclosporin-A phenotype in C. elegans. Chembiochem 2011; 12:802-10. [PMID: 21337480 DOI: 10.1002/cbic.201000413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Indexed: 12/23/2022]
Abstract
Cyclophilin A (CypA) is a member of the immunophilin family of proteins and receptor for the immunosuppressant drug cyclosporin A (CsA). Here we describe the design and synthesis of a new class of small-molecule inhibitors for CypA that are based upon a dimedone template. Electrospray mass spectrometry is utilised as an initial screen to quantify the protein affinity of the ligands. Active inhibitors and fluorescently labelled derivatives are then used as chemical probes for investigating the biological role of cyclophilins in the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Colin J Dunsmore
- School of Chemistry, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JJ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tanaka Y, Ohkawa T, Yasui H. Development of a Novel High-Throughput Analytical Methodology, Multiple Injection Method, for Quantitative Analysis in Drug Metabolism and Pharmacokinetic Studies Using Liquid Chromatography with Tandem Mass Spectrometry. Biol Pharm Bull 2011; 34:1187-93. [DOI: 10.1248/bpb.34.1187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukari Tanaka
- Drug Metabolism and Pharmacokinetics, Drug Developmental Research Laboratories, Shionogi & Co., Ltd
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University
| | - Tomoyuki Ohkawa
- Drug Metabolism and Pharmacokinetics, Drug Developmental Research Laboratories, Shionogi & Co., Ltd
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University
| |
Collapse
|
42
|
Label-free screening assays: a strategy for finding better drug candidates. Future Med Chem 2010; 2:1703-16. [DOI: 10.4155/fmc.10.246] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The last 10 years have seen advances in automation and high-throughput biochemistry in the drug-discovery arena. However, these advances have not led to improvements in drug-discovery success. Drug programs must find new ways to identify superior compounds. Advances in label-free assay technologies may provide advantages needed for improved drug discovery. In this article, we will discuss high-throughput MS, a technology that allows screening with native substrates and with targets inaccessible to standard assay formats. We will then discuss cell-based label-free biosensors, focusing on the increased information content available when using these platforms. We will conclude with speculation on the future and ways to obtain relevant biological information early in development to ensure the best compounds are promoted to medicinal chemistry campaigns.
Collapse
|
43
|
Jahnke W, Rondeau JM, Cotesta S, Marzinzik A, Pellé X, Geiser M, Strauss A, Götte M, Bitsch F, Hemmig R, Henry C, Lehmann S, Glickman JF, Roddy TP, Stout SJ, Green JR. Allosteric non-bisphosphonate FPPS inhibitors identified by fragment-based discovery. Nat Chem Biol 2010; 6:660-6. [DOI: 10.1038/nchembio.421] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 07/12/2010] [Indexed: 12/31/2022]
|
44
|
Zhang JH, Roddy TP, Ho PI, Horvath CR, Vickers C, Stout S, Hubbard B, Wang YK, Hill WA, Bojanic D. Assay Development and Screening of Human DGAT1 Inhibitors with an LC/MS-Based Assay. ACTA ACUST UNITED AC 2010; 15:695-702. [DOI: 10.1177/1087057110370210] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Many attractive targets for therapeutic intervention are enzymes that catalyze biological reactions involving small molecules such as lipids, fatty acids, amino acid derivatives, nucleic acid derivatives, and cofactors. Some of the reactions are difficult to detect by methods commonly used in high-throughput screening (HTS) without specific radioactive or fluorescent labeling of substrates. In addition, there are instances when labeling has a detrimental effect on the biological response. Generally, applicable assay methodologies for detection of such reactions are thus required. Mass spectrometry (MS), being a label-free detection tool, has been actively pursued for assay detection in HTS in the past several years. The authors have explored the use of multiparallel liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) for high-throughput detection of biochemical reactions. In this report, we describe in detail the assay development and screening with a LC/MS-based system for inhibitors of human diacylglycerol acyltransferase (DGAT1) with a chemical library of approximately 800,000 compounds. Several strategies and process improvements have been investigated to overcome technical challenges such as data variation and throughput. Results indicated that, through these innovative approaches, the LC/MS-based screening method is both feasible and suitable for high-throughput primary screening.
Collapse
Affiliation(s)
| | | | | | | | - Chad Vickers
- Diabetes and Metabolism, Novartis Institutes for Biomedical Research, Cambridge, MA
| | | | - Brian Hubbard
- Diabetes and Metabolism, Novartis Institutes for Biomedical Research, Cambridge, MA
| | | | | | | |
Collapse
|
45
|
Yamada Y. [High-throughput analysis technique in the drug discovery stage]. Nihon Yakurigaku Zasshi 2010; 135:109-12. [PMID: 20228575 DOI: 10.1254/fpj.135.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Rathore R, Pribil P, Corr JJ, Seibel WL, Evdokimov A, Greis KD. Multiplex enzyme assays and inhibitor screening by mass spectrometry. ACTA ACUST UNITED AC 2010; 15:1001-7. [PMID: 20228278 DOI: 10.1177/1087057110363824] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Current methods for high-throughput screening (HTS) use a serial process to evaluate compounds as inhibitors toward a single therapeutic target, but as the demand to reduce screening time and cost continues to grow, one solution is the development of multiplex technology. In this communication, the multiplex assay capability of a mass spectrometry (MS)-based readout system is verified using a kinase and esterase reaction simultaneously. Furthermore, the MS-based readout is shown to be compatible with a typical HTS workflow by identifying and validating several new inhibitors for each enzyme from a small library of compounds. These data confirm that it is possible to monitor inhibition of multiple therapeutic targets with one pass through the compound repository, thus demonstrating the potential for MS-based methods to become a method of choice for HTS of isolated enzymes.
Collapse
Affiliation(s)
- Rakesh Rathore
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | | | | | | | | | | |
Collapse
|
47
|
Lim KB, Ozbal CC, Kassel DB. Development of a high-throughput online solid-phase extraction/tandem mass spectrometry method for cytochrome P450 inhibition screening. ACTA ACUST UNITED AC 2010; 15:447-52. [PMID: 20208033 DOI: 10.1177/1087057110362581] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A high-throughput online solid-phase extraction/tandem mass spectrometry (online SPE/MS/MS) system has been developed to support rapid evaluation of drug discovery compounds for possible drug-drug interaction (DDI). Each compound is evaluated for its DDI potential by incubating over a range of 8 test concentrations and against a panel of 6 cytochrome P450 (CYP) enzymes, 1A2, 2C8, 2C9, 2C19, 2D6, and 3A4. Previously, a postassay pooling and a 2-min gradient LC/MS/MS method had been reported to increase sample throughput, allowing for a 96-well plate of samples to be analyzed in under 4 h. The development of a new online SPE/MS/MS system has reduced the analysis time to less than 15 min per 96-well plate, translating to a 15-fold time savings compared to the 2-min LC/MS/MS method. Sampling precision without internal standard correction ranged from 3.1% to 5.6% relative standard deviation, and the carryover was determined to be between 1.0% and 4.1%. One hundred twenty in-house compounds were assayed and pooled for analyses using both the online SPE/MS/MS and LC/MS/MS, and the correlation coefficients ranged from 0.89 to 1.13, when comparing the IC(50) results obtained from the 2 approaches for each of the CYP enzymes.
Collapse
Affiliation(s)
- Kheng B Lim
- Takeda San Diego, Inc., San Diego, California 92121, USA.
| | | | | |
Collapse
|
48
|
Shou WZ, Zhang J. Recent development in high-throughput bioanalytical support forin vitroADMET profiling. Expert Opin Drug Metab Toxicol 2010; 6:321-36. [DOI: 10.1517/17425250903547829] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Gurard-Levin ZA, Kim J, Mrksich M. Combining mass spectrometry and peptide arrays to profile the specificities of histone deacetylases. Chembiochem 2009; 10:2159-61. [PMID: 19688789 DOI: 10.1002/cbic.200900417] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zachary A Gurard-Levin
- Department of Chemistry and Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60521, USA
| | | | | |
Collapse
|
50
|
Rathore R, Corr JJ, Lebre DT, Seibel WL, Greis KD. Extending matrix-assisted laser desorption/ionization triple quadrupole mass spectrometry enzyme screening assays to targets with small molecule substrates. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3293-3300. [PMID: 19757451 DOI: 10.1002/rcm.4248] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mass spectrometry (MS)-based high-throughput screening (HTS) has tremendous potential as an alternative to current screening methods due to its speed, sensitivity, reproducibility and label-free readout. We recently reported that a new generation matrix-assisted laser desorption/ionization triple quadrupole (MALDI-QqQ) mass spectrometer is ideally suited for a variety of enzyme assays and screening protocols. However, all the targets measured to date had peptide substrates that were easily monitored by selected ion monitoring (SIM) without interference from the MALDI matrix. To further extend the application to enzymes with small molecule, non-peptide substrates, we evaluated this method for measuring enzyme activity and inhibition of acetylcholinesterase (AChE). Due to the potential of MALDI matrix interference, multiple reaction monitoring (MRM) was investigated for selective MS/MS transitions and to accurately measure the conversion of acetylcholine into choline. Importantly, ionization, detection and MRM transition efficiency differences between the substrate and product can be overcome by pre-balancing the MRM transitions during method development, thus allowing for a direct readout of the enzyme activity using the ratio of the substrate and product signals. Further validation of the assay showed accurate concentration-dependent inhibition measurements of AChE with several known inhibitors. Finally, a small library of 1008 drug-like compounds was screened at a single dose (10 microM) and the top 10 inhibitors from this primary screen were validated in a secondary screen to determine the rank order of inhibitory potency for each compound. Collectively, these data demonstrate that a MALDI-QqQMS-based readout platform is amenable to measuring small molecule substrates and products and offers significant advantages over current HTS methods in terms of speed, sensitivity, reproducibility and reagent costs.
Collapse
Affiliation(s)
- Rakesh Rathore
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | | | | | | | | |
Collapse
|