1
|
Li Y, Han R, Zhu B, Wang W, Song Z, Luo X. A Nonfouling Electrochemical Biosensor for Protein Analysis in Complex Body Fluids Based on Multifunctional Peptide Conjugated with PEGlyated Phospholipid. ACS Sens 2024; 9:5596-5603. [PMID: 39415748 DOI: 10.1021/acssensors.4c02425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Developing antifouling biosensors capable of performing robustly in complex human body fluids is crucial for biomarker diagnosis and health monitoring. Herein, an antifouling and highly sensitive and stable biosensor was constructed through the self-assembly of the designed conjugates composed of a multifunctional peptide (MP) and PEGylated distearoylphosphatidylethanolamine (DSPE-PEG). The self-assembly capability of the DSPE-PEG-MP was demonstrated clearly through coarse-grained molecular dynamics simulation and transmission electron microscopy, and it can be effectively self-assembled onto the electrode surface modified with gold nanoparticles. The MP was designed to be antifouling and contained a peptide sequence that can specifically bind the target protein Annexin A1 (ANXA1), and the D-type amino acid composition of MP can enhance its resistance to enzymatic hydrolysis. The unique design of MP, in conjugation with the self-assembly capability of the PEGylated phospholipid DSPE-PEG, enabled the biosensor to exhibit excellent antifouling capability and stability in various complex human body fluids. The biosensor was capable of sensitively and selectively quantifying ANXA1 and achieved a limit of detection down to 0.12 pg mL-1. More importantly, the biosensor demonstrated satisfactory accuracy for ANXA1 detection in clinical serum samples, as verified by the enzyme linked immunosorbent assay (ELISA) kits. It is expected that various antifouling biosensors suitable for application in complex biological environments can be constructed by utilizing the strategy of designing similar DSPE-PEG-MP conjugates.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui Han
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Baoping Zhu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenqing Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhen Song
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
2
|
Cui Z, Wang Y, Zhang L, Qi H. Zwitterionic Peptides: From Mechanism, Design Strategies to Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56497-56518. [PMID: 39393043 DOI: 10.1021/acsami.4c08891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Zwitterionic peptides, as a type of peptide composed of charged residues, are electrically neutral, which combine the advantages of zwitterionic materials and biological peptides, exhibiting hydrophilicity and programmable properties. As attractive candidates for resisting nonspecific adsorption of biomacromolecules and microorganisms, zwitterionic peptides have been applied in materials science, biomedicine, and biochemistry over the past decade. In this review, the development of zwitterionic peptides has been systematically outlined and analyzed, including their mechanisms, structure-function relationships, and design strategies. Furthermore, this review emphasizes and discusses their recent applications for developing functional coatings, biosensors, drug delivery systems, and engineering proteins. Finally, future research perspectives and challenges of zwitterionic peptides are also prospected and discussed. This review is intended to provide clarity and insight into the design and applications of zwitterionic peptides.
Collapse
Affiliation(s)
- Zhongxin Cui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| | - Yuefeng Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| | - Haishan Qi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| |
Collapse
|
3
|
Stuart DD, Pike CD, Malinick AS, Cheng Q. Characterization of a Charged Biomimetic Lipid Membrane for Unique Antifouling Effects against Clinically Relevant Matrices in Biosensing. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39375966 DOI: 10.1021/acsami.4c14563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Clinically relevant matrices such as human blood and serum can cause substantial interference in biosensing measurements, severely compromising the effectiveness of the sensors. We report the characterization of a positively charged lipid membrane that has demonstrated unique features to suppress the nonspecific signal for antifouling effects by using SPR, fluorescence recovery after photobleaching (FRAP), and MALDI-TOF-MS. The ethylphosphocholine (EPC) lipid membrane proved to be exceptionally effective at reducing irreversible interactions from human serum on a Protein A surface. The membrane formation conditions and their effects on membrane fluidity and mobility were characterized for understanding the antifouling functions when various capture molecules were immobilized. Specifically, EPC lipid membranes on a Protein A substrate appear to exhibit a strong interaction, likely through the electrostatic effect with the negatively charged proteins that resulted in a stable hydration layer. The strong interaction also limited lipid mobility, contributing to a robust, protective interface that remained undamaged in undiluted serum. Tailoring a surface with antifouling lipid membranes allows for a range of biosensing applications in highly complex biological media.
Collapse
Affiliation(s)
- Daniel D Stuart
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Caleb D Pike
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Alexander S Malinick
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
4
|
Dubois C, Ducas É, Laforce-Lavoie A, Robidoux J, Delorme A, Live LS, Brouard D, Masson JF. A portable surface plasmon resonance (SPR) sensor for the detection of immunoglobulin A in plasma. Transfusion 2024; 64:881-892. [PMID: 38591151 DOI: 10.1111/trf.17818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND A life-threatening anaphylactic shock can occur if a patient with undiagnosed immunoglobulin A (IgA) deficiency (i.e., IgA levels <500 ng/mL) receives IgA-containing blood, hence the need for a rapid, point-of-care (POC) method for IgA deficiency screening. Enzyme-linked immunosorbent assay (ELISA) is routinely used to detect IgA, but this method requires trained specialists and ≥24 h to obtain a result. We developed a surface plasmon resonance (SPR)-based protocol to identify IgA-deficient patients or donors within 1 h. MATERIALS AND METHODS The SPR sensor relies on the detection of IgAs captured by primary antibodies adsorbed on the SPR chip and quantified with secondary antibodies. The sensor was calibrated from 0 to 2000 ng/mL in buffer, IgA-depleted human serum, and plasma samples from IgA-deficient individuals. A critical concentration of 500 ng/mL was set for IgA deficiency. The optimized sensor was then tested on eight plasma samples with known IgA status (determined by ELISA), including five with IgA deficiency and three with normal IgA levels. RESULTS The limit of detection was estimated at 30 ng/mL in buffer and 400 ng/mL in diluted plasma. The results obtained fully agreed with ELISA among the eight plasma samples tested. The protocol distinguished IgA-deficient from normal samples, even for samples with an IgA concentration closer to critical concentration. DISCUSSION In conclusion, we developed a reliable POC assay for the quantification of IgA in plasma. This test may permit POC testing at blood drives and centralized centers to maintain reserves of IgA-deficient blood and in-hospital testing of blood recipients.
Collapse
Affiliation(s)
- Caroline Dubois
- Département de Chimie, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Institut Courtois, Université de Montréal, Montréal, Canada
| | - Éric Ducas
- Héma-Québec, Affaires Médicales et Innovation, Québec City, Québec, Canada
| | | | - Jonathan Robidoux
- Héma-Québec, Affaires Médicales et Innovation, Québec City, Québec, Canada
| | - Alexandre Delorme
- Département de Chimie, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Institut Courtois, Université de Montréal, Montréal, Canada
| | | | - Danny Brouard
- Héma-Québec, Affaires Médicales et Innovation, Québec City, Québec, Canada
| | - Jean-François Masson
- Département de Chimie, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Institut Courtois, Université de Montréal, Montréal, Canada
| |
Collapse
|
5
|
Jin H, Liu T, Sun D. Target-induced hot spot construction for sensitive and selective surface-enhanced Raman scattering detection of matrix metalloproteinase MMP-9. Mikrochim Acta 2024; 191:105. [PMID: 38240894 PMCID: PMC10798921 DOI: 10.1007/s00604-024-06183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/01/2024] [Indexed: 01/22/2024]
Abstract
Studies have found that matrix metalloproteinase-9 (MMP-9) plays a significant role in cancer cell invasion, metastasis, and tumor growth. But it is a challenge to go for highly sensitive and selective detection and targeting of MMP-9 due to the similar structure and function of the MMP proteins family. Herein, a novel surface-enhanced Raman scattering (SERS) sensing strategy was developed based on the aptamer-induced SERS "hot spot" formation for the extremely sensitive and selective determination of MMP-9. To develop the nanosensor, one group of gold nanospheres was modified with MMP-9 aptamer and its complementary strand DNA1, while DNA2 (complementary to DNA1) and the probe molecule 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) were grafted on the surface of the other group of gold nanospheres. In the absence of MMP-9, DTNB located on the 13-nm gold nanospheres has only generated a very weak SERS signal. However, when MMP-9 is present, the aptamer preferentially binds to the MMP-9 to construct MMP-9-aptamer complex. The bare DNA1 can recognize and bind to DNA2, which causes them to move in close proximity and create a SERS hot spot effect. Due to this action, the SERS signal of DTNB located at the nanoparticle gap is greatly enhanced, achieving highly sensitive detection of MMP-9. Since the hot spot effect is caused by the aptamer that specifically recognizes MMP-9, the approach exhibits excellent selectivity for MMP-9 detection. Based on the benefits of both high sensitivity and excellent selectivity, this method was used to distinguish the difference in MMP-9 levels between normal and cancer cells as well as the expression of MMP-9 from cancer cells with different degrees of metastasis. In addition, this strategy can accurately reflect the dynamic changes in intracellular MMP-9 levels, stimulated by the MMP-9 activator and inhibitor. This strategy is expected to be transformed into a new technique for diagnosis of specific cancers related to MMP-9 and assessing the extent of cancer occurrence, development and metastasis.
Collapse
Affiliation(s)
- Huihui Jin
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia.
| | - Dan Sun
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
6
|
Wu S, Liao J, Hu G, Yan L, Su X, Ye J, Zhang C, Tian T, Wang H, Wang Y. Corilagin alleviates LPS-induced sepsis through inhibiting pyroptosis via targeting TIR domain of MyD88 and binding CARD of ASC in macrophages. Biochem Pharmacol 2023; 217:115806. [PMID: 37714273 DOI: 10.1016/j.bcp.2023.115806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Sepsis is a dysregulated systemic inflammatory response caused by infection that leads to multiple organ injury and high mortality without effective treatment. Corilagin, a natural polyphenol extracted from traditional Chinese herbs, exhibits strong anti-inflammatory properties. However, the role for Corilagin in lipopolysaccharide (LPS)-induced sepsis and the molecular mechanisms underlying this process have not been completely explored. Here we determine the effect of Corilagin on LPS-treated mice and use a screening approach integrating surface plasmon resonance with liquid chromatography-tandem mass spectrometry (SPR-LC-MS/MS) to further explore the therapeutic target of Corilagin. We discovered that Corilagin significantly prolonged the survival time of septic mice, attenuated the multi-organ injury and the expression of pyroptosis-related proteins in tissues of LPS-treated mice. In vitro studies revealed that Corilagin inhibited pyroptosis and NLRP3 inflammasome activation in LPS-treated macrophages followed with ATP stimulation, as reflected by decreased levels of GSDMD-NT and activated caspase-1, and reduced ASC specks formation. Mechanistically, Corilagin alleviated the formation of ASC specks and blocked the interaction of ASC and pro-caspase1 by competitively binding with the caspase recruitment domain (CARD) of ASC. Additionally, Corilagin interrupted the TLR4-MyD88 interaction through targeting TIR domain of MyD88, leading to the inhibition of NF-κB activation and NLRP3 production. In addition, Corilagin downregulated genes associated with several inflammatory responses and inflammasome-related signaling pathways in LPS-stimulated macrophages. Overall, our results indicate that the inhibitory effect of Corilagin on pyroptosis through targeting TIR domain of MyD88 and binding the CARD domain of ASC in macrophages plays an essential role in protection against LPS-induced sepsis.
Collapse
Affiliation(s)
- Senquan Wu
- Department of Respiratory and Critical Care Medicine, Dongguan People's Hospital, Dongguan 523059, China; Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jia Liao
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Guodong Hu
- Department of Respiratory and Critical Care Medicine, Dongguan People's Hospital, Dongguan 523059, China
| | - Liang Yan
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xingyu Su
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jiezhou Ye
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chanjuan Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Tian Tian
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Yiyang Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Song G, Han H, Ma Z. Anti-Fouling Strategies of Electrochemical Sensors for Tumor Markers. SENSORS (BASEL, SWITZERLAND) 2023; 23:5202. [PMID: 37299929 PMCID: PMC10256055 DOI: 10.3390/s23115202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
The early detection and prognosis of cancers require sensitive and accurate detection methods; with developments in medicine, electrochemical biosensors have been developed that can meet these clinical needs. However, the composition of biological samples represented by serum is complex; when substances undergo non-specific adsorption to an electrode and cause fouling, the sensitivity and accuracy of the electrochemical sensor are affected. In order to reduce the effects of fouling on electrochemical sensors, a variety of anti-fouling materials and methods have been developed, and enormous progress has been made over the past few decades. Herein, the recent advances in anti-fouling materials and strategies for using electrochemical sensors for tumor markers are reviewed; we focus on new anti-fouling methods that separate the immunorecognition and signal readout platforms.
Collapse
Affiliation(s)
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing 100048, China;
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China;
| |
Collapse
|
8
|
Fan H, Sasaki Y, Zhou Q, Tang W, Nishina Y, Minami T. Non-enzymatic detection of glucose levels in human blood plasma by a graphene oxide-modified organic transistor sensor. Chem Commun (Camb) 2023; 59:2425-2428. [PMID: 36745444 DOI: 10.1039/d2cc07009j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We herein report an organic transistor functionalized with a phenylboronic acid derivative and graphene oxide for the quantification of plasma glucose levels, which has been achieved by the minimization of interferent effects derived from physical protein adsorption on the detection electrode.
Collapse
Affiliation(s)
- Haonan Fan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Qi Zhou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Wei Tang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Yuta Nishina
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama 700-8530, Japan.,Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
9
|
Debnath N, Live LS, Poudineh M. A microfluidic plasma separation device combined with a surface plasmon resonance biosensor for biomarker detection in whole blood. LAB ON A CHIP 2023; 23:572-579. [PMID: 36723239 DOI: 10.1039/d2lc00693f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biomarker detection in whole blood enables understanding of the cause, progression, relapse or outcome of treatment of a disease. Conventional biomarker detection techniques, such as enzyme-linked immunosorbent assay, polymerase chain reaction, and immunofluorescence, require long assay time, costly laboratory instruments, large reagent volume and sample pre-processing. Hence, there is an unmet need for reliable capture and detection of biomarkers in unprocessed blood which are adaptable to point-of-care (POC) testing. Here, we present a simple, low-cost, and rapid protein detection device from whole blood samples which has the potential to be employed in a POC setting. The platform consists of two components: a plasma separation device that extracts plasma from whole blood without the application of any external active forces and a SPR sensor chip that uses a label-free optical technique for the detection of biomarkers in the extracted plasma. We have demonstrated the detection of IgG and IgM biomolecules in unprocessed blood at concentrations lower than the physiological value within 15 min. The proposed technique has the potential for improving the diagnosis and screening of many diseases, including cancer, influenza, human immunodeficiency virus, and SARS-Cov2 at POC.
Collapse
Affiliation(s)
- Nandini Debnath
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | | | - Mahla Poudineh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
10
|
Víšová I, Houska M, Vaisocherová-Lísalová H. Biorecognition antifouling coatings in complex biological fluids: a review of functionalization aspects. Analyst 2022; 147:2597-2614. [PMID: 35621143 DOI: 10.1039/d2an00436d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in biointerface research has highlighted the role of antifouling functionalizable coatings in the development of advanced biosensors for point-of-care bioanalytical and biomedical applications dealing with real-world complex samples. The resistance to nonspecific adsorption promotes the biorecognition performance and overall increases the reliability and specificity of the analysis. However, the process of modification with biorecognition elements (so-called functionalization) may influence the resulting antifouling properties. The extent of these effects concerning both functionalization procedures potentially changing the surface architecture and properties, and the physicochemical properties of anchored biorecognition elements, remains unclear and has not been summarized in the literature yet. This critical review summarizes these key functionalization aspects with respect to diverse antifouling architectures showing low or ultra-low fouling quantitative characteristics in complex biological media such as bodily fluids or raw food samples. The subsequent discussion focuses on the impact of functionalization on fouling resistance. Furthermore, this review discusses some of the drawbacks of available surface sensitive characterization methods and highlights the importance of suitable assessment of the resistance to fouling.
Collapse
Affiliation(s)
- Ivana Víšová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague 8, Czech Republic.
| | - Milan Houska
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague 8, Czech Republic.
| | - Hana Vaisocherová-Lísalová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague 8, Czech Republic.
| |
Collapse
|
11
|
Su D, Li Y, Yates EA, Skidmore MA, Lima MA, Fernig DG. Analysis of protein-heparin interactions using a portable SPR instrument. PEERJ ANALYTICAL CHEMISTRY 2022. [DOI: 10.7717/peerj-achem.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Optical biosensors such as those based on surface plasmon resonance (SPR) are a key analytical tool for understanding biomolecular interactions and function as well as the quantitative analysis of analytes in a wide variety of settings. The advent of portable SPR instruments enables analyses in the field. A critical step in method development is the passivation and functionalisation of the sensor surface. We describe the assembly of a surface of thiolated oleyl ethylene glycol/biotin oleyl ethylene glycol and its functionalisation with streptavidin and reducing end biotinylated heparin for a portable SPR instrument. Such surfaces can be batch prepared and stored. Two examples of the analysis of heparin-binding proteins are presented. The binding of fibroblast growth factor 2 and competition for the binding of a heparan sulfate sulfotransferase by a library of selectively modified heparins and suramin, which identify the selectivity of the enzyme for sulfated structures in the polysaccharide and demonstrate suramin as a competitor for the enzyme’s sugar acceptor site. Heparin functionalised surfaces should have a wide applicability, since this polysaccharide is a close structural analogue of the host cell surface polysaccharide, heparan sulfate, a receptor for many endogenous proteins and viruses.
Collapse
Affiliation(s)
- Dunhao Su
- Biochemistry, University of Liverpool, Liverpool, United Kingdom
| | - Yong Li
- Biochemistry, University of Liverpool, Liverpool, United Kingdom
| | - Edwin A. Yates
- Biochemistry, University of Liverpool, Liverpool, United Kingdom
| | - Mark A. Skidmore
- Molecular & Structural Biosciences, School of Life Sciences, University of Keele, Newcastle-Under-Lyme, United Kingdom
| | - Marcelo A. Lima
- Molecular & Structural Biosciences, School of Life Sciences, University of Keele, Newcastle-Under-Lyme, United Kingdom
| | - David G. Fernig
- Biochemistry, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
12
|
Beyer CD, Thavalingam S, Guseva T, Schardt L, Zimmermann R, Werner C, Dietze P, Bandow JE, Metzler-Nolte N, Rosenhahn A. Zwitterionic Peptides Reduce Accumulation of Marine and Freshwater Biofilm Formers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49682-49691. [PMID: 34663068 DOI: 10.1021/acsami.1c13459] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zwitterionic peptides are facile low-fouling compounds for environmental applications as they are biocompatible and fully biodegradable as their degradation products are just amino acids. Here, a set of histidine (H) and glutamic acid (E), as well as lysine (K) and glutamic acid (E) based peptide sequences with zwitterionic properties were synthesized. Both oligopeptides (KE)4K and (HE)4H were synthesized in d and l configurations to test their ability to resist the nonspecific adsorption of the proteins lysozyme and fibrinogen. The coatings were additionally tested against the attachment of the marine organisms Navicula perminuta and Cobetia marina as well as the freshwater bacterium Pseudomonas fluorescens on the developed coatings. While the peptides containing lysine performed better in protein resistance assays and against freshwater bacteria, the sequences containing histidine were generally more resistant against marine organisms. The contribution of amino acid-intrinsic properties such as side chain pKa values and hydrophobicity, as well as external parameters such as pH and salinity of fresh water and seawater on the resistance of the coatings is discussed. In this way, a detailed picture emerges as to which zwitterionic sequences show advantages in future generations of biocompatible, sustainable, and nontoxic fouling release coatings.
Collapse
Affiliation(s)
- Cindy D Beyer
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Sugina Thavalingam
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Tatiana Guseva
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lisa Schardt
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ralf Zimmermann
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, 01069 Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, 01069 Dresden, Germany
| | - Pascal Dietze
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
13
|
Li C, Li M, Qi W, Su R, Yu J. Effect of Hydrophobicity and Charge Separation on the Antifouling Properties of Surface-Tethered Zwitterionic Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8455-8462. [PMID: 34228454 DOI: 10.1021/acs.langmuir.1c00803] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zwitterionic peptides emerge as a class of highly effective antifouling material in a wide range of applications such as biosensors, biomedical devices, and implants. We incorporated neutral amino acid spacers with different hydrophobicities, including serine (Ser), glycine (Gly), and leucine (Leu), into zwitterionic peptides with lysine-glutamic acid repeating units and investigated the structure and antifouling performance of the zwitterionic peptide brushes by surface plasma resonance, surface force apparatus (SFA), and all-atomistic molecular dynamics (MD) simulation techniques. Our results demonstrate that the hydrophilicity of neutral spacers alters the structure and antifouling performance of the peptide-modified surface. Hydrophilic Ser-inserted peptides reduced the interaction between the peptide monolayer and protein foulants, while hydrophobic Leu significantly increased the protein adhesion. SFA force measurements show that the presence of more spacers would increase the adhesion between the peptide monolayer and the modeling foulant lysozyme, especially for the hydrophobic spacers. MD simulations reveal that hydrophilic Ser spacers retain the hydrophilicity of the peptide monolayer and improve the antifouling performance, and Gly spacers give rise to more interchain cross-links. Leu spacers result in a more hydrophobic peptide monolayer, which leads to dehydration of the peptide monolayer and reduces the antifouling performances.
Collapse
Affiliation(s)
- Chuanxi Li
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
- Petrochemical Research Institute, PetroChina, Beijing 102206, PR China
| | - Minglun Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wei Qi
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
14
|
Hu Q, Su L, Mao Y, Gan S, Bao Y, Qin D, Wang W, Zhang Y, Niu L. Electrochemically induced grafting of ferrocenyl polymers for ultrasensitive cleavage-based interrogation of matrix metalloproteinase activity. Biosens Bioelectron 2021; 178:113010. [DOI: 10.1016/j.bios.2021.113010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
|
15
|
Electrochemical sensing interfaces based on hierarchically architectured zwitterionic peptides for ultralow fouling detection of alpha fetoprotein in serum. Anal Chim Acta 2020; 1146:17-23. [PMID: 33461713 DOI: 10.1016/j.aca.2020.12.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
Herein, an electrochemical sensing platform based on zwitterionic peptide with a hierarchical structure was constructed for ultralow fouling and highly sensitive protein quantification. Through the combination of CPPPPEKEKEKEK and CPPPPEKEKEK peptides, hierarchical antifouling peptide brushes were formed and exhibited excellent antifouling property, which can be further modified with alpha fetoprotein (AFP) aptamer to achieve highly sensitive detection of AFP. The hierarchical peptide brush-based sensor system achieved an AFP quantification range from 1.0 fg mL-1 to 1.0 ng mL-1, with a very low limit of detection as low as 0.59 fg mL-1. In addition, due to the superior antifouling property of the newly designed hierarchical peptide brushes, the electrochemical biosensor supported the quantification of AFP in solutions with a high concentration of nonspecific proteins without sacrifice in sensitivity. It is worth noting that the constructed antifouling biosensor ensured quantitative recruitment of AFP in clinical serum samples with acceptable accuracy when compared with the commonly used method in the hospital. The strategy of constructing sensing interfaces based on designed hierarchical peptide brushes provided an effective way to develop biosensors with both excellent antifouling capability and high sensitivity.
Collapse
|
16
|
Zhang Y, Chen X, Yuan S, Wang L, Guan X. Joint Entropy-Assisted Graphene Oxide-Based Multiplexing Biosensing Platform for Simultaneous Detection of Multiple Proteases. Anal Chem 2020; 92:15042-15049. [PMID: 33118812 DOI: 10.1021/acs.analchem.0c03007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Due to the limited clinical utility of individual biomarkers, there is growing recognition of the need for combining multiple biomarkers as a panel to improve the accuracy and efficacy of disease diagnosis and prognosis. The conventional method to detect multiple analyte species is to construct a sensor array, which consists of an array of individual selective probes for different species. In this work, by using cancer biomarker matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs) as model analytes and functionalized nanographene oxide (nGO) as a sensing element, we developed a multiplexing fluorescence sensor in a nonarray format for simultaneous measurement of the activities of multiple proteases. The constructed nGO-based biosensor was rapid, sensitive, and selective and was also utilized for the successful profiling of ADAMs/MMPs in simulated serum samples. Furthermore, we showed that joint entropy and programming could be utilized to guide experiment design, especially in terms of the selection of a subset of proteases from the entire MMPs/ADAMs family as an appropriate biomarker panel. Our developed nGO-based multiplex sensing platform should find useful application in early cancer detection and diagnosis.
Collapse
Affiliation(s)
- Youwen Zhang
- Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Shaoqing Yuan
- Amazon, 2121 Seventh Avenue, Seattle, Washington 98121, United States
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.,Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| |
Collapse
|
17
|
Sun L, Chen Y, Chen F, Ma F. Peptide-based electrochemical biosensor for matrix metalloproteinase-14 and protein-overexpressing cancer cells based on analyte-induced cleavage of peptide. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Li C, Liu C, Li M, Xu X, Li S, Qi W, Su R, Yu J. Structures and Antifouling Properties of Self-Assembled Zwitterionic Peptide Monolayers: Effects of Peptide Charge Distributions and Divalent Cations. Biomacromolecules 2020; 21:2087-2095. [DOI: 10.1021/acs.biomac.0c00062] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chuanxi Li
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Chunjiang Liu
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Minglun Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xin Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
19
|
Gu C, Yin Z, Nie H, Liu Y, Yang J, Huang G, Shen J, Chen L, Fei J. Identification of berberine as a novel drug for the treatment of multiple myeloma via targeting UHRF1. BMC Biol 2020; 18:33. [PMID: 32213189 PMCID: PMC7098108 DOI: 10.1186/s12915-020-00766-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/05/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Current therapies for multiple myeloma (MM) are associated with toxicity and resistance, highlighting the need for novel effective therapeutics. Berberine (BBR), a botanical alkaloid derived from several Berberis medicinal plants, has exhibited anti-tumor effects, including against multiple myeloma (MM); however, the molecular mechanism underlying the anti-MM effect has not been previously described. This study aimed to identify the target of berberine and related mechanisms involved in its therapeutic activity against MM. RESULTS Here, we demonstrated that BBR treatment killed MM cells in vitro and prolonged the survival of mice bearing MM xenografts in vivo. A screening approach integrating surface plasmon resonance (SPR) with liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified UHRF1 (ubiquitin-like with PHD and RING Finger domains 1) as a potential target of BBR. Combining molecular docking and SPR analysis, we confirmed UHRF1 as a BBR-binding protein and discovered that BBR binds UHRF1 in the tandem tudor domain and plant homeodomain (TTD-PHD domain). BBR treatment induced UHRF1 degradation via the ubiquitin-dependent proteasome system and reactivated p16INK4A and p73 in MM cells. Overexpression of UHRF1 promoted the MM cell proliferation and rendered MM cells more resistant to BBR, while silencing of UHRF1 with siRNA attenuated BBR-induced cytotoxicity. CONCLUSIONS In summary, our study has identified UHRF1 as a direct target of BBR and uncovered molecular mechanisms involved in the anti-MM activity of BBR. Targeting UHRF1 through BBR may be a novel therapeutic strategy against MM.
Collapse
Affiliation(s)
- Chunming Gu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, Guangzhou, 510632, China
- Institute of Chinese Integrative Medicine, Chinese Medicine College, Jinan University, Guangzhou, 510632, China
| | - Zhao Yin
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, Guangzhou, 510632, China
- Institute of Chinese Integrative Medicine, Chinese Medicine College, Jinan University, Guangzhou, 510632, China
| | - Hong Nie
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yanjun Liu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, Guangzhou, 510632, China
| | - Juhua Yang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, Guangzhou, 510632, China
| | - Guiping Huang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, Guangzhou, 510632, China
| | - Jianping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| | - Liguo Chen
- Institute of Chinese Integrative Medicine, Chinese Medicine College, Jinan University, Guangzhou, 510632, China.
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, Guangzhou, 510632, China.
- Institute of Chinese Integrative Medicine, Chinese Medicine College, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
20
|
One-step electrodeposition of poly(m-aminobenzoic acid) membrane decorated with peptide for antifouling biosensing of Immunoglobulin E. Colloids Surf B Biointerfaces 2020; 186:110706. [DOI: 10.1016/j.colsurfb.2019.110706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/27/2022]
|
21
|
Heggestad JT, Fontes CM, Joh DY, Hucknall AM, Chilkoti A. In Pursuit of Zero 2.0: Recent Developments in Nonfouling Polymer Brushes for Immunoassays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903285. [PMID: 31782843 PMCID: PMC6986790 DOI: 10.1002/adma.201903285] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/17/2019] [Indexed: 05/11/2023]
Abstract
"Nonfouling" polymer brush surfaces can greatly improve the performance of in vitro diagnostic (IVD) assays due to the reduction of nonspecific protein adsorption and consequent improvement of signal-to-noise ratios. The development of synthetic polymer brush architectures that suppress adventitious protein adsorption is reviewed, and their integration into surface plasmon resonance and fluorescent sandwich immunoassay formats is discussed. Also, highlighted is a novel, self-contained immunoassay platform (the D4 assay) that transforms time-consuming laboratory-based assays into a user-friendly and point-of-care format with a sensitivity and specificity comparable or better than standard enzyme-linked immunosorbent assay (ELISA) directly from unprocessed samples. These advancements clearly demonstrate the utility of nonfouling polymer brushes as a substrate for ultrasensitive and robust diagnostic assays that may be suitable for clinical testing, in field and laboratory settings.
Collapse
Affiliation(s)
- Jacob T Heggestad
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cassio M Fontes
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Daniel Y Joh
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Angus M Hucknall
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
22
|
Ma F, Yan J, Sun L, Chen Y. Electrochemical impedance spectroscopy for quantization of matrix Metalloproteinase-14 based on peptides inhibiting its homodimerization and heterodimerization. Talanta 2019; 205:120142. [PMID: 31450394 DOI: 10.1016/j.talanta.2019.120142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 01/31/2023]
Abstract
We reported here two novel electrochemical impedance spectroscopy biosensors were developed for the first time for highly sensitive quantification of matrix metalloproteinase-14 (MMP-14) based on binding interaction between hemopexin-like domain (PEX) of MMP-14 (PEX-14) and its inhibitory peptides. Specific inhibitory peptides (IVSC or ISC) inhibiting homodimerization or heterodimerization of MMP-14 was first self assembled on the surface of gold electrode and blocked with 6-mercapto-1-hexanol on a gold electrode surface used as IVSC or ISC modified biosensor, respectively. IVSC modified biosensor can be used for detection of MMP-14 by using the direct IVSC-MMP-14 interaction inhibiting MMP-14 homodimerization as well as ISC modified biosensor for indirect detection of MMP-14 via PEX-14 mediated peptide-MMP-14 binding. The electron transfer resistance (Ret) of biosensor was monitored to measure MMP-14 using Fe(CN)63-/4- as probe. The increase of the Ret of the biosensors are linear with the concentration of MMP-14 in the range from 1 μg L-1 to 10 μg L-1 with detection limit of 0.19 μg L-1 for IVSC modified biosensor and 0.1 ng L-1 to 50 ng L-1 with detection limit of 7 ng L-1 for ISC modified biosensor. This work demonstrates that probing the interaction between peptide inhibitor and PEX of MMPs represents a novel approach to assess MMPs-mediated cancer dissemination.
Collapse
Affiliation(s)
- Fen Ma
- Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China.
| | - Jiedong Yan
- Shaanxi Huaxiang Energy Technology (group) Co., Ltd, Xi'an, Shaanxi, 710127, PR China
| | - Lina Sun
- Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Yu Chen
- Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| |
Collapse
|
23
|
Ma F, Zhu Y, Chen Y, Liu J, Zeng X. Labeled and non-label electrochemical peptide inhibitor-based biosensing platform for determination of hemopexin domain of matrix metalloproteinase-14. Talanta 2019; 194:548-553. [DOI: 10.1016/j.talanta.2018.10.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 01/07/2023]
|
24
|
Ederth T, Lerm M, Orihuela B, Rittschof D. Resistance of Zwitterionic Peptide Monolayers to Biofouling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1818-1827. [PMID: 30103609 DOI: 10.1021/acs.langmuir.8b01625] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Self-assembled monolayers (SAMs) are widely used in science and engineering, and recent progress has demonstrated the utility of zwitterionic peptides with alternating lysine (K) and glutamic acid (E) residues for antifouling purposes. Aiming at developing a peptide-based fouling-resistant SAM suitable for presentation of surface-attached pheromones for barnacle larvae, we have investigated five different peptide SAMs, where four are based on the EK motif, and the fifth was designed based on general principles for fouling resistance. The SAMs were formed by self-assembly onto gold substrates via cysteine residues on the peptides, and formation of SAMs was verified via ellipsometry, wettability, infrared reflection-absorption spectroscopy and cyclic voltammetry. Settlement of cypris larvae of the barnacle Balanus (=Amphibalanus) amphitrite, the target of pheromone studies, was tested. SAMs were also subjected to fouling assays using protein solutions, blood serum, and the bacterium Mycobacterium marinum. The results confirm the favorable antifouling properties of EK-containing peptides in most of the assays, although this did not apply to the barnacle larvae settlement test, where settlement was low on only one of the peptide SAMs. The one peptide that had antifouling properties for barnacles did not contain a pheromone motif, and would not be susceptible to degredation by common serine proteases. We conclude that the otherwise broadly effective antifouling properties of EK-containing peptide SAMs is not directly applicable to barnacles, and that great care must be exercised in the design of peptide-based SAMs for presentation of barnacle-specific ligands.
Collapse
Affiliation(s)
- Thomas Ederth
- Division of Molecular Physics, Department of Physics, Chemistry and Biology , Linköping University , SE-581 83 Linköping , Sweden
| | - Maria Lerm
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine , Linköping University , SE-581 83 Linköping , Sweden
| | - Beatriz Orihuela
- Duke University Marine Laboratory, Nicholas School of the Environment, Duke University , Beaufort , North Carolina 28516-9721 , United States
| | - Daniel Rittschof
- Duke University Marine Laboratory, Nicholas School of the Environment, Duke University , Beaufort , North Carolina 28516-9721 , United States
| |
Collapse
|
25
|
Su H, Zang M, Lu L, Li F. Monitoring matrix metalloproteases based on the selective interaction between an Ir(iii) solvent complex and a histidine-rich polypeptide. Chem Commun (Camb) 2019; 55:7085-7088. [DOI: 10.1039/c9cc02718a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A luminescent biosensor was developed for MMP-9 assays based on the selective interaction between an Ir(iii) solvent complex and a histidine-rich peptide.
Collapse
Affiliation(s)
- Huijuan Su
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- People's Republic of China
| | - Menghan Zang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- People's Republic of China
| | - Lihua Lu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- People's Republic of China
| |
Collapse
|
26
|
Hinman SS, McKeating KS, Cheng Q. Surface Plasmon Resonance: Material and Interface Design for Universal Accessibility. Anal Chem 2018; 90:19-39. [PMID: 29053253 PMCID: PMC6041476 DOI: 10.1021/acs.analchem.7b04251] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Samuel S. Hinman
- Environmental Toxicology, University of California–Riverside, Riverside, California 92521, United States
| | - Kristy S. McKeating
- Department of Chemistry, University of California–Riverside, Riverside, California 92521, United States
| | - Quan Cheng
- Environmental Toxicology, University of California–Riverside, Riverside, California 92521, United States
- Department of Chemistry, University of California–Riverside, Riverside, California 92521, United States
| |
Collapse
|
27
|
Li K, Wang S, Wang L, Yu H, Jing N, Xue R, Wang Z. Fast and Sensitive Ellipsometry-Based Biosensing. SENSORS 2017; 18:s18010015. [PMID: 29271894 PMCID: PMC5795863 DOI: 10.3390/s18010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 01/27/2023]
Abstract
In this work, a biosensing method based on in situ, fast, and sensitive measurements of ellipsometric parameters (Ψ, ∆) is proposed. Bare silicon wafer substrate is functionalized and used to bind biomolecules in the solution. Coupled with a 45° dual-drive symmetric photoelastic modulator-based ellipsometry, the parameters Ψ and ∆ of biolayer arising due to biomolecular interactions are determined directly, and the refractive index (RI) of the solution and the effective thickness and surface mass density of the biolayer for various interaction time can be further monitored simultaneously. To illustrate the performance of the biosensing method, immunosensing for immunoglobulin G (IgG) was taken as a case study. The experiment results show that the biosensor response of the limit of detection for IgG is 15 ng/mL, and the data collection time is in milliseconds. Moreover, the method demonstrates a good specificity. Such technique is a promising candidate in developing a novel sensor which can realize fast and sensitive, label-free, easy operation, and cost-effective biosensing.
Collapse
Affiliation(s)
- Kewu Li
- School of Information and Communication Engineering, North University of China, Taiyuan 030051, China.
- Engineering Technology Research Center of Shanxi Province for Opto-Electric Information and Instrument, Taiyuan 030051, China.
| | - Shuang Wang
- Engineering Technology Research Center of Shanxi Province for Opto-Electric Information and Instrument, Taiyuan 030051, China.
| | - Liming Wang
- School of Information and Communication Engineering, North University of China, Taiyuan 030051, China.
| | - Hui Yu
- Engineering Technology Research Center of Shanxi Province for Opto-Electric Information and Instrument, Taiyuan 030051, China.
| | - Ning Jing
- School of Information and Communication Engineering, North University of China, Taiyuan 030051, China.
- Engineering Technology Research Center of Shanxi Province for Opto-Electric Information and Instrument, Taiyuan 030051, China.
| | - Rui Xue
- Engineering Technology Research Center of Shanxi Province for Opto-Electric Information and Instrument, Taiyuan 030051, China.
| | - Zhibin Wang
- School of Information and Communication Engineering, North University of China, Taiyuan 030051, China.
- Engineering Technology Research Center of Shanxi Province for Opto-Electric Information and Instrument, Taiyuan 030051, China.
| |
Collapse
|
28
|
Couture M, Brulé T, Laing S, Cui W, Sarkar M, Charron B, Faulds K, Peng W, Canva M, Masson JF. High Figure of Merit (FOM) of Bragg Modes in Au-Coated Nanodisk Arrays for Plasmonic Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13. [PMID: 28834166 DOI: 10.1002/smll.201700908] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/19/2017] [Indexed: 05/16/2023]
Abstract
Gold-coated nanodisk arrays of nearly micron periodicity are reported that have high figure of merit (FOM) and sensitivity necessary for plasmonic refractometric sensing, with the added benefit of suitability for surface-enhanced Raman scattering (SERS), large-scale microfabrication using standard photolithographic techniques and a simple instrumental setup. Gold nanodisk arrays are covered with a gold layer to excite the Bragg modes (BM), which are the propagative surface plasmons localized by the diffraction from the disk array. This generates surface-guided modes, localized as standing waves, leading to highly confined fields confirmed by a mapping of the SERS intensity and numerical simulations with 3D finite element method. The optimal gold-coated nanodisk arrays are applied for refractometric sensing in transmission spectroscopy with better performance than nanohole arrays and they are integrated to a 96-well plate reader for detection of IgY proteins in the nanometer range in PBS. The potential for sensing in biofluids is assessed with IgG detection in 1:1 diluted urine. The structure exhibits a high FOM of up to 46, exceeding the FOM of structures supporting surface plasmon polaritons and comparable to more complex nanostructures, demonstrating that subwavelength features are not necessary for high-performance plasmonic sensing.
Collapse
Affiliation(s)
- Maxime Couture
- Département de chimie, Université de Montréal, CP. 6128, Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Thibault Brulé
- Département de chimie, Université de Montréal, CP. 6128, Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Stacey Laing
- Bionanotechnologies, Department of Pure and Applied Chemistry, Technology Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Wenli Cui
- College of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Mitradeep Sarkar
- Laboratoire Charles Fabry Institut d'Optique Graduate School, Université Paris Sud, CNRS, 2 Avenue Augustin Fresnel, 91127, Palaiseau, France
- Laboratoire Nanotechnologies Nanosystèmes LN2 - CNRS, Université de Sherbrooke, Institut Interdisciplinaire d'Innovation Technologique, 3000 boul. de l'Université Université de Sherbrooke, Sherbrooke, QC, J1K 0A5, Canada
| | - Benjamin Charron
- Département de chimie, Université de Montréal, CP. 6128, Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Karen Faulds
- Bionanotechnologies, Department of Pure and Applied Chemistry, Technology Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Wei Peng
- College of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Michael Canva
- Laboratoire Charles Fabry Institut d'Optique Graduate School, Université Paris Sud, CNRS, 2 Avenue Augustin Fresnel, 91127, Palaiseau, France
- Laboratoire Nanotechnologies Nanosystèmes LN2 - CNRS, Université de Sherbrooke, Institut Interdisciplinaire d'Innovation Technologique, 3000 boul. de l'Université Université de Sherbrooke, Sherbrooke, QC, J1K 0A5, Canada
| | - Jean-Francois Masson
- Département de chimie, Université de Montréal, CP. 6128, Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
- Centre Québécois sur les Matériaux Fonctionnels (CQMF)
| |
Collapse
|
29
|
Oliverio M, Perotto S, Messina GC, Lovato L, De Angelis F. Chemical Functionalization of Plasmonic Surface Biosensors: A Tutorial Review on Issues, Strategies, and Costs. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29394-29411. [PMID: 28796479 PMCID: PMC5593307 DOI: 10.1021/acsami.7b01583] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/10/2017] [Indexed: 05/21/2023]
Abstract
In an ideal plasmonic surface sensor, the bioactive area, where analytes are recognized by specific biomolecules, is surrounded by an area that is generally composed of a different material. The latter, often the surface of the supporting chip, is generally hard to be selectively functionalized, with respect to the active area. As a result, cross talks between the active area and the surrounding one may occur. In designing a plasmonic sensor, various issues must be addressed: the specificity of analyte recognition, the orientation of the immobilized biomolecule that acts as the analyte receptor, and the selectivity of surface coverage. The objective of this tutorial review is to introduce the main rational tools required for a correct and complete approach to chemically functionalize plasmonic surface biosensors. After a short introduction, the review discusses, in detail, the most common strategies for achieving effective surface functionalization. The most important issues, such as the orientation of active molecules and spatial and chemical selectivity, are considered. A list of well-defined protocols is suggested for the most common practical situations. Importantly, for the reported protocols, we also present direct comparisons in term of costs, labor demand, and risk vs benefit balance. In addition, a survey of the most used characterization techniques necessary to validate the chemical protocols is reported.
Collapse
Affiliation(s)
- Manuela Oliverio
- Department of Health
Science, University Magna Graecia of Catanzaro, Viale Europa−Loc. Germaneto, 88100 Catanzaro, Italy
- Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Sara Perotto
- Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
- Department of Informatics,
Bioengineering, Robotics and Systems Engineering (DIBRIS), Università degli Studi di Genova, Via Balbi 5, 16126 Genova, Italy
| | | | - Laura Lovato
- Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | | |
Collapse
|
30
|
Wang G, Han R, Su X, Li Y, Xu G, Luo X. Zwitterionic peptide anchored to conducting polymer PEDOT for the development of antifouling and ultrasensitive electrochemical DNA sensor. Biosens Bioelectron 2017; 92:396-401. [DOI: 10.1016/j.bios.2016.10.088] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/01/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022]
|
31
|
Lei Z, Zhang H, Wang Y, Meng X, Wang Z. Peptide Microarray-Based Metal Enhanced Fluorescence Assay for Multiple Profiling of Matrix Metalloproteinases Activities. Anal Chem 2017; 89:6749-6757. [DOI: 10.1021/acs.analchem.7b01037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhen Lei
- State Key Laboratory
of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hua Zhang
- State Key Laboratory
of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yaoqi Wang
- Department
of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P. R. China
| | - Xianying Meng
- Department
of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P. R. China
| | - Zhenxin Wang
- State Key Laboratory
of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
32
|
Abstract
The design and application of sensors for monitoring biomolecules in clinical samples is a common goal of the sensing research community. Surface plasmon resonance (SPR) and other plasmonic techniques such as localized surface plasmon resonance (LSPR) and imaging SPR are reaching a maturity level sufficient for their application in monitoring biomolecules in clinical samples. In recent years, the first examples for monitoring antibodies, proteins, enzymes, drugs, small molecules, peptides, and nucleic acids in biofluids collected from patients afflicted with a series of medical conditions (Alzheimer's, hepatitis, diabetes, leukemia, and cancers such as prostate and breast cancers, among others) demonstrate the progress of SPR sensing in clinical chemistry. This Perspective reviews the current status of the field, showcasing a series of early successes in the application of SPR for clinical analysis and detailing a series of considerations regarding sensing schemes, exposing issues with analysis in biofluids, and comparing SPR with ELISA, while providing an outlook of the challenges currently associated with plasmonic materials, instrumentation, microfluidics, bioreceptor selection, selection of a clinical market, and validation of a clinical assay for applying SPR sensors to clinical samples. Research opportunities are proposed to further advance the field and transition SPR biosensors from research proof-of-concept stage to actual clinical applications.
Collapse
Affiliation(s)
- Jean-Francois Masson
- Département
de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada
- Centre
for self-assembled chemical structures (CSACS), McGill University, 801
Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
| |
Collapse
|
33
|
Hinman SS, Cheng Q. Bioinspired Assemblies and Plasmonic Interfaces for Electrochemical Biosensing. J Electroanal Chem (Lausanne) 2016; 781:136-146. [PMID: 28163664 PMCID: PMC5283611 DOI: 10.1016/j.jelechem.2016.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrochemical biosensing represents a collection of techniques that may be utilized for capture and detection of biomolecules in both simple and complex media. While the instrumentation and technological aspects play important roles in detection capabilities, the interfacial design aspects are of equal importance, and often, those inspired by nature produce the best results. This review highlights recent material designs, recognition schemes, and method developments as they relate to targeted electrochemical analysis for biological systems. This includes the design of electrodes functionalized with peptides, proteins, nucleic acids, and lipid membranes, along with nanoparticle mediated signal amplification mechanisms. The topic of hyphenated surface plasmon resonance assays is also discussed, as this technique may be performed concurrently with complementary and/or confirmatory measurements. Together, smart materials and experimental designs will continue to pave the way for complete biomolecular analyses of complex and technically challenging systems.
Collapse
Affiliation(s)
- Samuel S. Hinman
- Environmental Toxicology, University of California – Riverside, Riverside, CA 92521, USA
| | - Quan Cheng
- Environmental Toxicology, University of California – Riverside, Riverside, CA 92521, USA
- Department of Chemistry, University of California – Riverside, Riverside, CA 92521, USA
| |
Collapse
|
34
|
Aubé A, Charbonneau DM, Pelletier JN, Masson JF. Response Monitoring of Acute Lymphoblastic Leukemia Patients Undergoing l-Asparaginase Therapy: Successes and Challenges Associated with Clinical Sample Analysis in Plasmonic Sensing. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00531] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alexandra Aubé
- Département
de Chimie and Département de Biochimie, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
| | - David M. Charbonneau
- Département
de Chimie and Département de Biochimie, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
| | - Joelle N. Pelletier
- Département
de Chimie and Département de Biochimie, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
| | - Jean-François Masson
- Département
de Chimie and Département de Biochimie, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
- Centre
for Self-Assembled Chemical Structures (CSACS), McGill University, 801
Sherbrooke Street West, Montreal, Québec, H3A 2K6, Canada
| |
Collapse
|
35
|
Vaisocherová-Lísalová H, Surman F, Víšová I, Vala M, Špringer T, Ermini ML, Šípová H, Šedivák P, Houska M, Riedel T, Pop-Georgievski O, Brynda E, Homola J. Copolymer Brush-Based Ultralow-Fouling Biorecognition Surface Platform for Food Safety. Anal Chem 2016; 88:10533-10539. [PMID: 27689386 DOI: 10.1021/acs.analchem.6b02617] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Functional polymer coatings that combine the ability to resist nonspecific fouling from complex media with high biorecognition element (BRE) immobilization capacity represent an emerging class of new functional materials for a number of bioanalytical and biosensor technologies for medical diagnostics, security, and food safety. Here, we report on a random copolymer brush surface - poly(CBMAA-ran-HPMAA) - providing high BRE immobilization capacity while simultaneously exhibiting ultralow-fouling behavior in complex food media. We demonstrate that both the functionalization and fouling resistance capabilities of such copolymer brushes can be tuned by changing the surface contents of the two monomer units: nonionic N-(2-hydroxypropyl) methacrylamide (HPMAA) and carboxy-functional zwitterionic carboxybetaine methacrylamide (CBMAA). It is demonstrated that the resistance to fouling decreases with the surface content of CBMAA; poly(CBMAA-ran-HPMAA) brushes with CBMAA molar content up to 15 mol % maintain excellent resistance to fouling from a variety of homogenized foods (hamburger, cucumber, milk, and lettuce) even after covalent attachment of BREs to carboxy groups of CBMAA. The poly(CBMAA 15 mol %-ran-HPMAA) brushes functionalized with antibodies are demonstrated to exhibit fouling resistance from food samples by up to 3 orders of magnitude better when compared with the widely used low-fouling carboxy-functional oligo(ethylene glycol) (OEG)-based alkanethiolate self-assembled monolayers (AT SAMs) and, furthermore, by up to 2 orders of magnitude better when compared with the most successful ultralow-fouling biorecognition coatings - poly(carboxybetaine acrylamide), poly(CBAA). When model SPR detections of food-borne bacterial pathogens in homogenized foods are used, it is also demonstrated that the antibody-functionalized poly(CBMAA 15 mol %-ran-HPMAA) brush exhibits superior biorecognition properties over the poly(CBAA).
Collapse
Affiliation(s)
- Hana Vaisocherová-Lísalová
- Institute of Photonics and Electronics, Czech Academy of Sciences , Chaberská 57, Prague, Czech Republic
| | - František Surman
- Institute of Macromolecular Chemistry, Czech Academy of Sciences , Heyrovského nám. 2, Prague, Czech Republic
| | - Ivana Víšová
- Institute of Photonics and Electronics, Czech Academy of Sciences , Chaberská 57, Prague, Czech Republic
| | - Milan Vala
- Institute of Photonics and Electronics, Czech Academy of Sciences , Chaberská 57, Prague, Czech Republic
| | - Tomáš Špringer
- Institute of Photonics and Electronics, Czech Academy of Sciences , Chaberská 57, Prague, Czech Republic
| | - Maria Laura Ermini
- Institute of Photonics and Electronics, Czech Academy of Sciences , Chaberská 57, Prague, Czech Republic
| | - Hana Šípová
- Institute of Photonics and Electronics, Czech Academy of Sciences , Chaberská 57, Prague, Czech Republic
| | - Petr Šedivák
- Police of the Czech Republic , Kapucínská 214/2, Prague, Czech Republic
| | - Milan Houska
- Institute of Macromolecular Chemistry, Czech Academy of Sciences , Heyrovského nám. 2, Prague, Czech Republic
| | - Tomáš Riedel
- Institute of Macromolecular Chemistry, Czech Academy of Sciences , Heyrovského nám. 2, Prague, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences , Heyrovského nám. 2, Prague, Czech Republic
| | - Eduard Brynda
- Institute of Macromolecular Chemistry, Czech Academy of Sciences , Heyrovského nám. 2, Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Sciences , Chaberská 57, Prague, Czech Republic
| |
Collapse
|
36
|
Beckner W, He Y, Pfaendtner J. Chain Flexibility in Self-Assembled Monolayers Affects Protein Adsorption and Surface Hydration: A Molecular Dynamics Study. J Phys Chem B 2016; 120:10423-10432. [DOI: 10.1021/acs.jpcb.6b05882] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Wesley Beckner
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Yi He
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Jim Pfaendtner
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| |
Collapse
|
37
|
Liu B, Liu X, Shi S, Huang R, Su R, Qi W, He Z. Design and mechanisms of antifouling materials for surface plasmon resonance sensors. Acta Biomater 2016; 40:100-118. [PMID: 26921775 DOI: 10.1016/j.actbio.2016.02.035] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 01/08/2023]
Abstract
UNLABELLED Surface plasmon resonance (SPR) biosensors have many possible applications, but are limited by sensor chip surface fouling, which blocks immobilization and specific binding by the recognizer elements. Therefore, there is a pressing need for the development of antifouling surfaces. In this paper, the mechanisms of antifouling materials were firstly discussed, including both theories (hydration and steric hindrance) and factors influencing antifouling effects (molecular structures and self-assembled monolayer (SAM) architectures, surface charges, molecular hydrophilicity, and grafting thickness and density). Then, the most recent advances in antifouling materials applied on SPR biosensors were systematically reviewed, together with the grafting strategies, antifouling capacity, as well as their merits and demerits. These materials included, but not limited to, zwitterionic compounds, polyethylene glycol-based, and polysaccharide-based materials. Finally, the prospective research directions in the development of SPR antifouling materials were discussed. STATEMENT OF SIGNIFICANCE Surface plasmon resonance (SPR) is a powerful tool in monitoring biomolecular interactions. The principle of SPR biosensors is the conversion of refractive index change caused by molecular binding into resonant spectral shifts. However, the fouling on the surface of SPR gold chips is ubiquitous and troublesome. It limits the application of SPR biosensors by blocking recognition element immobilization and specific binding. Hence, we write this paper to review the antifouling mechanisms and the recent advances of the design of antifouling materials that can improve the accuracy and sensitivity of SPR biosensors. To our knowledge, this is the first review focusing on the antifouling materials that were applied or had potential to be applied on SPR biosensors.
Collapse
|
38
|
Piccoli JP, Santos A, Santos-Filho NA, Lorenzón EN, Cilli EM, Bueno PR. The self-assembly of redox active peptides: Synthesis and electrochemical capacitive behavior. Biopolymers 2016; 106:357-67. [DOI: 10.1002/bip.22815] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/16/2015] [Accepted: 01/14/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Julia P. Piccoli
- Department of Biochemistry and Technological Chemistry; , Institute of Chemistry, UNESP-Univ Estadual Paulista; São Paulo Brazil
| | - Adriano Santos
- Department of Physical Chemistry; Nanobionics Research Group, Institute of Chemistry, UNESP-Univ Estadual Paulista; São Paulo Brazil
| | - Norival A. Santos-Filho
- Department of Biochemistry and Technological Chemistry; , Institute of Chemistry, UNESP-Univ Estadual Paulista; São Paulo Brazil
| | - Esteban N. Lorenzón
- Department of Biochemistry and Technological Chemistry; , Institute of Chemistry, UNESP-Univ Estadual Paulista; São Paulo Brazil
| | - Eduardo M. Cilli
- Department of Biochemistry and Technological Chemistry; , Institute of Chemistry, UNESP-Univ Estadual Paulista; São Paulo Brazil
| | - Paulo R. Bueno
- Department of Physical Chemistry; Nanobionics Research Group, Institute of Chemistry, UNESP-Univ Estadual Paulista; São Paulo Brazil
| |
Collapse
|
39
|
Lei Z, Gao J, Liu X, Liu D, Wang Z. Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) Brushes as Peptide/Protein Microarray Substrate for Improving Protein Binding and Functionality. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10174-10182. [PMID: 27049528 DOI: 10.1021/acsami.6b01156] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We developed a three-dimensional (3D) polymer-brush substrate for protein and peptide microarray fabrication, and this substrate was facilely prepared by copolymerization of glycidyl methacrylate (GMA) and 2-hydroxyethyl methacrylate (HEMA) monomers via surface-initiated atom transfer radical polymerization (SI-ATRP) on a glass slide. The performance of obtained poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) (P(GMA-HEMA)) brush substrate was assessed by binding of human IgG with rabbit antihuman IgG antibodies on a protein microarray and by the determination of matrix metalloproteinase (MMP) activities on a peptide microarray. The P(GMA-HEMA) brush substrate exhibited higher immobilization capacities for proteins and peptides than those of a two-dimensional (2D) planar epoxy slide. Furthermore, the sensitivity of the P(GMA-HEMA) brush-based microarray on rabbit antihuman IgG antibody detection was much higher than that of its 2D counterpart. The enzyme activities of MMPs were determined specifically with a low detection limit of 6.0 pg mL(-1) for MMP-2 and 5.7 pg mL(-1) for MMP-9. By taking advantage of the biocompatibility of PHEMA, the P(GMA-HEMA) brush-based peptide microarray was also employed to evaluate the secretion of MMP-2 and MMP-9 by cells cultured off the chip or directly on the chip, and satisfactory results were obtained.
Collapse
Affiliation(s)
- Zhen Lei
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Jiaxue Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Xia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Dianjun Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| |
Collapse
|
40
|
Reynolds T, François A, Riesen N, Turvey ME, Nicholls SJ, Hoffmann P, Monro TM. Dynamic Self-Referencing Approach to Whispering Gallery Mode Biosensing and Its Application to Measurement within Undiluted Serum. Anal Chem 2016; 88:4036-40. [PMID: 26954108 DOI: 10.1021/acs.analchem.6b00365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biosensing within complex biological samples requires a sensor that can compensate for fluctuations in the signal due to changing environmental conditions and nonspecific binding events. To achieve this, we developed a novel self-referenced biosensor consisting of two almost identically sized dye-doped polystyrene microspheres placed on adjacent holes at the tip of a microstructured optical fiber (MOF). Here self-referenced biosensing is demonstrated with the detection of Neutravidin in undiluted, immunoglobulin-deprived human serum samples. The MOF allows remote excitation and collection of the whispering gallery modes (WGMs) of the microspheres while also providing a robust and easy to manipulate dip-sensing platform. By taking advantage of surface functionalization techniques, one microsphere acts as a dynamic reference, compensating for nonspecific binding events and changes in the environment (such as refractive index and temperature), while the other microsphere is functionalized to detect a specific interaction. The almost identical size allows the two spheres to have virtually identical refractive index sensitivity and surface area, while still having discernible WGM spectra. This ensures their responses to nonspecific binding and environmental changes are almost identical, whereby any specific changes, such as binding events, can be monitored via the relative movement between the two sets of WGM peaks.
Collapse
Affiliation(s)
| | | | | | | | - Stephen J Nicholls
- South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide , Adelaide SA 5000, Australia
| | | | - Tanya M Monro
- University of South Australia , Adelaide SA 5000, Australia
| |
Collapse
|
41
|
Couture M, Ray KK, Poirier-Richard HP, Crofton A, Masson JF. 96-Well Plasmonic Sensing with Nanohole Arrays. ACS Sens 2016. [DOI: 10.1021/acssensors.5b00280] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maxime Couture
- Département
de Chimie and ‡Centre for Self-Assembled Chemical Structures
(CSACS), Université de Montréal, CP. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Korak Kumar Ray
- Département
de Chimie and ‡Centre for Self-Assembled Chemical Structures
(CSACS), Université de Montréal, CP. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Hugo-Pierre Poirier-Richard
- Département
de Chimie and ‡Centre for Self-Assembled Chemical Structures
(CSACS), Université de Montréal, CP. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Anthony Crofton
- Département
de Chimie and ‡Centre for Self-Assembled Chemical Structures
(CSACS), Université de Montréal, CP. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Jean-Francois Masson
- Département
de Chimie and ‡Centre for Self-Assembled Chemical Structures
(CSACS), Université de Montréal, CP. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| |
Collapse
|
42
|
Yockell-Lelièvre H, Bukar N, Toulouse JL, Pelletier JN, Masson JF. Naked-eye nanobiosensor for therapeutic drug monitoring of methotrexate. Analyst 2016; 141:697-703. [DOI: 10.1039/c5an00996k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sensing of methotrexate at clinically-relevant concentrations was achieved with a plasmon-coupling assay.
Collapse
Affiliation(s)
| | - N. Bukar
- Département de chimie
- Université de Montréal
- Montreal
- Canada
| | - J. L. Toulouse
- Département de chimie
- Université de Montréal
- Montreal
- Canada
| | - J. N. Pelletier
- Département de chimie
- Université de Montréal
- Montreal
- Canada
- PROTEO
| | - J.-F. Masson
- Département de chimie
- Université de Montréal
- Montreal
- Canada
- Centre for self-assembled chemical structures (CSACS)
| |
Collapse
|
43
|
Ye H, Xia Y, Liu Z, Huang R, Su R, Qi W, Wang L, He Z. Dopamine-assisted deposition and zwitteration of hyaluronic acid for the nanoscale fabrication of low-fouling surfaces. J Mater Chem B 2016; 4:4084-4091. [DOI: 10.1039/c6tb01022a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study, we proposed a bioinspired approach for the deposition and zwitteration of hyaluronic acid (HA) with a reduced glutathione (GSH) to form a composite layer that functions as a low fouling coating.
Collapse
Affiliation(s)
- Huijun Ye
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Yinqiang Xia
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Renliang Huang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control
- School of Environmental Science and Engineering
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Libing Wang
- Research Center of Hunan Entry-Exit Inspection and Quarantine Bureau
- Changsha 410001
- P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| |
Collapse
|
44
|
François A, Zhi Y, Meldrum A. Whispering Gallery Mode Devices for Sensing and Biosensing. PHOTONIC MATERIALS FOR SENSING, BIOSENSING AND DISPLAY DEVICES 2016. [DOI: 10.1007/978-3-319-24990-2_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Kruis IC, Löwik DWPM, Boelens WC, van Hest JCM, Pruijn GJM. An integrated, peptide-based approach to site-specific protein immobilization for detection of biomolecular interactions. Analyst 2016; 141:5321-8. [DOI: 10.1039/c6an00154h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Site-specific immobilization of proteins on a biosensor surface, based on leucine zipper interactions.
Collapse
Affiliation(s)
- Ilmar C. Kruis
- Radboud University
- Department of Biomolecular Chemistry
- Institute for Molecules and Materials and Radboud Institute for Molecular Life Science
- Nijmegen
- The Netherlands
| | - Dennis W. P. M. Löwik
- Radboud University
- Department of Bio-organic Chemistry
- Institute for Molecules and Materials
- Nijmegen
- The Netherlands
| | - Wilbert C. Boelens
- Radboud University
- Department of Biomolecular Chemistry
- Institute for Molecules and Materials and Radboud Institute for Molecular Life Science
- Nijmegen
- The Netherlands
| | - Jan C. M. van Hest
- Radboud University
- Department of Bio-organic Chemistry
- Institute for Molecules and Materials
- Nijmegen
- The Netherlands
| | - Ger J. M. Pruijn
- Radboud University
- Department of Biomolecular Chemistry
- Institute for Molecules and Materials and Radboud Institute for Molecular Life Science
- Nijmegen
- The Netherlands
| |
Collapse
|
46
|
Label-free cytokine micro- and nano-biosensing towards personalized medicine of systemic inflammatory disorders. Adv Drug Deliv Rev 2015; 95:90-103. [PMID: 26408791 DOI: 10.1016/j.addr.2015.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/17/2015] [Accepted: 09/10/2015] [Indexed: 01/31/2023]
Abstract
Systemic inflammatory disorders resulting from infection, trauma, surgery, and severe disease conditions pose serious threats to human health leading to organ dysfunction, organ failure, and mortality. The highly complex and dynamic nature of the immune system experiencing acute inflammation makes immunomodulatory therapy blocking pro-inflammatory cytokines very challenging. Successful therapy requires the ability to determine appropriate anti-cytokine drugs to be delivered at a right dose in a timely manner. Label-free micro- and nano-biosensors hold the potential to overcome the current challenges, enabling cytokine-targeted treatments to be tailored according to the immune status of an individual host with their unique cytokine biomarker detection capabilities. This review studies the recent progress in label-free cytokine biosensors, summarizes their performances and potential merits, and discusses future directions for their advancements to meet challenges towards personalized anti-cytokine drug delivery.
Collapse
|
47
|
Crivianu-Gaita V, Aamer M, Posaratnanathan RT, Romaschin A, Thompson M. Acoustic wave biosensor for the detection of the breast and prostate cancer metastasis biomarker protein PTHrP. Biosens Bioelectron 2015; 78:92-99. [PMID: 26594891 DOI: 10.1016/j.bios.2015.11.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/02/2015] [Accepted: 11/10/2015] [Indexed: 01/15/2023]
Abstract
There are currently no biosensors that are able to reliably detect the process of cancer metastasis. We describe the first label-free real-time ultra-high frequency acoustic wave biosensor prototype capable of detecting the breast and prostate cancer metastasis biomarker, parathyroid hormone-related peptide (PTHrP). Two different linkers - 11-trichlorosilyl-undecanoic acid pentafluorophenyl ester (PFP) and S-(11-trichlorosilyl-undecanyl)-benzothiosulfonate (TUBTS) - were used to immobilize whole anti-PTHrP antibodies and Fab' fragments to surfaces as biorecognition elements. The biosensor surfaces were optimized using X-ray photoelectron spectroscopy (XPS) and the ultra-high frequency electromagnetic piezoelectric acoustic sensor (EMPAS). One optimized whole antibody-based surface (PFP/protein G'/whole antibodies/ethanolamine) and one optimized Fab' fragment-based surface (TUBTS/Fab' fragments) were tested as biosensors. It was determined that an in-line injection of bovine serum albumin prior to analyte injection yielded the most minimally fouling surfaces. Each surface was tested with no mass amplification and with sandwich-type secondary antibody mass amplification. The whole antibody-based mass-amplified biosensor yielded the lowest limit of detection (61 ng/mL), highest sensitivity, and a linear range from 61 ng/mL to 100 μg/mL. However, the Fab' fragment-based biosensor displayed better regenerability as a loss of ~20% of the initial analyte signal intensity was observed with each subsequent injection. The whole antibody-based biosensor was only capable of producing an analyte signal in the first injection.
Collapse
Affiliation(s)
| | - Mohamed Aamer
- Department of Chemistry, University of Toronto, Toronto, ON, Canada M5S 3H6
| | | | | | - Michael Thompson
- Department of Chemistry, University of Toronto, Toronto, ON, Canada M5S 3H6.
| |
Collapse
|
48
|
He J, Boegli M, Bruzas I, Lum W, Sagle L. Patterned Plasmonic Nanoparticle Arrays for Microfluidic and Multiplexed Biological Assays. Anal Chem 2015; 87:11407-14. [PMID: 26494412 DOI: 10.1021/acs.analchem.5b02870] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jie He
- Department of Chemistry,
College of Arts and Sciences, University of Cincinnati, 301 West
Clifton Court, Cincinnati, Ohio 45221-0172, United States
| | - Michelle Boegli
- Department of Chemistry,
College of Arts and Sciences, University of Cincinnati, 301 West
Clifton Court, Cincinnati, Ohio 45221-0172, United States
| | - Ian Bruzas
- Department of Chemistry,
College of Arts and Sciences, University of Cincinnati, 301 West
Clifton Court, Cincinnati, Ohio 45221-0172, United States
| | - William Lum
- Department of Chemistry,
College of Arts and Sciences, University of Cincinnati, 301 West
Clifton Court, Cincinnati, Ohio 45221-0172, United States
| | - Laura Sagle
- Department of Chemistry,
College of Arts and Sciences, University of Cincinnati, 301 West
Clifton Court, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
49
|
Microfluidic multiplex biochip based on a point-of-care electrochemical detection system for matrix metalloproteinases. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Ye H, Wang L, Huang R, Su R, Liu B, Qi W, He Z. Superior Antifouling Performance of a Zwitterionic Peptide Compared to an Amphiphilic, Non-Ionic Peptide. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22448-57. [PMID: 26407144 DOI: 10.1021/acsami.5b06500] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The aim of this study was to explore the influence of amphiphilic and zwitterionic structures on the resistance of protein adsorption to peptide self-assembled monolayers (SAMs) and gain insight into the associated antifouling mechanism. Two kinds of cysteine-terminated heptapeptides were studied. One peptide had alternating hydrophobic and hydrophilic residues with an amphiphilic sequence of CYSYSYS. The other peptide (CRERERE) was zwitterionic. Both peptides were covalently attached onto gold substrates via gold-thiol bond formation. Surface plasmon resonance analysis results showed that both peptide SAMs had ultralow or low protein adsorption amounts of 1.97-11.78 ng/cm2 in the presence of single proteins. The zwitterionic peptide showed relatively higher antifouling ability with single proteins and natural complex protein media. We performed molecular dynamics simulations to understand their respective antifouling behaviors. The results indicated that strong surface hydration of peptide SAMs contributes to fouling resistance by impeding interactions with proteins. Compared to the CYSYSYS peptide, more water molecules were predicted to form hydrogen-bonding interactions with the zwitterionic CRERERE peptide, which is in agreement with the antifouling test results. These findings reveal a clear relation between peptide structures and resistance to protein adsorption, facilitating the development of novel peptide-containing antifouling materials.
Collapse
Affiliation(s)
- Huijun Ye
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Libing Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Renliang Huang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University , Tianjin 300072, People's Republic of China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Boshi Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| |
Collapse
|