1
|
Hatvany JB, Olsen ELP, Gallagher ES. Characterizing Theta-Emitter Generation for Use in Microdroplet Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39387805 DOI: 10.1021/jasms.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Theta emitters are useful for generating microdroplets for rapid-mixing reactions. Theta emitters are glass tips containing an internal septum that separates two channels. When used for mixing, the solutions from each channel are sprayed with mixing occurring during electrospray ionization (ESI) with reaction times on the order of microseconds to milliseconds. Theta emitters of increasing size cause the formation of ESI droplets of increasing size, which require longer times for desolvation and increase droplet lifetimes. Droplets with longer lifetimes provide more time for mixing and allow for increased reaction times prior to desolvation. Because theta emitters are typically produced in-house, there is a need to consistently pull tips with a variety of sizes. Herein, we characterize the effect of pull parameters on the generation of distinct-sized theta emitters using a P-1000 tip puller. Of the examined parameters, the velocity value had the largest impact on the channel diameter. This work also compares the effect of pulling parameters between single-channel and theta capillaries to examine how the internal septum in theta capillaries affects tip pulling. We demonstrate the utility of using theta emitters with different sizes for establishing distinct reaction times. Finally, we offer suggestions on producing theta emitters of various sizes while maintaining high repeatability. Through this work, we provide resources to establish a versatile and inexpensive rapid-mixing system for probing biologically relevant systems and performing rapid derivatizations.
Collapse
Affiliation(s)
- Jacob B Hatvany
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Emma-Le P Olsen
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Elyssia S Gallagher
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
2
|
Fu L, Ellin NR, Pizzala NJ, Baez Bolivar EG, McLuckey SA. Digital Ion Trap Isolation and Mass Analysis of Macromolecular Analytes with Multiply Charged Ion Attachment. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2237-2247. [PMID: 39158841 DOI: 10.1021/jasms.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Multiply charged ions produced by electrospray ionization (ESI) of heterogeneous mixtures of macromolecular analytes under native conditions are typically confined to relatively narrow ranges of mass-to-charge (m/z) ratio, often with extensive overlap. This scenario makes charge and mass assignments extremely challenging, particularly when individual charge states are unresolved. An ion/ion reaction strategy involving multiply charged ion attachment (MIA) to the mixture components in a narrow range of m/z can facilitate charge and mass assignment. In MIA operation, multiply charged reagent ions are attached to the analyte ions of opposite polarity to provide large m/z displacements resulting from both large changes in mass and charge. However, charge reduction of the high m/z ions initially generated under native ESI conditions requires the ability to isolate high m/z ions and to analyze even higher m/z product ions. Digital ion trap (DIT) operation offers means for both high m/z ion isolation and high m/z mass analysis, in addition to providing conditions for the reaction of oppositely charged ions. The feasibility of conducting MIA experiments in a DIT that takes advantage of high m/z ion operation is demonstrated here using a tandem 2D-3D DIT instrument. Proof-of-concept MIA experiments with cations derived from β-galactosidase using the 20- charge state of human serum immunoglobulin G (IgG, ∼149 kDa) as the reagent anion are described. MIA experiments involving mixtures of ions derived from the E. coli. ribosome are also described. For example, three components in a mixture of 70S particles (>2.2 MDa) were resolved and assigned with masses and charges following an MIA experiment involving the 20- charge state of human serum IgG.
Collapse
Affiliation(s)
- Liangxuan Fu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Nicholas R Ellin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Nicolas J Pizzala
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Erick G Baez Bolivar
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
3
|
Fu L, Eakins GS, Carlsen MS, McLuckey SA. Single-Frequency Ion Parking in a Digital 3D Quadrupole Ion Trap. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2024; 503:117282. [PMID: 39006163 PMCID: PMC11238766 DOI: 10.1016/j.ijms.2024.117282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Single-frequency ion parking, a useful technique in electrospray mass spectrometry (ESI-MS), involves gas-phase charge-reduction ion/ion reactions in an electrodynamic ion trap in conjunction with the application of a supplementary oscillatory voltage to selectively inhibit the reaction rate of an ion of interest. The ion parking process provides a means for limiting the extent of charge reduction in a controlled fashion and allows for ions distributed over a range of charge states to be concentrated into fewer charge states (a single charge state under optimal conditions). As charge reduction inherently leads to an increase in the mass-to-charge (m/z) ratio of the ions, it is important that the means for storing and analyzing ions be able to accommodate ions of high m/z ratios. The so-called 'digital ion trap' (DIT), which uses a digital waveform as the trapping RF, has been demonstrated to be well-suited for the analysis of high m/z ions by taking advantage of its ability to manipulate the waveform frequency. In this study, the feasibility of ion parking in a 3D quadrupole ion trap operated as a DIT using a slow-amplitude single-frequency sine-wave for selective inhibition of an ion/ion reaction is demonstrated. A recently described model that describes ion parking has been adjusted for the DIT case and is used to interpret experimental data for proteins ranging in mass from 8600 Da to 467,000 Da.
Collapse
Affiliation(s)
- Liangxuan Fu
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| | - Gregory S Eakins
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| | - Mark S Carlsen
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| |
Collapse
|
4
|
Pizzala NJ, Bhanot JS, Carrick IJ, Dziekonski ET, McLuckey SA. Ion parking in native mass spectrometry. Analyst 2024; 149:2966-2977. [PMID: 38600834 PMCID: PMC11089522 DOI: 10.1039/d4an00242c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
A forced, damped harmonic oscillator model for gas-phase ion parking using single-frequency resonance excitation is described and applied to high-mass ions of relevance to native mass spectrometry. Experimental data are provided to illustrate key findings revealed by the modelling. These include: (i) ion secular frequency spacings between adjacent charge states of a given protein are essentially constant and decrease with the mass of the protein (ii) the mechanism for ion parking of high mass ions is the separation of the ion clouds of the oppositely-charged ions with much less influence from an increase in the relative ion velocity due to resonance excitation, (iii) the size of the parked ion cloud ultimately limits ion parking at high m/z ratio, and (iv) the extent of ion parking of off-target ions is highly sensitive to the bath gas pressure in the ion trap. The model is applied to ions of 17 kDa, 467 kDa, and 2 MDa while experimental data are also provided for ions of horse skeletal muscle myoglobin (≈17 kDa) and β-galactosidase (≈467 kDa). The model predicts and data show that it is possible to effect ion parking on a 17 kDa protein to the 1+ charge state under trapping conditions that are readily accessible with commercially available ion traps. It is also possible to park β-galactosidase efficiently to a roughly equivalent m/z ratio (i.e., the 26+ charge state) under the same trapping conditions. However, as charge states decrease, analyte ion cloud sizes become too large to allow for efficient ion trapping. The model allows for a semi-quantitative prediction of ion trapping performance as a function of ion trapping, resonance excitation, and pressure conditions.
Collapse
Affiliation(s)
- Nicolas J Pizzala
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Jay S Bhanot
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Ian J Carrick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Eric T Dziekonski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| |
Collapse
|
5
|
Shiu RT, Prabhu GRD, Elpa DP, Urban PL. Observation of Protein Unfolding during pH Ramp Evoked by Lipase-Catalyzed Ester Hydrolysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2308-2315. [PMID: 37620995 DOI: 10.1021/jasms.3c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Studies of protein folding often involve offline experimental methods such as titrating protein samples with denaturants or equilibrating them in the presence of denaturants. Here, we demonstrate an online analytical approach in which the protein structure is perturbed by a pH ramp evoked by immobilized lipase-catalyzed ester hydrolysis. Changes in the tertiary structure of the protein in response to a pH ramp (from approximately 6.3 to 2.8) are monitored using electrospray ionization mass spectrometry and spectrofluorometry. Interestingly, we discovered a side reaction of ammonium and formate leading to the production of cyanide that occurred during the ionization process. We also found that only certain protein analytes were bound to the formed cyanide species. Nevertheless, this problem was readily overcome by carefully selecting a specific ester substrate. Overall, the alterations in the charge-state distribution and fluorescence intensity─caused by the lipase-induced pH ramp─reveal conformational transitions in different proteins. In line with previous reports, the acid-induced denaturation of holo-myoglobin occurs through a two-step mechanism, which is supported by identification of protein-unfolding intermediates and the loss of noncovalent protein ligand (heme). The results─obtained using the developed catalytic method─are also consistent with the results of equilibrium-based experiments, while sample preparation steps are substantially reduced. The proposed approach simplifies the identification of the pH range that has the greatest impact on the protein structure. Thus, it has the potential to be a useful tool for studying protein conformational transitions in the course of pH changes.
Collapse
Affiliation(s)
- Ruei-Tzung Shiu
- Department of Chemistry, National Tsing Hua University 101, Section 2, Kuang-Fu Rd, Hsinchu 300044, Taiwan
| | - Gurpur Rakesh D Prabhu
- Department of Chemistry, National Tsing Hua University 101, Section 2, Kuang-Fu Rd, Hsinchu 300044, Taiwan
| | - Decibel P Elpa
- Department of Chemistry, National Tsing Hua University 101, Section 2, Kuang-Fu Rd, Hsinchu 300044, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University 101, Section 2, Kuang-Fu Rd, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University 101, Section 2, Kuang-Fu Rd, Hsinchu 300044, Taiwan
| |
Collapse
|
6
|
Konermann L, Liu Z, Haidar Y, Willans MJ, Bainbridge NA. On the Chemistry of Aqueous Ammonium Acetate Droplets during Native Electrospray Ionization Mass Spectrometry. Anal Chem 2023; 95:13957-13966. [PMID: 37669319 DOI: 10.1021/acs.analchem.3c02546] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Ammonium acetate (NH4Ac) is a widely used solvent additive in native electrospray ionization (ESI) mass spectrometry. NH4Ac can undergo proton transfer to form ammonia and acetic acid (NH4+ + Ac- → NH3 + HAc). The volatility of these products ensures that electrosprayed ions are free of undesired adducts. NH4Ac dissolution in water yields pH 7, providing "physiological" conditions. However, NH4Ac is not a buffer at pH 7 because NH4+ and Ac- are not a conjugate acid/base pair (Konermann, L. J. Am. Soc. Mass Spectrom. 2017, 28, 1827-1835.). In native ESI, it is desirable that analytes experience physiological conditions not only in bulk solution but also while they reside in ESI droplets. Little is known about the internal milieu of NH4Ac-containing ESI droplets. The current work explored the acid/base chemistry of such droplets, starting from a pH 7 analyte solution. We used a two-pronged approach involving evaporation experiments on bulk solutions under ESI-mimicking conditions, as well as molecular dynamics simulations using a newly developed algorithm that allows for proton transfer. Our results reveal that during droplet formation at the tip of the Taylor cone, electrolytically generated protons get neutralized by Ac-, making NH4+ the net charge carriers in the weakly acidic nascent droplets. During the subsequent evaporation, the droplets lose water as well as NH3 and HAc that were generated by proton transfer. NH3 departs more quickly because of its greater volatility, causing the accumulation of HAc. Together with residual Ac-, these HAc molecules form an acetate buffer that stabilizes the average droplet pH at 5.4 ± 0.1, as governed by the Henderson-Hasselbalch equation. The remarkable success of native ESI investigations in the literature implies that this pH drop by ∼1.6 units relative to the initially neutral analyte solution can be tolerated by most biomolecular analytes on the short time scale of the ESI process.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Zeyuan Liu
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Yousef Haidar
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Mathew J Willans
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Nicholas A Bainbridge
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
7
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
8
|
Martin LM, Konermann L. Sulfolane-Induced Supercharging of Electrosprayed Salt Clusters: An Experimental/Computational Perspective. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:486-496. [PMID: 33334096 DOI: 10.1021/jasms.0c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is well-known that supercharging agents (SCAs) such as sulfolane enhance the electrospray ionization (ESI) charge states of proteins, although the mechanistic origins of this effect remain contentious. Only very few studies have explored SCA effects on analytes other than proteins or peptides. This work examines how sulfolane affects electrosprayed NaI salt clusters. Such alkali metal halide clusters have played a key role for earlier ESI mechanistic studies, making them interesting targets for supercharging investigations. ESI of aqueous NaI solutions predominantly generated singly charged [NanI(n-1)]+ clusters. The addition of sulfolane resulted in abundant doubly charged [NanI(n-2)Sulfolanes]2+ species. These experimental data for the first time demonstrate that electrosprayed salt clusters can undergo supercharging. Molecular dynamics (MD) simulations of aqueous ESI nanodroplets containing Na+/I- with and without sulfolane were conducted to obtain atomistic insights into the supercharging mechanism. The simulations produced [NanIi]z+ and [NanIiSulfolanes]z+ clusters similar to those observed experimentally. The MD trajectories demonstrated that these clusters were released into the gas phase upon droplet evaporation to dryness, in line with the charged residue model. Sulfolane was found to evaporate much more slowly than water. This slow evaporation, in conjunction with the large dipole moment of sulfolane, resulted in electrostatic stabilization of the shrinking ESI droplets and the final clusters. Hence, charge-dipole stabilization causes the sulfolane-containing droplets and clusters to retain more charge, thereby providing the mechanistic foundation of salt cluster supercharging.
Collapse
Affiliation(s)
- Leanne M Martin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
9
|
Li M, Li H, Allen NR, Wang T, Li L, Schwartz J, Li A. Nested-channel for on-demand alternation between electrospray ionization regimes. Chem Sci 2020; 12:1907-1914. [PMID: 34163954 PMCID: PMC8179270 DOI: 10.1039/d0sc06221a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 11/21/2022] Open
Abstract
On-demand electrospray ionization from different liquid channels in the same emitter was realized using filamented capillary and gas phase charge supply. The solution sub-channel was formed when back-filling solution to the emitter tip by capillary action along the filament. Gas phase charge carriers were used to trigger electrospray ionization from the solution meniscus at the tip. The meniscus at the tip opening may be fully filled or partially empty to generate electrospray ionization in main-channel regime and sub-channel regime, respectively. For emitters with 4 μm tip opening, the two nested electrospray (nested-ESI) channels accommodated ESI flow rates ranging from 50 pL min-1 to 150 nL min-1. The platform enabled on-demand regime alternations within one sample run, in which the sub-channel regime generated smaller charged droplets. Ionization efficiencies for saccharides, glycopeptide, and proteins were enhanced in the sub-channel regime. Non-specific salt adducts were reduced and identified by regime alternation. Surprisingly, the sub-channel regime produced more uniform responses for a peptide mixture whose relative ionization efficiencies were insensitive to ESI conditions in previous picoelectrospray study. The nested channels also allowed effective washing of emitter tip for multiple sampling and analysis operations.
Collapse
Affiliation(s)
- Mengtian Li
- Department of Chemistry, University of New Hampshire 23 Academic Way Durham NH 03824 USA
| | - Huishan Li
- Department of Chemistry, University of New Hampshire 23 Academic Way Durham NH 03824 USA
| | - Nicholas R Allen
- Department of Chemistry, University of New Hampshire 23 Academic Way Durham NH 03824 USA
| | - Taoqing Wang
- Department of Chemistry, University of New Hampshire 23 Academic Way Durham NH 03824 USA
| | - Linfan Li
- Thermo Fisher Scientific 355 River Oaks Pkwy San Jose CA 95134 USA
| | - Jae Schwartz
- Thermo Fisher Scientific 355 River Oaks Pkwy San Jose CA 95134 USA
| | - Anyin Li
- Department of Chemistry, University of New Hampshire 23 Academic Way Durham NH 03824 USA
| |
Collapse
|
10
|
Prabhu GRD, Ponnusamy VK, Witek HA, Urban PL. Sample Flow Rate Scan in Electrospray Ionization Mass Spectrometry Reveals Alterations in Protein Charge State Distribution. Anal Chem 2020; 92:13042-13049. [PMID: 32893617 DOI: 10.1021/acs.analchem.0c01945] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sample flow rate is one of the parameters that influence the sensitivity of electrospray ionization (ESI) mass spectrometry. By varying the sample flow rate, initial droplets of different sizes can be generated. Protein molecules in small droplets may form gas-phase ions earlier than the ones in large droplets. Here, we have systematically studied the influence of sample flow rate on the ESI charge state distributions (CSDs) of model proteins. A dedicated programmable sample flow rate scanner was used to infuse protein samples at different flow rates into a mass spectrometer. The synergistic influence of sample flow rate and various electrolytes (ammonium acetate, ammonium bicarbonate, ammonium formate, and piperidine) was studied. Significant alterations to the CSDs with increasing flow rate were observed. For example, in the presence of ammonium acetate, at low flow rates, lower charge states of proteins showed high intensities, while at high flow rates, ions related to higher charge states of proteins dominated the spectra. On the other hand, in the presence of piperidine, a significant reduction in the ion currents of all charge states was observed during the flow rate scan. Our observations suggest that at low flow rates the protein molecules follow a charged residue model of ionization mechanism, and at high flow rates-due to structural changes in protein molecules in large ESI droplets-the charged residue and chain ejection models can possibly coexist. We propose the use of sample flow rate scan as a way to reveal the influence of flow rate on the CSDs of the studied proteins.
Collapse
Affiliation(s)
- Gurpur Rakesh D Prabhu
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan.,Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry & Research Center for Environmental Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
| | - Henryk A Witek
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan.,Center for Emergent Functional Matter Science, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| |
Collapse
|
11
|
Yoder N, Jalali-Yazdi F, Noreng S, Houser A, Baconguis I, Gouaux E. Light-coupled cryo-plunger for time-resolved cryo-EM. J Struct Biol 2020; 212:107624. [PMID: 32950604 DOI: 10.1016/j.jsb.2020.107624] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/26/2022]
Abstract
Proteins are dynamic molecules that can undergo rapid conformational rearrangements in response to stimuli. These structural changes are often critical to protein function, and thus elucidating time-dependent conformational landscapes has been a long-standing goal of structural biology. To harness the power of single particle cryo-EM methods to enable 'time-resolved' structure determination, we have developed a light-coupled cryo-plunger that pairs flash-photolysis of caged ligands with rapid sample vitrification. The 'flash-plunger' consists of a high-power ultraviolet LED coupled with focusing optics and a motorized linear actuator, enabling the user to immobilize protein targets in vitreous ice within a programmable time window - as short as tens of milliseconds - after stimulus delivery. The flash-plunger is a simple, inexpensive and flexible tool to explore short-lived conformational states previously unobtainable by conventional sample preparation methods.
Collapse
Affiliation(s)
- Nate Yoder
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Farzad Jalali-Yazdi
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sigrid Noreng
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alexandra Houser
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Isabelle Baconguis
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Howard Hughes Medical Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
12
|
Miller CF, Burris BJ, Badu-Tawiah AK. Spray Mechanism of Contained-Electrospray Ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1499-1508. [PMID: 32407083 DOI: 10.1021/jasms.0c00044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Analytical characteristics of contained electrospray ionization (ESI) are summarized in terms of its potential to modify the analyte solution during the stages of droplet formation to provide opportunities to generate native versus denatured biomolecular gas-phase ions, without the need for bulk-phase analyte modifications. The real-time modification of the charged microdroplets occurs in a cavity that is included in the outlet of the contained-ESI ion source. Close examination of the inside of the cavity using a high-speed camera revealed the formation of discrete droplets as well as thin liquid films in the droplets wake. When operated at 20 psi N2 pressure, the droplets were observed to move at an average speed of 8 mm/s providing ∼1 s mixing time in a 10 mm cavity length. Evidence is provided for the presence of highly reactive charged droplets based on myoglobin charge state distribution, apo-myoglobin contents, and ion mobility drift time profiles under different spray conditions. Mechanistic insights for the capture of vapor-phase reagents and droplet dynamics as influenced by different operational modes are also described.
Collapse
Affiliation(s)
- Colbert F Miller
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Benjamin J Burris
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
13
|
Aliyari E, Konermann L. Formation of Gaseous Proteins via the Ion Evaporation Model (IEM) in Electrospray Mass Spectrometry. Anal Chem 2020; 92:10807-10814. [DOI: 10.1021/acs.analchem.0c02290] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Elnaz Aliyari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
14
|
Feng L, Gong X, Song J, Zhai R, Huang Z, Jiang Y, Fang X, Dai X. Strong Acid Anions Significantly Increasing the Charge State of Proteins during Electrospray Ionization. Anal Chem 2020; 92:1770-1779. [PMID: 31769658 DOI: 10.1021/acs.analchem.9b03416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulation of protein's charge state in electrospray is of great importance to the analysis of proteins. Different methods have been developed so far to increase the charge state of proteins. In this work, we investigated the influence of different anions on the charge state of proteins. Both strong acid anions and weak acid anions were taken into consideration. The results showed that the presence of 5 mM strong acid anions in acidic solutions could significantly increase the charge state of proteins. In comparison, weak acid anions with the same concentration in solution had little impact on the charge state of proteins. The species of the cations in the samples had very limited influence on the charge state. The presence of a certain amount of acid in sample solution was critical to the effect of strong acid anions. Almost no increase of the charge state was observed when no acid was added to the samples. However, remarkable increase of the charge state of myoglobin (Mb) was observed when 0.001% (v/v) acetic acid (HAc) was added to the sample together with 5 mM sodium chloride (NaCl). A higher concentration of acid in samples would further enhance the effect of strong acid anions on the increase of the charge state. Further investigations into the mechanism revealed that the effect of the strong acid anions on the charge state of proteins was based on the unfolding of the protein molecules during electrospray ionization (ESI). The interactions among H+, anions, and protein molecules were so strong that it caused the unfolding of protein molecules and resulted in the increasing of proteins' charge states. The key factor that made strong acid anions and weak acid anions different in the results was the hydrolysis of the weak acid anions in acidic solutions. The present work furthers our understanding about electrospray, as well as the regulation of protein charge state. The presence of strong acid anions in acidic solutions can significantly influence the charge state of proteins in electrospray. Attention should be paid to this when regulating the charge state of proteins.
Collapse
Affiliation(s)
- Lulu Feng
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Xiaoyun Gong
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Jiafeng Song
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Rui Zhai
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Zejian Huang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - You Jiang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Xiang Fang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Xinhua Dai
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| |
Collapse
|
15
|
Li J, Zheng Y, Zhao J, Austin DE, Zhang Z. Matrix-assisted nanoelectrospray mass spectrometry for soft ionization of metal( i)–protein complexes. Analyst 2020; 145:1646-1656. [DOI: 10.1039/c9an02117e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal ions play significant roles in biological processes, and investigation of metal–protein interactions provides a basis to understand the functions of metal ions in such systems.
Collapse
Affiliation(s)
- Jin Li
- School of Chemistry and Chemical Engineering
- Xi'an Shiyou University
- Xi'an 710065
- China
| | - Yajun Zheng
- School of Chemistry and Chemical Engineering
- Xi'an Shiyou University
- Xi'an 710065
- China
| | - Jia Zhao
- School of Chemistry and Chemical Engineering
- Xi'an Shiyou University
- Xi'an 710065
- China
| | - Daniel E. Austin
- Department of Chemistry and Biochemistry
- Brigham Young University
- Provo
- USA
| | - Zhiping Zhang
- School of Chemistry and Chemical Engineering
- Xi'an Shiyou University
- Xi'an 710065
- China
| |
Collapse
|
16
|
Lawal RO, Donnarumma F, Murray KK. Electrospray Photochemical Oxidation of Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2196-2199. [PMID: 31489562 PMCID: PMC6832858 DOI: 10.1007/s13361-019-02313-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/18/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Photooxidation of peptides and proteins by pulsed ultraviolet laser irradiation of an electrospray in the ion source of a mass spectrometer was demonstrated. A 193-nm excimer laser at 1.5-mJ pulse energy was focused with a cylindrical lens at the exit of a nanoelectrospray capillary and ions were sampled into a quadrupole time-of-flight mass spectrometer. A solution containing a peptide or protein and hydrogen peroxide was infused into the spray at a flow rate of 1 μL/min using a syringe pump. The laser creates OH radicals directly in the spray which modify biomolecules within the spray droplet. These results indicate that photochemical oxidation of proteins can be initiated directly within electrospray droplets and detected by mass spectrometry.
Collapse
Affiliation(s)
- Remilekun O Lawal
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
17
|
Overcharging Effect in Electrospray Ionization Mass Spectra of Daunomycin-Tuftsin Bioconjugates. Molecules 2019; 24:molecules24162981. [PMID: 31426442 PMCID: PMC6720970 DOI: 10.3390/molecules24162981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
Peptide-based small molecule drug conjugates for targeted tumor therapy are currently in the focus of intensive research. Anthracyclines, like daunomycin, are commonly used anticancer drug molecules and are also often applied in peptide-drug conjugates. However, lability of the O-glycosidic bond during electrospray ionization mass spectrometric analysis hinders the analytical characterization of the constructs. “Overprotonation” can occur if daunomycin is linked to positively charged peptide carriers, like tuftsin derivatives. In these molecules, the high number of positive charges enhances the in-source fragmentation significantly, leading to complex mass spectra composed of mainly fragment ions. Therefore, we investigated different novel tuftsin-daunomycin conjugates to find an appropriate condition for mass spectrometric detection. Our results showed that shifting the charge states to lower charges helped to keep ions intact. In this way, a clear spectrum could be obtained containing intact protonated molecules only. Shifting of the protonation states to lower charges could be achieved with the use of appropriate neutral volatile buffers and with tuning the ion source parameters.
Collapse
|
18
|
Wang S, Xing T, Liu AP, He Z, Yan Y, Daly TJ, Li N. Simple Approach for Improved LC-MS Analysis of Protein Biopharmaceuticals via Modification of Desolvation Gas. Anal Chem 2019; 91:3156-3162. [PMID: 30682238 DOI: 10.1021/acs.analchem.8b05846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
LC-MS based analysis of protein biopharmaceuticals could benefit from improved data quality, which can subsequently lead to improved drug characterization with higher confidence and less ambiguity. In this study, we created a simple device to modify the desolvation gas on a Q-Exactive mass spectrometer and to demonstrate the utility in improving both peptide mapping analysis and intact mass analysis, the two most routinely and widely applied LC-MS techniques in protein biopharmaceutical characterization. By modifying the desolvation gas with acid vapor from propionic acid (PA) and isopropanol (IPA), the ion suppression effects from trifluoroacetic acid (TFA) in a typical peptide mapping method can be effectively mitigated, thus leading to improved MS sensitivity. By modifying the desolvation gas with base vapor from triethylamine (TEA), the charge reduction effect can be achieved and utilized to improve the spectral quality from intact mass analysis of protein biopharmaceuticals. The approach and device described in this work suggests a low-cost and practical solution to improve the LC-MS characterization of protein biopharmaceuticals, which has the potential to be widely implemented in biopharmaceutical analytical laboratories.
Collapse
Affiliation(s)
- Shunhai Wang
- Analytical Chemistry Group , Regeneron Pharmaceuticals Inc. , 777 Old Saw Mill River Road , Tarrytown , New York 10591-6707 , United States
| | - Tao Xing
- Analytical Chemistry Group , Regeneron Pharmaceuticals Inc. , 777 Old Saw Mill River Road , Tarrytown , New York 10591-6707 , United States
| | - Anita P Liu
- Analytical Chemistry Group , Regeneron Pharmaceuticals Inc. , 777 Old Saw Mill River Road , Tarrytown , New York 10591-6707 , United States
| | - Zehong He
- Analytical Chemistry Group , Regeneron Pharmaceuticals Inc. , 777 Old Saw Mill River Road , Tarrytown , New York 10591-6707 , United States
| | - Yuetian Yan
- Analytical Chemistry Group , Regeneron Pharmaceuticals Inc. , 777 Old Saw Mill River Road , Tarrytown , New York 10591-6707 , United States
| | - Thomas J Daly
- Analytical Chemistry Group , Regeneron Pharmaceuticals Inc. , 777 Old Saw Mill River Road , Tarrytown , New York 10591-6707 , United States
| | - Ning Li
- Analytical Chemistry Group , Regeneron Pharmaceuticals Inc. , 777 Old Saw Mill River Road , Tarrytown , New York 10591-6707 , United States
| |
Collapse
|
19
|
Gong X, Li C, Zhai R, Xie J, Jiang Y, Fang X. Supercharging of Proteins by Salts during Polarity Reversed Nano-Electrospray Ionization. Anal Chem 2019; 91:1826-1837. [PMID: 30620564 DOI: 10.1021/acs.analchem.8b02759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Supercharging is beneficial in many ways to the analysis of proteins by mass spectrometry (MS). In this work, a novel supercharging method was developed. It made use of our previously developed ionization technique: namely, polarity reversed nanoelectrospray ionization (PR-nESI) for the ionization of proteins. Supercharging of proteins was achieved by just adding 1-10 mM of a salt to the sample, such as sodium chloride (NaCl). The charge state of proteins obtained by our method was significantly higher than that by nano-ESI with 1% (v/v) acetic acid (HAc). Different kinds of salts were investigated. Salts with strong acid anions were capable of supercharging proteins, including chlorides, bromides, iodides, and nitrates. The signal intensity and signal to noise ratio ( S/ N) of proteins were increased at the same time. Phosphates were also found to have a supercharging effect, due to the fact that phosphoric acid was a medium-strong acid. In comparison, salts with weak acid anions had no supercharging effect, such as carbonates, sulfides, acetates, and formates. The species of the salt anion was critical to the supercharging effect, while the species of the salt cation showed little influence on the supercharging effect. Investigations were made into the mechanism of our method. The supercharging effect was caused by interactions between protein molecules and salt anions, as well as the influence of protons. The present work offered us an alternative way for the supercharging of proteins. The use of common salts for supercharging made the procedure more convenient. The concentration of salts needed for supercharging was much lower than those conventionally used for supercharging reagents. Taking into consideration the fact that many biological samples are buffered with phosphates and chlorides, these samples could be directly supercharged by our method without any additional additives. Furthermore, as many salts are nontoxic and can easily be found in a chemical laboratory, the use of salts for supercharging would be a much more practical and economical choice. In addition, the present work also furthered our understandings about the mechanism of supercharging, as well as electrospray.
Collapse
Affiliation(s)
- Xiaoyun Gong
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Chang Li
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Rui Zhai
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Jie Xie
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - You Jiang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Xiang Fang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| |
Collapse
|
20
|
Konermann L, Metwally H, Duez Q, Peters I. Charging and supercharging of proteins for mass spectrometry: recent insights into the mechanisms of electrospray ionization. Analyst 2019; 144:6157-6171. [DOI: 10.1039/c9an01201j] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Molecular dynamics simulations have uncovered mechanistic details of the protein ESI process under various experimental conditions.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Haidy Metwally
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Quentin Duez
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Insa Peters
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| |
Collapse
|
21
|
Kostyukevich Y, Acter T, Zherebker A, Ahmed A, Kim S, Nikolaev E. Hydrogen/deuterium exchange in mass spectrometry. MASS SPECTROMETRY REVIEWS 2018; 37:811-853. [PMID: 29603316 DOI: 10.1002/mas.21565] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/22/2018] [Accepted: 03/08/2018] [Indexed: 05/22/2023]
Abstract
The isotopic exchange approach is in use since the first observation of such reactions in 1933 by Lewis. This approach allows the investigation of the pathways of chemical and biochemical reactions, determination of structure, composition, and conformation of molecules. Mass spectrometry has now become one of the most important analytical tools for the monitoring of the isotopic exchange reactions. Investigation of conformational dynamics of proteins, quantitative measurements, obtaining chemical, and structural information about individual compounds of the complex natural mixtures are mainly based on the use of isotope exchange in combination with high resolution mass spectrometry. The most important reaction is the Hydrogen/Deuterium exchange, which is mainly performed in the solution. Recently we have developed the approach allowing performing of the Hydrogen/Deuterium reaction on-line directly in the ionization source under atmospheric pressure. Such approach simplifies the sample preparation and can accelerate the exchange reaction so that certain hydrogens that are considered as non-labile will also participate in the exchange. The use of in-ionization source H/D exchange in modern mass spectrometry for structural elucidation of molecules serves as the basic theme in this review. We will focus on the mechanisms of the isotopic exchange reactions and on the application of in-ESI, in-APCI, and in-APPI source Hydrogen/Deuterium exchange for the investigation of petroleum, natural organic matter, oligosaccharides, and proteins including protein-protein complexes. The simple scenario for adaptation of H/D exchange reactions into mass spectrometric method is also highlighted along with a couple of examples collected from previous studies.
Collapse
Affiliation(s)
- Yury Kostyukevich
- Skolkovo Institute of Science and Technology, Skolkovo, Russian Federation
- Institute for Energy Problems of Chemical Physics Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow Region, Russia
| | - Thamina Acter
- Department of Chemistry, Kyungpook National University, Daegu, Republic of Korea
| | - Alexander Zherebker
- Skolkovo Institute of Science and Technology, Skolkovo, Russian Federation
- Institute for Energy Problems of Chemical Physics Russian Academy of Sciences, Moscow, Russia
| | - Arif Ahmed
- Department of Chemistry, Kyungpook National University, Daegu, Republic of Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, Republic of Korea
- Green Nano Center, Kyungpook National University, Daegu, Republic of Korea
| | - Eugene Nikolaev
- Skolkovo Institute of Science and Technology, Skolkovo, Russian Federation
- Institute for Energy Problems of Chemical Physics Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow Region, Russia
| |
Collapse
|
22
|
Rahman MM, Chen LC. Analytical characteristics of nano-electrospray operated under super-atmospheric pressure. Anal Chim Acta 2018; 1021:78-84. [DOI: 10.1016/j.aca.2018.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 10/17/2022]
|
23
|
Wang H, Yong G, Brown SL, Lee HE, Zenaidee MA, Supuran CT, Donald WA. Supercharging protein ions in native mass spectrometry using theta capillary nanoelectrospray ionization mass spectrometry and cyclic alkylcarbonates. Anal Chim Acta 2018; 1003:1-9. [DOI: 10.1016/j.aca.2017.11.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 11/25/2017] [Indexed: 12/27/2022]
|
24
|
Asakawa D, Mizuno H, Toyo'oka T. Gas-Phase Stability of Negatively Charged Organophosphate Metabolites Produced by Electrospray Ionization and Matrix-Assisted Laser Desorption/Ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2561-2568. [PMID: 28875264 DOI: 10.1007/s13361-017-1795-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 06/07/2023]
Abstract
The formation mechanisms of singly and multiply charged organophosphate metabolites by electrospray ionization (ESI) and their gas phase stabilities were investigated. Metabolites containing multiple phosphate groups, such as adenosine 5'-diphosphate (ADP), adenosine 5'-triphosphate (ATP), and D-myo-inositol-1,4,5-triphosphate (IP3) were observed as doubly deprotonated ions by negative-ion ESI mass spectrometry. Organophosphates with multiple negative charges were found to be unstable and often underwent loss of PO3-, although singly deprotonated analytes were stable. The presence of fragments due to the loss of PO3- in the negative-ion ESI mass spectra could result in the misinterpretation of analytical results. In contrast to ESI, matrix-assisted laser desorption ionization (MALDI) produced singly charged organophosphate metabolites with no associated fragmentation, since the singly charged anions are stable. The stability of an organophosphate metabolite in the gas phase strongly depends on its charge state. The fragmentations of multiply charged organophosphates were also investigated in detail through density functional theory calculations. Graphical Abstract.
Collapse
Affiliation(s)
- Daiki Asakawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, Umezono 1-1-1, Tsukuba, Ibaraki, 305-8568, Japan.
| | - Hajime Mizuno
- Laboratory of Analytical and Bioanalytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Toshimasa Toyo'oka
- Laboratory of Analytical and Bioanalytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
25
|
Zhao F, Matt SM, Bu J, Rehrauer OG, Ben-Amotz D, McLuckey SA. Joule Heating and Thermal Denaturation of Proteins in Nano-ESI Theta Tips. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2001-2010. [PMID: 28699064 PMCID: PMC5693742 DOI: 10.1007/s13361-017-1732-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 05/21/2023]
Abstract
Electro-osmotically induced Joule heating in theta tips and its effect on protein denaturation were investigated. Myoglobin, equine cytochrome c, bovine cytochrome c, and carbonic anhydrase II solutions were subjected to electro-osmosis in a theta tip and all of the proteins were denatured during the process. The extent of protein denaturation was found to increase with the applied square wave voltage and electrolyte concentration. The solution temperature at the end of a theta tip was measured directly by Raman spectroscopy and shown to increase with the square wave voltage, thereby demonstrating the effect of Joule heating through an independent method. The electro-osmosis of a solution comprised of myoglobin, bovine cytochrome c, and ubiquitin demonstrated that the magnitude of Joule heating that causes protein denaturation is positively correlated with protein melting temperature. This allows for a quick determination of a protein's relative thermal stability. This work establishes a fast, novel method for protein conformation manipulation prior to MS analysis and provides a temperature-controllable platform for the study of processes that take place in solution with direct coupling to mass spectrometry. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Feifei Zhao
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Sarah M Matt
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Jiexun Bu
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Owen G Rehrauer
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Dor Ben-Amotz
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA.
| |
Collapse
|
26
|
Konermann L. Addressing a Common Misconception: Ammonium Acetate as Neutral pH "Buffer" for Native Electrospray Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1827-1835. [PMID: 28710594 DOI: 10.1007/s13361-017-1739-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 05/12/2023]
Abstract
Native ESI-MS involves the transfer of intact proteins and biomolecular complexes from solution into the gas phase. One potential pitfall is the occurrence of pH-induced changes that can affect the analyte while it is still surrounded by solvent. Most native ESI-MS studies employ neutral aqueous ammonium acetate solutions. It is a widely perpetuated misconception that ammonium acetate buffers the analyte solution at neutral pH. By definition, a buffer consists of a weak acid and its conjugate weak base. The buffering range covers the weak acid pKa ± 1 pH unit. NH4+ and CH3-COO- are not a conjugate acid/base pair, which means that they do not constitute a buffer at pH 7. Dissolution of ammonium acetate salt in water results in pH 7, but this pH is highly labile. Ammonium acetate does provide buffering around pH 4.75 (the pKa of acetic acid) and around pH 9.25 (the pKa of ammonium). This implies that neutral ammonium acetate solutions electrosprayed in positive ion mode will likely undergo acidification down to pH 4.75 ± 1 in the ESI plume. Ammonium acetate nonetheless remains a useful additive for native ESI-MS. It is a volatile electrolyte that can mimic the solvation properties experienced by proteins under physiological conditions. Also, a drop from pH 7 to around pH 4.75 is less dramatic than the acidification that would take place in pure water. It is hoped that the habit of referring to pH 7 solutions as ammonium acetate "buffer" will disappear from the literature. Ammonium acetate "solution" should be used instead. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
27
|
Kostyukevich Y, Kononikhin A, Popov I, Nikolaev E. Thermal dissociation of ions limits the degree of the gas-phase H/D exchange at the atmospheric pressure. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:204-209. [PMID: 28152260 DOI: 10.1002/jms.3917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/18/2017] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
We present the application of the extended desolvating capillaries for increasing the degree of the gas-phase hydrogen/deuterium exchange reaction at atmospheric pressure. The use of the extended capillaries results in the increase of the time that ions spend in the high pressure region, what leads to the significant improvement of the efficiency of the reaction. For the small protein ubiquitin, it was observed that for the same temperature, the number of exchanges increases with the decrease of the charge state so that the lowest charge state can exchange twice the number of hydrogen than the highest one. With the increase of the temperature, the difference decreases, and eventually, the number of exchanges equalizes for all charge states. The value of this temperature and the corresponding number of exchanges depend on the geometric parameters of the capillary. Further increase of the temperature leads to the thermal dissociation of the protein ion. The observed b/y fragments are identical to those produced by collision-induced dissociation performed in the ion trap. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Y Kostyukevich
- Skolkovo Institute of Science and Technology, Novaya St., 100, Skolkovo, 143025, Russia
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Leninskij pr. 38 k.2, 119334, Moscow, Russia
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, 119334, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia
| | - A Kononikhin
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Leninskij pr. 38 k.2, 119334, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia
| | - I Popov
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, 119334, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia
| | - E Nikolaev
- Skolkovo Institute of Science and Technology, Novaya St., 100, Skolkovo, 143025, Russia
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Leninskij pr. 38 k.2, 119334, Moscow, Russia
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, 119334, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia
| |
Collapse
|
28
|
Karki S, Sistani H, Archer JJ, Shi F, Levis RJ. Isolating Protein Charge State Reduction in Electrospray Droplets Using Femtosecond Laser Vaporization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:470-478. [PMID: 28063091 DOI: 10.1007/s13361-016-1576-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Charge state distributions are measured using mass spectrometry for both native and denatured cytochrome c and myoglobin after laser vaporization from the solution state into an electrospray (ES) plume consisting of a series of solution additives differing in gas-phase basicity. The charge distribution depends on both the pH of the protein solution prior to laser vaporization and the gas-phase basicity of the solution additive employed in the ES solvent. Cytochrome c (myoglobin) prepared in solutions with pH of 7.0, 2.6, and 2.3 resulted in the average charge state distribution (Zavg) of 7.0 ± 0.1 (8.2 ± 0.1), 9.7 ± 0.2 (14.5 ± 0.3), and 11.6 ± 0.3 (16.4 ± 0.1), respectively, in ammonium formate ES solvent. The charge distribution shifted from higher charge states to lower charge states when the ES solvent contained amines additives with higher gas-phase basicity. In the case of triethyl ammonium formate, Zavg of cytochrome c (myoglobin) prepared in solutions with pH of 7.0, 2.6, and 2.3 decreased to 4.9 (5.7), 7.4 ± 0.2 (9.6 ± 0.3), and 7.9 ± 0.3 (9.8 ± 0.2), respectively. The detection of a charge state distribution corresponding to folded protein after laser vaporized, acid-denatured protein interacts with the ES solvent containing ammonium formate, ammonium acetate, triethyl ammonium formate, and triethyl ammonium acetate suggests that at least a part of protein population folds within the electrospray droplet on a millisecond timescale. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Santosh Karki
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | - Habiballah Sistani
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | - Jieutonne J Archer
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | - Fengjian Shi
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | - Robert J Levis
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
29
|
Investigating the structural transitions of proteins during dissolution by mass spectrometry. Talanta 2017; 164:418-426. [DOI: 10.1016/j.talanta.2016.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 11/17/2022]
|
30
|
Susa AC, Xia Z, Tang HYH, Tainer JA, Williams ER. Charging of Proteins in Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:332-340. [PMID: 27734326 PMCID: PMC5283922 DOI: 10.1007/s13361-016-1517-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 05/19/2023]
Abstract
Factors that influence the charging of protein ions formed by electrospray ionization from aqueous solutions in which proteins have native structures and function were investigated. Protein ions ranging in molecular weight from 12.3 to 79.7 kDa and pI values from 5.4 to 9.6 were formed from different solutions and reacted with volatile bases of gas-phase basicities higher than that of ammonia in the cell of a Fourier-transform ion cyclotron resonance mass spectrometer. The charge-state distribution of cytochrome c ions formed from aqueous ammonium or potassium acetate is the same. Moreover, ions formed from these two solutions do not undergo proton transfer to 2-fluoropyridine, which is 8 kcal/mol more basic than ammonia. These results provide compelling evidence that proton transfer between ammonia and protein ions does not limit protein ion charge in native electrospray ionization. Both circular dichroism and ion mobility measurements indicate that there are differences in conformations of proteins in pure water and aqueous ammonium acetate, and these differences can account for the difference in the extent of charging and proton-transfer reactivities of protein ions formed from these solutions. The extent of proton transfer of the protein ions with higher gas-phase basicity bases trends with how closely the protein ions are charged to the value predicted by the Rayleigh limit for spherical water droplets approximately the same size as the proteins. These results indicate that droplet charge limits protein ion charge in native mass spectrometry and are consistent with these ions being formed by the charged residue mechanism. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Anna C Susa
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | - Zijie Xia
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | - Henry Y H Tang
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.
| |
Collapse
|
31
|
Miller CF, Kulyk DS, Kim JW, Badu-Tawiah AK. Re-configurable, multi-mode contained-electrospray ionization for protein folding and unfolding on the millisecond time scale. Analyst 2017; 142:2152-2160. [DOI: 10.1039/c7an00362e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Contained-electrospray ionization enables online selection of protein charge states by a direct infusion of reactive vapors and liquids into charged micro-droplets.
Collapse
Affiliation(s)
- Colbert F. Miller
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Dmytro S. Kulyk
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Jongin W. Kim
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| | | |
Collapse
|
32
|
Mortensen DN, Williams ER. Electrothermal supercharging of proteins in native MS: effects of protein isoelectric point, buffer, and nanoESI-emitter tip size. Analyst 2016; 141:5598-606. [PMID: 27441318 PMCID: PMC5239670 DOI: 10.1039/c6an01380e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The extent of charging resulting from electrothermal supercharging for protein ions formed from various buffered aqueous solutions using nanoESI emitters with tip diameters between ∼1.5 μm and ∼310 nm is compared. Charging increases with decreasing tip size for proteins that are positively charged in solution but not for proteins that are negatively charged in solution. These results suggest that Coulombic attraction between positively charged protein molecules and the negatively charged glass surfaces in the tips of the emitters causes destabilization and even unfolding of proteins prior to nanoESI. Coulombic attraction to the negatively charged glass surfaces does not occur for negatively charged proteins and the extent of charging with electrothermal supercharging decreases with decreasing tip size. Smaller droplets are formed with smaller tips, and these droplets have shorter lifetimes for protein unfolding with electrothermal supercharging to occur prior to gaseous ion formation. Results from this study demonstrate simple principles to consider in order to optimize the extent of charging obtained with electrothermal supercharging, which should be useful for obtaining more structural information in tandem mass spectrometry.
Collapse
Affiliation(s)
- Daniel N Mortensen
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
| | | |
Collapse
|
33
|
Mortensen DN, Williams ER. Surface-Induced Protein Unfolding in Submicron Electrospray Emitters. Anal Chem 2016; 88:9662-9668. [PMID: 27615434 DOI: 10.1021/acs.analchem.6b02499] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The charging of protein ions formed by nanoelectrospray ionization (nanoESI) with tips that are between 1.5 μm and 250 nm in outer diameter is compared. More charging is obtained with the smaller tip sizes for proteins that have a net positive charge in solution, and additional high-charge-state distributions are often observed. A single charge-state distribution of holo-myoglobin ions is produced by nanoESI from a slightly acidified aqueous solution with the micron outer diameter tips, but some apo-myoglobin ions are produced with the submicron tips. In contrast, the charge-state distributions for proteins with a net negative charge in solution do not depend on tip size. Both the formation of high charge states and the appearance of higher-charge-state distributions, as well as the loss of the heme group from myoglobin, indicate that a fraction of the protein population is unfolding with the smaller tips. The increased charging with the smaller tip sizes for proteins with a net positive charge but not for proteins with a net negative charge indicates that the unfolding occurs prior to nanoelectrospray ionization as a result of Coulombic attraction between positively charged protein molecules in solution and the glass surfaces of the emitter tips that are negatively charged. These results demonstrate a novel method for producing highly charged protein ions that does not require exposing the proteins to additional chemicals either in solution or in the gas phase.
Collapse
Affiliation(s)
- Daniel N Mortensen
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | - Evan R Williams
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| |
Collapse
|
34
|
Metwally H, McAllister RG, Popa V, Konermann L. Mechanism of Protein Supercharging by Sulfolane and m-Nitrobenzyl Alcohol: Molecular Dynamics Simulations of the Electrospray Process. Anal Chem 2016; 88:5345-54. [DOI: 10.1021/acs.analchem.6b00650] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Haidy Metwally
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Robert G. McAllister
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Vlad Popa
- Department
of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Lars Konermann
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department
of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
35
|
Stutzman JR, Crowe MC, Alexander JN, Bell BM, Dunkle MN. Coupling Charge Reduction Mass Spectrometry to Liquid Chromatography for Complex Mixture Analysis. Anal Chem 2016; 88:4130-9. [DOI: 10.1021/acs.analchem.6b00485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John R. Stutzman
- Analytical
Sciences, The Dow Chemical Company, 1897 Building, Midland, Michigan 48667, United States
| | - Matthew C. Crowe
- Analytical
Sciences, The Dow Chemical Company, Collegeville, Pennsylvania 19426, United States
| | - James N. Alexander
- Analytical
Sciences, The Dow Chemical Company, Collegeville, Pennsylvania 19426, United States
| | - Bruce M. Bell
- Analytical
Sciences, The Dow Chemical Company, 1897 Building, Midland, Michigan 48667, United States
| | - Melissa N. Dunkle
- Analytical
Sciences, The Dow Chemical Company, Herbert H. Dowweg 5, ADD2/8, 4542 NM Hoek, Netherlands
| |
Collapse
|
36
|
Going CC, Xia Z, Williams ER. New supercharging reagents produce highly charged protein ions in native mass spectrometry. Analyst 2015; 140:7184-94. [PMID: 26421324 PMCID: PMC4617834 DOI: 10.1039/c5an01710f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effectiveness of two new supercharging reagents for producing highly charged ions by electrospray ionization (ESI) from aqueous solutions in which proteins have native structures and reactivities were investigated. In aqueous solution, 2-thiophenone and 4-hydroxymethyl-1,3-dioxolan-2-one (HD) at a concentration of 2% by volume can increase the average charge of cytochrome c and myoglobin by up to 163%, resulting in even higher charge states than those that are produced from water/methanol/acid solutions in which these proteins are denatured. The greatest extent of supercharging occurs in pure water, but these supercharging reagents are also highly effective in aqueous solutions containing 200 mM ammonium acetate buffer commonly used in native mass spectrometry (MS). These reagents are less effective supercharging reagents than m-nitrobenzyl alcohol (m-NBA) and propylene carbonate (PC) when ions are formed from water/methanol/acid. The extent to which loss of the heme group from myoglobin occurs is related to the extent of supercharging. Results from guanidine melts of cytochrome c monitored with tryptophan fluorescence show that the supercharging reagents PC, sulfolane and HD are effective chemical denaturants in solution. These results provide additional evidence for the role of protein structural changes in the electrospray droplet as the primary mechanism for supercharging with these reagents in native MS. These results also demonstrate that for at least some proteins, the formation of highly charged ions from native MS is no longer a significant barrier for obtaining structural information using conventional tandem MS methods.
Collapse
Affiliation(s)
- Catherine C Going
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
| | | | | |
Collapse
|
37
|
Kulyk DS, Miller CF, Badu-Tawiah AK. Reactive Charged Droplets for Reduction of Matrix Effects in Electrospray Ionization Mass Spectrometry. Anal Chem 2015; 87:10988-94. [PMID: 26437455 DOI: 10.1021/acs.analchem.5b02943] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dmytro S. Kulyk
- Department of Chemistry and
Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, Ohio 43210, United States
| | - Colbert F. Miller
- Department of Chemistry and
Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, Ohio 43210, United States
| | - Abraham K. Badu-Tawiah
- Department of Chemistry and
Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, Ohio 43210, United States
| |
Collapse
|
38
|
Fisher CM, Hilger RT, Zhao F, McLuckey SA. Electroosmotically driven solution mixing in borosilicate theta glass nESI emitters. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:1063-1070. [PMID: 28338258 DOI: 10.1002/jms.3620] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 06/06/2023]
Abstract
The use of borosilicate theta glass capillaries as nanoelectrospray ionization emitters has recently been demonstrated as a method for mixing two solutions as they are sprayed into the mass spectrometer for analysis. All previous experiments resulted in a solution mixing timescale limited to the time the analytes spend in the Taylor cone and subsequent droplets (i.e. sub-millisecond timescale). In an effort to extend the solution mixing timescale to the milliseconds regime, we demonstrate that solution can be moved from one channel of the theta tip to the opposite channel via electroosmosis by applying a potential difference between the two wire electrodes inserted into each channel of the theta tip. First, we establish that electroosmosis is responsible for solution movement using fluorescence microscopy to track fluorescent tracer dyes. We then demonstrate the utility of this technique in varying the extent of denaturation of holomyoglobin to apomyoglobin on the millisecond timescale just prior to analysis by mass spectrometry. Finally, we induce additional turbulence for better mixing by applying a square wave potential to one of the wire electrodes while holding the opposite wire at a constant voltage between the low and high potentials of the square wave. This experiment was found to provide nearly complete mixing after a single cycle of the square wave. The use of electroosmosis significantly expands the flexibility of theta tips for altering solutions prior to nESI without the need for off-line sample manipulation. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Christine M Fisher
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Ryan T Hilger
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Feifei Zhao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| |
Collapse
|
39
|
Karki S, Flanigan PM, Perez JJ, Archer JJ, Levis RJ. Increasing protein charge state when using laser electrospray mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:706-715. [PMID: 25753972 DOI: 10.1007/s13361-015-1084-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 06/04/2023]
Abstract
Femtosecond (fs) laser vaporization is used to transfer cytochrome c, myoglobin, lysozyme, and ubiquitin from the condensed phase into an electrospray (ES) plume consisting of a mixture of a supercharging reagent, m-nitrobenzyl alcohol (m-NBA), and trifluoroacetic acid (TFA), acetic acid (AA), or formic acid (FA). Interaction of acid-sensitive proteins like cytochrome c and myoglobin with the highly charged ES droplets resulted in a shift to higher charge states in comparison with acid-stable proteins like lysozyme and ubiquitin. Laser electrospray mass spectrometry (LEMS) measurements showed an increase in both the average charge states (Zavg) and the charge state with maximum intensity (Zmode) for acid-sensitive proteins compared with conventional electrospray ionization mass spectrometry (ESI-MS) under equivalent solvent conditions. A marked increase in ion abundance of higher charge states was observed for LEMS in comparison with conventional electrospray for cytochrome c (ranging from 19+ to 21+ versus 13+ to 16+) and myoglobin (ranging from 19+ to 26+ versus 18+ to 21+) using an ES solution containing m-NBA and TFA. LEMS measurements as a function of electrospray flow rate yielded increasing charge states with decreasing flow rates for cytochrome c and myoglobin.
Collapse
Affiliation(s)
- Santosh Karki
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | | | | | | | | |
Collapse
|
40
|
Lee JW, Kim HI. Solvent-induced structural transitions of lysozyme in an electrospray ionization source. Analyst 2015; 140:3573-80. [PMID: 25854591 DOI: 10.1039/c5an00235d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structural characterization of proteins using electrospray ionization mass spectrometry (ESI-MS) has become an important method for understanding protein structural dynamics. The correlation between the structures of proteins in solution and gas phase needs to be understood for the application of ESI-MS to protein structural studies. Hen egg white lysozyme (Lyz) is a small protein with a stable compact structure in solution. Although it was known that denatured Lyz in solution undergoes compaction during transfer into the gas phase via ESI, detailed characterization of the process was not available. In the present study, we show that the organic cosolvent, which denatures Lyz in solution, induces the collapse of the extended Lyz structure into compact structures during ESI. This process is further facilitated by the presence of acids, whose conjugate bases can interact with Lyz to reduce its charge state and the electrostatic repulsion between its charged residues (Analyst, 2015, 140, 661-669). Exposure of ESI droplets to acid and solvent vapors confirms that the overall process most probably occurs in the charged droplets from ESI. This study provides a detailed understanding of the possible influence of the solvent environment on protein structure during transfer into the gas phase.
Collapse
Affiliation(s)
- Jong Wha Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | | |
Collapse
|
41
|
Pei J, Zhou X, Wang X, Huang G. Alleviation of electrochemical oxidation for peptides and proteins in electrospray ionization: obtaining more accurate mass spectra with induced high voltage. Anal Chem 2015; 87:2727-33. [PMID: 25626082 DOI: 10.1021/ac503990a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Accurate mass spectrometry (MS) signal for peptide/protein analysis, which could be affected by various MS conditions, plays an essential role in identification and quantification of biological samples. Herein, we tried to alleviate the possible interferences from electrochemical oxidations during electrospray ionization (ESI). Three most common electrochemical oxidation reactions in ESI include oxidation of analyte, solvent, and electrode. With introduction of induced electrospray ionization (IESI) (a variant form of ESI), these interferences were significantly alleviated for peptides/proteins. That effect was also tested with flow injection experiments with different solution flow rates, electrolyte concentrations and solvent compositions, which was to simulate various chromatography conditions in conventional liquid chromatography (LC) separations. For all chromatography conditions tested, electrochemical oxidation was significantly alleviated for the absence of physical contact between spray solution and electrode.
Collapse
Affiliation(s)
- Jiying Pei
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei 230026, People's Republic of China
| | | | | | | |
Collapse
|
42
|
Li L, Yang SH, Vidova V, Rice EM, Wijeratne AB, Havlíček V, Schug KA. Reversed phase liquid chromatography hyphenated to continuous flow-extractive desorption electrospray ionization-mass spectrometry for analysis and charge state manipulation of undigested proteins. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:361-368. [PMID: 26307717 DOI: 10.1255/ejms.1364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The application of continuous flow-extractive desorption electrospray ionization (CF-EDESI), an ambient ionization source demonstrated previously for use with intact protein analysis, is expanded here for the coupling of reversed phase protein separations to mass spectrometry. This configuration allows the introduction of charging additives to enhance detection without affecting the chromatographic separation mechanism. Two demonstrations of the advantages of CF-EDESI are presented in this work. First, a proof-of- principle is presented to demonstrate the applicability of hyphenation of liquid chromatography (LC) to CF- EDESI. LC-CF-EDESI-MS has good sensitivity compared to LC-electrospray ionization (ESI)-mass spectrometry. Second, the supercharging mechanism investigated in CF-EDESI provides an insight into a highly debated supercharging process in ESI. The results indicate that the mechanism of protein charging seen in HPLC-CF-EDESI is different from supercharging phenomena in conventional ESI. The surface tension mechanism and binding mechanism may both contribute to protein supercharging in ESI.
Collapse
Affiliation(s)
- Li Li
- Department of Chemistry & Biochemistry, the University of Texas at Arlington, Arlington, Texas, USA.
| | - Samuel H Yang
- Department of Chemistry & Biochemistry, the University of Texas at Arlington, Arlington, Texas, USA..
| | - Veronika Vidova
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague, Czech Republic..
| | - Elisa M Rice
- Department of Chemistry & Biochemistry, the University of Texas at Arlington, Arlington, Texas, USA..
| | - Aruna B Wijeratne
- Department of Chemistry & Biochemistry, the University of Texas at Arlington, Arlington, Texas, USA..
| | - Vladimír Havlíček
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague, Czech Republic. Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, 771 46 Olomouc, Czech Republic..
| | - Kevin A Schug
- Department of Chemistry & Biochemistry, the University of Texas at Arlington, Arlington, Texas, USA..
| |
Collapse
|
43
|
Zenaidee MA, Donald WA. Extremely supercharged proteins in mass spectrometry: profiling the pH of electrospray generated droplets, narrowing charge state distributions, and increasing ion fragmentation. Analyst 2015; 140:1894-905. [DOI: 10.1039/c4an02338b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-performance solutions for supercharging proteins in electrospray ionization were optimized and the origin of the strong dependence of supercharging on acid strength was investigated.
Collapse
|
44
|
Chen J, Liu Z, Wang F, Mao J, Zhou Y, Liu J, Zou H, Zhang Y. Enhancing the performance of LC-MS for intact protein analysis by counteracting the signal suppression effects of trifluoroacetic acid during electrospray. Chem Commun (Camb) 2015; 51:14758-60. [DOI: 10.1039/c5cc06072a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We develop an acidic vapor assisted electrospray ionization strategy within an enclosed electrospray ionization source to counteract the ion suppression effects caused by trifluoroacetic acid.
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
| | - Zheyi Liu
- Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
| | - Fangjun Wang
- Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
| | - Jiawei Mao
- Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
| | - Ye Zhou
- Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
| | - Jing Liu
- Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
| | - Hanfa Zou
- Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
| | - Yukui Zhang
- Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
| |
Collapse
|
45
|
Kostyukevich Y, Kononikhin A, Popov I, Spasskiy A, Nikolaev E. In ESI-source H/D exchange under atmospheric pressure for peptides and proteins of different molecular weights from 1 to 66 kDa: the role of the temperature of the desolvating capillary on H/D exchange. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:49-55. [PMID: 25601674 DOI: 10.1002/jms.3535] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/17/2014] [Accepted: 10/26/2014] [Indexed: 06/04/2023]
Abstract
Transition of proteins from the solution to the gas phase during electrospray ionization remains a challenging problem despite the large amount of attention it has received during the past few decades. One of the major questions relates to the extent to which proteins in the gas phase retain their condensed phase structures. We have used in-electrospray source hydrogen/deuterium exchange to determine the number of deuterium incorporations as a function of protein mass, charge state and temperature of the desolvating capillary where the reaction occurs. All experiments were performed on a Thermo LTQ FT Ultra equipped with a 7-T superconducting magnet. Ions were generated by an IonMax Electrospray ion source operated in the positive ESI mode. Deuterium exchange was performed by introducing a droplet of D2 O beneath the ESI capillary. We systematically investigated gas phase hydrogen/deuterium (H/D) exchange under atmospheric pressure for peptides and proteins of different molecular weights from 1 to 66 kDa. We observed that almost all proteins demonstrate similar exchange rates for all charge states and that these rates increase exponentially with the temperature of the desolvating capillary. We did not observe any clear correlation of the number of H/D exchanges with the value of the cross section for a corresponding charge state. We have demonstrated the possibility of performing in-ESI source H/D exchange of large proteins under atmospheric pressure. The simplicity of the experimental setup makes it a useful experimental technique that can be applied for the investigation of gas phase conformations of proteins.
Collapse
Affiliation(s)
- Yury Kostyukevich
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Leninskij pr., 38k.2, 119334, Moscow, Russia; Moscow Institute of Physics and Technology, 141700, Dolgoprudnyi, Moscow Region, Russia; Skolkovo Institute of Science and Technology, Novaya St., 100, Skolkovo, 143025, Russian Federation
| | | | | | | | | |
Collapse
|
46
|
Douglass KA, Venter AR. On the role of a direct interaction between protein ions and solvent additives during protein supercharging by electrospray ionization mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:641-647. [PMID: 26307743 DOI: 10.1255/ejms.1360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The addition of certain reagents during the electrospray ionization mass spectrometry of proteins can shift the protein ion signal charge-state distributions (CSDs) to higher average charge states, a phenomenon known as 'supercharging'. The role of reagent gas-phase basicity (GB) during this process was investigated in both the negative and positive ion modes. Reagents with known or calculated GBs were added individually in equimolar amounts to protein solutions which were subsequently electrosprayed for mass spectrometry analysis. Shifts in the CSDs of the protein ion signals were monitored and related to the reagents' GBs. Trends for this data were evaluated for possible insights into a supercharging mechanism involving the direct interaction between supercharging reagent and protein ion. Reagent GB was confirmed to be directly related to the amount of supercharging observed in the negative ion mode. Supercharging in the positive ion mode, on the other hand, showed a maximal trend. Interestingly, a loss of signal and supercharging efficacy was observed for reagents with GBs intermediate within the investigated range, between ~800 and ~840 kJ mol(-1), at the 100 mM concentration used in the present study. The possibility of a direct interaction model for supercharging in the negative and positive ion modes dependent on the GBs of the protein ions and reagents is discussed. In the positive ion mode, supercharging appears to depend on the stability of a proton bridge formed between the reagent and a highly charged protein ion.
Collapse
Affiliation(s)
- Kevin A Douglass
- Department of Chemistry, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008-5413, United States.
| | - Andre R Venter
- D epartment of Chemistry, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008-5413, United States.
| |
Collapse
|
47
|
Mortensen DN, Williams ER. Investigating protein folding and unfolding in electrospray nanodrops upon rapid mixing using theta-glass emitters. Anal Chem 2014; 87:1281-7. [PMID: 25525976 PMCID: PMC4303338 DOI: 10.1021/ac503981c] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Theta-glass emitters are used to
rapidly mix two solutions to induce
either protein folding or unfolding during nanoelectrospray (nanoESI).
Mixing acid-denatured myoglobin with an aqueous ammonium acetate solution
to increase solution pH results in protein folding during nanoESI.
A reaction time and upper limit to the droplet lifetime of 9 ±
2 μs is obtained from the relative abundance of the folded conformer
in these rapid mixing experiments compared to that obtained from solutions
at equilibrium and a folding time constant of 7 μs. Heme reincorporation
does not occur, consistent with the short droplet lifetime and the
much longer time constant for this process. Similar mixing experiments
with acid-denatured cytochrome c and the resulting
folding during nanoESI indicate a reaction time of between 7 and 25
μs depending on the solution composition. The extent of unfolding
of holo-myoglobin upon rapid mixing with theta-glass emitters is less
than that reported previously (Fisher
et al. 2014, 86, 4581−458824702054), a result
that is attributed to the much smaller, ∼1.5 μm, average
o.d. tips used here. These results indicate that the time frame during
which protein folding or unfolding can occur during nanoESI depends
both on the initial droplet size, which can be varied by changing
the emitter tip diameter, and on the solution composition. This study
demonstrates that protein folding or unfolding processes that occur
on the ∼10 μs time scale can be readily investigated
using rapid mixing with theta-glass emitters combined with mass spectrometry.
Collapse
Affiliation(s)
- Daniel N Mortensen
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | | |
Collapse
|
48
|
DeMuth JC, McLuckey SA. Electrospray Droplet Exposure to Organic Vapors: Metal Ion Removal from Proteins and Protein Complexes. Anal Chem 2014; 87:1210-8. [PMID: 25517019 DOI: 10.1021/ac503865v] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- J. Corinne DeMuth
- Department of Chemistry Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Scott A. McLuckey
- Department of Chemistry Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
49
|
Chanthamontri CK, Stopford AP, Snowdon RW, Oldenburg TBP, Larter SR. On-line desalting of crude oil in the source region of a Fourier transform ion cyclotron resonance mass spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1506-1510. [PMID: 24845352 DOI: 10.1007/s13361-014-0906-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 06/03/2023]
Abstract
The presence of dissolved metal ions in waters associated with crude oils has many negative implications for the transport, processing, and refining of petroleum. In addition, mass spectrometric analysis of sodium containing crude oil samples suffers from ionization suppression, unwanted adduct formation, and an increase in the complexity of data analysis. Here, we describe a method for the reduction/elimination of these adverse effects by modification of the source region gas-inlet system of a 12 T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Several acids were examined as part of this study, with the most suitable for on-line desalting found to have both high vapor pressure and low pK(a); 12.1 M HCl showed the strongest desalting effect for crude oil samples with a sodium removal index (SRI) of 88%-100% ± 7% for the NaOS compound class. In comparison, a SRI of only 38% ± 9% was observed for a H₂O/toluene solution-phase extraction of oil 1. These results clearly demonstrate the increased efficacy of pseudo-vapor phase desalting with the additional advantages that initial sample solution conditions are preserved and no sample preparation is required prior to analysis.
Collapse
Affiliation(s)
- C Ken Chanthamontri
- Petroleum Reservoir Group, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada,
| | | | | | | | | |
Collapse
|
50
|
Nonose S, Yamashita K, Okamura T, Fukase S, Kawashima M, Sudo A, Isono H. Conformations of disulfide-intact and -reduced lysozyme ions probed by proton-transfer reactions at various temperatures. J Phys Chem B 2014; 118:9651-61. [PMID: 25046209 DOI: 10.1021/jp505621f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proton-transfer reactions of disulfide-intact and -reduced lysozyme ions (7+ through 14+) to 2,6-dimethylpyridine were examined in the gas phase using tandem mass spectrometry with electrospray ionization. By changing temperature of a collision cell from 280 to 460 K, temperature dependence of reaction rate constants and branching fractions was measured. Absolute reaction rate constants for the protein ions of specific charge states were determined from intensities of parent and product ions in the mass spectra. Remarkable change was observed for the rate constants and distribution of product ions. The rate constants for disulfide-intact ions changed more drastically with change of charge states and temperature than those for disulfide-reduced ions. Observed branching fractions for parent and product ions were represented by calculated reaction rate constants with a scheme of sequential process. The reaction rate constants are closely related to conformation changes with change of temperature, which are profoundly influenced by amputation of disulfide bonds.
Collapse
Affiliation(s)
- Shinji Nonose
- Graduate School of Nanobioscience, Yokohama City University , Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|