1
|
Langford JB, Ahmed E, Fang M, Cupp-Sutton K, Smith K, Wu S. Strategies for Top-Down Hydrogen Deuterium Exchange-Mass Spectrometry: A Mini Review and Perspective. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5097. [PMID: 39402881 PMCID: PMC11736408 DOI: 10.1002/jms.5097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 01/16/2025]
Abstract
Hydrogen deuterium-exchange mass spectrometry (HDX-MS) is commonly used in the study of protein dynamics and protein interactions. By measuring the isotopic exchange of backbone amide hydrogens in solution, HDX-MS offers valuable structural insights into challenging biological systems. Traditional HDX-MS approaches utilize bottom-up (BU) proteomics, in which deuterated proteins are digested before MS analysis. BU-HDX enables the characterization of proteins with various sizes in simple protein mixtures or complex biological samples such as cell lysates. However, BU methods are inherently limited by the inability to resolve protein sub-populations arising from different protein conformations, such as those arising from post-translational modifications (PTMs). Alternatively, top-down (TD) HDX-MS detects the global deuterium uptake at the intact proteoform level, allowing direct probing of structural changes due to protein-protein interactions, PTMs, or conformational changes. Combining TD-HDX-MS with electron-based fragmentation techniques, such as electron capture dissociation (ECD) and electron transfer dissociation (ETD), has demonstrated the feasibility of studying intact protein interactions with amino acid-level resolution. Here, we present a brief overview of methodologies, limitations, and applications of TD-HDX-MS using direct infusion techniques and LC-based approaches. Furthermore, we conclude with a perspective on the future directions for TD-HDX-MS.
Collapse
Affiliation(s)
- Joel B. Langford
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Elizabeth Ahmed
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Kellye Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL 35487, USA
| | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL 35487, USA
| |
Collapse
|
2
|
Konermann L, Scrosati PM. Hydrogen/Deuterium Exchange Mass Spectrometry: Fundamentals, Limitations, and Opportunities. Mol Cell Proteomics 2024; 23:100853. [PMID: 39383946 PMCID: PMC11570944 DOI: 10.1016/j.mcpro.2024.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024] Open
Abstract
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) probes dynamic motions of proteins by monitoring the kinetics of backbone amide deuteration. Dynamic regions exhibit rapid HDX, while rigid segments are more protected. Current data readouts focus on qualitative comparative observations (such as "residues X to Y become more protected after protein exposure to ligand Z"). At present, it is not possible to decode HDX protection patterns in an atomistic fashion. In other words, the exact range of protein motions under a given set of conditions cannot be uncovered, leaving space for speculative interpretations. Amide back exchange is an under-appreciated problem, as the widely used (m-m0)/(m100-m0) correction method can distort HDX kinetic profiles. Future data analysis strategies require a better fundamental understanding of HDX events, going beyond the classical Linderstrøm-Lang model. Combined with experiments that offer enhanced spatial resolution and suppressed back exchange, it should become possible to uncover the exact range of motions exhibited by a protein under a given set of conditions. Such advances would provide a greatly improved understanding of protein behavior in health and disease.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada.
| | - Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
3
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
4
|
Native State Hydrogen Exchange-Mass Spectrometry Methods to Probe Protein Folding and Unfolding. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2376:143-159. [PMID: 34845608 DOI: 10.1007/978-1-0716-1716-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Native state hydrogen exchange (HX) methods provide high-resolution structural data on the rare and transient opening motions in proteins under native conditions. Mass spectrometry-based HX methods (HX-MS) have gained popularity because of their ability to delineate population distributions, which allow a direct determination of the mechanism of inter conversion of the partially folded states under native conditions. Various technological advancements have provided further impetus to the development of HX-MS-based experiments to study protein folding. Classical HX-MS studies use proteolytic digestion to produce fragments of the protein subsequent to HX in solution, in order to obtain structural data. New chemical fragmentation methods, which achieve the same result as proteolysis and cause minimal change to the HX pattern in the protein, provide an attractive alternative to proteolysis. Moreover, when used in conjunction with proteolysis, chemical fragmentation methods have significantly increased the structural resolution afforded by HX-MS studies, even bringing them at par with the single amino acid resolution observed in NMR-based measurements. Experiments based on one such chemical fragmentation method, electron transfer dissociation (ETD), are described in this chapter. The ETD HX-MS method is introduced using data from a protein which is inherently resistant to proteolytic digestion as example of how such an experiment can provide high-resolution structural data on the folding-unfolding transitions of the protein under native conditions.
Collapse
|
5
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Haas P, Muralidharan M, Krogan NJ, Kaake RM, Hüttenhain R. Proteomic Approaches to Study SARS-CoV-2 Biology and COVID-19 Pathology. J Proteome Res 2021; 20:1133-1152. [PMID: 33464917 PMCID: PMC7839417 DOI: 10.1021/acs.jproteome.0c00764] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 12/17/2022]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), was declared a pandemic infection in March 2020. As of December 2020, two COVID-19 vaccines have been authorized for emergency use by the U.S. Food and Drug Administration, but there are no effective drugs to treat COVID-19, and pandemic mitigation efforts like physical distancing have had acute social and economic consequences. In this perspective, we discuss how the proteomic research community can leverage technologies and expertise to address the pandemic by investigating four key areas of study in SARS-CoV-2 biology. Specifically, we discuss how (1) mass spectrometry-based structural techniques can overcome limitations and complement traditional structural approaches to inform the dynamic structure of SARS-CoV-2 proteins, complexes, and virions; (2) virus-host protein-protein interaction mapping can identify the cellular machinery required for SARS-CoV-2 replication; (3) global protein abundance and post-translational modification profiling can characterize signaling pathways that are rewired during infection; and (4) proteomic technologies can aid in biomarker identification, diagnostics, and drug development in order to monitor COVID-19 pathology and investigate treatment strategies. Systems-level high-throughput capabilities of proteomic technologies can yield important insights into SARS-CoV-2 biology that are urgently needed during the pandemic, and more broadly, can inform coronavirus virology and host biology.
Collapse
Affiliation(s)
- Paige Haas
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monita Muralidharan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nevan J. Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robyn M. Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
7
|
Wollenberg DTW, Pengelley S, Mouritsen JC, Suckau D, Jørgensen CI, Jørgensen TJD. Avoiding H/D Scrambling with Minimal Ion Transmission Loss for HDX-MS/MS-ETD Analysis on a High-Resolution Q-TOF Mass Spectrometer. Anal Chem 2020; 92:7453-7461. [PMID: 32427467 DOI: 10.1021/acs.analchem.9b05208] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) enables the study of protein dynamics by measuring the time-resolved deuterium incorporation into a protein incubated in D2O. Using electron-based fragmentation in the gas phase it is possible to measure deuterium uptake at single-residue resolution. However, a prerequisite for this approach is that the solution-phase labeling is conserved in the gas phase prior to precursor fragmentation. It is therefore essential to reduce or even avoid intramolecular hydrogen/deuterium migration, which causes randomization of the deuterium labels along the peptide (hydrogen scrambling). Here, we describe an optimization strategy for reducing scrambling to a negligible level while minimizing the impact on sensitivity on a high-resolution Q-TOF equipped with ETD and an electrospray ionization interface consisting of a glass transfer capillary followed by a dual ion funnel. In our strategy we narrowed down the optimization to two accelerating potentials, and we defined the optimization of these in a simple rule by accounting for their interdependency in relation to scrambling and transmission efficiency. Using this rule, we were able to reduce scrambling from 75% to below 5% on average using the highly scrambling-sensitive quadruply charged P1 peptide scrambling probe resulting in a minor 33% transmission loss. To demonstrate the applicability of this approach, we probe the dynamics of certain regions in cytochrome c.
Collapse
Affiliation(s)
- Daniel T Weltz Wollenberg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark.,Novozymes A/S, Krogshøjvej 36, Bagsværd 2280, Denmark
| | - Stuart Pengelley
- Bruker Daltonik GmbH, Fahrenheitstrasse 4, Bremen, 28359, Germany
| | | | - Detlev Suckau
- Bruker Daltonik GmbH, Fahrenheitstrasse 4, Bremen, 28359, Germany
| | | | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| |
Collapse
|
8
|
Hudgens JW. Construction of a Dual Protease Column, Subzero (-30 °C) Chromatography System and Multi-channel Precision Temperature Controller for Hydrogen-Deuterium Exchange Mass Spectrometry. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 2020; vol:jres.vol.125.025. [PMID: 35573859 PMCID: PMC9097885 DOI: 10.6028/jres.125.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/31/2020] [Indexed: 05/12/2023]
Abstract
This tutorial provides mechanical drawings, electrical schematics, parts lists, stereolithography (STL) files for producing three-dimensional (3D)-printed parts, initial graphics exchange specification (IGS) files for automated machining, and instructions necessary for construction of a dual protease column, subzero, liquid chromatography system for hydrogen-deuterium exchange mass spectrometry (HDX-MS). Electro-mechanical schematics for construction of two multi-zone temperature controllers that regulate to ±0.05 oC are also included in this tutorial.
Collapse
Affiliation(s)
- Jeffrey W. Hudgens
- National Institute of Standards and Technology, Bioprocess Measurement Group, Biomolecular Measurement Division, Gaithersburg, MD 20899,
USA
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850,
USA
| |
Collapse
|
9
|
Zhang MM, Beno BR, Huang RYC, Adhikari J, Deyanova EG, Li J, Chen G, Gross ML. An Integrated Approach for Determining a Protein-Protein Binding Interface in Solution and an Evaluation of Hydrogen-Deuterium Exchange Kinetics for Adjudicating Candidate Docking Models. Anal Chem 2019; 91:15709-15717. [PMID: 31710208 DOI: 10.1021/acs.analchem.9b03879] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We describe an integrated approach of using hydrogen-deuterium exchange mass spectrometry (HDX-MS), chemical cross-linking mass spectrometry (XL-MS), and molecular docking to characterize the binding interface and to predict the three-dimensional quaternary structure of a protein-protein complex in solution. Interleukin 7 (IL-7) and its α-receptor, IL-7Rα, serving as essential mediators in the immune system, are the model system. HDX kinetics reports widespread protection on IL-7Rα but shows no differential evidence of binding-induced protection or remote conformational change. Cross-linking with reagents that differ in spacer lengths and targeting residues increases the spatial resolution. Using five cross-links as distance restraints for protein-protein docking, we generated a high-confidence model of the IL-7/IL-7Rα complex. Both the predicted binding interface and regions with direct contacts agree well with those in the solid-state structure, as confirmed by previous X-ray crystallography. An additional binding region was revealed to be the C-terminus of helix B of IL-7, highlighting the value of solution-based characterization. To generalize the integrated approach, protein-protein docking was executed with a different number of cross-links. Combining cluster analysis and HDX kinetics adjudication, we found that two intermolecular cross-link-derived restraints are sufficient to generate a high-confidence model with root-mean-square distance (rmsd) value of all alpha carbons below 2.0 Å relative to the crystal structure. The remarkable results of binding-interface determination and quaternary structure prediction highlight the effectiveness and capability of the integrated approach, which will allow more efficient and comprehensive analysis of interprotein interactions with broad applications in the multiple stages of design, implementation, and evaluation for protein therapeutics.
Collapse
Affiliation(s)
- Mengru Mira Zhang
- Department of Chemistry , Washington University , St. Louis , Missouri 63130 , United States
| | - Brett R Beno
- Molecular Structure & Design, Molecular Discovery Technologies, Research and Development , Bristol-Myers Squibb , Princeton , New Jersey 08540 , United States
| | - Richard Y-C Huang
- Pharmaceutical Candidate Optimization, Research and Development , Bristol-Myers Squibb Company , Princeton , New Jersey 08540 , United States
| | - Jagat Adhikari
- Department of Chemistry , Washington University , St. Louis , Missouri 63130 , United States
| | - Ekaterina G Deyanova
- Pharmaceutical Candidate Optimization, Research and Development , Bristol-Myers Squibb Company , Princeton , New Jersey 08540 , United States
| | - Jing Li
- Pharmaceutical Candidate Optimization, Research and Development , Bristol-Myers Squibb Company , Princeton , New Jersey 08540 , United States
| | - Guodong Chen
- Pharmaceutical Candidate Optimization, Research and Development , Bristol-Myers Squibb Company , Princeton , New Jersey 08540 , United States
| | - Michael L Gross
- Department of Chemistry , Washington University , St. Louis , Missouri 63130 , United States
| |
Collapse
|
10
|
Hamuro Y, Zhang T. High-Resolution HDX-MS of Cytochrome c Using Pepsin/Fungal Protease Type XIII Mixed Bed Column. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:227-234. [PMID: 30374663 DOI: 10.1007/s13361-018-2087-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
A pepsin/FPXIII (protease from Aspergillus saitoi, type XIII) mixed bed column significantly improved the resolution of bottom-up hydrogen/deuterium exchange mass spectrometry (HDX-MS) data compared with a pepsin-only column. The HDX-MS method using the mixed bed column determined 65 amide hydrogen exchange rates out of one hundred cytochrome c backbone amide hydrogens. Different cleavage specificities of the two enzymes generated 138 unique high-quality peptic fragments, which allows fine sub-localization of deuterium. The exchange rates determined in this method are consistent within the current study as well as with the previous HDX-NMR study. High-resolution HDX-MS data can determine the exchange rate of each residue not the deuterium buildup curve of a peptic fragment. The exchange rates provide more precise and quantitative measurements of protein dynamics in a more reproducible manner. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yoshitomo Hamuro
- SGS Life North America, 606 Brandywine Parkway, West Chester, PA, 19380, USA.
- Janssen Pharmaceutical, 1400 McKean Road, Spring House, PA, 19477, USA.
| | - Terry Zhang
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, CA, 95134, USA
| |
Collapse
|
11
|
Oganesyan I, Lento C, Wilson DJ. Contemporary hydrogen deuterium exchange mass spectrometry. Methods 2018; 144:27-42. [DOI: 10.1016/j.ymeth.2018.04.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/16/2018] [Accepted: 04/21/2018] [Indexed: 02/07/2023] Open
|
12
|
Hamuro Y, E SY. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:989-1001. [PMID: 29500740 DOI: 10.1007/s13361-018-1892-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 06/08/2023]
Abstract
The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yoshitomo Hamuro
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ, 08852, USA.
- SGS Life North America, 606 Brandywine Parkway, West Chester, PA, 19380, USA.
| | - Sook Yen E
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ, 08852, USA
- Regeneron, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| |
Collapse
|
13
|
Wang H, Yong G, Brown SL, Lee HE, Zenaidee MA, Supuran CT, Donald WA. Supercharging protein ions in native mass spectrometry using theta capillary nanoelectrospray ionization mass spectrometry and cyclic alkylcarbonates. Anal Chim Acta 2018; 1003:1-9. [DOI: 10.1016/j.aca.2017.11.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 11/25/2017] [Indexed: 12/27/2022]
|
14
|
Donor MT, Ewing SA, Zenaidee MA, Donald WA, Prell JS. Extended Protein Ions Are Formed by the Chain Ejection Model in Chemical Supercharging Electrospray Ionization. Anal Chem 2017; 89:5107-5114. [DOI: 10.1021/acs.analchem.7b00673] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Micah T. Donor
- Department
of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Simon A. Ewing
- Department
of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Muhammad A. Zenaidee
- School
of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A. Donald
- School
of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - James S. Prell
- Department
of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
- Materials
Science Institute, University of Oregon, Eugene, Oregon 97403-1252, United States
| |
Collapse
|
15
|
Pan J, Zhang S, Borchers CH. Comparative higher-order structure analysis of antibody biosimilars using combined bottom-up and top-down hydrogen-deuterium exchange mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1801-1808. [DOI: 10.1016/j.bbapap.2016.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/13/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023]
|
16
|
Mortensen DN, Williams ER. Electrothermal supercharging of proteins in native MS: effects of protein isoelectric point, buffer, and nanoESI-emitter tip size. Analyst 2016; 141:5598-606. [PMID: 27441318 PMCID: PMC5239670 DOI: 10.1039/c6an01380e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The extent of charging resulting from electrothermal supercharging for protein ions formed from various buffered aqueous solutions using nanoESI emitters with tip diameters between ∼1.5 μm and ∼310 nm is compared. Charging increases with decreasing tip size for proteins that are positively charged in solution but not for proteins that are negatively charged in solution. These results suggest that Coulombic attraction between positively charged protein molecules and the negatively charged glass surfaces in the tips of the emitters causes destabilization and even unfolding of proteins prior to nanoESI. Coulombic attraction to the negatively charged glass surfaces does not occur for negatively charged proteins and the extent of charging with electrothermal supercharging decreases with decreasing tip size. Smaller droplets are formed with smaller tips, and these droplets have shorter lifetimes for protein unfolding with electrothermal supercharging to occur prior to gaseous ion formation. Results from this study demonstrate simple principles to consider in order to optimize the extent of charging obtained with electrothermal supercharging, which should be useful for obtaining more structural information in tandem mass spectrometry.
Collapse
Affiliation(s)
- Daniel N Mortensen
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
| | | |
Collapse
|
17
|
Mortensen DN, Williams ER. Surface-Induced Protein Unfolding in Submicron Electrospray Emitters. Anal Chem 2016; 88:9662-9668. [PMID: 27615434 DOI: 10.1021/acs.analchem.6b02499] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The charging of protein ions formed by nanoelectrospray ionization (nanoESI) with tips that are between 1.5 μm and 250 nm in outer diameter is compared. More charging is obtained with the smaller tip sizes for proteins that have a net positive charge in solution, and additional high-charge-state distributions are often observed. A single charge-state distribution of holo-myoglobin ions is produced by nanoESI from a slightly acidified aqueous solution with the micron outer diameter tips, but some apo-myoglobin ions are produced with the submicron tips. In contrast, the charge-state distributions for proteins with a net negative charge in solution do not depend on tip size. Both the formation of high charge states and the appearance of higher-charge-state distributions, as well as the loss of the heme group from myoglobin, indicate that a fraction of the protein population is unfolding with the smaller tips. The increased charging with the smaller tip sizes for proteins with a net positive charge but not for proteins with a net negative charge indicates that the unfolding occurs prior to nanoelectrospray ionization as a result of Coulombic attraction between positively charged protein molecules in solution and the glass surfaces of the emitter tips that are negatively charged. These results demonstrate a novel method for producing highly charged protein ions that does not require exposing the proteins to additional chemicals either in solution or in the gas phase.
Collapse
Affiliation(s)
- Daniel N Mortensen
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | - Evan R Williams
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| |
Collapse
|
18
|
Going CC, Xia Z, Williams ER. Real-time HD Exchange Kinetics of Proteins from Buffered Aqueous Solution with Electrothermal Supercharging and Top-Down Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1019-1027. [PMID: 26919868 PMCID: PMC4865425 DOI: 10.1007/s13361-016-1350-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
Electrothermal supercharging (ETS) with electrospray ionization produces highly charged protein ions from buffered aqueous solutions in which proteins have native folded structures. ETS increases the charge of ribonuclease A by 34%, whereas only a 6% increase in charge occurs for a reduced-alkylated form of this protein, which is unfolded and its structure is ~66% random coil in this solution. These results indicate that protein denaturation that occurs in the ESI droplets is the primary mechanism for ETS. ETS does not affect the extent of solution-phase hydrogen-deuterium exchange (HDX) that occurs for four proteins that have significantly different structures in solution, consistent with a droplet lifetime that is considerably shorter than observable rates of HDX. Rate constants for HDX of ubiquitin are obtained with a spatial resolution of ~1.3 residues with ETS and electron transfer dissociation of the 10+ charge-state using a single capillary containing a few μL of protein solution in which HDX continuously occurs. HDX protection at individual residues with ETS HDX is similar to that with reagent supercharging HDX and with solution-phase NMR, indicating that the high spray potentials required to induce ETS do not lead to HD scrambling. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Catherine C Going
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | - Zijie Xia
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.
| |
Collapse
|
19
|
Malhotra P, Udgaonkar JB. Secondary Structural Change Can Occur Diffusely and Not Modularly during Protein Folding and Unfolding Reactions. J Am Chem Soc 2016; 138:5866-78. [DOI: 10.1021/jacs.6b03356] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pooja Malhotra
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B. Udgaonkar
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
20
|
Protein species-specific characterization of conformational change induced by multisite phosphorylation. J Proteomics 2016; 134:138-143. [DOI: 10.1016/j.jprot.2015.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/29/2015] [Accepted: 12/01/2015] [Indexed: 01/29/2023]
|
21
|
Gallagher ES, Hudgens JW. Mapping Protein–Ligand Interactions with Proteolytic Fragmentation, Hydrogen/Deuterium Exchange-Mass Spectrometry. Methods Enzymol 2016; 566:357-404. [DOI: 10.1016/bs.mie.2015.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Going CC, Xia Z, Williams ER. New supercharging reagents produce highly charged protein ions in native mass spectrometry. Analyst 2015; 140:7184-94. [PMID: 26421324 PMCID: PMC4617834 DOI: 10.1039/c5an01710f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effectiveness of two new supercharging reagents for producing highly charged ions by electrospray ionization (ESI) from aqueous solutions in which proteins have native structures and reactivities were investigated. In aqueous solution, 2-thiophenone and 4-hydroxymethyl-1,3-dioxolan-2-one (HD) at a concentration of 2% by volume can increase the average charge of cytochrome c and myoglobin by up to 163%, resulting in even higher charge states than those that are produced from water/methanol/acid solutions in which these proteins are denatured. The greatest extent of supercharging occurs in pure water, but these supercharging reagents are also highly effective in aqueous solutions containing 200 mM ammonium acetate buffer commonly used in native mass spectrometry (MS). These reagents are less effective supercharging reagents than m-nitrobenzyl alcohol (m-NBA) and propylene carbonate (PC) when ions are formed from water/methanol/acid. The extent to which loss of the heme group from myoglobin occurs is related to the extent of supercharging. Results from guanidine melts of cytochrome c monitored with tryptophan fluorescence show that the supercharging reagents PC, sulfolane and HD are effective chemical denaturants in solution. These results provide additional evidence for the role of protein structural changes in the electrospray droplet as the primary mechanism for supercharging with these reagents in native MS. These results also demonstrate that for at least some proteins, the formation of highly charged ions from native MS is no longer a significant barrier for obtaining structural information using conventional tandem MS methods.
Collapse
Affiliation(s)
- Catherine C Going
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
| | | | | |
Collapse
|
23
|
|
24
|
Cassou CA, Williams ER. Desalting protein ions in native mass spectrometry using supercharging reagents. Analyst 2015; 139:4810-9. [PMID: 25133273 DOI: 10.1039/c4an01085j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Effects of the supercharging reagents m-NBA and sulfolane on sodium ion adduction to protein ions formed using native mass spectrometry were investigated. There is extensive sodium adduction on protein ions formed by electrospray ionization from aqueous solutions containing millimolar concentrations of NaCl, which can lower sensitivity by distributing the signal of a given charge state over multiple adducted ions and can reduce mass measuring accuracy for large proteins and non-covalent complexes for which individual adducts cannot be resolved. The average number of sodium ions adducted to the most abundant ion formed from ten small (8.6-29 kDa) proteins for which adducts can be resolved is reduced by 58% or 80% on average, respectively, when 1.5% m-NBA or 2.5% sulfolane are added to aqueous solutions containing sodium compared to without the supercharging reagent. Sulfolane is more effective than m-NBA at reducing sodium ion adduction and at preserving non-covalent protein-ligand and protein-protein interactions. Desalting with 2.5% sulfolane enables detection of several glycosylated forms of 79.7 kDa holo-transferrin and NADH bound to the 146 kDa homotetramer LDH, which are otherwise unresolved due to peak broadening from extensive sodium adduction. Although sulfolane is more effective than m-NBA at protein ion desalting, m-NBA reduces salt clusters at high m/z and can increase the signal-to-noise ratios of protein ions by reducing chemical noise. Desalting is likely a result of these supercharging reagents binding sodium ions in solution, thereby reducing the sodium available to adduct to protein ions.
Collapse
Affiliation(s)
- Catherine A Cassou
- Department of Chemistry, University of California, B42 Hildebrand Hall, Berkeley, California 94720-1460, USA.
| | | |
Collapse
|
25
|
Xie W, Kawahito A, Miura T, Endo T, Wang Y, Yanase T, Nagahama T, Otani Y, Shimada T. Colorful Carbon Nanopopcorns Formed by Codepositing C60with Diamond-like Carbon Followed by Reaction with Water Vapor. CHEM LETT 2015. [DOI: 10.1246/cl.150470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wei Xie
- Faculty of Engineering, Hokkaido University
| | | | | | - Takashi Endo
- Creative Research Institute, Hokkaido University
| | | | | | | | - Yukitoshi Otani
- Center for Optical Research and Education, Utsunomiya University
| | | |
Collapse
|
26
|
Pan J, Zhang S, Chou A, Hardie DB, Borchers CH. Fast Comparative Structural Characterization of Intact Therapeutic Antibodies Using Hydrogen-Deuterium Exchange and Electron Transfer Dissociation. Anal Chem 2015; 87:5884-90. [PMID: 25927482 DOI: 10.1021/ac504809r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Higher-order structural characterization plays an important role in many stages of therapeutic antibody production. Herein, we report a new top-down mass spectrometry approach for characterizing the higher-order structure of intact antibodies, by combining hydrogen/deuterium exchange (HDX), subzero temperature chromatography, and electron transfer dissociation on the Orbitrap mass spectrometer. Individual IgG domain-level deuteration information was obtained for 6 IgG domains on Herceptin (HER), which included the antigen binding sites. This is the first time that top-down HDX has been applied to an intact protein as large as 150 kDa, which has never been done before on any instrument. Ligand-binding induced structural differences in HER were determined to be located only on the variable region of the light chain. Global glycosylation profile of antibodies and HDX property of the glycoforms were also determined by accurate intact mass measurements. Although the presence of disulfide bonds prevent the current approach from being able to obtain amino acid level structural information within the disulfide-linked regions, the advantages such as minimal sample manipulation, fast workflow, very low level of back exchange, and simple data analysis, make it well-suited for fast comparative structural evaluation of intact antibodies.
Collapse
Affiliation(s)
- Jingxi Pan
- †University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Suping Zhang
- †University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Albert Chou
- †University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Darryl B Hardie
- †University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Christoph H Borchers
- †University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| |
Collapse
|
27
|
Donohoe GC, Arndt JR, Valentine SJ. Online deuterium hydrogen exchange and protein digestion coupled with ion mobility spectrometry and tandem mass spectrometry. Anal Chem 2015; 87:5247-54. [PMID: 25893550 DOI: 10.1021/acs.analchem.5b00277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Online deuterium hydrogen exchange (DHX) and pepsin digestion (PD) is demonstrated using drift tube ion mobility spectrometry (DTIMS) coupled with linear ion trap (LTQ) mass spectrometry (MS) with electron transfer dissociation (ETD) capabilities. DHX of deuterated ubiquitin, followed by subsequent quenching and digestion, is performed within ∼60 s, yielding 100% peptide sequence coverage. The high reproducibility of the IMS separation allows spectral feature matching between two-dimensional IMS-MS datasets (undeuterated and deuterated) without the need for dataset alignment. Extracted ion drift time distributions (XIDTDs) of deuterated peptic peptides are mobility-matched to corresponding XIDTDs of undeuterated peptic peptides that were identified using collision-induced dissociation (CID). Matching XIDTDs allows a straightforward identification and deuterium retention evaluation for labeled peptides. Aside from the mobility separation, the ion trapping capabilities of the LTQ, combined with ETD, are demonstrated to provide single-residue resolution. Deuterium retention for the c- series ions across residues M(1)-L(15) and N(25)-R(42) are in good agreement with the known secondary structural elements within ubiquitin.
Collapse
Affiliation(s)
- Gregory C Donohoe
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - James R Arndt
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
28
|
Going CC, Williams ER. Supercharging with m-Nitrobenzyl Alcohol and Propylene Carbonate: Forming Highly Charged Ions with Extended, Near-Linear Conformations. Anal Chem 2015; 87:3973-80. [DOI: 10.1021/acs.analchem.5b00071] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Catherine C. Going
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Evan R. Williams
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| |
Collapse
|
29
|
Feng C, Commodore JJ, Cassady CJ. The use of chromium(III) to supercharge peptides by protonation at low basicity sites. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:347-58. [PMID: 25395012 PMCID: PMC4323856 DOI: 10.1007/s13361-014-1020-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 05/16/2023]
Abstract
The addition of chromium(III) nitrate to solutions of peptides with seven or more residues greatly increases the formation of doubly protonated peptides, [M + 2H](2+), by electrospray ionization. The test compound heptaalanine has only one highly basic site (the N-terminal amino group) and undergoes almost exclusive single protonation using standard solvents. When Cr(III) is added to the solution, abundant [M + 2H](2+) forms, which involves protonation of the peptide backbone or the C-terminus. Salts of Al(III), Mn(II), Fe(III), Fe(II), Cu(II), Zn (II), Rh(III), La(III), Ce(IV), and Eu(III) were also studied. Although several metal ions slightly enhance protonation, Cr(III) has by far the greatest ability to generate [M + 2H](2+). Cr(III) does not supercharge peptide methyl esters, which suggests that the mechanism involves interaction of Cr(III) with a carboxylic acid group. Other factors may include the high acidity of hexa-aquochromium(III) and the resistance of Cr(III) to reduction. Nitrate salts enhance protonation more than chloride salts and a molar ratio of 10:1 Cr(III):peptide produces the most intense [M + 2H](2+). Cr(III) also supercharges numerous other small peptides, including highly acidic species. For basic peptides, Cr(III) increases the charge state (2+ versus 1+) and causes the number of peptide molecules being protonated to double or triple. Chromium(III) does not supercharge the proteins cytochrome c and myoglobin. The ability of Cr(III) to enhance [M + 2H](2+) intensity may prove useful in tandem mass spectrometry because of the resulting overall increase in signal-to-noise ratio, the fact that [M + 2H](2+) generally dissociate more readily than [M + H](+), and the ability to produce [M + 2H](2+) precursors for electron-based dissociation techniques.
Collapse
Affiliation(s)
- Changgeng Feng
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | | | - Carolyn J. Cassady
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
30
|
Andersen KA, Martin LJ, Prince JM, Raines RT. Intrinsic site-selectivity of ubiquitin dimer formation. Protein Sci 2015; 24:182-9. [PMID: 25401704 PMCID: PMC4315656 DOI: 10.1002/pro.2603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/10/2014] [Indexed: 12/12/2022]
Abstract
The post-translational modification of proteins with ubiquitin can take on many forms, including the decoration of substrates with polymeric ubiquitin chains. These chains are linked through one of the seven lysine residues in ubiquitin, with the potential to form a panoply of linkage combinations as the chain length increases. The ensuing structural diversity of modifications serves a variety of signaling functions. Still, some linkages are present at a much higher level than others in cellulo. Although ubiquitination is an enzyme-catalyzed process, the large disparity of abundancies led us to the hypothesis that some linkages might be intrinsically faster to form than others, perhaps directing the course of enzyme evolution. Herein, we assess the kinetics of ubiquitin dimer formation in an enzyme-free system by measuring the rate constants for thiol-disulfide interchange between appropriate ubiquitin variants. Remarkably, we find that the kinetically expedient linkages correlate with those that are most abundant in cellulo. As the abundant linkages also appear to function more broadly in cellulo, this correlation suggests that the more accessible chains were selected for global roles.
Collapse
Affiliation(s)
- Kristen A Andersen
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin–MadisonMadison, Wisconsin
| | - Langdon J Martin
- Department of Biochemistry, University of Wisconsin–MadisonMadison, Wisconsin
| | - Joel M Prince
- Department of Biochemistry, University of Wisconsin–MadisonMadison, Wisconsin
| | - Ronald T Raines
- Department of Biochemistry, University of Wisconsin–MadisonMadison, Wisconsin
- Department of Chemistry, University of Wisconsin–MadisonMadison, Wisconsin
| |
Collapse
|
31
|
Zenaidee MA, Donald WA. Extremely supercharged proteins in mass spectrometry: profiling the pH of electrospray generated droplets, narrowing charge state distributions, and increasing ion fragmentation. Analyst 2015; 140:1894-905. [DOI: 10.1039/c4an02338b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-performance solutions for supercharging proteins in electrospray ionization were optimized and the origin of the strong dependence of supercharging on acid strength was investigated.
Collapse
|
32
|
Douglass KA, Venter AR. On the role of a direct interaction between protein ions and solvent additives during protein supercharging by electrospray ionization mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:641-647. [PMID: 26307743 DOI: 10.1255/ejms.1360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The addition of certain reagents during the electrospray ionization mass spectrometry of proteins can shift the protein ion signal charge-state distributions (CSDs) to higher average charge states, a phenomenon known as 'supercharging'. The role of reagent gas-phase basicity (GB) during this process was investigated in both the negative and positive ion modes. Reagents with known or calculated GBs were added individually in equimolar amounts to protein solutions which were subsequently electrosprayed for mass spectrometry analysis. Shifts in the CSDs of the protein ion signals were monitored and related to the reagents' GBs. Trends for this data were evaluated for possible insights into a supercharging mechanism involving the direct interaction between supercharging reagent and protein ion. Reagent GB was confirmed to be directly related to the amount of supercharging observed in the negative ion mode. Supercharging in the positive ion mode, on the other hand, showed a maximal trend. Interestingly, a loss of signal and supercharging efficacy was observed for reagents with GBs intermediate within the investigated range, between ~800 and ~840 kJ mol(-1), at the 100 mM concentration used in the present study. The possibility of a direct interaction model for supercharging in the negative and positive ion modes dependent on the GBs of the protein ions and reagents is discussed. In the positive ion mode, supercharging appears to depend on the stability of a proton bridge formed between the reagent and a highly charged protein ion.
Collapse
Affiliation(s)
- Kevin A Douglass
- Department of Chemistry, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008-5413, United States.
| | - Andre R Venter
- D epartment of Chemistry, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008-5413, United States.
| |
Collapse
|
33
|
Pan J, Zhang S, Parker CE, Borchers CH. Subzero Temperature Chromatography and Top-Down Mass Spectrometry for Protein Higher-Order Structure Characterization: Method Validation and Application to Therapeutic Antibodies. J Am Chem Soc 2014; 136:13065-71. [DOI: 10.1021/ja507880w] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jingxi Pan
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, 3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Suping Zhang
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, 3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Carol E. Parker
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, 3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Christoph H. Borchers
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, 3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
- Department
of Biochemistry and Microbiology, University of Victoria, Petch Building Room 207, 3800 Finnerty Rd., Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
34
|
Huang RYC, Chen G. Higher order structure characterization of protein therapeutics by hydrogen/deuterium exchange mass spectrometry. Anal Bioanal Chem 2014; 406:6541-58. [PMID: 24948090 DOI: 10.1007/s00216-014-7924-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/18/2014] [Accepted: 05/22/2014] [Indexed: 01/02/2023]
Abstract
Characterization of therapeutic drugs is a crucial step in drug development in the biopharmaceutical industry. Analysis of protein therapeutics is a challenging task because of the complexities associated with large molecular size and 3D structures. Recent advances in hydrogen/deuterium-exchange mass spectrometry (HDX-MS) have provided a means to assess higher-order structure of protein therapeutics in solution. In this review, the principles and procedures of HDX-MS for protein therapeutics characterization are presented, focusing on specific applications of epitope mapping for protein-protein interactions and higher-order structure comparison studies for conformational dynamics of protein therapeutics.
Collapse
Affiliation(s)
- Richard Y-C Huang
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, NJ, 08543, USA
| | | |
Collapse
|
35
|
Chingin K, Xu N, Chen H. Soft supercharging of biomolecular ions in electrospray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:928-934. [PMID: 24733276 DOI: 10.1007/s13361-014-0887-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/08/2014] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
The charge states of biomolecular ions in ESI-MS can be significantly increased by the addition of low-vapor supercharging (SC) reagents into the spraying solution. Despite the considerable interest from the community, the mechanistic aspects of SC are not well understood and are hotly debated. Arguments that denaturation accounts for the increased charging observed in proteins sprayed from aqueous solutions containing SC reagent have been published widely, but often with incomplete or ambiguous supporting data. In this work, we explored ESI MS charging and SC behavior of several biopolymers including proteins and DNA oligonucleotides. Analytes were ionized from 100 mM ammonium acetate (NH4Ac) aqueous buffer in both positive (ESI+) and negative (ESI-) ion modes. SC was induced either with m-NBA or by the elevated temperature of ESI capillary. For all the analytes studied we, found striking differences in the ESI MS response to these two modes of activation. The data suggest that activation with m-NBA results in more extensive analyte charging with lower degree of denaturation. When working solution with m-NBA was analyzed at elevated temperatures, the SC effect from m-NBA was neutralized. Instead, the net SC effect was similar to the SC effect achieved by thermal activation only. Overall, our observations indicate that SC reagents enhance ESI charging of biomolecules via distinctly different mechanism compared with the traditional approaches based on analyte denaturation. Instead, the data support the hypothesis that the SC phenomenon involves a direct interaction between a biopolymer and SC reagent occurring in evaporating ESI droplets.
Collapse
Affiliation(s)
- Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China Institute of Technology, Nanchang, Jiangxi Province, 330013, China,
| | | | | |
Collapse
|
36
|
Access of hydrogen-radicals to the peptide-backbone as a measure for estimating the flexibility of proteins using matrix-assisted laser desorption/ionization mass spectrometry. Int J Mol Sci 2014; 15:8428-42. [PMID: 24828203 PMCID: PMC4057740 DOI: 10.3390/ijms15058428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/11/2014] [Accepted: 04/30/2014] [Indexed: 11/26/2022] Open
Abstract
A factor for estimating the flexibility of proteins is described that uses a cleavage method of “in-source decay (ISD)” coupled with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). The MALDI-ISD spectra of bovine serum albumin (BSA), myoglobin and thioredoxin show discontinuous intense ion peaks originating from one-side preferential cleavage at the N-Cα bond of Xxx-Asp, Xxx-Asn, Xxx-Cys and Gly-Xxx residues. Consistent with these observations, Asp, Asn and Gly residues are also identified by other flexibility measures such as B-factor, turn preference, protection and fluorescence decay factors, while Asp, Asn, Cys and Gly residues are identified by turn preference factor based on X-ray crystallography. The results suggest that protein molecules embedded in/on MALDI matrix crystals partly maintain α-helix and that the reason some of the residues are more susceptible to ISD (Asp, Asn, Cys and Gly) and others less so (Ile and Val) is because of accessibility of the peptide backbone to hydrogen-radicals from matrix molecules. The hydrogen-radical accessibility in MALDI-ISD could therefore be adopted as a factor for measuring protein flexibility.
Collapse
|
37
|
Pan J, Borchers CH. Top-down mass spectrometry and hydrogen/deuterium exchange for comprehensive structural characterization of interferons: Implications for biosimilars. Proteomics 2014; 14:1249-58. [DOI: 10.1002/pmic.201300341] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/14/2013] [Accepted: 02/24/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Jingxi Pan
- University of Victoria - Genome BC Proteomics Centre; University of Victoria; Victoria BC Canada
| | - Christoph H. Borchers
- University of Victoria - Genome BC Proteomics Centre; University of Victoria; Victoria BC Canada
- Department of Biochemistry and Microbiology; University of Victoria; Victoria BC Canada
| |
Collapse
|
38
|
Cassou CA, Williams ER. Anions in electrothermal supercharging of proteins with electrospray ionization follow a reverse Hofmeister series. Anal Chem 2014; 86:1640-7. [PMID: 24410546 PMCID: PMC3983018 DOI: 10.1021/ac403398j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
The
effects of different anions on the extent of electrothermal
supercharging of proteins from aqueous ammonium and sodium salt solutions
were investigated. Sulfate and hydrogen phosphate are the most effective
anions at producing high charge state protein ions from buffered aqueous
solution, whereas iodide and perchlorate are ineffective with electrothermal
supercharging. The propensity for these anions to produce high charge
state protein ions follows the following trend: sulfate > hydrogen
phosphate > thiocyanate > bicarbonate > chloride > formate
≈
bromide > acetate > iodide > perchlorate. This trend correlates
with
the reverse Hofmeister series over a wide range of salt concentrations
(1 mM to 2 M) and with several physical properties, including solvent
surface tension, anion viscosity B-coefficient, and anion surface/bulk
partitioning coefficient, all of which are related to the Hofmeister
series. The effectiveness of electrothermal supercharging does not
depend on bubble formation, either from thermal degradation of the
buffer or from coalescence of dissolved gas. These results provide
evidence that the effect of different ions in the formation of high
charge state ions by electrothermal supercharging is largely a result
of Hofmeister effects on protein stability leading to protein unfolding
in the heated ESI droplet.
Collapse
Affiliation(s)
- Catherine A Cassou
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | | |
Collapse
|
39
|
Brahim B, Alves S, Cole RB, Tabet JC. Charge enhancement of single-stranded DNA in negative electrospray ionization using the supercharging reagent meta-nitrobenzyl alcohol. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1988-1996. [PMID: 24030289 DOI: 10.1007/s13361-013-0732-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 07/26/2013] [Accepted: 08/07/2013] [Indexed: 06/02/2023]
Abstract
Charge enhancement of single-stranded oligonucleotide ions in negative ESI mode is investigated. The employed reagent, meta-nitrobenzyl alcohol (m-NBA), was found to improve total signal intensity (Itot), increase the highest observed charge states (zhigh), and raise the average charge states (zavg) of all tested oligonucleotides analyzed in negative ESI. To quantify these increases, signal enhancement ratios (SER1%) and charge enhancement coefficients (CEC1%) were introduced. The SER1%, (defined as the quotient of total oligonucleotide ion abundances with 1% m-NBA divided by total oligonucleotide abundance without m-NBA) was found to be greater than unity for every oligonucleotide tested. The CEC1% values (defined as the average charge state in the presence of 1% m-NBA minus the average charge state in the absence of m-NBA) were found to be uniformly positive. Upon close inspection, the degree of charge enhancement for longer oligonucleotides was found to be dependent upon thymine density (i.e., the number and the location of phospho-thymidine units). A correlation between the charge enhancement induced by the presence of m-NBA and the apparent gas-phase acidity (largely determined by the sequence of thymine units but also by the presence of protons on other nucleobases) of multiply deprotonated oligonucleotide species, was thus established. Ammonium cations appeared to be directly involved in the m-NBA supercharging mechanism, and their role seems to be consistent with previously postulated ESI mechanisms describing desorption/ionization of single-stranded DNA into the gas phase.
Collapse
Affiliation(s)
- Bessem Brahim
- Institut Parisien de Chimie Moléculaire, Equipe de Chimie Structurale Organique et Biologique, Université Pierre et Marie Curie, CNRS UMR 7201, 75252, Paris cedex 05, France
| | | | | | | |
Collapse
|
40
|
Conformer-specific characterization of nonnative protein states using hydrogen exchange and top-down mass spectrometry. Proc Natl Acad Sci U S A 2013; 110:20087-92. [PMID: 24277803 DOI: 10.1073/pnas.1315029110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Characterization of structure and dynamics of nonnative protein states is important for understanding molecular mechanisms of processes as diverse as folding, binding, aggregation, and enzyme catalysis to name just a few; however, selectively probing local minima within rugged energy landscapes remains a problem. Mass spectrometry (MS) coupled with hydrogen/deuterium exchange (HDX) offers a unique advantage of being able to make a distinction among multiple protein conformers that coexist in solution; however, detailed structural interrogation of such states previously remained out of reach of HDX MS. In this work, we exploited the aforementioned unique feature of HDX MS in combination with the ability of MS to isolate narrow populations of protein ions to characterize individual protein conformers coexisting in solution in equilibrium. Subsequent fragmentation of the protein ions using electron-capture dissociation allowed us to allocate the deuterium distribution along the protein backbone, yielding a backbone-amide protection map for the selected conformer unaffected by contributions from other protein states present in solution. The method was tested with the small regulatory protein ubiquitin (Ub), which is known to form nonnative intermediate states under a variety of mildly denaturing conditions. Protection maps of these intermediate states obtained at residue-level resolution provide clear evidence that they are very similar to the so-called A-state of Ub that is formed in solutions with low pH and high alcohol. Method validation was carried out by comparing the backbone-amide protection map of native Ub with those deduced from high-resolution NMR measurements.
Collapse
|
41
|
Schneider TL, Halloran KT, Hillner JA, Conry RR, Linton BR. Application of H/D Exchange to Hydrogen Bonding in Small Molecules. Chemistry 2013; 19:15101-4. [DOI: 10.1002/chem.201302354] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Indexed: 11/09/2022]
|
42
|
Hedges JB, Vahidi S, Yue X, Konermann L. Effects of Ammonium Bicarbonate on the Electrospray Mass Spectra of Proteins: Evidence for Bubble-Induced Unfolding. Anal Chem 2013; 85:6469-76. [DOI: 10.1021/ac401020s] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jason B. Hedges
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Siavash Vahidi
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Xuanfeng Yue
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
43
|
Resetca D, Wilson DJ. Characterizing rapid, activity-linked conformational transitions in proteins via sub-second hydrogen deuterium exchange mass spectrometry. FEBS J 2013; 280:5616-25. [DOI: 10.1111/febs.12332] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Diana Resetca
- Department of Chemistry; York University; Toronto Ontario Canada
| | - Derek J. Wilson
- Department of Chemistry; York University; Toronto Ontario Canada
- Center for Research in Mass Spectrometry; Department of Chemistry; York University; Toronto Ontario Canada
| |
Collapse
|
44
|
Yu HD, Ahn S, Kim B. Protein Structural Characterization by Hydrogen/Deuterium Exchange Mass Spectrometry with Top-down Electron Capture Dissociation. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.5.1401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Kaltashov IA, Bobst CE, Abzalimov RR. Mass spectrometry-based methods to study protein architecture and dynamics. Protein Sci 2013; 22:530-44. [PMID: 23436701 DOI: 10.1002/pro.2238] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 11/09/2022]
Abstract
Mass spectrometry is now an indispensable tool in the armamentarium of molecular biophysics, where it is used for tasks ranging from protein sequencing and mapping of post-translational modifications to studies of higher order structure, conformational dynamics, and interactions of proteins with small molecule ligands and other biopolymers. This mini-review highlights several popular mass spectrometry-based tools that are now commonly used for structural studies of proteins beyond their covalent structure with a particular emphasis on hydrogen exchange and direct electrospray ionization mass spectrometry.
Collapse
Affiliation(s)
- Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, USA.
| | | | | |
Collapse
|
46
|
Pan J, Borchers CH. Top-down structural analysis of posttranslationally modified proteins by Fourier transform ion cyclotron resonance-MS with hydrogen/deuterium exchange and electron capture dissociation. Proteomics 2013; 13:974-81. [PMID: 23319428 DOI: 10.1002/pmic.201200246] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 11/21/2012] [Accepted: 12/10/2012] [Indexed: 11/08/2022]
Abstract
High-resolution structural characterization of posttranslationally modified proteins represents a challenge for traditional structural biology methods such as crystallography and NMR. In this study, we have used top-down hydrogen/deuterium exchange MS (HDX-MS) with precursor ion selection and electron capture dissociation to determine the impact of oxidative modification on calmodulin (CaM) at an average resolution of 2.5 residues, with complete sequence coverage. The amide deuteration status of native CaM determined by this method correlates well with previously reported crystallographic and NMR data. In contrast, methionine oxidation caused almost complete deuteration of all residues in the protein in 10 s. The oxidative-modification-induced secondary and tertiary structure loss can be largely recovered upon calcium ligation, which also resulted in a substantial increase of amide protection in three of the four calcium-binding loops in oxidatively modified CaM (CaMox ). However, the structure of α-helix VI is not restored by cofactor binding. These results are discussed in terms of different target binding and activation capabilities displayed by CaM and CaMox . The isoform-specific top-down HDX structural analysis strategy demonstrated in this study should be readily applicable to other oxidatively modified proteins and other types of PTMs, and may help decipher the structure and function of specific protein isoforms.
Collapse
Affiliation(s)
- Jingxi Pan
- UVic-Genome BC Proteomics Centre, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
47
|
Fully automated chip-based nanoelectrospray combined with electron transfer dissociation for high throughput top-down proteomics. OPEN CHEM 2013. [DOI: 10.2478/s11532-012-0130-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AbstractThe conventional protocol for protein identification by electrospray ionization mass spectrometry (MS) is based on enzymatic digestion which renders peptides to be analyzed by liquid chromatography-MS and collision-induced dissociation (CID) multistage MS, in the so-called bottom-up approach. Though this method has brought a significant progress to the field, many limitations, among which, the low throughput and impossibility to characterize in detail posttranslational modifications in terms of site(s) and structure, were reported. Therefore, the research is presently focused on the development of procedures for efficient top-down fragmentation of intact protein ions. In this context, we developed here an approach combining fully automated chip-based-nanoelectrospray ionisation (nanoESI), performed on a NanoMate robot, with electron transfer dissociation (ETD) for peptide and top-down protein sequencing and identification. This advanced analytical platform, integrating robotics, microfluidics technology, ETD and alternate ETD/CID, was tested and found ideally suitable for structural investigation of peptides and modified/functionalized peptides as well as for top-down analysis of medium size proteins by tandem MS experiments of significantly increased throughput and sensitivity. The obtained results indicate that NanoMate-ETD and ETD/CID may represent a viable alternative to the current MS strategies, with potential to develop into a method of routine use for high throughput top-down proteomics.
Collapse
|
48
|
Cassou CA, Sterling HJ, Susa AC, Williams ER. Electrothermal supercharging in mass spectrometry and tandem mass spectrometry of native proteins. Anal Chem 2012. [PMID: 23194134 DOI: 10.1021/ac302256d] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrothermal supercharging of protein ions formed by electrospray ionization from buffered aqueous solutions results in significant increases to both the maximum and average charge states compared to native mass spectrometry in which ions are formed from the same solutions but with lower spray potentials. For eight of the nine proteins investigated, the maximum charge states of protonated ions formed from native solutions with electrothermal supercharging is greater than those obtained from conventional denaturing solutions consisting of water/methanol/acid, although the average charging is slightly lower owing to contributions of small populations of more folded low charge-state structures. Under these conditions, electrothermal supercharging is slightly less effective for anions than for cations. Equivalent sequence coverage (80%) is obtained with electron transfer dissociation of the same high charge-state ion of cytochrome c formed by electrothermal supercharging from native solutions and from denaturing solutions. Electrothermal supercharging should be advantageous for combining structural studies of proteins in native environments with mass spectrometers that have limited high m/z capabilities and for significantly improving tandem mass spectrometry performance for protein ions formed from solutions in which the molecules have native structures and activities.
Collapse
Affiliation(s)
- Catherine A Cassou
- Department of Chemistry, University of California, Berkeley, 94720-1460, United States
| | | | | | | |
Collapse
|
49
|
Flick TG, Williams ER. Supercharging with trivalent metal ions in native mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1885-95. [PMID: 22948901 PMCID: PMC3474886 DOI: 10.1007/s13361-012-0463-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/29/2012] [Accepted: 07/30/2012] [Indexed: 05/11/2023]
Abstract
Addition of 1.0 mM LaCl(3) to aqueous ammonium acetate solutions containing proteins in their folded native forms can result in a significant increase in the molecular ion charging obtained with electrospray ionization as a result of cation adduction. In combination with m-nitrobenzyl alcohol, molecular ion charge states that are greater than the number of basic sites in the protein can be produced from these native solutions, even for lysozyme, which is conformationally constrained by four intramolecular disulfide bonds. Circular dichroism spectroscopy indicates that the conformation of ubiquitin is not measurably affected with up to 1.0 M LaCl(3), but ion mobility data indicate that the high charge states that are formed when 1.0 mM LaCl(3) is present are more unfolded than the low charge states formed without this reagent. These and other results indicate that the increased charging is a result of La(3+) preferentially adducting onto compact or more native-like conformers during ESI and the gas-phase ions subsequently unfolding as a result of increased Coulomb repulsion. Electron capture dissociation of these high charge-state ions formed from these native solutions results in comparable sequence coverage to that obtained for ions formed from denaturing solutions without supercharging reagents, making this method a potentially powerful tool for obtaining structural information in native mass spectrometry.
Collapse
Affiliation(s)
- Tawnya G Flick
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720-1460, USA
| | | |
Collapse
|
50
|
Biological insights from hydrogen exchange mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:1188-201. [PMID: 23117127 DOI: 10.1016/j.bbapap.2012.10.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/17/2012] [Accepted: 10/19/2012] [Indexed: 11/22/2022]
Abstract
Over the past two decades, hydrogen exchange mass spectrometry (HXMS) has achieved the status of a widespread and routine approach in the structural biology toolbox. The ability of hydrogen exchange to detect a range of protein dynamics coupled with the accessibility of mass spectrometry to mixtures and large complexes at low concentrations result in an unmatched tool for investigating proteins challenging to many other structural techniques. Recent advances in methodology and data analysis are helping HXMS deliver on its potential to uncover the connection between conformation, dynamics and the biological function of proteins and complexes. This review provides a brief overview of the HXMS method and focuses on four recent reports to highlight applications that monitor structure and dynamics of proteins and complexes, track protein folding, and map the thermodynamics and kinetics of protein unfolding at equilibrium. These case studies illustrate typical data, analysis and results for each application and demonstrate a range of biological systems for which the interpretation of HXMS in terms of structure and conformational parameters provides unique insights into function. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.
Collapse
|