1
|
Ma Y, Sun X, Cai Z, Tu M, Wang Y, Ouyang Q, Yan X, Jing G, Yang G. Transformation gap from research findings to large-scale commercialized products in microfluidic field. Mater Today Bio 2024; 29:101373. [PMID: 39687794 PMCID: PMC11647665 DOI: 10.1016/j.mtbio.2024.101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The field of microfluidics has experienced rapid growth in the last several decades, yet it isn't considered to be a large industry comparable to semiconductor and consumer electronics. In this review, we analyzed the entire process of the transformation from research findings to commercialized products in microfluidics, as well as the significant gap during the whole developing process between microchip fabrication in R&D and large-scale production in the industry. We elaborated in detail on various materials in the microfluidics industry, including silicon, glass, PDMS, and thermoplastics, discussing their characteristics, production processes, and existing products. Despite challenges hindering the large-scale commercialization of microfluidic chips, ongoing advancements and applications are expected to integrate microfluidic technology into everyday life, transforming it into a commercially viable field with substantial potential and promising prospects.
Collapse
Affiliation(s)
- Yuqi Ma
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| | - Xiaoyi Sun
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| | - Ziwei Cai
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| | - Mengjing Tu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, China
| | - Yugang Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| | - Qi Ouyang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Xueqing Yan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| | - Gaoshan Jing
- Institute of Microelectronics, Chinese Academy of Sciences (CAS), Beijing, 100029, China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Childers K, Freed IM, Hupert ML, Shaw B, Larsen N, Herring P, Norton JH, Shiri F, Vun J, August KJ, Witek MA, Soper SA. Novel thermoplastic microvalves based on an elastomeric cyclic olefin copolymer. LAB ON A CHIP 2024; 24:4422-4439. [PMID: 39171671 PMCID: PMC11339931 DOI: 10.1039/d4lc00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Microfluidic systems combine multiple processing steps and components to perform complex assays in an autonomous fashion. To enable the integration of several bio-analytical processing steps into a single system, valving is used as a component that directs fluids and controls introduction of sample and reagents. While elastomer polydimethylsiloxane has been the material of choice for valving, it does not scale well to accommodate disposable integrated systems where inexpensive and fast production is needed. As an alternative to polydimethylsiloxane, we introduce a membrane made of thermoplastic elastomeric cyclic olefin copolymer (eCOC), that displays unique attributes for the fabrication of reliable valving. The eCOC membrane can be extruded or injection molded to allow for high scale production of inexpensive valves. Normally hydrophobic, eCOC can be activated with UV/ozone to produce a stable hydrophilic monolayer. Valves are assembled following in situ UV/ozone activation of eCOC membrane and thermoplastic valve seat and bonded by lamination at room temperature. eCOC formed strong bonding with polycarbonate (PC) and polyethylene terephthalate glycol (PETG) able to hold high fluidic pressures of 75 kPa and 350 kPa, respectively. We characterized the eCOC valves with mechanical and pneumatic actuation and found the valves could be reproducibly actuated >50 times without failure. Finally, an integrated system with eCOC valves was employed to detect minimal residual disease (MRD) from a blood sample of a pediatric acute lymphoblastic leukemia (ALL) patient. The two module integrated system evaluated MRD by affinity-selecting CD19(+) cells and enumerating leukemia cells via immunophenotyping with ALL-specific markers.
Collapse
Affiliation(s)
- Katie Childers
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | - Ian M Freed
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | | | - Benjamin Shaw
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS 66045, USA
| | - Noah Larsen
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Engineering Physics, The University of Kansas, Lawrence, KS 66045, USA
| | - Paul Herring
- Department of Plastics Engineering Technology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Jeanne H Norton
- Department of Plastics Engineering Technology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Farhad Shiri
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Judy Vun
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Keith J August
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Małgorzata A Witek
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Steven A Soper
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
- KU Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
3
|
Al-Ali A, Waheed W, Dawaymeh F, Alamoodi N, Alazzam A. A surface treatment method for improving the attachment of PDMS: acoustofluidics as a case study. Sci Rep 2023; 13:18141. [PMID: 37875576 PMCID: PMC10598025 DOI: 10.1038/s41598-023-45429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023] Open
Abstract
A method for a permanent surface modification of polydimethylsiloxane (PDMS) is presented. A case study on the attachment of PDMS and the lithium niobate (LiNbO3) wafer for acoustofluidics applications is presented as well. The method includes a protocol for chemically treating the surface of PDMS to strengthen its bond with the LiNbO3 surface. The PDMS surface is modified using the 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) silane reagent. The effect of silane treatment on the hydrophilicity, morphology, adhesion strength to LiNbO3, and surface energy of PDMS is investigated. The results demonstrated that the silane treatment permanently increases the hydrophilicity of PDMS and significantly alters its morphology. The bonding strength between PDMS and LiNbO3increased with the duration of the silane treatment, reaching a maximum of approximately 500 kPa. To illustrate the effectiveness of this method, an acoustofluidic device was tested, and the device demonstrated very promising enhanced bonding and sealing capabilities with particle manipulation at a flow rate of up to 1 L/h by means of traveling surface acoustic waves (TSAW). The device was reused multiple times with no fluid leakage or detachment issues. The utility of the presented PDMS surface modification method is not limited to acoustofluidics applications; it has the potential to be further investigated for applications in various scientific fields in the future.
Collapse
Affiliation(s)
- Abdulla Al-Ali
- Mechanical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Waqas Waheed
- Mechanical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates
- System on Chip Lab, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Fadi Dawaymeh
- Chemical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Nahla Alamoodi
- Chemical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Anas Alazzam
- Mechanical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates.
- System on Chip Lab, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Qin Y, Kreutz JE, Schneider T, Yen GS, Shah ES, Wu L, Chiu DT. A reinforced PDMS mold for hot embossing of cyclic olefin polymer in the fabrication of microfluidic chips. LAB ON A CHIP 2022; 22:4729-4734. [PMID: 36367074 PMCID: PMC9691590 DOI: 10.1039/d2lc00857b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hot embossing is a cost-effective and flexible fabrication technology with high replication accuracy for feature sizes as small as 50 nm. Here we develop a reinforced polydimethylsiloxane (PDMS) mold for hot embossing of cyclic olefin polymer (COP) sheets in the fabrication of microfluidic chips and demonstrate the method by fabricating chips for automated sample digitization in digital nucleic acid assays. The PDMS is hardened by adding an investment powder as a dopant and is constrained with an aluminum frame to prevent lateral expansion during hot pressing. The reinforced PDMS mold demonstrated excellent performance in hot embossing (180 °C, 103 kPa, 5 min) for micropatterning COP sheets, with highly reproducible features as small as 10 μm (width of draining channel). In contrast, the microscale features were inconsistent and distorted when omitting either the investment powder or frame from the PDMS mold. COP chips were assembled by thermally bonding patterned and unpatterned COP sheets. We tested the performance of the COP chip for automated sample digitization in a digital LAMP assay used to quantify human papillomavirus-18 (HPV-18) DNA. A mixture of nucleic acid amplification reagents was loaded into the main channel of the chip using a syringe pump, then the solution was spontaneously partitioned into chambers (∼0.6 nL), which were then isolated by flowing oil through the chip. The digital LAMP assay produced accurately absolute quantitation of DNA at concentrations ranging from 10 to 1000 copies per μL. The strategy presented here provides a simple, low-cost method to prepare molds for hot embossing, which facilitates rapid validation of microfluidic designs.
Collapse
Affiliation(s)
- Yuling Qin
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | - Jason E Kreutz
- Department of Chemistry and Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| | - Thomas Schneider
- Department of Chemistry and Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| | - Gloria S Yen
- Department of Chemistry and Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| | - Eleanor S Shah
- Department of Chemistry and Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| | - Li Wu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | - Daniel T Chiu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
5
|
Giri K, Tsao CW. Recent Advances in Thermoplastic Microfluidic Bonding. MICROMACHINES 2022; 13:486. [PMID: 35334777 PMCID: PMC8949906 DOI: 10.3390/mi13030486] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023]
Abstract
Microfluidics is a multidisciplinary technology with applications in various fields, such as biomedical, energy, chemicals and environment. Thermoplastic is one of the most prominent materials for polymer microfluidics. Properties such as good mechanical rigidity, organic solvent resistivity, acid/base resistivity, and low water absorbance make thermoplastics suitable for various microfluidic applications. However, bonding of thermoplastics has always been challenging because of a wide range of bonding methods and requirements. This review paper summarizes the current bonding processes being practiced for the fabrication of thermoplastic microfluidic devices, and provides a comparison between the different bonding strategies to assist researchers in finding appropriate bonding methods for microfluidic device assembly.
Collapse
Affiliation(s)
| | - Chia-Wen Tsao
- Department of Mechanical Engineering, National Central University, Taoyuan City 320, Taiwan;
| |
Collapse
|
6
|
Sivakumar R, Lee NY. Chemically robust succinimide-group-assisted irreversible bonding of poly(dimethylsiloxane)-thermoplastic microfluidic devices at room temperature. Analyst 2020; 145:6887-6894. [PMID: 32820755 DOI: 10.1039/d0an01268h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study investigates surface chemical modification using anhydride silane and amino silane reagents at room temperature (RT) to realize bonding between silicon-based PDMS and non-silicon thermoplastics. The anhydride silane shows vigorous activity against water, forming a terminal dicarboxylic acid in the plasma-activated elastomeric poly(dimethylsiloxane) (PDMS) surface, and it can readily react with amino-silane-modified thermoplastic surfaces, resulting in a permanent bond via the formation of a stable succinimide group without the requirement for high temperature or additional pressure to initiate the bonding. The modified surfaces of PDMS and thermoplastics were successfully characterized by water contact angle measurement, fluorescence measurement, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The bond strength values of PDMS-thermoplastic assemblies, measured by the tensile test for PDMS-polystyrene (PS), PDMS-poly(methyl methacrylate) (PMMA), PDMS-polycarbonate (PC), and PDMS-poly(ethyl terephthalate) (PET) assemblies, were found to be approximately 519.5 ± 6, 259 ± 15, 476.6 ± 8, and 458.2 ± 27 kPa, respectively. Moreover, the bond strength was further examined by performing a burst test for PDMS-PMMA, PDMS-PS, PDMS-PC, and PDMS-PET microfluidic devices, which were found to have the maximum pressure values at approximately 344.73, 448.15, 413.68, and 379.21 kPa, respectively. Based on these results, the hybrid microfluidic devices can be used for high-pressure experiments such as blood plasma separation and continuous-flow polymerase chain reaction (CF-PCR). We have also performed the large area bonding of the PDMS-PC assembly (10 × 10 cm2), ensuring the high robustness and reliability of the proposed surface chemical bonding method.
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of Industrial Environmental Engineering, College of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| | | |
Collapse
|
7
|
Jung W, Uddin MJ, Namkoong K, Chung W, Kim JH, Shim JS. Toward a disposable low-cost LOC device: heterogeneous polymer micro valve and pump fabricated by UV/ozone-assisted thermal fusion bonding. RSC Adv 2020; 10:28390-28396. [PMID: 35519138 PMCID: PMC9055662 DOI: 10.1039/d0ra03830j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/23/2020] [Indexed: 12/26/2022] Open
Abstract
Herein, a heterogeneous polymer micro valve and pump with a polypropylene (PP) membrane was developed in a low-cost manner via UV/ozone-assisted thermal fusion bonding. The proposed fabrication technique allowed for a geometrically selective bonding; consequently, the membrane was prevented from bonding with the valve seat of the diaphragm micro-valve, without patterning a protection layer or introducing an additional structure. The developed device withstands 480 kPa of static pressure and up to 350 kPa of a vibration pressure, providing sufficient bonding strength for microfluidic actuations. The fabricated micro valve and pump are fully characterized and compared with a poly(dimethylsiloxane) (PDMS) membrane glass device, showing comparable valving and pumping performance. As a result, the robust PP membrane micro valve and pump are simply implemented in a facile manner, and demonstrated excellent performance, which is highly desirable for mass production of disposable lab-on-a-chip (LOC) devices.
Collapse
Affiliation(s)
- Wonjong Jung
- Healthcare Sensor Lab., Device Research Centre, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd. Suwon Gyeonggi-do 16678 Republic of Korea
| | - M Jalal Uddin
- Bio-IT Convergence Lab., Department of Electronics and Convergence Engineering, Kwangwoon University Seoul 01897 Republic of Korea
- Department of Electrical and Electronic Engineering, Islamic University Kushtia-7003 Bangladesh
| | - Kak Namkoong
- Healthcare Sensor Lab., Device Research Centre, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd. Suwon Gyeonggi-do 16678 Republic of Korea
| | - Wonseok Chung
- BioNano Health Guard Research Centre Daejeon 34141 Republic of Korea
| | - Joon-Ho Kim
- Sensor Lab., Smart Device Team, Samsung Research, Samsung Electronics Co., Ltd. Seoul 06765 Republic of Korea +82-10-41213075
| | - Joon S Shim
- Bio-IT Convergence Lab., Department of Electronics and Convergence Engineering, Kwangwoon University Seoul 01897 Republic of Korea
| |
Collapse
|
8
|
A compression transmission device for the evaluation of bonding strength of biocompatible microfluidic and biochip materials and systems. Sci Rep 2020; 10:1400. [PMID: 31996733 PMCID: PMC6989640 DOI: 10.1038/s41598-020-58373-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/27/2019] [Indexed: 01/15/2023] Open
Abstract
Bonding of a variety of inorganic and organic polymers as multi-layered structures is one of the main challenges for biochip production even to date, since the chemical nature of these materials often does not allow easy and straight forward bonding and proper sealing. After selection of an appropriate method to bond the chosen materials to form a complex biochip, function and stability of bonding either requires qualitative burst tests or expensive mechanical multi-test stations, that often do not have the right adaptors to clamp biochip slides without destruction. Therefore, we have developed a simple and inexpensive bonding test based on 3D printed transmission elements that translate compressive forces via manual compression, hand press or hydraulic press compression into shear and tensile force. Mechanical stress simulations showed that design of the bonding geometry and size must be considered for bonding tests since the stress distribution thus bonding strength heavily varies with size but also with geometry. We demonstrate the broad applicability of our 3D printed bonding test system by testing the most frequent bonding strategies in combination with the respective most frequently used biochip material in a force-to-failure study. All evaluated materials are biocompatible and used in cell-based biochip devices. This study is evaluating state-of-the-art bonding approaches used for sealing of microfluidic biochips including adhesive bonding, plasma bonding, solvent bonding as well as bonding mediated by amino-silane monolayers or even functional thiol-ene epoxy biochip materials that obviate intermediate adhesive layers.
Collapse
|
9
|
Sivakumar R, Trinh KTL, Lee NY. Heat and pressure-resistant room temperature irreversible sealing of hybrid PDMS–thermoplastic microfluidic devices via carbon–nitrogen covalent bonding and its application in a continuous-flow polymerase chain reaction. RSC Adv 2020; 10:16502-16509. [PMID: 35498866 PMCID: PMC9053085 DOI: 10.1039/d0ra02332a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/06/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, we have introduced a facile room-temperature strategy for irreversibly sealing polydimethylsiloxane to various thermoplastics using (3-aminopropyl)triethoxysilane (APTES) and [2-(3,4-epoxycyclohexyl)ethyl]trimethoxysilane (ECTMS).
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of Industrial Environmental Engineering
- College of Industrial Environmental Engineering
- Gachon University
- Seongnam-si
- Korea
| | - Kieu The Loan Trinh
- Department of Industrial Environmental Engineering
- College of Industrial Environmental Engineering
- Gachon University
- Seongnam-si
- Korea
| | - Nae Yoon Lee
- Department of BioNano Technology
- Gachon University
- Seongnam-si
- Korea
| |
Collapse
|
10
|
Sivakumar R, Lee NY. Microfluidic device fabrication mediated by surface chemical bonding. Analyst 2020; 145:4096-4110. [DOI: 10.1039/d0an00614a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review discusses on various bonding techniques for fabricating microdevices with a special emphasis on the modification of surface assisted by the use of chemicals to assemble microfluidic devices at room temperature under atmospheric pressure.
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of Industrial and Environmental Engineering
- College of Industrial Environmental Engineering
- Gachon University
- Seongnam-si
- Korea
| | - Nae Yoon Lee
- Department of BioNano Technology
- Gachon University
- Seongnam-si
- Korea
| |
Collapse
|
11
|
Wang X, Agasid MT, Baker CA, Aspinwall CA. Surface Modification of Glass/PDMS Microfluidic Valve Assemblies Enhances Valve Electrical Resistance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34463-34470. [PMID: 31496217 PMCID: PMC7719350 DOI: 10.1021/acsami.9b12342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microfluidic instrumentation offers unique advantages in biotechnology applications including reduced sample and reagent consumption, rapid mixing and reaction times, and a high degree of process automation. As dimensions decrease, the ratio of surface area to volume within a fluidic architecture increases, which gives rise to some of the unique advantages inherent to microfluidics. Thus, manipulation of surface characteristics presents a promising approach to tailor the performance of microfluidic systems. Microfluidic valves are essential components in a number of small volume applications and for automated microfluidic platforms, but rigorous evaluation of the sealing quality of these valves is often overlooked. In this work, the glass valve seat of hybrid glass/PDMS microfluidic valves was surface modified with hydrophobic silanes, octyldimethylchlorosilane (ODCS) or (tridecafluoro-1,1,2,2-tetrahydrooctyl)dimethylchlorosilane (PFDCS), to investigate the effect of surface energy on electrical resistance of valves. Valves with ODCS- or PFDCS-modified valve seats both exhibited >70-fold increases in electrical resistance (>500 GΩ) when compared to the same valve design with unmodified glass valve seats (7 ± 3 GΩ), indicative of higher sealing capacity. The opening times for valves with ODCS- or PFDCS-modified valve seats was ca. 5× shorter compared to unmodified valve seats, whereas the closing time was up to 8× longer for modified valve seats, although the total closing time was ≤1.5 s, compatible with numerous microfluidic valving applications. Surface modified valve assemblies offered sufficient electrical resistance to isolate sub-pA current signals resulting from electrophysiology measurement of α-hemolysin conductance in a suspended lipid bilayer. This approach is well-suited for the design of novel microfluidic architectures that integrate fluidic manipulations with electrophysiological or electrochemical measurements.
Collapse
Affiliation(s)
- Xuemin Wang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721, United States
| | - Mark T. Agasid
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721, United States
| | - Christopher A. Baker
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721, United States
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, United States
| | - Craig A. Aspinwall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721, United States
- BIO5 Institute, University of Arizona, Tucson, Arizona, 85721, United States
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, 85721, United States
| |
Collapse
|
12
|
Tweedie M, Sun D, Ward B, Maguire PD. Long-term hydrolytically stable bond formation for future membrane-based deep ocean microfluidic chemical sensors. LAB ON A CHIP 2019; 19:1287-1295. [PMID: 30848276 DOI: 10.1039/c9lc00123a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Future ocean profiling of dissolved inorganic carbon and other analytes will require miniaturised chemical analysis systems based on sealed gas membranes between two fluid channels. However, for long-term deployment in the deep ocean at high pressure, the ability to seal incompatible materials represents an immense challenge. We demonstrate proof of principle high strength bond sealing. We show that polydimethylsiloxane (PDMS) is a preferred membrane material for rapid CO2 transfer, without ion leakage, and report long-term stable bonding of thin PDMS membrane films to inert thermoplastic poly(methyl methacrylate) (PMMA) patterned manifolds. Device channels were filled with 0.01 M NaOH and subjected to repeated tape pull and pressure - flow tests without failure for up to six weeks. Bond formation utilised a thin coating of the aminosilane bis-[3-trimethoxysilylpropyl]amine (BTMSPA) conformally coated onto PMMA channels and surfaces and cured. All surfaces were subsequently plasma treated and devices subject to thermocompressive bond annealing. Successful chemically resistant bonding of membrane materials to thermoplastics opens the possibility of remote environmental chemical analysis and offers a route to float-based depth profiling of dissolved inorganic carbon in the oceans.
Collapse
Affiliation(s)
- M Tweedie
- NIBEC, Ulster University, Belfast, BT37 0QB, Northern Ireland, UK.
| | | | | | | |
Collapse
|
13
|
Szymborski T, Jankowski P, Ogończyk D, Garstecki P. An FEP Microfluidic Reactor for Photochemical Reactions. MICROMACHINES 2018; 9:E156. [PMID: 30424090 PMCID: PMC6187735 DOI: 10.3390/mi9040156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 11/24/2022]
Abstract
Organic syntheses based on photochemical reactions play an important role in the medical, pharmaceutical, and polymeric chemistry. For years, photochemistry was performed using high-pressure mercury lamps and immersion-wells. However, due to excellent yield, control of temperature, selectivity, low consumption of reagents and safety, the microreactors made of fluorinated ethylene propylene (FEP) tubings have recently been used more frequently. Fluoropolymers are the material of choice for many types of syntheses due to their chemical compatibility and low surface energy. The use of tubing restricts the freedom in designing 2D and 3D geometries of the sections of the microreactors, mixing sections, etc., that are easily achievable in the format of a planar chip. A chip microreactor made of FEP is impracticable to develop due to its high chemical inertness and high melting temperature, both of which make it difficult (or impossible) to bond two plates of polymer. Here, we demonstrate a 'click' system, where the two plates of FEP are joined together mechanically using a tenon and a mortise. The concept was presented by us previously for a preparation polytetrafluoroethylene (PTFE) microreactor (Szymborski et al. Sensors Actuators, B Chem. 2017, doi:10.1016/j.snb.2017.09.035). Here, we use the same strategy for FEP plates, test the use of the chips in photochemistry and also describe a custom-designed non-transparent polyethylene (PE) mask-holder with a circular opening to guide and focus the ultraviolet (UV) illumination. The solutions that we describe offer tight microreactor chips, preventing any leakage either of the liquid reagents or of UV light outside the reactor. This allows for conducting photochemical synthesis without a fume hood and without special protection against UV radiation.
Collapse
Affiliation(s)
- Tomasz Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
- Soft Materials Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Paweł Jankowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Dominika Ogończyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
14
|
Guevara-Pantoja PE, Jiménez-Valdés RJ, García-Cordero JL, Caballero-Robledo GA. Pressure-actuated monolithic acrylic microfluidic valves and pumps. LAB ON A CHIP 2018; 18:662-669. [PMID: 29367991 DOI: 10.1039/c7lc01337j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this article, we describe a microfluidic device with embedded valves and pumps made exclusively of layers of acrylic glass. Flat acrylic sheets are carved out with a micromilling machine and bonded together by solvent bonding. The working principle of the valves is based on a thin flexible membrane (≈100 μm) machined on one acrylic sheet and actuated with pneumatic pressure. A completely closed valve resists a pressure difference of ≈17 kPa (≈2.5 psi), and when open, it can sustain flow rates of up to 100 μL s-1. Pumping is achieved by combining two valves and a pumping chamber in series, which is also based on the bending of a thin acrylic membrane. The maximum flow rate obtained with this pumping mechanism is 20 μL min-1. Acrylic is a popular rigid thermoplastic because it is inexpensive, making it ideal for mass production of disposable devices, and also because it has demonstrated compatibility with different biochemical assays. The physical and optical properties it shares with other thermoplastics could lead to this material being implemented for similar valves and pumps. As a proof-of-concept of our technology, we implemented a controlled cell-staining assay in two parallel incubation chambers integrating four valves and one pump into one device. Our monolithic acrylic valves can enable the mass production of disposable microfluidic devices that require fluid control with pressure-actuated valves and aid in the automation of biochemical assays.
Collapse
|
15
|
Yamate T, Fujiwara T, Yamaguchi T, Suzuki H, Akazome M. Exploiting CH/π interactions in robust supramolecular adhesives. Polym Chem 2018. [DOI: 10.1039/c8py00592c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CH/π interactions drive the high adhesion strength and high water and humidity resistances of a supramolecular adhesive.
Collapse
Affiliation(s)
- Taiki Yamate
- Nippon Soda Co
- Ltd
- Chiba Research Center
- Ichihara
- Japan
| | - Takayuki Fujiwara
- Division of Computational Chemistry
- Transition State Technology Co
- Ltd
- Yamaguchi 755-8611
- Japan
| | - Toru Yamaguchi
- Division of Computational Chemistry
- Transition State Technology Co
- Ltd
- Yamaguchi 755-8611
- Japan
| | | | - Motohiro Akazome
- Department of Applied Chemistry and Biotechnology
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| |
Collapse
|
16
|
Inexpensive, rapid fabrication of polymer-film microfluidic autoregulatory valve for disposable microfluidics. Biomed Microdevices 2017; 19:21. [DOI: 10.1007/s10544-017-0169-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Han JY, Rahmanian OD, Kendall EL, Fleming N, DeVoe DL. Screw-actuated displacement micropumps for thermoplastic microfluidics. LAB ON A CHIP 2016; 16:3940-3946. [PMID: 27713994 DOI: 10.1039/c6lc00862c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The fabrication of on-chip displacement pumps integrated into thermoplastic chips is explored as a simple and low cost method for achieving precise and programmable flow control for disposable microfluidic systems. The displacement pumps consist of stainless steel screws inserted into threaded ports machined into a thermoplastic substrate which also serve as on-chip reagent storage reservoirs. Three different methods for pump sealing are investigated to enable high pressure flows without leakage, and software-defined control of multiple pumps is demonstrated in a self-contained platform using a compact and self-contained microcontroller for operation. Using this system, flow rates ranging from 0.5-40 μl min-1 are demonstrated. The pumps are combined with on-chip burst valves to fully seal multiple reagents into fabricated chips while providing on-demand fluid distribution in a downstream microfluidic network, and demonstrated for the generation of size-tunable water-in-oil emulsions.
Collapse
Affiliation(s)
- J Y Han
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| | - O D Rahmanian
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - E L Kendall
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - N Fleming
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - D L DeVoe
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA. and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA and Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
18
|
Wu W, Wu J, Kim JH, Lee NY. Instantaneous room temperature bonding of a wide range of non-silicon substrates with poly(dimethylsiloxane) (PDMS) elastomer mediated by a mercaptosilane. LAB ON A CHIP 2015; 15:2819-25. [PMID: 26014886 DOI: 10.1039/c5lc00285k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This paper introduces an instantaneous and robust strategy for bonding a variety of non-silicon substrates such as thermoplastics, metals, an alloy, and ceramics to poly(dimethylsiloxane) (PDMS) irreversibly, mediated by one-step chemical modification using a mercaptosilane at room temperature followed by corona treatment to realize heterogeneous assembly also at room temperature. The mercapto functional group is one of the strongest nucleophiles, and it can instantaneously react with electrophiles of substrates, resulting in an alkoxysilane-terminated substrate at room temperature. In this way, prior oxidation of the substrate is dispensed with, and the alkoxysilane-terminated substrate can be readily oxidized and irreversibly bonded with oxidized PDMS at room temperature. A commercially available Tesla coil was used for surface oxidation, replacing a bulky and expensive plasma generator. Surface characterization was conducted by water contact angle measurement and X-ray photoelectron spectroscopy (XPS) analysis. A total of fifteen non-silicon substrates including polycarbonate (PC), two types of poly(vinylchloride) (PVC), poly(methylmethacrylate) (PMMA), polystyrene (PS), polyimide (PI), two types of poly(ethylene terephthalate) (PET), polypropylene (PP), iron (Fe), aluminum (Al), copper (Cu), brass, alumina (Al2O3), and zirconia (ZrO2) were bonded successfully with PDMS using this method, and the bond strengths of PDMS-PMMA, PDMS-PC, PDMS-PVC, PDMS-PET, PDMS-Al, and PDMS-Cu assemblies were measured to be approximately 335.9, 511.4, 467.3, 476.4, 282.2, and 236.7 kPa, respectively. The overall processes including surface modification followed by surface oxidation using corona treatment for bonding were realized within 12 to 17 min for most of the substrates tested except for ceramics which required 1 h for the bonding. In addition, large area (10 × 10 cm(2)) bonding was also successfully realized, ensuring the high reliability and stability of the introduced method.
Collapse
Affiliation(s)
- Wenming Wu
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-701, Korea.
| | | | | | | |
Collapse
|
19
|
Johnson AS, Mehl BT, Martin RS. Integrated hybrid polystyrene-polydimethylsiloxane device for monitoring cellular release with microchip electrophoresis and electrochemical detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:884-893. [PMID: 25663849 PMCID: PMC4318258 DOI: 10.1039/c4ay02569e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In this work, a polystyrene (PS)-polydimethylsiloxane (PDMS) hybrid device was developed to enable the integration of cell culture with analysis by microchip electrophoresis and electrochemical detection. It is shown that this approach combines the fundamental advantages of PDMS devices (the ability to integrate pumps and valves) and PS devices (the ability to permanently embed fluidic tubing and electrodes). The embedded fused-silica capillary enables high temporal resolution measurements from off-chip cell culture dishes and the embedded electrodes provide close to real-time analysis of small molecule neurotransmitters. A novel surface treatment for improved (reversible) adhesion between PS and PDMS is described using a chlorotrimethylsilane stamping method. It is demonstrated that a Pd decoupler is efficient at handling the high current (and cathodic hydrogen production) resulting from use of high ionic strength buffers needed for cellular analysis; thus allowing an electrophoretic separation and in-channel detection. The separation of norepinephrine (NE) and dopamine (DA) in highly conductive biological buffers was optimized using a mixed surfactant system. This PS-PDMS hybrid device integrates multiple processes including continuous sampling from a cell culture dish, on-chip pump and valving technologies, microchip electrophoresis, and electrochemical detection to monitor neurotransmitter release from PC 12 cells.
Collapse
Affiliation(s)
- Alicia S Johnson
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - Benjamin T Mehl
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - R Scott Martin
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| |
Collapse
|
20
|
Conde AJ, Bianchetti A, Veiras FE, Federico A, Cabaleiro JM, Dufva M, Madrid RE, Fraigi L. A polymer chip-integrable piezoelectric micropump with low backpressure dependence. RSC Adv 2015. [DOI: 10.1039/c5ra08819d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A polymer piezoelectric micropump fabricated with conventional machining methods that can be embedded in laminated microfluidic chips.
Collapse
Affiliation(s)
- A. J. Conde
- Centro de Micro y Nanoelectrónica del Bicentenario (CMNB)
- Instituto Nacional de Tecnología Industrial (INTI)
- San Martín
- Argentina
| | | | - F. E. Veiras
- Electrónica e Informática
- INTI
- San Martín
- Argentina
- Laboratorio de Sistemas Líquidos
| | - A. Federico
- Electrónica e Informática
- INTI
- San Martín
- Argentina
| | - J. M. Cabaleiro
- Laboratorio de Fluidodinámica
- FIUBA
- Argentina
- Laboratorio de Micro y Nanofluídica y Plasma
- UdeMM
| | - M. Dufva
- DTU Nanotech
- Technical University of Denmark
- Denmark
| | - R. E. Madrid
- Instituto Superior de Investigaciones Biológicas (INSIBIO-CONICET)
- Laboratorio de Medios e Interfases (LAMEIN)
- Dpto. de Bioingeniería FACET/UNT
- Argentina
| | - L. Fraigi
- Centro de Micro y Nanoelectrónica del Bicentenario (CMNB)
- Instituto Nacional de Tecnología Industrial (INTI)
- San Martín
- Argentina
| |
Collapse
|
21
|
Present state of microchip electrophoresis: state of the art and routine applications. J Chromatogr A 2014; 1382:66-85. [PMID: 25529267 DOI: 10.1016/j.chroma.2014.11.034] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022]
Abstract
Microchip electrophoresis (MCE) was one of the earliest applications of the micro-total analysis system (μ-TAS) concept, whose aim is to reduce analysis time and reagent and sample consumption while increasing throughput and portability by miniaturizing analytical laboratory procedures onto a microfluidic chip. More than two decades on, electrophoresis remains the most common separation technique used in microfluidic applications. MCE-based instruments have had some commercial success and have found application in many disciplines. This review will consider the present state of MCE including recent advances in technology and both novel and routine applications in the laboratory. We will also attempt to assess the impact of MCE in the scientific community and its prospects for the future.
Collapse
|
22
|
Gu P, Nishida T, Fan ZH. The use of polyurethane as an elastomer in thermoplastic microfluidic devices and the study of its creep properties. Electrophoresis 2013; 35:289-97. [PMID: 23868507 DOI: 10.1002/elps.201300160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 01/04/2023]
Abstract
We report using polyurethane (PU) as an elastomer in microvalves integrated with thermoplastic microfluidic devices. Elastomer-based microvalves have been used in a number of applications and the elastomer often used is PDMS. Although it is a convenient material for prototyping, PDMS has been recognized to possess shortcomings such as solvent incompatibility and unfavorable manufacturability. We investigated the use of PU as an elastomer to address the challenges. A reliable method was developed to bond hybrid materials such as PU and cyclic olefin copolymer. The film thickness from 3.5 to 24.5 μm was studied to identify an appropriate thickness of PU films for desirable elasticity in microvalves. We integrated PU with thermally actuated, elastomer-based microvalves in thermoplastic devices. Valve actuations were demonstrated, and the relationship between the valve actuation time and heater power was studied. We compared PU with PDMS in terms of their microvalve performance. Valves with PDMS failed to function after two weeks since the thermal-sensitive solution evaporated through porous PDMS membrane, whereas the same valve with PU functioned properly after eight months. In addition, we evaluated the creep and creep recovery of PU, which is a common phenomenon of viscoelastic materials and is related to the long-term elastic property of PU after prolonged use.
Collapse
Affiliation(s)
- Pan Gu
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
23
|
Lounsbury JA, Karlsson A, Miranian DC, Cronk SM, Nelson DA, Li J, Haverstick DM, Kinnon P, Saul DJ, Landers JP. From sample to PCR product in under 45 minutes: a polymeric integrated microdevice for clinical and forensic DNA analysis. LAB ON A CHIP 2013; 13:1384-1393. [PMID: 23389252 DOI: 10.1039/c3lc41326h] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The extraction and amplification of DNA from biological samples is laborious and time-consuming, requiring numerous instruments and sample handling steps. An integrated, single-use, poly(methyl methacrylate) (PMMA) microdevice for DNA extraction and amplification would benefit clinical and forensic communities, providing a completely closed system with rapid sample-in-PCR-product-out capability. Here, we show the design and simple flow control required for enzyme-based DNA preparation and PCR from buccal swabs or liquid whole blood samples with an ~5-fold reduction in time. A swab containing cells or DNA could be loaded into a novel receptacle together with the DNA liberation reagents, heated using an infrared heating system, mixed with PCR reagents for one of three different target sets under syringe-driven flow, and thermally-cycled in less than 45 min, an ~6-fold reduction in analysis time as compared to conventional methods. The 4 : 1 PCR reagents : DNA ratio required to provide the correct final concentration of all PCR components for effective amplification was verified using image analysis of colored dyes in the PCR chamber. Novel single-actuation, 'normally-open' adhesive valves were shown to effectively seal the PCR chamber during thermal cycling, preventing air bubble expansion. The effectiveness of the device was demonstrated using three target sets: the sex-typing gene Amelogenin, co-amplification of the β-globin and gelsolin genes, and the amplification of 15 short tandem repeat (STR) loci plus Amelogenin. The use of the integrated microdevice was expanded to the analysis of liquid blood samples which, when incubated with the DNA liberation reagents, form a brown precipitate that inhibits PCR. A simple centrifugation of the integrated microchips (on a custom centrifuge), mobilized the precipitate away from the microchannel entrance, improving amplification of the β-globin and gelsolin gene fragments by ~6-fold. This plastic integrated microdevice represents a microfluidic platform with potential for evolution into point-of-care prototypes for application to both clinical and forensic analyses, providing a 5-fold reduction from conventional analysis time.
Collapse
Affiliation(s)
- Jenny A Lounsbury
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Miralles V, Huerre A, Malloggi F, Jullien MC. A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications. Diagnostics (Basel) 2013; 3:33-67. [PMID: 26835667 PMCID: PMC4665581 DOI: 10.3390/diagnostics3010033] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 12/19/2012] [Accepted: 01/04/2013] [Indexed: 11/16/2022] Open
Abstract
This review presents an overview of the different techniques developed over the last decade to regulate the temperature within microfluidic systems. A variety of different approaches has been adopted, from external heating sources to Joule heating, microwaves or the use of lasers to cite just a few examples. The scope of the technical solutions developed to date is impressive and encompasses for instance temperature ramp rates ranging from 0.1 to 2,000 °C/s leading to homogeneous temperatures from -3 °C to 120 °C, and constant gradients from 6 to 40 °C/mm with a fair degree of accuracy. We also examine some recent strategies developed for applications such as digital microfluidics, where integration of a heating source to generate a temperature gradient offers control of a key parameter, without necessarily requiring great accuracy. Conversely, Temperature Gradient Focusing requires high accuracy in order to control both the concentration and separation of charged species. In addition, the Polymerase Chain Reaction requires both accuracy (homogeneous temperature) and integration to carry out demanding heating cycles. The spectrum of applications requiring temperature regulation is growing rapidly with increasingly important implications for the physical, chemical and biotechnological sectors, depending on the relevant heating technique.
Collapse
Affiliation(s)
- Vincent Miralles
- Gulliver CNRS ESPCI, UMR7083, MMN, 10 rue Vauquelin, 75005 Paris, France.
| | - Axel Huerre
- Gulliver CNRS ESPCI, UMR7083, MMN, 10 rue Vauquelin, 75005 Paris, France.
| | - Florent Malloggi
- SIS2M-LIONS CEA CNRS, UMR 3299, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | | |
Collapse
|
25
|
Liu K, Gu P, Hamaker K, Fan ZH. Characterization of bonding between poly(dimethylsiloxane) and cyclic olefin copolymer using corona discharge induced grafting polymerization. J Colloid Interface Sci 2011; 365:289-95. [PMID: 21962541 DOI: 10.1016/j.jcis.2011.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/02/2011] [Accepted: 09/03/2011] [Indexed: 01/28/2023]
Abstract
Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated.
Collapse
Affiliation(s)
- Ke Liu
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250, USA
| | | | | | | |
Collapse
|
26
|
Ogilvie IRG, Sieben VJ, Cortese B, Mowlem MC, Morgan H. Chemically resistant microfluidic valves from Viton® membranes bonded to COC and PMMA. LAB ON A CHIP 2011; 11:2455-9. [PMID: 21617822 DOI: 10.1039/c1lc20069k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We present a reliable technique for irreversibly bonding chemically inert Viton® membranes to PMMA and COC substrates to produce microfluidic devices with integrated elastomeric structures. Viton® is widely used in commercially available valves and has several advantages when compared to other elastomeric membranes currently utilised in microfluidic valves (e.g. PDMS), such as high solvent resistance, low porosity and high temperature tolerance. The bond strength was sufficient to withstand a fluid pressure of 400 kPa (PMMA/Viton®) and 310 kPa (COC/Viton®) before leakage or burst failure, which is sufficient for most microfluidic applications. We demonstrate and characterise on-chip pneumatic Viton® microvalves on PMMA and COC substrates. We also provide a detailed method for bonding fluorinated Viton® elastomer, a highly chemically compatible material, to PMMA and COC polymers. This allows the production of microfluidic devices able to handle a wide range of chemically harsh fluids and broadens the scope of the microfluidic platform concept.
Collapse
|