1
|
Miller I, Gianazza E. Proteomic methods for the study of porcine acute phase proteins - anything new to detect? Vet Res Commun 2023; 47:1801-1815. [PMID: 37452983 DOI: 10.1007/s11259-023-10170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Acute phase proteins (APPs) reflect the health status of individuals and are important tools in diagnostics, as their altered levels are a sign of disturbed homeostasis. While, in most cases, quantitation of known serum APPs is routinely performed by immunoassays, proteomics is helpful in discovery of new biomarker candidates, especially in samples other than body fluids. Besides putting APP regulation into an overall context of differentially abundant proteins, this approach can detect further details or outright new features in protein structure or specific modifications, and help understand better their function. Thus, it can show up ways to make present diagnostic assays more sensitive and/or specific, or correlate regulations of disease-specific proteins. The APP repertoire is dependent on the species. The pig is both, an important farm animal and a model animal for human diseases, due to similarities in physiology. Besides reviewing existing literature, yet unpublished examples for two-dimensional electrophoresis in connection with pig APPs highlight some of the benefits of proteomics. Of further help would be the emerging targeted proteomics, offering the possibility to determine particular isoforms or proteoforms, without the need of specific antibodies, but this method is presently scarcely used in veterinary medicine.
Collapse
Affiliation(s)
- Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210, Wien, Austria.
| | - Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133, Milano, Italy
| |
Collapse
|
2
|
Zhao B, Tu C, Shen S, Qu J, Morris ME. Identification of Potential Megalin/Cubilin Substrates Using Extensive Proteomics Quantification from Kidney Megalin-Knockdown Mice. AAPS J 2022; 24:109. [PMID: 36253507 DOI: 10.1208/s12248-022-00758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Megalin and cubilin, endocytic proteins present in the proximal tubule of the kidney, are responsible for reabsorbing filtered proteins from urine. Our hypothesis was that potential substrates of megalin/cubilin could be identified by examining urinary protein differences between control (WT) mice and kidney-specific megalin knockdown (KD) mice. Using the IonStar proteomics approach, 877 potential megalin/cubilin substrates were discovered, with 23 of these compounds representing known megalin/cubilin substrates. Some of the proteins with the largest fold changes in the urine between KD and WT included the known megalin substrates retinol-binding protein and vitamin D-binding protein. Of the total proteins identified as novel substrates, about three-quarters of compounds had molecular weights (MWs) below 69 kDa, the MW of albumin, and the remaining had higher MWs, with about 5% of the proteins having MWs greater than 150 kDa. Sex differences in the number of identified substrates occurred, but this may be due to differences in kidney megalin expression between both male and female megalin KD and WT animals, with the ratio of megalin between WT and KD being 2.76 and 2.14 for female and male mice, respectively. The top three ingenuity canonical pathways based on the urinary proteins in both female and male KD mice were acute phase response signaling, liver X receptor/retinoid X receptor activation, and intrinsic prothrombin activation pathways. In conclusion, analysis of urine samples from kidney-specific megalin KD and WT mice was found to be useful for the identification of potential endogenous substrates for megalin and cubilin.
Collapse
Affiliation(s)
- Bei Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York, 14203, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York, 14203, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York, 14203, USA
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
3
|
Mammen MJ, Tu C, Morris MC, Richman S, Mangione W, Falls Z, Qu J, Broderick G, Sethi S, Samudrala R. Proteomic Network Analysis of Bronchoalveolar Lavage Fluid in Ex-Smokers to Discover Implicated Protein Targets and Novel Drug Treatments for Chronic Obstructive Pulmonary Disease. Pharmaceuticals (Basel) 2022; 15:566. [PMID: 35631392 PMCID: PMC9147475 DOI: 10.3390/ph15050566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/23/2022] Open
Abstract
Bronchoalveolar lavage of the epithelial lining fluid (BALF) can sample the profound changes in the airway lumen milieu prevalent in chronic obstructive pulmonary disease (COPD). We compared the BALF proteome of ex-smokers with moderate COPD who are not in exacerbation status to non-smoking healthy control subjects and applied proteome-scale translational bioinformatics approaches to identify potential therapeutic protein targets and drugs that modulate these proteins for the treatment of COPD. Proteomic profiles of BALF were obtained from (1) never-smoker control subjects with normal lung function (n = 10) or (2) individuals with stable moderate (GOLD stage 2, FEV1 50−80% predicted, FEV1/FVC < 0.70) COPD who were ex-smokers for at least 1 year (n = 10). After identifying potential crucial hub proteins, drug−proteome interaction signatures were ranked by the computational analysis of novel drug opportunities (CANDO) platform for multiscale therapeutic discovery to identify potentially repurposable drugs. Subsequently, a literature-based knowledge graph was utilized to rank combinations of drugs that most likely ameliorate inflammatory processes. Proteomic network analysis demonstrated that 233 of the >1800 proteins identified in the BALF were significantly differentially expressed in COPD versus control. Functional annotation of the differentially expressed proteins was used to detail canonical pathways containing the differential expressed proteins. Topological network analysis demonstrated that four putative proteins act as central node proteins in COPD. The drugs with the most similar interaction signatures to approved COPD drugs were extracted with the CANDO platform. The drugs identified using CANDO were subsequently analyzed using a knowledge-based technique to determine an optimal two-drug combination that had the most appropriate effect on the central node proteins. Network analysis of the BALF proteome identified critical targets that have critical roles in modulating COPD pathogenesis, for which we identified several drugs that could be repurposed to treat COPD using a multiscale shotgun drug discovery approach.
Collapse
Affiliation(s)
- Manoj J. Mammen
- Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Biomedical Informatics, Jacobs School of Medicine and Biological Sciences, State University of New York, Buffalo, NY 14214, USA; (W.M.); (Z.F.)
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA; (C.T.); (J.Q.)
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203, USA
| | - Matthew C. Morris
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY 14621, USA; (M.C.M.); (S.R.); (G.B.)
| | - Spencer Richman
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY 14621, USA; (M.C.M.); (S.R.); (G.B.)
| | - William Mangione
- Department of Biomedical Informatics, Jacobs School of Medicine and Biological Sciences, State University of New York, Buffalo, NY 14214, USA; (W.M.); (Z.F.)
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biological Sciences, State University of New York, Buffalo, NY 14214, USA; (W.M.); (Z.F.)
| | - Jun Qu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA; (C.T.); (J.Q.)
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203, USA
| | - Gordon Broderick
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY 14621, USA; (M.C.M.); (S.R.); (G.B.)
| | - Sanjay Sethi
- WNY VA Healthcare System, Buffalo, NY 14215, USA;
- Department of Medicine, Jacobs School of Medicine and Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biological Sciences, State University of New York, Buffalo, NY 14214, USA; (W.M.); (Z.F.)
| |
Collapse
|
4
|
Surface hydrophobics mediate functional dimerization of CYP121A1 of Mycobacterium tuberculosis. Sci Rep 2021; 11:394. [PMID: 33431984 PMCID: PMC7801616 DOI: 10.1038/s41598-020-79545-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/09/2020] [Indexed: 11/28/2022] Open
Abstract
Tuberculosis is caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb) and remains the leading cause of death by infection world-wide. The Mtb genome encodes a disproportionate number of twenty cytochrome P450 enzymes, of which the essential enzyme cytochrome P450 121A1 (CYP121A1) remains a target of drug design efforts. CYP121A1 mediates a phenol coupling reaction of the tyrosine dipeptide cyclo-L-Tyr-L-Tyr (cYY). In this work, a structure and function investigation of dimerization was performed as an overlooked feature of CYP121A1 function. This investigation showed that CYP121A1 dimers form via intermolecular contacts on the distal surface and are mediated by a network of solvent-exposed hydrophobic residues. Disruption of CYP121A1 dimers by site-directed mutagenesis leads to a partial loss of specificity for cYY, resulting in an approximate 75% decrease in catalysis. 19F labeling and nuclear magnetic resonance of the enzyme FG-loop was also combined with protein docking to develop a working model of a functional CYP121A1 dimer. The results obtained suggest that participation of a homodimer interface in substrate selectivity represents a novel paradigm of substrate binding in CYPs, while also providing important mechanistic insight regarding a relevant drug target in the development of novel anti-tuberculosis agents.
Collapse
|
5
|
Insight of low-abundance proteins in rice leaves under Cd stress using combinatorial peptide ligand library technology. Anal Bioanal Chem 2020; 412:5435-5446. [DOI: 10.1007/s00216-020-02760-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 01/22/2023]
|
6
|
Zhang Y, Mao Y, Zhao W, Su T, Zhong Y, Fu L, Zhu J, Cheng J, Yang H. Glyco-CPLL: An Integrated Method for In-Depth and Comprehensive N-Glycoproteome Profiling of Human Plasma. J Proteome Res 2019; 19:655-666. [PMID: 31860302 DOI: 10.1021/acs.jproteome.9b00557] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yong Zhang
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yonghong Mao
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Thoracic Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanjun Zhao
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Su
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Zhong
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linru Fu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiang Zhu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Boschetti E, Hernández-Castellano LE, Righetti PG. Progress in farm animal proteomics: The contribution of combinatorial peptide ligand libraries. J Proteomics 2019; 197:1-13. [DOI: 10.1016/j.jprot.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/17/2019] [Accepted: 02/07/2019] [Indexed: 02/08/2023]
|
8
|
Sun Z, Liu X, Wu D, Gao H, Jiang J, Yang Y, Wu J, Gao Q, Wang J, Jiang Z, Xu Y, Xu X, Li L. Circulating proteomic panels for diagnosis and risk stratification of acute-on-chronic liver failure in patients with viral hepatitis B. Am J Cancer Res 2019; 9:1200-1214. [PMID: 30867825 PMCID: PMC6401414 DOI: 10.7150/thno.31991] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/17/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic HBV infection (CHB) can lead to acute-on-chronic liver failure (HBV-ACLF) characterized by high mortality. This study aimed to reveal ACLF-related proteomic alterations, from which protein based diagnostic and prognostic scores for HBV-ACLF were developed. Methods: Ten healthy controls, 16 CHB, and 19 HBV-ACLF according to COSSH (Chinese group on the study of severe hepatitis B) criteria were enrolled to obtain the comprehensive proteomic portrait related to HBV-ACLF initiation and progression. Potential markers of HBV-ACLF were further selected based on organ specificity and functionality. An additional cohort included 77 healthy controls, 92 CHB and 71 HBV-ACLF was used to validate the proteomic signatures via targeted proteomic assays. Results: Significant losses of plasma proteins related to multiple functional clusters, including fatty acid metabolism/transport, immuno-response, complement and coagulation systems, were observed in ACLF patients. In the validation study, 28 proteins were confirmed able to separate ACLF, CHB patients. A diagnostic classifier P4 (APOC3, HRG, TF, KLKB1) was built to differentiate ACLF from CHB with high accuracy (auROC = 0.956). A prognostic model P8 (GC, HRG, HPR, SERPINA6, age, NEU, INR and total protein) was built to distinguish survivors from non-survivors in 28 and 90-days follow-up (auROC = 0.882, 0.871), and to stratify ACLF patients into risk subgroups showing significant difference in 28 and 90-days mortality (HR=7.77, 7.45, both P<0.0001). In addition, P8 score correlated with ACLF grades and numbers of extra-hepatic organ failures in ACLF patients, and was able to predict ACLF-associated coagulation and brain failure within 90 days (auROC = 0.815, 0.842). Conclusions: Proteomic signatures developed in this study reflected the deficiency of key hematological functions in HBV-ACLF patients, and show potential for HBV-ACLF diagnosis and risk prediction in complementary to current clinical based parameters.
Collapse
|
9
|
Tu C, Fiandalo MV, Pop E, Stocking JJ, Azabdaftari G, Li J, Wei H, Ma D, Qu J, Mohler JL, Tang L, Wu Y. Proteomic Analysis of Charcoal-Stripped Fetal Bovine Serum Reveals Changes in the Insulin-like Growth Factor Signaling Pathway. J Proteome Res 2018; 17:2963-2977. [PMID: 30014700 DOI: 10.1021/acs.jproteome.8b00135] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Charcoal-stripped fetal bovine serum (CS-FBS) is commonly used to study androgen responsiveness and androgen metabolism in cultured prostate cancer (CaP) cells. Switching CaP cells from FBS to CS-FBS may reduce the activity of androgen receptor (AR), inhibit cell proliferation, or modulate intracellular androgen metabolism. The removal of proteins by charcoal stripping may cause changes in biological functions and has not yet been investigated. Here we profiled proteins in FBS and CS-FBS using an ion-current-based quantitative platform consisting of reproducible surfactant-aided precipitation/on-pellet digestion, long-column nanoliquid chromatography separation, and ion-current-based analysis. A total of 143 proteins were identified in FBS, among which 14 proteins including insulin-like growth factor 2 (IGF-2) and IGF binding protein (IGFBP)-2 and -6 were reduced in CS-FBS. IGF-1 receptor (IGF1R) and insulin receptor were sensitized to IGFs in CS-FBS. IGF-1 and IGF-2 stimulation fully compensated for the loss of AR activity to maintain cell growth in CS-FBS. Endogenous production of IGF and IGFBPs was verified in CaP cells and clinical CaP specimens. This study provided the most comprehensive protein profiles of FBS and CS-FBS and offered an opportunity to identify new protein regulators and signaling pathways that regulate AR activity, androgen metabolism, and proliferation of CaP cells.
Collapse
Affiliation(s)
- Chengjian Tu
- Department of Pharmaceutical Sciences , State University of New York at Buffalo , 285 Kapoor Hall , Buffalo , New York 14260 , United States.,New York State Center of Excellence in Bioinformatics and Life Sciences , 701 Ellicott Street , Buffalo , New York 14203 , United States
| | - Michael V Fiandalo
- Department of Urology, Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - Elena Pop
- Department of Urology, Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - John J Stocking
- Department of Urology, Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - Gissou Azabdaftari
- Department of Pathology, Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - Jun Li
- Department of Pharmaceutical Sciences , State University of New York at Buffalo , 285 Kapoor Hall , Buffalo , New York 14260 , United States.,New York State Center of Excellence in Bioinformatics and Life Sciences , 701 Ellicott Street , Buffalo , New York 14203 , United States
| | - Hua Wei
- Department of Pharmacy, Changzheng Hospital , Second Military Medical University , 415 Fengyang Road , Shanghai 200003 , China
| | - Danjun Ma
- College of Mechanical Engineering , Dongguan University of Technology , 1 Daxue Road , Dongguan , Guangdong 523808 , China
| | - Jun Qu
- Department of Pharmaceutical Sciences , State University of New York at Buffalo , 285 Kapoor Hall , Buffalo , New York 14260 , United States.,New York State Center of Excellence in Bioinformatics and Life Sciences , 701 Ellicott Street , Buffalo , New York 14203 , United States
| | - James L Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - Li Tang
- Department of Cancer Prevention and Control , Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - Yue Wu
- Department of Urology, Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| |
Collapse
|
10
|
Cai P, Hu B, Leow WR, Wang X, Loh XJ, Wu YL, Chen X. Biomechano-Interactive Materials and Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800572. [PMID: 29882230 DOI: 10.1002/adma.201800572] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/19/2018] [Indexed: 06/08/2023]
Abstract
The reciprocal mechanical interaction of engineered materials with biointerfaces have long been observed and exploited in biomedical applications. It contributes to the rise of biomechano-responsive materials and biomechano-stimulatory materials, constituting the biomechano-interactive interfaces. Here, endogenous and exogenous biomechanical stimuli available for mechanoresponsive interfaces are briefed and their mechanistic responses, including deformation and volume change, mechanomanipulation of physical and chemical bonds, dissociation of assemblies, and coupling with thermoresponsiveness are summarized. The mechanostimulatory materials, however, are capable of delivering mechanical cues, including stiffness, viscoelasticity, geometrical constraints, and mechanical loads, to modulate physiological and pathological behaviors of living tissues through the adaptive cellular mechanotransduction. The biomechano-interactive materials and interfaces are widely implemented in such fields as mechanotriggered therapeutics and diagnosis, adaptive biophysical sensors, biointegrated soft actuators, and mechanorobust tissue engineering, which have offered unprecedented opportunities for precision and personalized medicine. Pending challenges are also addressed to shed a light on future advances with respect to translational implementations.
Collapse
Affiliation(s)
- Pingqiang Cai
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Benhui Hu
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wan Ru Leow
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaoyuan Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
11
|
A robust and effective intact protein fractionation strategy by GO/PEI/Au/PEG nanocomposites for human plasma proteome analysis. Talanta 2018; 178:49-56. [DOI: 10.1016/j.talanta.2017.08.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/22/2022]
|
12
|
Qu M, An B, Shen S, Zhang M, Shen X, Duan X, Balthasar JP, Qu J. Qualitative and quantitative characterization of protein biotherapeutics with liquid chromatography mass spectrometry. MASS SPECTROMETRY REVIEWS 2017; 36:734-754. [PMID: 27097288 DOI: 10.1002/mas.21500] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
In the last decade, the advancement of liquid chromatography mass spectrometry (LC/MS) techniques has enabled their broad application in protein characterization, both quantitatively and qualitatively. Owing to certain important merits of LC/MS techniques (e.g., high selectivity, flexibility, and rapid method development), LC/MS assays are often deemed as preferable alternatives to conventional methods (e.g., ligand-binding assays) for the analysis of protein biotherapeutics. At the discovery and development stages, LC/MS is generally employed for two purposes absolute quantification of protein biotherapeutics in biological samples and qualitative characterization of proteins. For absolute quantification of a target protein in bio-matrices, recent work has led to improvements in the efficiency of LC/MS method development, sample treatment, enrichment and digestion, and high-performance low-flow-LC separation. These advances have enhanced analytical sensitivity, specificity, and robustness. As to qualitative analysis, a range of techniques have been developed to characterize intramolecular disulfide bonds, glycosylation, charge variants, primary sequence heterogeneity, and the drug-to-antibody ratio of antibody drug conjugate (ADC), which has enabled a refined ability to assess product quality. In this review, we will focus on the discussion of technical challenges and strategies of LC/MS-based quantification and characterization of biotherapeutics, with the emphasis on the analysis of antibody-based biotherapeutics such as monoclonal antibodies (mAbs) and ADCs. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:734-754, 2017.
Collapse
Affiliation(s)
- Miao Qu
- Beijing University of Chinese Medicine, Beijing, 100029, China
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203
| | - Bo An
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203
| | - Ming Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203
| | - Xiaomeng Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203
| | - Xiaotao Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Joseph P Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203
| |
Collapse
|
13
|
Liu G, Cheng K, Lo CY, Li J, Qu J, Neelamegham S. A Comprehensive, Open-source Platform for Mass Spectrometry-based Glycoproteomics Data Analysis. Mol Cell Proteomics 2017; 16:2032-2047. [PMID: 28887379 DOI: 10.1074/mcp.m117.068239] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/23/2017] [Indexed: 12/12/2022] Open
Abstract
Glycosylation is among the most abundant and diverse protein post-translational modifications (PTMs) identified to date. The structural analysis of this PTM is challenging because of the diverse monosaccharides which are not conserved among organisms, the branched nature of glycans, their isomeric structures, and heterogeneity in the glycan distribution at a given site. Glycoproteomics experiments have adopted the traditional high-throughput LC-MSn proteomics workflow to analyze site-specific glycosylation. However, comprehensive computational platforms for data analyses are scarce. To address this limitation, we present a comprehensive, open-source, modular software for glycoproteomics data analysis called GlycoPAT (GlycoProteomics Analysis Toolbox; freely available from www.VirtualGlycome.org/glycopat). The program includes three major advances: (1) "SmallGlyPep," a minimal linear representation of glycopeptides for MSn data analysis. This format allows facile serial fragmentation of both the peptide backbone and PTM at one or more locations. (2) A novel scoring scheme based on calculation of the "Ensemble Score (ES)," a measure that scores and rank-orders MS/MS spectrum for N- and O-linked glycopeptides using cross-correlation and probability based analyses. (3) A false discovery rate (FDR) calculation scheme where decoy glycopeptides are created by simultaneously scrambling the amino acid sequence and by introducing artificial monosaccharides by perturbing the original sugar mass. Parallel computing facilities and user-friendly GUIs (Graphical User Interfaces) are also provided. GlycoPAT is used to catalogue site-specific glycosylation on simple glycoproteins, standard protein mixtures and human plasma cryoprecipitate samples in three common MS/MS fragmentation modes: CID, HCD and ETD. It is also used to identify 960 unique glycopeptides in cell lysates from prostate cancer cells. The results show that the simultaneous consideration of peptide and glycan fragmentation is necessary for high quality MSn spectrum annotation in CID and HCD fragmentation modes. Additionally, they confirm the suitability of GlycoPAT to analyze shotgun glycoproteomics data.
Collapse
Affiliation(s)
- Gang Liu
- From the ‡Chemical and Biological Engineering
| | - Kai Cheng
- From the ‡Chemical and Biological Engineering.,§Clinical & Translational Research Center
| | - Chi Y Lo
- From the ‡Chemical and Biological Engineering
| | - Jun Li
- ¶Pharmaceutical Sciences; and.,‖New York State Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New York
| | - Jun Qu
- ¶Pharmaceutical Sciences; and.,‖New York State Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New York
| | - Sriram Neelamegham
- From the ‡Chemical and Biological Engineering; .,§Clinical & Translational Research Center
| |
Collapse
|
14
|
Tu C, Mojica W, Straubinger RM, Li J, Shen S, Qu M, Nie L, Roberts R, An B, Qu J. Quantitative proteomic profiling of paired cancerous and normal colon epithelial cells isolated freshly from colorectal cancer patients. Proteomics Clin Appl 2017; 11:10.1002/prca.201600155. [PMID: 27943637 PMCID: PMC5418098 DOI: 10.1002/prca.201600155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/03/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE The heterogeneous structure in tumor tissues from colorectal cancer (CRC) patients excludes an informative comparison between tumors and adjacent normal tissues. Here, we develop and apply a strategy to compare paired cancerous (CEC) versus normal (NEC) epithelial cells enriched from patients and discover potential biomarkers and therapeutic targets for CRC. EXPERIMENTAL DESIGN CEC and NEC cells are respectively isolated from five different tumor and normal locations in the resected colon tissue from each patient (N = 12 patients) using an optimized epithelial cell adhesion molecule (EpCAM)-based enrichment approach. An ion current-based quantitative method is employed to perform comparative proteomic analysis for each patient. RESULTS A total of 458 altered proteins that are common among >75% of patients are observed and selected for further investigation. Besides known findings such as deregulation of mitochondrial function, tricarboxylic acid cycle, and RNA post-transcriptional modification, functional analysis further revealed RAN signaling pathway, small nucleolar ribonucleoproteins (snoRNPs), and infection by RNA viruses are altered in CEC cells. A selection of the altered proteins of interest is validated by immunohistochemistry analyses. CONCLUSION AND CLINICAL RELEVANCE The informative comparison between matched CEC and NEC enhances our understanding of molecular mechanisms of CRC development and provides biomarker candidates and new pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Chengjian Tu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Wilfrido Mojica
- Department of Pathology, State University of New York at Buffalo, State University of New York, Buffalo, NY 14260 USA
| | - Robert M. Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Miao Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- Beijing University of Chinese Medicine, Beijing, China, 100029
| | - Lei Nie
- School of pharmaceutical sciences, Shandong University, 44 Wenhua West Road, Jinan, China, 250012
| | - Rick Roberts
- Department of Structural Biology, State University of New York at Buffalo, State University of New York, Buffalo, NY 14260 USA
| | - Bo An
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| |
Collapse
|
15
|
Wang J, Sun Z, Jiang J, Wu D, Liu X, Xie Z, Chen E, Zhu D, Ye C, Zhang X, Chen W, Cao H, Li L. Proteomic Signature of Acute Liver Failure: From Discovery and Verification in a Pig Model to Confirmation in Humans. Mol Cell Proteomics 2017; 16:1188-1199. [PMID: 28336726 DOI: 10.1074/mcp.m117.067397] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/10/2017] [Indexed: 02/06/2023] Open
Abstract
Acute liver failure (ALF) is a fatal condition hallmarked by rapid development. The present study aimed to describe the dynamic alterations of serum proteins associated with ALF development, and to seek for novel biomarkers of ALF. Miniature pigs (n = 38) were employed to establish ALF models by infusing d-galactosamine (GALN, 1.3 g/kg). A total of 1310 serum proteins were compared in pooled serum samples (n = 10) before and 36 h after GALN administration through label-free quantitation (LFQ) based shotgun proteomics. Functional analysis suggested a significant enrichment of ALF-related proteins involved in energy metabolism. Temporal changes of 20 energy metabolism related proteins were investigated in individual pigs (n = 8) via parallel reaction monitoring (PRM) based targeted proteomics. In addition, mitochondrion degeneration and gene expression alteration of aerobic metabolism genes were confirmed in GALN-insulted pig liver. In clinical validation study enrolled 34 ALF patients and 40 healthy controls, fructose-1,6-bisphosphatase 1 (FBP1) showed a prognostic value for short-term survival (30 days) equal to that of the Model of End-stage Liver Disease score (ROC-AUC = 0.778). Survival analysis suggested significantly higher death-related hazard in ALF patients with higher FBP1 levels (>16.89 μg/dL) than in those with lower FBP1 levels (p = 0.002). Additionally, serum retinol binding protein 4 (RBP4) level was found decreased prior to ALT elevation in GALN-insulted pig model. We also confirmed that serum level of RBP4 is significantly lower in ALF patients (p < 0.001) as compared with healthy controls. In summary, this translational study, displayed by multistaged proteomics techniques, unveiled underlying functional changes related to the development of ALF and facilitated the discovery of novel ALF markers.
Collapse
Affiliation(s)
- Jie Wang
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zeyu Sun
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jing Jiang
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Daxian Wu
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoli Liu
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhongyang Xie
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ermei Chen
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Danhua Zhu
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Chao Ye
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoqian Zhang
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Wenqian Chen
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hongcui Cao
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Lanjuan Li
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
16
|
Tu C, Bu Y, Vujcic M, Shen S, Li J, Qu M, Hangauer D, Clements JL, Qu J. Ion Current-Based Proteomic Profiling for Understanding the Inhibitory Effect of Tumor Necrosis Factor Alpha on Myogenic Differentiation. J Proteome Res 2016; 15:3147-57. [PMID: 27480135 DOI: 10.1021/acs.jproteome.6b00321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Despite a demonstrated role for TNF-α in promoting muscle wasting and cachexia, the associated molecular mechanisms and signaling pathways of myoblast differentiation dysregulated by TNF-α remain poorly understood. This study presents well-controlled proteomic profiling as a means to investigate the mechanisms of TNF-α-regulated myogenic differentiation. Primary human muscle precursor cells (MPCs) cultured in growth medium (GM), differentiation medium (DM) to induce myogenic differentiation, and DM with 20 ng/mL of TNF-α (n = 5/group) were comparatively analyzed by an ion current-based quantitative platform consisting of reproducible sample preparation/on-pellet digestion, a long-column nano-LC separation, and ion current-based differential analysis. The inhibition of myogenic differentiation by TNF-α was confirmed by reduced formation of multinucleated myotubes and the recovered expression of altered myogenic proteins such as MYOD and myogenin during myogenic differentiation. Functional analysis and validation by immunoassay analysis suggested that the cooperation of NF-κB and STAT proteins is responsible for dysregulated differentiation in MPCs by TNF-α treatment. Increased MHC class I components such as HLA-A, HLA-B, HLA-C, and beta-2-microglobulin were also observed in cultures in DM treated with TNF-α. Interestingly, inhibition of the cholesterol biosynthesis pathway during myogenic differentiation induced by serum starvation was not recovered by TNF-α treatment, which combined with previous reports, implies that this process may be an early event of myogenesis. This finding could lay the foundation for the potential use of statins in modulating myogenesis through cholesterol, for example, in stem cell-based myocardial infarction treatment, where differentiation of myoblasts and stem cells into force-generating mature muscle cells is a key step to the therapeutic capacity. In conclusion, the landscapes of altered transcription regulators, metabolic processes, and signaling pathways in MPCs are revealed in the regulation of myogenic differentiation by TNF-α, which is valuable for myogenic cellular therapeutics.
Collapse
Affiliation(s)
- Chengjian Tu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo , 285 Kapoor Hall, Buffalo, New York 14260, United States.,New York State Center of Excellence in Bioinformatics and Life Sciences , 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Yahao Bu
- Athenex Pharmaceuticals, 1001 Main Street, Suite 600, Buffalo, New York 14203, United States
| | - Marija Vujcic
- Athenex Pharmaceuticals, 1001 Main Street, Suite 600, Buffalo, New York 14203, United States
| | - Shichen Shen
- Department of Pharmaceutical Sciences, State University of New York at Buffalo , 285 Kapoor Hall, Buffalo, New York 14260, United States.,New York State Center of Excellence in Bioinformatics and Life Sciences , 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Jun Li
- Department of Pharmaceutical Sciences, State University of New York at Buffalo , 285 Kapoor Hall, Buffalo, New York 14260, United States.,New York State Center of Excellence in Bioinformatics and Life Sciences , 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Miao Qu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo , 285 Kapoor Hall, Buffalo, New York 14260, United States.,Beijing University of Chinese Medicine , Beijing, 100029, China
| | - David Hangauer
- Athenex Pharmaceuticals, 1001 Main Street, Suite 600, Buffalo, New York 14203, United States
| | - James L Clements
- Athenex Pharmaceuticals, 1001 Main Street, Suite 600, Buffalo, New York 14203, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo , 285 Kapoor Hall, Buffalo, New York 14260, United States.,New York State Center of Excellence in Bioinformatics and Life Sciences , 701 Ellicott Street, Buffalo, New York 14203, United States
| |
Collapse
|
17
|
Li YW, Guo J, Shen H, Li J, Yang N, Frangou C, Wilson KE, Zhang Y, Mussell AL, Sudol M, Farooq A, Qu J, Zhang J. Phosphorylation of Tyr188 in the WW domain of YAP1 plays an essential role in YAP1-induced cellular transformation. Cell Cycle 2016; 15:2497-505. [PMID: 27428284 DOI: 10.1080/15384101.2016.1207836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. The pivotal effector of this pathway is YAP1, a transcriptional co-activator amplified in mouse and human cancers where it promotes epithelial-to-mesenchymal transition (EMT) and malignant transformation. The Hippo tumor suppressor pathway has been suggested to inhibit the YAP1 function through serine phosphorylation-induced cytoplasmic retention and degradation. Here we report that the tyrosine188 (Y188) site of YAP1 isoform with 2 WW domains (known as YAP1-2) plays an important role in YAP1-induced cellular transformation. IP-Mass Spectrometry analysis of YAP1 identified the phosphorylation of Y188 but not other tyrosine residues. In contrast to the aberrant 3D acinus formation observed in YAP1-WT transduced cells, overexpression of YAP1-Y188F (non-phosphorylated mimic) displayed normal 3D structures. In addition, knockdown of the endogenous YAP1 in MDA-MB231 breast cancer cells inhibited cell proliferation and migration, which were then successfully rescued by the exogenous YAP1-WT and YAP1-Y188E but not Y188F. Mechanistically, we also demonstrated that YAP1-Y188F had a higher affinity to the upstream negative regulator PTPN14 and was extensively localized in the cytoplasm. Since the Y188 is located in the conserved aromatic core of the WW domain of YAP1, our finding has a wide implication for WW domain signaling in general, where Y phosphorylation may act as a common positive regulator of the complex formation via WW domains. In summary, our results indicate that tyrosine 188 plays an important role in the YAP1-induced cellular transformation and its phosphorylation may intriguingly serve as a positive indicator of YAP1 activation.
Collapse
Affiliation(s)
- Ying-Wei Li
- a Department of Cancer Genetics , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Jin Guo
- a Department of Cancer Genetics , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - He Shen
- a Department of Cancer Genetics , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Jun Li
- b Department of Pharmaceutical Sciences , New York Center of Excellence in Bioinformatics and Life Sciences, State University of New York , Buffalo , NY , USA
| | - Nuo Yang
- a Department of Cancer Genetics , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Costa Frangou
- a Department of Cancer Genetics , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Kayla E Wilson
- a Department of Cancer Genetics , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Yinglong Zhang
- a Department of Cancer Genetics , Roswell Park Cancer Institute , Buffalo , NY , USA.,c Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University , Xi'an , Shaanxi , P. R. China
| | - Ashley L Mussell
- a Department of Cancer Genetics , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Marius Sudol
- d Department of Physiology , National University of Singapore, The Yong Loo Li School of Medicine, Mechanobiology Institute, Institute of Molecular and Cell Biology (IMCB) A*STAR , Singapore , Republic of Singapore
| | - Amjad Farooq
- e Department of Biochemistry & Molecular Biology , Leonard Miller School of Medicine, University of Miami , Miami , FL , USA
| | - Jun Qu
- b Department of Pharmaceutical Sciences , New York Center of Excellence in Bioinformatics and Life Sciences, State University of New York , Buffalo , NY , USA
| | - Jianmin Zhang
- a Department of Cancer Genetics , Roswell Park Cancer Institute , Buffalo , NY , USA
| |
Collapse
|
18
|
Shen X, Hu Q, Li J, Wang J, Qu J. Experimental Null Method to Guide the Development of Technical Procedures and to Control False-Positive Discovery in Quantitative Proteomics. J Proteome Res 2015; 14:4147-57. [PMID: 26051676 DOI: 10.1021/acs.jproteome.5b00200] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Comprehensive and accurate evaluation of data quality and false-positive biomarker discovery is critical to direct the method development/optimization for quantitative proteomics, which nonetheless remains challenging largely due to the high complexity and unique features of proteomic data. Here we describe an experimental null (EN) method to address this need. Because the method experimentally measures the null distribution (either technical or biological replicates) using the same proteomic samples, the same procedures and the same batch as the case-vs-contol experiment, it correctly reflects the collective effects of technical variability (e.g., variation/bias in sample preparation, LC-MS analysis, and data processing) and project-specific features (e.g., characteristics of the proteome and biological variation) on the performances of quantitative analysis. To show a proof of concept, we employed the EN method to assess the quantitative accuracy and precision and the ability to quantify subtle ratio changes between groups using different experimental and data-processing approaches and in various cellular and tissue proteomes. It was found that choices of quantitative features, sample size, experimental design, data-processing strategies, and quality of chromatographic separation can profoundly affect quantitative precision and accuracy of label-free quantification. The EN method was also demonstrated as a practical tool to determine the optimal experimental parameters and rational ratio cutoff for reliable protein quantification in specific proteomic experiments, for example, to identify the necessary number of technical/biological replicates per group that affords sufficient power for discovery. Furthermore, we assessed the ability of EN method to estimate levels of false-positives in the discovery of altered proteins, using two concocted sample sets mimicking proteomic profiling using technical and biological replicates, respectively, where the true-positives/negatives are known and span a wide concentration range. It was observed that the EN method correctly reflects the null distribution in a proteomic system and accurately measures false altered proteins discovery rate (FADR). In summary, the EN method provides a straightforward, practical, and accurate alternative to statistics-based approaches for the development and evaluation of proteomic experiments and can be universally adapted to various types of quantitative techniques.
Collapse
Affiliation(s)
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute , Elm and Carlton Streets, Buffalo, New York 14263, United States
| | | | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute , Elm and Carlton Streets, Buffalo, New York 14263, United States
| | | |
Collapse
|
19
|
An B, Zhang M, Qu J. Toward sensitive and accurate analysis of antibody biotherapeutics by liquid chromatography coupled with mass spectrometry. Drug Metab Dispos 2014; 42:1858-66. [PMID: 25185260 PMCID: PMC4201127 DOI: 10.1124/dmd.114.058917] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 08/28/2014] [Indexed: 12/21/2022] Open
Abstract
Remarkable methodological advances in the past decade have expanded the application of liquid chromatography coupled with mass spectrometry (LC/MS) analysis of biotherapeutics. Currently, LC/MS represents a promising alternative or supplement to the traditional ligand binding assay (LBA) in the pharmacokinetic, pharmacodynamic, and toxicokinetic studies of protein drugs, owing to the rapid and cost-effective method development, high specificity and reproducibility, low sample consumption, the capacity of analyzing multiple targets in one analysis, and the fact that a validated method can be readily adapted across various matrices and species. While promising, technical challenges associated with sensitivity, sample preparation, method development, and quantitative accuracy need to be addressed to enable full utilization of LC/MS. This article introduces the rationale and technical challenges of LC/MS techniques in biotherapeutics analysis and summarizes recently developed strategies to alleviate these challenges. Applications of LC/MS techniques on quantification and characterization of antibody biotherapeutics are also discussed. We speculate that despite the highly attractive features of LC/MS, it will not fully replace traditional assays such as LBA in the foreseeable future; instead, the forthcoming trend is likely the conjunction of biochemical techniques with versatile LC/MS approaches to achieve accurate, sensitive, and unbiased characterization of biotherapeutics in highly complex pharmaceutical/biologic matrices. Such combinations will constitute powerful tools to tackle the challenges posed by the rapidly growing needs for biotherapeutics development.
Collapse
Affiliation(s)
- Bo An
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (B.A., M.Z., J.Q.); New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York (B.A., M.Z., J.Q.)
| | - Ming Zhang
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (B.A., M.Z., J.Q.); New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York (B.A., M.Z., J.Q.)
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (B.A., M.Z., J.Q.); New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York (B.A., M.Z., J.Q.)
| |
Collapse
|
20
|
Zhang T, Price JC, Nouri-Nigjeh E, Li J, Hellerstein MK, Qu J, Ghaemmaghami S. Kinetics of precursor labeling in stable isotope labeling in cell cultures (SILAC) experiments. Anal Chem 2014; 86:11334-41. [PMID: 25301408 DOI: 10.1021/ac503067a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent advances in mass spectrometry have enabled proteome-wide analyses of cellular protein turnover. These studies have been greatly propelled by the development of stable isotope labeling in cell cultures (SILAC), a set of standardized protocols, reagents aimed at quantifying the incorporation of (15)N/(13)C labeled amino acids into proteins. In dynamic SILAC experiments, the degree of isotope incorporation in proteins is measured over time and used to determine turnover kinetics. However, the kinetics of isotope incorporation in proteins can potentially be influenced not only by their intracellular turnover but also by amino acid uptake, recycling and aminoacyl-tRNA synthesis. To assess the influence of these processes in dynamic SILAC experiments, we have measured the kinetics of isotopic enrichment within intracellular free amino acid and aminoacyl-tRNA precursor pools in dividing and division-arrested neuroblastoma cells following the introduction of extracellular (15)N labeled amino acids. We show that the total flux of extracellular amino acids into cells greatly exceeds that of intracellular amino acid recycling and synthesis. Furthermore, in comparison to internal sources, external amino acids are preferentially utilized as substrates for aminoacyl-tRNA precursors for protein synthesis. As a result, in dynamic SILAC experiments conducted in culture, the aminoacyl-tRNA precursor pool is near completely labeled in a few hours and protein turnover is the limiting factor in establishing the labeling kinetics of most proteins.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Biology, University of Rochester , Rochester, New York 14627, United States
| | | | | | | | | | | | | |
Collapse
|
21
|
Shen X, Young R, Canty JM, Qu J. Quantitative proteomics in cardiovascular research: global and targeted strategies. Proteomics Clin Appl 2014; 8:488-505. [PMID: 24920501 DOI: 10.1002/prca.201400014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/02/2014] [Accepted: 06/06/2014] [Indexed: 11/05/2022]
Abstract
Extensive technical advances in the past decade have substantially expanded quantitative proteomics in cardiovascular research. This has great promise for elucidating the mechanisms of cardiovascular diseases and the discovery of cardiac biomarkers used for diagnosis and treatment evaluation. Global and targeted proteomics are the two major avenues of quantitative proteomics. While global approaches enable unbiased discovery of altered proteins via relative quantification at the proteome level, targeted techniques provide higher sensitivity and accuracy, and are capable of multiplexed absolute quantification in numerous clinical/biological samples. While promising, technical challenges need to be overcome to enable full utilization of these techniques in cardiovascular medicine. Here, we discuss recent advances in quantitative proteomics and summarize applications in cardiovascular research with an emphasis on biomarker discovery and elucidating molecular mechanisms of disease. We propose the integration of global and targeted strategies as a high-throughput pipeline for cardiovascular proteomics. Targeted approaches enable rapid, extensive validation of biomarker candidates discovered by global proteomics. These approaches provide a promising alternative to immunoassays and other low-throughput means currently used for limited validation.
Collapse
Affiliation(s)
- Xiaomeng Shen
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA; New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | | | | | | |
Collapse
|
22
|
Ahn SB, Khan A. Detection and quantitation of twenty-seven cytokines, chemokines and growth factors pre- and post-high abundance protein depletion in human plasma. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Decrease of dynamic range of proteins in human plasma by ampholine immobilized polymer microspheres. Anal Chim Acta 2014; 826:43-50. [DOI: 10.1016/j.aca.2014.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/28/2014] [Accepted: 04/03/2014] [Indexed: 12/25/2022]
|
24
|
Qu J, Young R, Page BJ, Shen X, Tata N, Li J, Duan X, Fallavollita JA, Canty JM. Reproducible ion-current-based approach for 24-plex comparison of the tissue proteomes of hibernating versus normal myocardium in swine models. J Proteome Res 2014; 13:2571-84. [PMID: 24697261 PMCID: PMC4015685 DOI: 10.1021/pr5000472] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Hibernating
myocardium is an adaptive response to repetitive myocardial
ischemia that is clinically common, but the mechanism of adaptation
is poorly understood. Here we compared the proteomes of hibernating
versus normal myocardium in a porcine model with 24 biological replicates.
Using the ion-current-based proteomic strategy optimized in this study
to expand upon previous proteomic work, we identified differentially
expressed proteins in new molecular pathways of cardiovascular interest.
The methodological strategy includes efficient extraction with detergent
cocktail; precipitation/digestion procedure with high, quantitative
peptide recovery; reproducible nano-LC/MS analysis on a long, heated
column packed with small particles; and quantification based on ion-current
peak areas. Under the optimized conditions, high efficiency and reproducibility
were achieved for each step, which enabled a reliable comparison of
24 the myocardial samples. To achieve confident discovery of differentially
regulated proteins in hibernating myocardium, we used highly stringent
criteria to define “quantifiable proteins”. These included
the filtering criteria of low peptide FDR and S/N > 10 for peptide
ion currents, and each protein was quantified independently from ≥2
distinct peptides. For a broad methodological validation, the quantitative
results were compared with a parallel, well-validated 2D-DIGE analysis
of the same model. Excellent agreement between the two orthogonal
methods was observed (R = 0.74), and the ion-current-based
method quantified almost one order of magnitude more proteins. In
hibernating myocardium, 225 significantly altered proteins were discovered
with a low false-discovery rate (∼3%). These proteins are involved
in biological processes including metabolism, apoptosis, stress response,
contraction, cytoskeleton, transcription, and translation. This provides
compelling evidence that hibernating myocardium adapts to chronic
ischemia. The major metabolic mechanisms include a down-regulation
of mitochondrial respiration and an increase in glycolysis. Meanwhile,
cardioprotective and cytoskeletal proteins are increased, while cardiomyocyte
contractile proteins are reduced. These intrinsic adaptations to regional
ischemia maintain long-term cardiomyocyte viability at the expense
of contractile function.
Collapse
Affiliation(s)
- Jun Qu
- Department of Pharmaceutical Sciences, ‡Department of Biochemistry, §Department of Medicine, ∥Department of Physiology and Biophysics, ⊥The Center for Research in Cardiovascular Medicine, and #Center for Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo , Buffalo, New York 14214, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ma Y, Sun Z, de Matos R, Zhang J, Odunsi K, Lin B. Towards an animal model of ovarian cancer: cataloging chicken blood proteins using combinatorial peptide ligand libraries coupled with shotgun proteomic analysis for translational research. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:280-97. [PMID: 24660652 DOI: 10.1089/omi.2013.0164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Epithelial ovarian cancer is the most deadly gynecological cancer around the world, with high morbidity in industrialized countries. Early diagnosis is key in reducing its morbidity rate. Yet, robust biomarkers, diagnostics, and animal models are still limited for ovarian cancer. This calls for broader omics and systems science oriented diagnostics strategies. In this vein, the domestic chicken has been used as an ovarian cancer animal model, owing to its high rate of developing spontaneous epithelial ovarian tumors. Chicken blood has thus been considered a surrogate reservoir from which cancer biomarkers can be identified. However, the presence of highly abundant proteins in chicken blood has compromised the applicability of proteomics tools to study chicken blood owing to a lack of immunodepletion methods. Here, we demonstrate that a combinatorial peptide ligand library (CPLL) can efficiently remove highly abundant proteins from chicken blood samples, consequently doubling the number of identified proteins. Using an integrated CPLL-1DGE-LC-MSMS workflow, we identified a catalog of 264 unique proteins. Functional analyses further suggested that most proteins were coagulation and complement factors, blood transport and binding proteins, immune- and defense-related proteins, proteases, protease inhibitors, cellular enzymes, or cell structure and adhesion proteins. Semiquantitative spectral counting analysis identified 10 potential biomarkers from the present chicken ovarian cancer model. Additionally, many human homologs of chicken blood proteins we have identified have been independently suggested as diagnostic biomarkers for ovarian cancer, further triangulating our novel observations reported here. In conclusion, the CPLL-assisted proteomic workflow using the chicken ovarian cancer model provides a feasible platform for translational research to identify ovarian cancer biomarkers and understand ovarian cancer biology. To the best of our knowledge, we report here the most comprehensive survey of the chicken blood proteome to date.
Collapse
Affiliation(s)
- Yingying Ma
- 1 System Biology Division, Zhejiang-California International Nanosystem Institute (ZCNI), Zhejiang University , Hangzhou, China
| | | | | | | | | | | |
Collapse
|
26
|
Tu C, Li J, Sheng Q, Zhang M, Qu J. Systematic assessment of survey scan and MS2-based abundance strategies for label-free quantitative proteomics using high-resolution MS data. J Proteome Res 2014; 13:2069-79. [PMID: 24635752 PMCID: PMC3993956 DOI: 10.1021/pr401206m] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Survey-scan-based label-free method
have shown no compelling benefit
over fragment ion (MS2)-based approaches when low-resolution mass
spectrometry (MS) was used, the growing prevalence of high-resolution
analyzers may have changed the game. This necessitates an updated,
comparative investigation of these approaches for data acquired by
high-resolution MS. Here, we compared survey scan-based (ion current,
IC) and MS2-based abundance features including spectral-count (SpC)
and MS2 total-ion-current (MS2-TIC), for quantitative analysis using
various high-resolution LC/MS data sets. Key discoveries include:
(i) study with seven different biological data sets revealed only
IC achieved high reproducibility for lower-abundance proteins; (ii)
evaluation with 5-replicate analyses of a yeast sample showed IC provided
much higher quantitative precision and lower missing data; (iii) IC,
SpC, and MS2-TIC all showed good quantitative linearity (R2 > 0.99) over a >1000-fold concentration range;
(iv)
both MS2-TIC and IC showed good linear response to various protein
loading amounts but not SpC; (v) quantification using a well-characterized
CPTAC data set showed that IC exhibited markedly higher quantitative
accuracy, higher sensitivity, and lower false-positives/false-negatives
than both SpC and MS2-TIC. Therefore, IC achieved an overall superior
performance than the MS2-based strategies in terms of reproducibility,
missing data, quantitative dynamic range, quantitative accuracy, and
biomarker discovery.
Collapse
Affiliation(s)
- Chengjian Tu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York , Buffalo, NY 14260, United States
| | | | | | | | | |
Collapse
|
27
|
Nouri-Nigjeh E, Zhang M, Ji T, Yu H, An B, Duan X, Balthasar J, Johnson RW, Qu J. Effects of calibration approaches on the accuracy for LC-MS targeted quantification of therapeutic protein. Anal Chem 2014; 86:3575-84. [PMID: 24611550 PMCID: PMC3982980 DOI: 10.1021/ac5001477] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
LC–MS
provides a promising alternative to ligand-binding
assays for quantification of therapeutic proteins and biomarkers.
As LC–MS methodology is based on the analysis of proteolytic
peptides, calibration approaches utilizing various calibrators and
internal standards (I.S.) have been developed. A comprehensive assessment
of the accuracy and reliability of these approaches is essential but
has yet been reported. Here we performed a well-controlled and systematic
comparative study using quantification of monoclonal-antibody in plasma
as the model system. Method development utilized a high-throughput
orthogonal-array-optimization, and two sensitive and stable signature-peptides
(SP) from different domains were selected based on extensive evaluations
in plasma matrix. With the purities of all protein/peptide standards
corrected by quantitative amino acid analysis (AAA), five calibration
approaches using stable-isotope-labeled (SIL) I.S. were thoroughly
compared, including those at peptide, extended-peptide, and protein
levels and two “hybrid” approaches (i.e., protein calibrator
with SIL-peptide or SIL-extended-peptide I.S.). These approaches were
further evaluated in parallel for a 15 time point, preclinical pharmacokinetic
study. All methods showed good precision (CV% < 20%). When examined
with protein-spiked plasma QC, peptide-level calibration exhibited
severe negative biases (−23 to −62%), highly discordant
results between the two SP (deviations of 38–56%), and misleading
pharmacokinetics assessments. Extended-peptide calibration showed
significant improvements but still with unacceptable accuracy. Conversely,
protein-level and the two hybrid calibrations achieved good quantitative
accuracy (error < 10%), concordant results by two SP (deviations
< 15%), and correct pharmacokinetic parameters. Hybrid approaches
were found to provide a cost-effective means for accurate quantification
without the costly SIL-protein. Other key findings include (i) using
two SP provides a versatile gauge for method reliability; (ii) evaluation
of peptide stability in the matrix before SP selection is critical;
and (iii) using AAA to verify purities of protein/peptide calibrators
ensures accurate quantitation. These results address fundamental calibration
issues that have not been adequately investigated in published studies
and will provide valuable guidelines for the “fit for purpose”
development of accurate LC–MS assays for therapeutic proteins
and biomarkers in biological matrices.
Collapse
Affiliation(s)
- Eslam Nouri-Nigjeh
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York , Amherst, NY 14260, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gregorich ZR, Chang YH, Ge Y. Proteomics in heart failure: top-down or bottom-up? Pflugers Arch 2014; 466:1199-209. [PMID: 24619480 DOI: 10.1007/s00424-014-1471-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 01/11/2023]
Abstract
The pathophysiology of heart failure (HF) is diverse, owing to multiple etiologies and aberrations in a number of cellular processes. Therefore, it is essential to understand how defects in the molecular pathways that mediate cellular responses to internal and external stressors function as a system to drive the HF phenotype. Mass spectrometry (MS)-based proteomics strategies have great potential for advancing our understanding of disease mechanisms at the systems level because proteins are the effector molecules for all cell functions and, thus, are directly responsible for determining cell phenotype. Two MS-based proteomics strategies exist: peptide-based bottom-up and protein-based top-down proteomics--each with its own unique strengths and weaknesses for interrogating the proteome. In this review, we will discuss the advantages and disadvantages of bottom-up and top-down MS for protein identification, quantification, and analysis of post-translational modifications, as well as highlight how both of these strategies have contributed to our understanding of the molecular and cellular mechanisms underlying HF. Additionally, the challenges associated with both proteomics approaches will be discussed and insights will be offered regarding the future of MS-based proteomics in HF research.
Collapse
Affiliation(s)
- Zachery R Gregorich
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | | | | |
Collapse
|
29
|
Tu C, Mammen MJ, Li J, Shen X, Jiang X, Hu Q, Wang J, Sethi S, Qu J. Large-scale, ion-current-based proteomics investigation of bronchoalveolar lavage fluid in chronic obstructive pulmonary disease patients. J Proteome Res 2013; 13:627-639. [PMID: 24188068 DOI: 10.1021/pr4007602] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteomic analysis of bronchoalveolar lavage fluid (BALF) in chronic obstructive pulmonary disease (COPD) patients may provide new biomarkers and deeper understanding of the disease mechanisms but remains challenging. Here we describe an ion-current-based strategy for comparative analysis of BALF proteomes from patients with moderate and stable COPD versus healthy controls. The strategy includes an efficient preparation procedure providing quantitative recovery and a nano-LC/MS analysis with a long, heated column. Under optimized conditions, high efficiency and reproducibility were achieved for each step, enabling a "20-plex" comparison of clinical subjects (n = 10/group). Without depletion/fractionation, a total of 423 unique protein groups were quantified under stringent criteria with at least two quantifiable peptides. Seventy-six proteins were determined as significantly altered in COPD, which represent a diversity of biological processes such as alcohol metabolic process, gluconeogenesis/glycolysis, inflammatory response, proteolysis, and oxidation reduction. Interestingly, altered alcohol metabolism responding to oxidant stress is a novel observation in COPD. The prominently elevated key enzymes involved in alcohol metabolism (e.g., ADH1B, ALDH2, and ALDH3A1) may provide a reasonable explanation for a bewildering observation in COPD patients known for decades: the underestimation of the blood alcohol concentrations through breath tests. These discoveries could provide new insights for identifying novel biomarkers and pathological mediators in clinical studies.
Collapse
Affiliation(s)
- Chengjian Tu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | | | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Xiaomeng Shen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Xiaosheng Jiang
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY14203
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY14203
| | - Sanjay Sethi
- University at Buffalo, SUNY.,WNY VA Healthcare System, NY 14203 USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| |
Collapse
|
30
|
Mayne J, Starr AE, Ning Z, Chen R, Chiang CK, Figeys D. Fine Tuning of Proteomic Technologies to Improve Biological Findings: Advancements in 2011–2013. Anal Chem 2013; 86:176-95. [DOI: 10.1021/ac403551f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Janice Mayne
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Amanda E. Starr
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Zhibin Ning
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Rui Chen
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Cheng-Kang Chiang
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Daniel Figeys
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| |
Collapse
|
31
|
Henning AK, Groschup MH, Mettenleiter TC, Karger A. Analysis of the bovine plasma proteome by matrix-assisted laser desorption/ionisation time-of-flight tandem mass spectrometry. Vet J 2013; 199:175-80. [PMID: 24268478 DOI: 10.1016/j.tvjl.2013.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 10/15/2013] [Accepted: 10/18/2013] [Indexed: 01/03/2023]
Abstract
In this study, the bovine plasma proteome was analysed using a three step protocol: (1) plasma was treated with a combinatorial peptide ligand library (CPLL) to assimilate the differences in concentrations of different proteins in raw plasma; (2) CPLL-treated material was fractionated by three standard electrophoretic separation techniques, and (3) samples were analysed by nano-liquid chromatography (nLC) matrix-assisted laser desorption/ionisation (MALDI) time-of-flight tandem (TOF/TOF) mass spectrometry. The efficiencies of three fractionation protocols for plasma proteome analysis were compared. After size fractionation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), resolution of proteins was better and yields of identified proteins were higher than after charge-based fractionation by preparative gel-free isoelectric focussing. For proteins with isoelectric points >6 and molecular weights ⩾ 63 kDa, the best results were obtained with a 'shotgun' approach, in which the CPLL-treated plasma was digested and the peptides, rather than the proteins, were fractionated by gel-free isoelectric focussing. However, the three fractionation techniques were largely complementary, since only about one-third of the proteome was identified by each approach.
Collapse
Affiliation(s)
- Ann-Kristin Henning
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany; Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
32
|
Jackson CA, Yadav N, Min S, Li J, Milliman EJ, Qu J, Chen YC, Yu MC. Proteomic analysis of interactors for yeast protein arginine methyltransferase Hmt1 reveals novel substrate and insights into additional biological roles. Proteomics 2013; 12:3304-14. [PMID: 22997150 DOI: 10.1002/pmic.201200132] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 01/07/2023]
Abstract
Protein arginine methylation is a PTM catalyzed by an evolutionarily conserved family of enzymes called protein arginine methyltransferases (PRMTs), with PRMT1 being the most conserved member of this enzyme family. This modification has emerged to be an important regulator of protein functions. To better understand the role of PRMTs in cellular pathways and functions, we have carried out a proteomic profiling experiment to comprehensively identify the physical interactors of Hmt1, the budding yeast homolog for human PRMT1. Using a dual-enzymatic digestion linear trap quadrupole/Orbitrap proteomic strategy, we identified a total of 108 proteins that specifically copurify with Hmt1 by tandem affinity purification. A reverse coimmunoprecipitation experiment was used to confirm Hmt1's physical association with Bre5, Mtr4, Snf2, Sum1, and Ssd1, five proteins that were identified as Hmt1-specific interactors in multiple biological replicates. To determine whether the identified Hmt1-interactors had the potential to act as an Hmt1 substrate, we used published bioinformatics algorithms that predict the presence and location of potential methylarginines for each identified interactor. One of the top hits from this analysis, Snf2, was experimentally confirmed as a robust substrate of Hmt1 in vitro. Overall, our data provide a feasible proteomic approach that aid in the better understanding of PRMT1's roles within a cell.
Collapse
Affiliation(s)
- Christopher A Jackson
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Fisk JC, Li J, Wang H, Aletta JM, Qu J, Read LK. Proteomic analysis reveals diverse classes of arginine methylproteins in mitochondria of trypanosomes. Mol Cell Proteomics 2012; 12:302-11. [PMID: 23152538 DOI: 10.1074/mcp.m112.022533] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arginine (arg) methylation is a widespread posttranslational modification of proteins that impacts numerous cellular processes such as chromatin remodeling, RNA processing, DNA repair, and cell signaling. Known arg methylproteins arise mostly from yeast and mammals, and are almost exclusively nuclear and cytoplasmic. Trypanosoma brucei is an early branching eukaryote whose genome encodes five putative protein arg methyltransferases, and thus likely contains a plethora of arg methylproteins. Additionally, trypanosomes and related organisms possess a unique mitochondrion that undergoes dramatic developmental regulation and uses novel RNA editing and mitochondrial DNA replication mechanisms. Here, we performed a global mass spectrometric analysis of the T. brucei mitochondrion to identify new arg methylproteins in this medically relevant parasite. Enabling factors of this work are use of a combination digestion with two orthogonal enzymes, an efficient offline two dimensional chromatography separation, and high-resolution mass spectrometry analysis with two complementary activations. This approach led to the comprehensive, sensitive and confident identification and localization of methylarg at a proteome level. We identified 167 arg methylproteins with wide-ranging functions including metabolism, transport, chaperoning, RNA processing, translation, and DNA replication. Our data suggest that arg methylproteins in trypanosome mitochondria possess both trypanosome-specific and evolutionarily conserved modifications, depending on the protein targeted. This study is the first comprehensive analysis of mitochondrial arg methylation in any organism, and represents a significant advance in our knowledge of the range of arg methylproteins and their sites of modification. Moreover, these studies establish T. brucei as a model organism for the study of posttranslational modifications.
Collapse
Affiliation(s)
- John C Fisk
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14124, USA
| | | | | | | | | | | |
Collapse
|
34
|
Tu C, Li J, Bu Y, Hangauer D, Qu J. An ion-current-based, comprehensive and reproducible proteomic strategy for comparative characterization of the cellular responses to novel anti-cancer agents in a prostate cell model. J Proteomics 2012; 77:187-201. [PMID: 22982362 DOI: 10.1016/j.jprot.2012.08.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/18/2012] [Accepted: 08/31/2012] [Indexed: 11/18/2022]
Abstract
Proteome-level investigation of the molecular targets in anticancer action of promising pharmaceutical candidates is highly desirable but remains challenging due to the insufficient proteome coverage, limited capacity for biological replicates, and largely unregulated false positive biomarker discovery of current methods. This study described a practical platform strategy to address these challenges, using comparison of drug response proteomic signatures by two promising anti-cancer agents (KX01/KX02) as the model system for method development/optimization. Drug-treated samples were efficiently extracted followed by precipitation/on-pellet-digestion procedure that provides high, reproducible peptide recovery. High-resolution separations were performed on a 75-cm-long, heated nano-LC column with a 7-h gradient, with a highly reproducible nano-LC/nanospray configuration. An LTQ Orbitrap hybrid mass spectrometer with a charge overfilling approach to enhance sensitivity was used for detection. Analytical procedures were optimized and well-controlled to achieve high run-to-run reproducibility that permits numerous replicates in one set, and an ion-current-based approach was utilized for quantification. The false positives of biomarker discovery arising from technical variability was controlled based on FBDR measurement by comparing biomarker numbers in each drug-treated group vs. "sham samples", which were analyzed in an order randomly interleaved with the analysis drug-treated samples. More than 1500 unique protein groups were quantified under stringent criteria, and of which about 30% displayed differential expression with FBDR of 0.3-2.1% across groups. Comparison of drug-response proteomic signatures and the subsequent immunoassay revealed that the action mechanisms of KX01/KX02 are similar but significantly different from vinblastine, which correlates well with clinical and pre-clinical observations. Furthermore, the results strongly supported the hypothesis that KX01/KX02 are dual-action agents (through inhibition of tubulin and Src). Moreover, informative insights into the drug-actions on cell cycle, growth/proliferation, and apoptosis were obtained. This platform technology provides extensive evaluation of drug candidates and facilitates in-depth mechanism studies.
Collapse
Affiliation(s)
- Chengjian Tu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Yahao Bu
- Kinex Pharmaceuticals LLC, New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - David Hangauer
- Kinex Pharmaceuticals LLC, New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| |
Collapse
|
35
|
Zhu G, Zhao P, Deng N, Tao D, Sun L, Liang Z, Zhang L, Zhang Y. Single chain variable fragment displaying M13 phage library functionalized magnetic microsphere-based protein equalizer for human serum protein analysis. Anal Chem 2012; 84:7633-7. [PMID: 22909037 DOI: 10.1021/ac3017746] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Single chain variable fragment (scFv) displaying the M13 phage library was covalently immobilized on magnetic microspheres and used as a protein equalizer for the treatment of human serum. First, scFv displaying M13 phage library functionalized magnetic microspheres (scFv@M13@MM) was incubated with a human serum sample. Second, captured proteins on scFv@M13@MM were eluted with 2 M NaCl, 50 mM glycine-hydrochloric acid (Gly-HCl), and 20% (v/v) acetonitrile with 0.5% (v/v) trifluoroacetic acid in sequence. Finally, the tightly bonded proteins were released by the treatment with thrombin. The eluates were first analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with silver staining. Results indicated that the difference of protein concentration was reduced obviously in NaCl and Gly-HCl fractions compared with untreated human serum sample. The eluates were also digested with trypsin, followed by online 2D-strong cation exchange (SCX)-RPLC-ESI-MS/MS analysis. Results demonstrated that the number of proteins identified from an scFv@M13@MM treated human serum sample was improved 100% compared with that from the untreated sample. In addition, the spectral count of 10 high abundance proteins (serum albumin, serotransferrin, α-2-macroglobulin, α-1-antitrypsin, apolipoprotein B-100, Ig γ-2 chain C region, haptoglobin, hemopexin, α-1-acid glycoprotein 1, and α-2-HS-glycoprotein) decreased evidently after scFv@M13@MM treatment. All these results demonstrate that scFv@M13@MM could efficiently remove high-abundance proteins, reduce the protein concentration difference of human serum, and result in more protein identification.
Collapse
Affiliation(s)
- Guijie Zhu
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. and A. Center, Dalian Institute of Chemical Physics, The Chinese Academy of Science, Dalian, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Righetti PG, Boschetti E, Candiano G. Mark Twain: How to fathom the depth of your pet proteome. J Proteomics 2012; 75:4783-91. [DOI: 10.1016/j.jprot.2012.05.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/28/2012] [Accepted: 05/30/2012] [Indexed: 02/06/2023]
|
37
|
Duan X, Dai L, Chen SC, Balthasar JP, Qu J. Nano-scale liquid chromatography/mass spectrometry and on-the-fly orthogonal array optimization for quantification of therapeutic monoclonal antibodies and the application in preclinical analysis. J Chromatogr A 2012; 1251:63-73. [PMID: 22770385 DOI: 10.1016/j.chroma.2012.06.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/28/2012] [Accepted: 06/01/2012] [Indexed: 01/29/2023]
Abstract
Therapeutic monoclonal antibodies (mAbs) constitute a group of highly effective agents for treating various refractory diseases. Nonetheless it is challenging to achieve selective and accurate quantification of mAb in pharmaceutical matrices, which is required by PK studies. Liquid chromatography/mass spectrometry under selected reaction monitoring mode (LC/SRM-MS) is emerging as an attractive alternative to immunoassays because of the high specificity and multiplexing capacity it provides, but may fall short in terms of sensitivity, reliability and quantitative accuracy. Moreover, the strategy for optimization of the MS conditions for many candidates of signature peptides (SP) and the selection of the optimal SP for quantification remains elusive. In this study, we employed a suite of technical advances to overcome these difficulties, which include: (i) a nano-LC/SRM-MS approach to achieve high analytical sensitivity, (ii) a high-resolution nano-LC/LTQ/Orbitrap for confident identification of candidate peptides, (iii) an on-the-fly orthogonal array optimization (OAO) method for the high-throughput, accurate and reproducible optimization for numerous candidate peptides in a single LC/MS run without using synthesized peptides, (iv) a comprehensive evaluation of stability of candidates in matrix using the optimized SRM parameters, (v) the use of two unique SP for quantification of one mAb to gauge possible degradation/modification in biological system and thus enhancing data reliability (e.g. rejection of data if the deviation between the two SP is greater than 25%) and (vi) the utilization of purified target protein as the calibrator to eliminate the risk of severe negative biases that could occur when a synthesized peptide is used as calibrator. To show a proof of concept, this strategy is applied in the quantification of cT84.66, a chimeric, anti-CEA antibody, in preclinical mouse models. A low detection limit of the mAb down to 3.2 ng/mL was achieved, which is substantially more sensitive than established immunoassay methods for anti-CEA antibodies. The quantitative method showed good linearity (within the range of 12.9 ng/mL to 32.3 μg/mL in plasma), accuracy and precision. Additionally, the ultra-low sample consumption (2 μL plasma per preparation) permits the acquisition of an entire set of time course data from the same mouse, which represents a prominent advantage for PK study using small-animal models. The developed method enabled an accurate PK investigation of cT84.66 in mice following intravenous and subcutaneous administrations at relatively low doses over an extended period of time. The strategy employed in this study can be easily adapted to the sensitive and accurate analysis of other mAb and therapeutic proteins.
Collapse
Affiliation(s)
- Xiaotao Duan
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260, USA; New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - Lipeng Dai
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260, USA; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
| | - Shang-Chiung Chen
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260, USA; New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - Joseph P Balthasar
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260, USA; New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - Jun Qu
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260, USA; New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
38
|
Fasoli E, D'Amato A, Citterio A, Righetti PG. Anyone for an aperitif? Yes, but only a Braulio DOC with its certified proteome. J Proteomics 2012; 75:3374-9. [DOI: 10.1016/j.jprot.2012.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 12/25/2022]
|
39
|
Duan X, Abuqayyas L, Dai L, Balthasar JP, Qu J. High-throughput method development for sensitive, accurate, and reproducible quantification of therapeutic monoclonal antibodies in tissues using orthogonal array optimization and nano liquid chromatography/selected reaction monitoring mass spectrometry. Anal Chem 2012; 84:4373-82. [PMID: 22519810 DOI: 10.1021/ac2034166] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although liquid chromatography/mass spectrometry using selected reaction monitoring (LC/SRM-MS) holds great promise for targeted protein analysis, quantification of therapeutic monoclonal antibody (mAb) in tissues represents a daunting challenge due to the extremely low tissue levels, complexity of tissue matrixes, and the absence of an efficient strategy to develop an optimal LC/SRM-MS method. Here we describe a high-throughput, streamlined strategy for the development of sensitive, selective, and reliable quantitative methods of mAb in tissue matrixes. A sensitive nano-LC/nanospray-MS method was employed to achieve a low lower limit of quantification (LOQ). For selection of signature peptides (SP), the SP candidates were identified by a high-resolution Orbitrap and then optimal SRM conditions for each candidate were obtained using a high-throughput, on-the-fly orthogonal array optimization (OAO) strategy, which is capable of optimizing a large set of SP candidates within a single nano-LC/SRM-MS run. Using the optimized conditions, the candidates were experimentally evaluated for both sensitivity and stability in the target matrixes, and SP selection was based on the results of the evaluation. Two unique SP, respectively from the light and heavy chain, were chosen for quantification of each mAb. The use of two SP improves the quantitative reliability by gauging possible degradation/modification of the mAb. Standard mAb proteins with verified purities were utilized for calibration curves, to prevent the quantitative biases that may otherwise occur when synthesized peptides were used as calibrators. We showed a proof of concept by rapidly developing sensitive nano-LC/SRM-MS methods for quantifying two mAb (8c2 and cT84.66) in multiple preclinical tissues. High sensitivity was achieved for both mAb with LOQ ranged from 0.156 to 0.312 μg/g across different tissues, and the overall procedure showed a wide dynamic range (≥500-fold) and good accuracy [relative error (RE) < 18.8%] and precision [interbatch relative standard deviation (RSD) < 18.1%, intrabatch RSD < 17.2%]. The quantitative method was applied to a comprehensive investigation of the steady-state tissue distribution of 8c2 in wild-type mice versus those deficient in FcRn α-chain, FcγIIb, and FcγRI/FcγRIII, following a chronic dosing regimen. This work represents the first extensive quantification of mAb in tissues by an LC/MS-based method.
Collapse
Affiliation(s)
- Xiaotao Duan
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, New York 14260, United States
| | | | | | | | | |
Collapse
|
40
|
Jamesdaniel S, Coling D, Hinduja S, Ding D, Li J, Cassidy L, Seigel GM, Qu J, Salvi R. Cisplatin-induced ototoxicity is mediated by nitroxidative modification of cochlear proteins characterized by nitration of Lmo4. J Biol Chem 2012; 287:18674-86. [PMID: 22493493 DOI: 10.1074/jbc.m111.297960] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Tyrosine nitration is an important sequel of cellular signaling induced by reactive oxygen species. Cisplatin is an anti-neoplastic agent that damages the inner ear through reactive oxygen species and by the formation of DNA adducts. This study reveals a correlation between cisplatin-mediated hearing loss and nitroxidative modification of cochlear proteins and is the first to report nitration of Lmo4. Cisplatin induced a dose-dependent increase in hearing loss in Wistar rats. A 10-15-dB decrease in distortion product amplitude and massive loss of outer hair cells at the basal turn of the cochlea was observed 3 days post-treatment after a 16 mg/kg dose. Cisplatin induced nitration of cellular proteins within the organ of Corti, spiral ganglion, and stria vascularis, which are known targets of cisplatin ototoxicity. Nitration of a 76-kDa cochlear protein correlated with cisplatin dose. The nitrated protein was identified as Lmo4 (LIM domain only 4) by MALDI-TOF (matrix-assisted laser desorption/ionization time of flight) mass spectrometry and confirmed by reciprocal immunoprecipitation and immunoblotting. Co-localization of nitrotyrosine and Lmo4 was particularly high in outer hair cell nuclei after cisplatin treatment. Cochlear levels of Lmo4 were decreased in rats treated with cisplatin. In vitro studies supported the repression of Lmo4 in nitroxidative conditions and the induction of apoptosis upon repression of Lmo4. Inhibition of cochlear protein nitration prevented cisplatin-induced hearing loss. As Lmo4 is a transcriptional regulator that controls the choice between cell survival and cell death, these results support the hypothesis that nitration of Lmo4 influences cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Samson Jamesdaniel
- Department of Communicative Disorders and Sciences, The State University of New York, Buffalo, New York 14214, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Selvaraju S, Rassi ZE. Liquid-phase-based separation systems for depletion, prefractionation and enrichment of proteins in biological fluids and matrices for in-depth proteomics analysis--an update covering the period 2008-2011. Electrophoresis 2012; 33:74-88. [PMID: 22125262 PMCID: PMC3516880 DOI: 10.1002/elps.201100431] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/05/2011] [Accepted: 09/06/2011] [Indexed: 11/08/2022]
Abstract
This review article expands on the previous one (Jmeian, Y. and El Rassi, Z. Electrophoresis 2009, 30, 249-261) by reviewing pertinent literature in the period extending from early 2008 to the present. Similar to the previous review article, the present one is concerned with proteomic sample preparation (e.g. depletion of high-abundance proteins, reduction of the protein dynamic concentration range, enrichment of a particular subproteome), and the subsequent chromatographic and/or electrophoretic prefractionation prior to peptide separation and identification by LC-MS/MS. This review article differs from the first version published in Electrophoresis 2009, 30, 249-261 by expanding on capturing/enriching subglycoproteomics by lectin affinity chromatography. Ninety-eight articles published in the period extending from early 2008 to the present have been reviewed. By no means is this review article exhaustive: its aim is to give a concise report on the latest developments in the field.
Collapse
Affiliation(s)
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071
| |
Collapse
|
42
|
Dynamic range compression: a solution for proteomic biomarker discovery? Bioanalysis 2011; 3:2053-6. [DOI: 10.4155/bio.11.206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|