1
|
Córdova-Espinoza MG, González-Vázquez R, Barron-Fattel RR, Gónzalez-Vázquez R, Vargas-Hernández MA, Albores-Méndez EM, Esquivel-Campos AL, Mendoza-Pérez F, Mayorga-Reyes L, Gutiérrez-Nava MA, Medina-Quero K, Escamilla-Gutiérrez A. Aptamers: A Cutting-Edge Approach for Gram-Negative Bacterial Pathogen Identification. Int J Mol Sci 2024; 25:1257. [PMID: 38279257 PMCID: PMC10817072 DOI: 10.3390/ijms25021257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Early and accurate diagnoses of pathogenic microorganisms is essential to correctly identify diseases, treating infections, and tracking disease outbreaks associated with microbial infections, to develop precautionary measures that allow a fast and effective response in epidemics and pandemics, thus improving public health. Aptamers are a class of synthetic nucleic acid molecules with the potential to be used for medical purposes, since they can be directed towards any target molecule. Currently, the use of aptamers has increased because they are a useful tool in the detection of specific targets. We present a brief review of the use of aptamers to detect and identify bacteria or even some toxins with clinical importance. This work describes the advances in the technology of aptamers, with the purpose of providing knowledge to develop new aptamers for diagnoses and treatment of different diseases caused by infectious microorganisms.
Collapse
Affiliation(s)
- María Guadalupe Córdova-Espinoza
- Immunology Laboratory, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico;
- National School of Biological Sciences, National Polytechnic Institute, Laboratory of Medical Bacteriology, Mexico City 11350, Mexico; (R.G.-V.); (R.R.B.-F.)
- Mexican Social Security Institute, Unidad Medica de Alta Especialidad, Hospital de Especialidades, “Dr. Antonio Fraga Mouret”, National Medical Center La Raza, Mexico City 02990, Mexico
| | - Rosa González-Vázquez
- National School of Biological Sciences, National Polytechnic Institute, Laboratory of Medical Bacteriology, Mexico City 11350, Mexico; (R.G.-V.); (R.R.B.-F.)
- Mexican Social Security Institute, Unidad Medica de Alta Especialidad, Hospital de Especialidades, “Dr. Antonio Fraga Mouret”, National Medical Center La Raza, Mexico City 02990, Mexico
| | - Rolando Rafik Barron-Fattel
- National School of Biological Sciences, National Polytechnic Institute, Laboratory of Medical Bacteriology, Mexico City 11350, Mexico; (R.G.-V.); (R.R.B.-F.)
| | - Raquel Gónzalez-Vázquez
- Laboratory of Biotechnology, Department of Biological Systems, Metropolitana Campus Xochimilco, CONAHCYT—Universidad Autonoma, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldia Coyoacan, Mexico City 04960, Mexico;
| | - Marco Antonio Vargas-Hernández
- Research Department, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico; (M.A.V.-H.); (E.M.A.-M.)
| | - Exsal Manuel Albores-Méndez
- Research Department, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico; (M.A.V.-H.); (E.M.A.-M.)
| | - Ana Laura Esquivel-Campos
- Laboratory of Biotechnology, Department of Biological Systems, Universidad Autonoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldia Coyoacan, Mexico City 04960, Mexico; (A.L.E.-C.); (F.M.-P.); (L.M.-R.)
| | - Felipe Mendoza-Pérez
- Laboratory of Biotechnology, Department of Biological Systems, Universidad Autonoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldia Coyoacan, Mexico City 04960, Mexico; (A.L.E.-C.); (F.M.-P.); (L.M.-R.)
| | - Lino Mayorga-Reyes
- Laboratory of Biotechnology, Department of Biological Systems, Universidad Autonoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldia Coyoacan, Mexico City 04960, Mexico; (A.L.E.-C.); (F.M.-P.); (L.M.-R.)
| | - María Angélica Gutiérrez-Nava
- Laboratory of Microbial Ecology, Department of Biological Systems, Universidad Autonoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Coyoacan, Mexico City 04960, Mexico;
| | - Karen Medina-Quero
- Immunology Laboratory, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico;
| | - Alejandro Escamilla-Gutiérrez
- National School of Biological Sciences, National Polytechnic Institute, Laboratory of Medical Bacteriology, Mexico City 11350, Mexico; (R.G.-V.); (R.R.B.-F.)
- Mexican Social Security Institute, Unidad Medica de Alta Especialidad, Microbiology Laboratory, Hospital General “Dr. Gaudencio González Garza”, National Medical Center La Raza, Mexico City 02990, Mexico
| |
Collapse
|
2
|
A review: Construction of aptamer screening methods based on improving the screening rate of key steps. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Su Y, Zhu L, Wu Y, Liu Z, Xu W. Progress and challenges in bacterial whole-cell-components Aptamer advanced screening and site identification. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Aptamer-based enzyme-linked oligonucleotide assay for specific detection of clinical bacterial strains isolated from cerebrospinal fluid samples. J Biosci Bioeng 2022; 134:441-449. [PMID: 36109302 DOI: 10.1016/j.jbiosc.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022]
Abstract
Meningitis, acute infection of the meninges, is the 10th leading cause of mortality among infectious diseases. Although many different causes for meningitis (viruses and bacteria) have been diagnosed, the most common ones are Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae. The effort to find a new method for detection of bacterial meningitis is an urgent need for clinical treatment. DNA aptamers generated by cell-systematic evolution of ligands by exponential enrichment (SELEX) against bacterial cells provide a novel cell labeling and biosensing technique. Here, we isolated single-stranded DNA aptamers during the SELEX method with a high affinity for different bacterial genera. This approach was demonstrated on H. influenzae type B, N. meningitidis serogroups A, B, C, and Y, and Streptococcus pneumoniae serotypes 18, 14, 19A, 6A, and 6B which served as targets in 20 rounds of cell-SELEX. After 20 rounds of SELEX, a total of 93 aptamers were identified. Among these, aptamers C65 and C50 showed the highest affinity toward targets with a dissociation constant of 6.98 and 15.79, respectively. Selected aptamers were able to successfully detect clinical bacterial strains isolated from cerebrospinal fluid samples of meningitis patients by double-aptamer sandwich enzyme-linked oligonucleotide assay (ELONA). Our findings demonstrated that aptamers with broad affinity to bacterial taxa in different genera can be isolated for the development of diagnostic tools for multiple targets. We further showed that sandwich ELONA based on single-stranded DNA aptamer is sensitive and specific enough for detection of the superior cause of bacterial meningitis.
Collapse
|
5
|
Cruz-Hernández CD, Rodríguez-Martínez G, Cortés-Ramírez SA, Morales-Pacheco M, Cruz-Burgos M, Losada-García A, Reyes-Grajeda JP, González-Ramírez I, González-Covarrubias V, Camacho-Arroyo I, Cerbón M, Rodríguez-Dorantes M. Aptamers as Theragnostic Tools in Prostate Cancer. Biomolecules 2022; 12:biom12081056. [PMID: 36008950 PMCID: PMC9406110 DOI: 10.3390/biom12081056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023] Open
Abstract
Despite of the capacity that several drugs have for specific inhibition of the androgen receptor (AR), in most cases, PCa progresses to an androgen-independent stage. In this context, the development of new targeted therapies for prostate cancer (PCa) has remained as a challenge. To overcome this issue, new tools, based on nucleic acids technology, have been developed. Aptamers are small oligonucleotides with a three-dimensional structure capable of interacting with practically any desired target, even large targets such as mammalian cells or viruses. Recently, aptamers have been studied for treatment and detection of many diseases including cancer. In PCa, numerous works have reported their use in the development of new approaches in diagnostics and treatment strategies. Aptamers have been joined with drugs or other specific molecules such as silencing RNAs (aptamer–siRNA chimeras) to specifically reduce the expression of oncogenes in PCa cells. Even though these studies have shown good results in the early stages, more research is still needed to demonstrate the clinical value of aptamers in PCa. The aim of this review was to compile the existing scientific literature regarding the use of aptamers in PCa in both diagnosis and treatment studies. Since Prostate-Specific Membrane Antigen (PSMA) aptamers are the most studied type of aptamers in this field, special emphasis was given to these aptamers.
Collapse
Affiliation(s)
- Carlos David Cruz-Hernández
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Griselda Rodríguez-Martínez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Sergio A. Cortés-Ramírez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Marian Cruz-Burgos
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Alberto Losada-García
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Juan Pablo Reyes-Grajeda
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Imelda González-Ramírez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana–Xochimilco, Mexico City 04960, Mexico;
| | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (I.C.-A.); (M.C.)
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (I.C.-A.); (M.C.)
| | - Mauricio Rodríguez-Dorantes
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
- Correspondence:
| |
Collapse
|
6
|
Liu M, Yue F, Kong Q, Liu Z, Guo Y, Sun X. Aptamers against Pathogenic Bacteria: Selection Strategies and Apta-assay/Aptasensor Application for Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5477-5498. [PMID: 35471004 DOI: 10.1021/acs.jafc.2c01547] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pathogenic bacteria are primarily kinds of detrimental agents that cause mankind illness via contaminated food with traits of multiple types, universality, and low content. In view of the detection demands for rapidity, aptamer recognition factors emerged as a substitution for antibodies, which are short single strands of nucleic acid selected via in vitro. They display certain superiorities over antibodies, such as preferable stability, liable modification, and cost-efficiency. Taking advantage of the situation, numerous aptamers against pathogenic bacteria have been successfully selected and applied, yet there are still restrictions on commercial availability. In this review, the strategies/approaches to key sections in pathogen aptamers SELEX and post-SELEX are summarized and sorted out. Recently, optical, electrochemical, and piezoelectric aptamer-based assays or sensors dedicated to pathogen detection have been critically reviewed. Ultimately, the existing challenges and future trends in this field are proposed to further promote development prospects.
Collapse
Affiliation(s)
- Mengyue Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Fengling Yue
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Qianqian Kong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Zhanli Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| |
Collapse
|
7
|
Singhal C, Bruno JG, Kaushal A, Sharma TK. Recent Advances and a Roadmap to Aptamer-Based Sensors for Bloodstream Infections. ACS APPLIED BIO MATERIALS 2021; 4:3962-3984. [PMID: 35006817 DOI: 10.1021/acsabm.0c01358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present review is intended to describe bloodstream infections (BSIs), the major pathogens responsible for BSIs, conventional tests and their limitations, commercially available methods used, and the aptamer and nanomaterials-based approaches developed so far for the detection of BSIs. The advantages associated with aptamers and the aptamer-based sensors, the comparison between the aptamers and the antibodies, and the various types of aptasensors developed so far for the detection of bloodstream infections have been described in detail in the present review. Also, the future outlook and roadmap toward aptamer-based sensors and the challenges associated with the aptamer development have also been concluded in this review.
Collapse
Affiliation(s)
- Chaitali Singhal
- Aptamer Technology and Diagnostic Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| | - John G Bruno
- Nanohmics, Inc., Austin, Texas 78741, United States
| | - Ankur Kaushal
- Centre of Nanotechnology, Amity University, Manesar, Gurugram, Haryana 122413, India
| | - Tarun K Sharma
- Aptamer Technology and Diagnostic Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| |
Collapse
|
8
|
Zhang H, Yao S, Song X, Xu K, Wang J, Li J, Zhao C, Jin M. One-step colorimetric detection of Staphylococcus aureus based on target-induced shielding against the peroxidase mimicking activity of aptamer-functionalized gold-coated iron oxide nanocomposites. Talanta 2021; 232:122448. [PMID: 34074432 DOI: 10.1016/j.talanta.2021.122448] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/04/2021] [Accepted: 04/18/2021] [Indexed: 12/30/2022]
Abstract
Staphylococcus aureus (S. aureus) is one of the most threatened food-borne pathogens. Thus, it is necessary to establish fast, portable and reliable tools to realize the identification of S. aureus. Herein, the authors describe an effective colorimetric-based biosensor for the detection of S. aureus in multiple types of samples. Initially, a nanozyme composed of gold and iron oxide nanoparticles was synthesized and further modified with S. aureus-specific aptamer via Au-S bond. By utilizing the intrinsic peroxidase-like activity of the above magnetic conjugates, 3,3',5,5'-tetramethylbenzidine (TMB) can be transferred to oxTMB by oxidation of hydrogen peroxide (H2O2), resulting in a visible blue color. However, the introduction of S. aureus can turn off the UV-vis absorbance signals of TMB-H2O2 system, due to the identification property of the nanozyme probe. Consequently, the optical density of the mixed solution measured at 652 nm decreased linearly as the concentration of S. aureus increased from 10 to 106 CFU mL-1, with the visible limit of detection as low as 10 CFU mL-1. The as-prepared sensor can detect S. aureus in spiked water, milk and urine samples quantitatively during 12 min without any pre-enrichment, separation or washing steps. In our perception, the one-step colorimetric assay show promise in practical on-site detection of S. aureus.
Collapse
Affiliation(s)
- Huiwen Zhang
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Shuo Yao
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Xiuling Song
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Kun Xu
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Juan Wang
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Juan Li
- School of Public Health, Jilin University, Changchun, 130021, China.
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun, 130021, China.
| | - Minghua Jin
- School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
9
|
Kim CJ, Si Z, Reghu S, Guo Z, Zhang K, Li J, Chan-Park MB. DNA-derived nanostructures selectively capture gram-positive bacteria. Drug Deliv Transl Res 2021; 11:1438-1450. [PMID: 33880733 DOI: 10.1007/s13346-021-00975-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
We report the first demonstration of the efficient bacteria targeting properties of DNA-based polymeric micelles with high-density DNA corona. Nanoscale polymer micelles derived from DNA-b-polystyrene (DNA-b-PS) efficiently selected most tested Gram-positive strains over Gram-negative strains; single-strand DNAs were 20-fold less selective. We demonstrate that these targeting properties were derived from the interaction between densely packed DNA strands of the micelle corona and the peptidoglycan layers of Gram-positive bacteria. DNA-b-PS micelles incorporating magnetic nanoparticles (MNPs) can efficiently capture and concentrate Gram-positive bacteria suggesting the simple applications of these DNA block copolymer micelles for concentrating bacteria. Adenine (A), thymine (T), cytosine (C), and guanine (G)-rich nanostructures were fabricated, respectively, for investigating the effect of sequence on Gram-selective bacteria targeting. T-rich micelles showed the most efficient targeting properties. The targeting properties of these DNA nanostructures toward Gram-positive bacteria may have applications as a targeted therapeutic delivery system.
Collapse
Affiliation(s)
- Chan-Jin Kim
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Nanyang, 637459, Singapore
| | - Zhangyong Si
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Nanyang, 637459, Singapore
| | - Sheethal Reghu
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Nanyang, 637459, Singapore
| | - Zhong Guo
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Nanyang, 637459, Singapore
| | - Kaixi Zhang
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Nanyang, 637459, Singapore
| | - Jianghua Li
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Nanyang, 637459, Singapore
| | - Mary B Chan-Park
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Nanyang, 637459, Singapore. .,Lee Kong Chian School of Medicine, Nanyang Technological University, Nanyang, 636921, Singapore. .,School of Physical & Mathematical Sciences, Nanyang Technological University, Nanyang, 637371, Singapore.
| |
Collapse
|
10
|
Strom M, Crowley T, Shigdar S. Novel Detection of Nasty Bugs, Prevention Is Better than Cure. Int J Mol Sci 2020; 22:E149. [PMID: 33375709 PMCID: PMC7795740 DOI: 10.3390/ijms22010149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Hospital-acquired infections (HAIs) are a growing concern around the world. They contribute to increasing mortality and morbidity rates and are an economic threat. All hospital patients have the potential to contract an HAI, but those with weakened or inferior immune systems are at highest risk. Most hospital patients will contract at least one HAI, but many will contract multiple ones. Bacteria are the most common cause of HAIs and contribute to 80-90% of all HAIs, with Staphylococcus aureus, Clostridium difficile, Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae accounting for the majority. Each of these bacteria are highly resistant to antibiotics and can produce a protective film, known as a biofilm, to further prevent their eradication. It has been shown that by detecting and eradicating bacteria in the environment, infection rates can be reduced. The current methods for detecting bacteria are time consuming, non-specific, and prone to false negatives or false positives. Aptamer-based biosensors have demonstrated specific, time-efficient and simple detection, highlighting the likelihood that they could be used in a similar way to detect HAI-causing bacteria.
Collapse
Affiliation(s)
- Mia Strom
- School of Medicine, Deakin University, Geelong 3216, Australia; (M.S.); (T.C.)
| | - Tamsyn Crowley
- School of Medicine, Deakin University, Geelong 3216, Australia; (M.S.); (T.C.)
- Centre for Molecular and Medical Research, Deakin University, Geelong 3216, Australia
| | - Sarah Shigdar
- School of Medicine, Deakin University, Geelong 3216, Australia; (M.S.); (T.C.)
- Centre for Molecular and Medical Research, Deakin University, Geelong 3216, Australia
| |
Collapse
|
11
|
Kolm C, Cervenka I, Aschl UJ, Baumann N, Jakwerth S, Krska R, Mach RL, Sommer R, DeRosa MC, Kirschner AKT, Farnleitner AH, Reischer GH. DNA aptamers against bacterial cells can be efficiently selected by a SELEX process using state-of-the art qPCR and ultra-deep sequencing. Sci Rep 2020; 10:20917. [PMID: 33262379 PMCID: PMC7708460 DOI: 10.1038/s41598-020-77221-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
DNA aptamers generated by cell-SELEX against bacterial cells have gained increased interest as novel and cost-effective affinity reagents for cell labelling, imaging and biosensing. Here we describe the selection and identification of DNA aptamers for bacterial cells using a combined approach based on cell-SELEX, state-of-the-art applications of quantitative real-time PCR (qPCR), next-generation sequencing (NGS) and bioinformatic data analysis. This approach is demonstrated on Enterococcus faecalis (E. faecalis), which served as target in eleven rounds of cell-SELEX with multiple subtractive counter-selections against non-target species. During the selection, we applied qPCR-based analyses to evaluate the ssDNA pool size and remelting curve analysis of qPCR amplicons to monitor changes in pool diversity and sequence enrichment. Based on NGS-derived data, we identified 16 aptamer candidates. Among these, aptamer EF508 exhibited high binding affinity to E. faecalis cells (KD-value: 37 nM) and successfully discriminated E. faecalis from 20 different Enterococcus and non-Enterococcus spp. Our results demonstrate that this combined approach enabled the rapid and efficient identification of an aptamer with both high affinity and high specificity. Furthermore, the applied monitoring and assessment techniques provide insight into the selection process and can be highly useful to study and improve experimental cell-SELEX designs to increase selection efficiency.
Collapse
Affiliation(s)
- Claudia Kolm
- Molecular Diagnostics Group, Department IFA-Tulln, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Tulln, Austria.,ICC Interuniversity Cooperation Centre Water and Health, Vienna, Austria
| | - Isabella Cervenka
- Molecular Diagnostics Group, Department IFA-Tulln, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Tulln, Austria.,ICC Interuniversity Cooperation Centre Water and Health, Vienna, Austria
| | - Ulrich J Aschl
- Molecular Diagnostics Group, Department IFA-Tulln, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Tulln, Austria.,ICC Interuniversity Cooperation Centre Water and Health, Vienna, Austria
| | - Niklas Baumann
- Molecular Diagnostics Group, Department IFA-Tulln, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Tulln, Austria.,ICC Interuniversity Cooperation Centre Water and Health, Vienna, Austria
| | - Stefan Jakwerth
- ICC Interuniversity Cooperation Centre Water and Health, Vienna, Austria.,Institute for Hygiene and Applied Immunology, Medical University Vienna, Vienna, Austria
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria.,School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Robert L Mach
- Research Group Synthetic Biology and Molecular Biotechnology (166-5-1), Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Regina Sommer
- ICC Interuniversity Cooperation Centre Water and Health, Vienna, Austria.,Institute for Hygiene and Applied Immunology, Medical University Vienna, Vienna, Austria
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, Ottawa, Canada
| | - Alexander K T Kirschner
- ICC Interuniversity Cooperation Centre Water and Health, Vienna, Austria.,Institute for Hygiene and Applied Immunology, Medical University Vienna, Vienna, Austria.,Research Unit Water Quality and Health, Department Physiology, Pharmacology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Andreas H Farnleitner
- ICC Interuniversity Cooperation Centre Water and Health, Vienna, Austria.,Research Unit Water Quality and Health, Department Physiology, Pharmacology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria.,Research Group Environmental Microbiology and Molecular Diagnostics (166-5-3), Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Georg H Reischer
- Molecular Diagnostics Group, Department IFA-Tulln, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Tulln, Austria. .,ICC Interuniversity Cooperation Centre Water and Health, Vienna, Austria. .,Research Group Environmental Microbiology and Molecular Diagnostics (166-5-3), Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.
| |
Collapse
|
12
|
Yu F, Chen J, Wang Z, Yang H, Li H, Jia W, Xue S, Xie H, Xu D. Screening aptamers for serine β-lactamase-expressing bacteria with Precision-SELEX. Talanta 2020; 224:121750. [PMID: 33379005 DOI: 10.1016/j.talanta.2020.121750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 11/24/2022]
Abstract
Klebsiella pneumoniae carbapenemase 2 (KPC-2) is a serine β-lactamase that can hydrolyze almost all β-lactam antibiotics. The drug resistant problem of bacteria expressing carbapenemases is currently a global problem, therefore, rapid and specific detection of pathogenic bacteria is urgent. In order to obtain an aptamer that can specifically recognize bacteria expressing KPC-2, we have established a method called Precision-SELEX. Precision-SELEX combined protein SELEX and bacterium SELEX. In this method, KPC-2 was used as a target protein, and Escherichia coli expressing KPC-2 (KPC-2 E. coli) was used as a target bacterium. After precision-SELEX, the same aptamer named XK-10 that can recognize KPC-2 and KPC-2 E. coli was obtained while the screening process could be shortened to 4 rounds. Dissociation equilibrium constants were calculated as 0.81 nM by SPR. In addition, XK-10 could specifically bind to KPC-2 E. coli, which was confirmed through flow cytometry and molecular Docking Simulations. The high-content imaging method could detect KPC-2 E. coli. In all, the Precision-SELEX provides an accurate and efficient method to screening aptamers for bacteria.
Collapse
Affiliation(s)
- Fang Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Jing Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Zecheng Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Huixin Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Wenchao Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Shuyuan Xue
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Hexin Xie
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210046, China.
| |
Collapse
|
13
|
Soundy J, Day D. Delivery of antibacterial silver nanoclusters to Pseudomonas aeruginosa using species-specific DNA aptamers. J Med Microbiol 2020; 69:640-652. [PMID: 32125966 DOI: 10.1099/jmm.0.001174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Introduction. The use of silver as an antimicrobial therapeutic is limited by its toxicity to host cells compared with that required to kill bacterial pathogens.Aim. To use aptamer targeting of DNA scaffolded silver nanoclusters as an antimicrobial agent for treating Pseudomonas aeruginosa infections.Methodology. Antimicrobial activity was assessed in planktonic cultures and in vivo using an invertebrate model of infection.Results. The aptamer conjugates that we call aptabiotics have potent antimicrobial activity. Targeted silver nanoclusters were more effective at killing P. aeruginosa than the equivalent quantity of untargeted silver nanoclusters. The aptabiotics have an IC50 of 1.3-2.6 µM against planktonically grown bacteria. Propidium iodide staining showed that they rapidly depolarize bacterial cells to kill approximately 50 % of the population within 10 min following treatment. In vivo testing in the Galleria mellonella model of infection prolonged survival from an otherwise lethal infection.Conclusion. Using P. aeruginosa as a model, we show that targeting of DNA-scaffolded silver nanoclusters with an aptamer has effective fast-acting antimicrobial activity in vitro and in an in vivo animal model.
Collapse
Affiliation(s)
- Jennifer Soundy
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 600, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington 600, New Zealand
| | - Darren Day
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 600, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington 600, New Zealand
| |
Collapse
|
14
|
Dhiman A, Kumar C, Mishra SK, Sikri K, Datta I, Sharma P, Singh TP, Haldar S, Sharma N, Bansal A, Ahmad Y, Kumar A, Sharma TK, Tyagi JS. Theranostic Application of a Novel G-Quadruplex-Forming DNA Aptamer Targeting Malate Synthase of Mycobacterium tuberculosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:661-672. [PMID: 31704587 PMCID: PMC6849348 DOI: 10.1016/j.omtn.2019.09.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/29/2019] [Accepted: 09/27/2019] [Indexed: 12/28/2022]
Abstract
The successful management of tuberculosis (TB) requires efficient diagnosis and treatment. Further, the increasing prevalence of drug-resistant TB highlights the urgent need to develop novel inhibitors against both drug-susceptible and drug-resistant forms of disease. Malate synthase (MS), an enzyme of the glyoxylate pathway, plays a vital role in mycobacterial persistence, and therefore it is considered as an attractive target for novel anti-TB drug development. Recent studies have also ascribed an adhesin function to MS and established it as a potent diagnostic biomarker. In this study, a panel of Mycobacterium tuberculosis (Mtb) MS-specific single-stranded DNA aptamers was identified by Systematic Evolution of Ligands by EXponential enrichment (SELEX). The best-performing G-quadruplex-forming 44-mer aptamer, MS10, was optimized post-SELEX to generate an 11-mer aptamer, MS10-Trunc. This aptamer was characterized by various biochemical, biophysical, and in silico techniques. Its theranostic activity toward Mtb was established using enzyme inhibition, host cell binding, and invasion assays. MS10-Trunc aptamer exhibited high affinity for MS (equilibrium dissociation constant [KD] ∼19 pM) and displayed robust inhibition of MS enzyme activity with IC50 of 251.1 nM and inhibitor constant (Ki) of 230 nM. This aptamer blocked mycobacterial entry into host cells by binding to surface-associated MS. In addition, we have also demonstrated its application in the detection of tuberculous meningitis (TBM) in patients with sensitivity and specificity each of >97%.
Collapse
Affiliation(s)
- Abhijeet Dhiman
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India; Faculty of Pharmacy, Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| | - Chanchal Kumar
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Subodh Kumar Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Kriti Sikri
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ishara Datta
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tej P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sagarika Haldar
- Department of Experimental Medicine and Biotechnology, PGIMER, Sector 12, Chandigarh 160012, India; Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Neera Sharma
- Department of Biochemistry, Dr. Ram Manohar Lohia Hospital, New Delhi 110001, India
| | - Anjali Bansal
- Department of Pediatrics, Dr. Ram Manohar Lohia Hospital, New Delhi 110001, India
| | - Yusra Ahmad
- Faculty of Pharmacy, Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Tarun Kumar Sharma
- Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India.
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India; Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India.
| |
Collapse
|
15
|
Bachtiar BM, Srisawat C, Bachtiar EW. RNA aptamers selected against yeast cells inhibit Candida albicans biofilm formation in vitro. Microbiologyopen 2019; 8:e00812. [PMID: 30779315 PMCID: PMC6692556 DOI: 10.1002/mbo3.812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 11/24/2022] Open
Abstract
Aptamers that bind live bacterial cells have been widely investigated, but their potential to inhibit Candida albicans biofilm formation needs to be further explored. The aims of this study were to evaluate the binding of C. albicans to RNA aptamers and to examine the potential of aptamers to inhibit C. albicans biofilm formation in vitro. In this study, RNA aptamers selected against yeast cells of C. albicans ATCC 10231 were developed using the systematic evolution of ligands by exponential enrichment (SELEX) technique. The binding affinity of the resulting aptamers was then determined by an aptamer‐linked immobilized sorbent assay (ALISA), and a colorimetric (MTT) assay was used to measure the metabolic activity of Candida biofilms. After 11 rounds of SELEX, two candidate aptamers, Ca‐apt‐1 and Ca‐apt‐12, were identified. The Ca‐apt‐1 aptamer also recognized C. albicans isolated from clinical specimens but did not recognize other oral microorganisms (i.e., Streptococcus mutans and Saccharomyces cerevisiae). The ALISA results showed that the binding affinity of these aptamers was comparable to that of an anti‐C. albicans monoclonal antibody. In addition, Ca‐apt‐1 could inhibit biofilm and hyphal formation of C. albicans in vitro, as demonstrated using biofilm assays. This study shows that RNA aptamers could potentially be used in diagnostic and therapeutic applications for C. albicans‐related disease in the future.
Collapse
Affiliation(s)
- Boy M Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia.,Oral Research Science Center, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Chatchawan Srisawat
- Department of Biochemistry and NANOTEC-Mahidol University Center of Excellence in Nanotechnology for Cancer Diagnosis and Treatment, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, Thailand
| | - Endang W Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia.,Oral Research Science Center, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
16
|
Poly-Target Selection Identifies Broad-Spectrum RNA Aptamers. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:605-619. [PMID: 30472639 PMCID: PMC6251793 DOI: 10.1016/j.omtn.2018.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/18/2022]
Abstract
Aptamer selections often yield distinct subpopulations, each with unique phenotypes that can be leveraged for specialized applications. Although most selections aim to attain ever higher specificity, we sought to identify aptamers that recognize increasingly divergent primate lentiviral reverse transcriptases (RTs). We hypothesized that aptamer subpopulations in libraries pre-enriched against a single RT may exhibit broad-spectrum binding and inhibition, and we devised a multiplexed poly-target selection to elicit those phenotypes against a panel of primate lentiviral RTs. High-throughput sequencing and coenrichment/codepletion analysis of parallel and duplicate selection trajectories rapidly narrowed the list of candidate aptamers by orders of magnitude and identified dozens of priority candidates for further screening. Biochemical characterization validated a novel aptamer motif and several rare and unobserved variants of previously known motifs that inhibited recombinant RTs to varying degrees. These broad-spectrum aptamers also suppressed replication of viral constructs carrying phylogenetically diverse RTs. The poly-target selection and coenrichment/codepletion approach described herein is a generalizable strategy for identifying cross-reactivity among related targets from combinatorial libraries.
Collapse
|
17
|
Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor. J Biotechnol 2017; 266:39-49. [PMID: 29242148 DOI: 10.1016/j.jbiotec.2017.12.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/27/2017] [Accepted: 12/10/2017] [Indexed: 12/21/2022]
Abstract
The rapid detection of foodborne pathogens is critical to ensure food safety. The objective of this study is to select aptamers specifically bound to Escherichia coli O157:H7 using the whole-bacterium SELEX (Systematic Evolution of Ligands by Exponential Enrichment) and apply the selected aptamer to a QCM (quartz crystal microbalance) sensor for rapid and sensitive detection of target bacteria. A total of 19 rounds of selection against live E. coli O157:H7 and 6 rounds of counter selection against a mixture of Staphylococcus aureus, Listeria monocytogenes, and Salmonella Typhimurium, were performed. The aptamer pool from the last round was cloned and sequenced. One sequence S1 that appeared 16 times was characterized and a dissociation constant (Kd) of 10.30nM was obtained. Subsequently, a QCM aptasensor was developed for the rapid detection of E. coli O157:H7. The limit of detection (LOD) and the detection time of the aptasensor was determined to be 1.46×103 CFU/ml and 50min, respectively. This study demonstrated that the ssDNA aptamer selected by the whole-bacterium SELEX possessed higher sensitivity than previous work and the potential use of the constructed QCM aptasensor in rapid screening of foodborne pathogens.
Collapse
|
18
|
Mirzakhani K, Gargari SLM, Rasooli I, Rasoulinejad S. Development of a DNA Aptamer for Screening Neisseria meningitidis Serogroup B by Cell SELEX. IRANIAN BIOMEDICAL JOURNAL 2017; 22:193-201. [PMID: 28941453 PMCID: PMC5889504 DOI: 10.22034/ibj.22.3.193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/26/2017] [Accepted: 07/30/2017] [Indexed: 02/07/2023]
Abstract
Background Artificial oligonucleotides like DNA or RNA aptamers can be used as biodiagnostic alternatives for antibodies to detect pathogens. Comparing to antibodies, artificial oligonucleotides are produced easily at lower costs and are more stable. Neisseria meningitidis, the causative agent of meningitis, is responsible for about 1% of infections in an epidemic period. Specific DNA aptamers that bind to N. meningitidis serogroup B were identified by whole-cell Systemic Evolution of Ligands by EXponential Enrichment (SELEX). Methods The SELEX begins with a library of labeled ssDNA molecules. After six rounds of selection and two rounds of counter-selection, 60 clones were obtained, of which the binding efficiency of 21 aptamers to the aforementioned bacterium was tested by flow cytometry. Results The aptamers K3 and K4 showed the highest affinity to N. meningitidis serogroup B and no affinity to N. meningitidis serogroups Y, A, and C, or to other meningitis causing bacteria. The dissociation constant (Kd value) for K3 and K4 were calculated as 28.3±8.9 pM and 39.1±8.6 pM, respectively. K3 aptamer with the lowest Kd was chosen as the main aptamer. K3 could detect N. meningitidis in patients’ cerebrospinal fluid (CSF) samples and in CSF from healthy volunteers inoculated with N. meningitidis serogroup B (ATCC 13090) at 200 and 100 CFU ml-1, respectively. Conclusion The findings suggest the application of the developed aptamer in specific detection of N. meningitidis serogroup B amongst a group of meningitis causing bacteria.
Collapse
Affiliation(s)
- Kimia Mirzakhani
- Faculty of Medicine, Institute of Human Genetics, Friedrich-Schiller University, Jena, Germany
| | | | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | | |
Collapse
|
19
|
Liu Z, Zhang Y, Xie Y, Sun Y, Bi K, Cui Z, Zhao L, Fan W. An aptamer-based colorimetric sensor for streptomycin and its application in food inspection. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-7029-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Ansari N, Yazdian-Robati R, Shahdordizadeh M, Wang Z, Ghazvini K. Aptasensors for quantitative detection of Salmonella Typhimurium. Anal Biochem 2017. [PMID: 28624297 DOI: 10.1016/j.ab.2017.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Salmonella is one of the most frequent causes of food borne infectious disease. Among nearly 2500 documented serotypes are reported, Salmonella Typhimurium is the number one serotype associated with salmonellosis worldwide. Many different methods have been developed for the detection and quantification of S. typhimurium. Most of these assays are usually expensive, time consuming and require difficult sample preparation steps. Therefore, it is necessary to develop rapid, robust, cost-effective and sensitive alternative detection methods. In the last years, aptasensors, used for detection of S. typhimurium in different samples. In this review, recent advances and applications of aptasensors for the detection and quantification of S. typhimurium in details have been summarized.
Collapse
Affiliation(s)
- Najmeh Ansari
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Yazdian-Robati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahin Shahdordizadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Buali Research Institute, Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Hu L, Wang L, Lu W, Zhao J, Zhang H, Chen W. Selection, Characterization and Interaction Studies of a DNA Aptamer for the Detection of Bifidobacterium bifidum. Int J Mol Sci 2017; 18:ijms18050883. [PMID: 28441340 PMCID: PMC5454810 DOI: 10.3390/ijms18050883] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 01/10/2023] Open
Abstract
A whole-bacterium-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment) procedure was adopted in this study for the selection of an ssDNA aptamer that binds to Bifidobacterium bifidum. After 12 rounds of selection targeted against B. bifidum, 30 sequences were obtained and divided into seven families according to primary sequence homology and similarity of secondary structure. Four FAM (fluorescein amidite) labeled aptamer sequences from different families were selected for further characterization by flow cytometric analysis. The results reveal that the aptamer sequence CCFM641-5 demonstrated high-affinity and specificity for B. bifidum compared with the other sequences tested, and the estimated Kd value was 10.69 ± 0.89 nM. Additionally, sequence truncation experiments of the aptamer CCFM641-5 led to the conclusion that the 5'-primer and 3'-primer binding sites were essential for aptamer-target binding. In addition, the possible component of the target B. bifidum, bound by the aptamer CCFM641-5, was identified as a membrane protein by treatment with proteinase. Furthermore, to prove the potential application of the aptamer CCFM641-5, a colorimetric bioassay of the sandwich-type structure was used to detect B. bifidum. The assay had a linear range of 10⁴ to 10⁷ cfu/mL (R² = 0.9834). Therefore, the colorimetric bioassay appears to be a promising method for the detection of B. bifidum based on the aptamer CCFM641-5.
Collapse
Affiliation(s)
- Lujun Hu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China.
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
22
|
Song MY, Nguyen D, Hong SW, Kim BC. Broadly reactive aptamers targeting bacteria belonging to different genera using a sequential toggle cell-SELEX. Sci Rep 2017; 7:43641. [PMID: 28272554 PMCID: PMC5341558 DOI: 10.1038/srep43641] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/25/2017] [Indexed: 12/23/2022] Open
Abstract
Conventional cell-SELEX aims to isolate aptamers to a single unique target bacteria species. We propose a method to isolate single-stranded DNA aptamers that have broad reactivity to multiple bacterial targets belonging to different genera. The key of the proposed method is that targets of interest are changed sequentially at each SELEX round. The general scheme was examined using six bacteria from different genera, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Citrobacter freundii, Bacillus subtilis, and Staphylococcus epidermidis (four gram-negative and two gram-positive bacteria). In the first round of SELEX, the DNA library was incubated with E. coli and amplicons bound to E. coli were separated. The amplicons were sequentially separated by incubation with E. aerogenes, K. pneumoniae, C. freundii, B. subtilis, and S. epidermidis at each SELEX. The amplicons obtained using the last bacterial species were incubated again with the first bacterial species and this loop was repeated two more times. We refer to this method as sequential toggle cell-SELEX (STC-SELEX). The isolated aptamers had dissociation constants of 9.22–38.5 nM and had no affinity to other bacteria that were not included in STC-SELEX. These results demonstrate the potential to isolate aptamers with broad affinity to bacterial taxa in different genera.
Collapse
Affiliation(s)
- Min Young Song
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Dung Nguyen
- Department of Energy and Environmental Engineering, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Seok Won Hong
- Department of Energy and Environmental Engineering, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.,Center for Water Resources Cycle Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Byoung Chan Kim
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Department of Energy and Environmental Engineering, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
23
|
An Update on Aptamer-Based Multiplex System Approaches for the Detection of Common Foodborne Pathogens. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0814-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Hu L, Wang L, Lu W, Zhai Q, Fan D, Liu X, Zhao J, Zhang H, Chen W. Selection, identification and application of DNA aptamers for the detection of Bifidobacterium breve. RSC Adv 2017. [DOI: 10.1039/c6ra27672e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, a single-stranded DNA (ssDNA) aptamer binding toBifidobacterium brevewith high avidity and selectivity was selected through a whole-bacterium-based SELEX process.
Collapse
Affiliation(s)
- Lujun Hu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
| | - Daming Fan
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
| |
Collapse
|
25
|
Wang H, Ma K, Xu B, Tian W. Tunable Supramolecular Interactions of Aggregation-Induced Emission Probe and Graphene Oxide with Biomolecules: An Approach toward Ultrasensitive Label-Free and "Turn-On" DNA Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:6613-6622. [PMID: 27717201 DOI: 10.1002/smll.201601544] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/28/2016] [Indexed: 06/06/2023]
Abstract
Aggregation-induced emission (AIE) probes have shown great potential applications in fluorescent sensing of biomolecules, and the integration of AIE probe and graphene oxide (GO) attracts intense interest in developing new tools for label-free and "turn-on" fluorescent biomolecular analysis. Herein, an ultrasensitive label-free and "turn-on" DNA sensing is realized by tuning the supramolecular interactions of AIE probe and GO with DNA. The investigation of supramolecular interactions of AIE probes and GO with DNA demonstrate that AIE probe with short alkyl chains substitute shows highest binding affinity with DNA strand, and GO with low oxidation degree possesses strong binding interactions to ssDNA and the highest fluorescence quenching efficiency. As a result, the optimized AIE probes and GO-based fluorescent sensor can selectively detect the target DNA sequence and exhibits the detection limitation as low as 0.17 × 10-9 m. It is believed that the research efforts will provide an efficient approach to improve the performance of DNA sensing assay and an indepth understanding of the supramolecular interactions of AIE probes and GO with DNA, and thus facilitate their extended applications in biosensors and biomedicine.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Supramolecular, Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Ke Ma
- State Key Laboratory of Supramolecular, Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Bin Xu
- State Key Laboratory of Supramolecular, Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular, Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
26
|
Alfavian H, Mousavi Gargari SL, Rasoulinejad S, Medhat A. Development of a DNA aptamer that binds specifically to group A Streptococcus serotype M3. Can J Microbiol 2016; 63:160-168. [PMID: 28121169 DOI: 10.1139/cjm-2016-0495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Group A streptococcus (GAS) is an important Gram-positive pathogen that causes various human diseases ranging from peripheral lesions to invasive infections. The M protein is one of the main virulence factors present on the cell surface and is associated with invasive GAS infections. Compared with other M types, serotype M3 has a predominant role in lethal infections and demonstrates epidemic behaviors, including streptococcal toxic shock syndrome, bacteremia, and necrotizing fasciitis. Traditional methods for M typing are time-consuming, tedious, contradictory, and generally restricted to reference laboratories. Therefore, development of a new M-typing technique is needed. Aptamers with the ability to detect their target with a high degree of accuracy and specificity can be ideal candidates for specific M-typing of Streptococcus pyogenes. In this study DNA aptamers with a high binding affinity towards S. pyogenes serotype M3 were selected through 12 iterative rounds of the Systematic Evolution of Ligands by EXponential (SELEX) enrichment procedure using live cells as a target. We monitored the progress of the SELEX procedure by flow cytometry analysis. Of several aptamer sequences analyzed, 12L18A showed the highest binding efficiency towards S. pyogenes type M3, with an apparent dissociation constant (Kd) of 7.47 ± 1.72 pmol/L being the lowest. Therefore the isolated aptamer can be used in any tool, such as a biosensor, for the detection of S. pyogenes and can be used in the development of a novel M-typing system.
Collapse
Affiliation(s)
- Hanif Alfavian
- a Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | | | - Samaneh Rasoulinejad
- a Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Arvin Medhat
- b GENEXIR Biopharma, a knowledge-based company at Pasteur Institute of Iran Health Technology Park, Tehran, Iran
| |
Collapse
|
27
|
Teng J, Yuan F, Ye Y, Zheng L, Yao L, Xue F, Chen W, Li B. Aptamer-Based Technologies in Foodborne Pathogen Detection. Front Microbiol 2016; 7:1426. [PMID: 27672383 PMCID: PMC5018482 DOI: 10.3389/fmicb.2016.01426] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/29/2016] [Indexed: 11/13/2022] Open
Abstract
Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX); and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make the accurate assessments on the risks of infections (humans and animals) or contaminations (foods and other commodities) caused by various pathogens. This article reviews the development in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development in aptamer-based biosensors including optical biosensors for multiple pathogen detection by multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors and lateral chromatography test strips, and their applications in pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening remain to be overcome.
Collapse
Affiliation(s)
- Jun Teng
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Fang Yuan
- Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine Bureau, NanjingChina
| | - Yingwang Ye
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Lei Zheng
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Li Yao
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Feng Xue
- Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine Bureau, NanjingChina
| | - Wei Chen
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Baoguang Li
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MDUSA
| |
Collapse
|
28
|
Split aptamer-based sandwich fluorescence resonance energy transfer assay for 19-nortestosterone. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1905-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Lavu PSR, Mondal B, Ramlal S, Murali HS, Batra HV. Selection and Characterization of Aptamers Using a Modified Whole Cell Bacterium SELEX for the Detection of Salmonella enterica Serovar Typhimurium. ACS COMBINATORIAL SCIENCE 2016; 18:292-301. [PMID: 27070414 DOI: 10.1021/acscombsci.5b00123] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study describes the selection of single-stranded DNA (ssDNA) aptamers against Salmonella enterica serovar Typhimurium using a modified whole cell systematic evolution of ligands by exponential enrichment (whole cell SELEX). For evolving specific aptamers, ten rounds of selection to live Salmonella cells, alternating with negative selection against a cocktail of related pathogens, were performed. The resulting highly enriched oligonucleotide pools were sequenced and clustered into eight groups based on primary sequence homology and predicted secondary structure similarity. Fifteen sequences from different groups were selected for further characterization. The binding affinity and specificity of aptamers were determined by fluorescence binding assays. Aptamers (SAL 28, SAL 11, and SAL 26) with dissociation constants of 195 ± 46, 184 ± 43, and 123 ± 23 nM were used to develop a nanogold-based colorimetric detection method and a sedimentation assay. The former showed a better sensitivity limit of 10(2) CFU/mL using aptamer SAL 26. This approach should enable further refinement of diagnostic methods for the detection of Salmonella enterica serovar Typhimurium and of other microbial pathogens.
Collapse
Affiliation(s)
| | - Bhairab Mondal
- Defence Food Research Laboratory (DFRL), Mysore 570011, India
| | - Shylaja Ramlal
- Defence Food Research Laboratory (DFRL), Mysore 570011, India
| | | | | |
Collapse
|
30
|
Rasoulinejad S, Gargari SLM. Aptamer-nanobody based ELASA for specific detection of Acinetobacter baumannii isolates. J Biotechnol 2016; 231:46-54. [PMID: 27234880 DOI: 10.1016/j.jbiotec.2016.05.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/12/2016] [Accepted: 05/19/2016] [Indexed: 11/26/2022]
Abstract
Acinetobacter baumannii has turned into an important threat in nosocomial outbreak infections and multidrug resistance leading to high mortality rates in the 21st century. In recent years its mortality has increased by 15% which in part could be due to lack of a rapid and sensitive diagnostic test. In this work we introduced a new detection test for A. baumannii with two highly specific aptamer and nanobody molecules. High binding affinity DNA oligonucleotide aptamers toward A. baumannii were selected through 12 rounds of whole cell System Evolution of Ligands by EXponential enrichment process (SELEX). The SELEX procedures was monitored by flow cytometry. The dissociation constant and binding efficiency of the selected aptamer Aci49 was 7.547±1:353pM and 47.50%, respectively. A sandwich enzyme linked aptamer sorbent assay (ELASA) was designed with the biotinylated Aci49 aptamer and our previously developed nanobody against biofilm associated protein (Bap). The assay system was optimized with A. baumannii (ATCC 19606) and 47 clinical isolates of A. baumannii were tested. The threshold of detection in sandwich ELASA process was10(3) CFU/ml. The sensitivity of test toward the clinical isolates was 95.47%. Our results reveal that the sandwich ELASA is sensitive and specific enough for the rapid detection of A. baumannii from clinical isolates.
Collapse
|
31
|
Marton S, Cleto F, Krieger MA, Cardoso J. Isolation of an Aptamer that Binds Specifically to E. coli. PLoS One 2016; 11:e0153637. [PMID: 27104834 PMCID: PMC4841571 DOI: 10.1371/journal.pone.0153637] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/01/2016] [Indexed: 01/24/2023] Open
Abstract
Escherichia coli is a bacterial species found ubiquitously in the intestinal flora of animals, although pathogenic variants cause major public health problems. Aptamers are short oligonucleotides that bind to targets with high affinity and specificity, and have great potential for use in diagnostics and therapy. We used cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX) to isolate four single stranded DNA (ssDNA) aptamers that bind strongly to E. coli cells (ATCC generic strain 25922), with Kd values in the nanomolar range. Fluorescently labeled aptamers label the surface of E. coli cells, as viewed by fluorescent microscopy. Specificity tests with twelve different bacterial species showed that one of the aptamers–called P12-31—is highly specific for E. coli. Importantly, this aptamer binds to Meningitis/sepsis associated E. coli (MNEC) clinical isolates, and is the first aptamer described with potential for use in the diagnosis of MNEC-borne pathologies.
Collapse
Affiliation(s)
- Soledad Marton
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| | - Fernanda Cleto
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| | - Marco Aurélio Krieger
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil.,Instituto Carlos Chagas, Laboratório de Genomica Functional, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| | - Josiane Cardoso
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| |
Collapse
|
32
|
Lou B, Chen E, Zhao X, Qu F, Yan J. The application of capillary electrophoresis for assisting whole-cell aptamers selection by characterizing complete ssDNA distribution. J Chromatogr A 2016; 1437:203-209. [PMID: 26877178 DOI: 10.1016/j.chroma.2016.01.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/06/2016] [Accepted: 01/27/2016] [Indexed: 01/16/2023]
Abstract
Whole-cell SELEX faces more difficulties than SELEX against purified molecules target. In this work, we demonstrate the application of capillary electrophoresis for assisting whole-cell aptamers selection by characterizing complete ssDNA distribution. We chose three cancer cell lines U251, Hela and PC3 as target, FAM labeled Sgc8c (a 41mer aptamer) and FAM labeled 41mer random ssDNA library as ssDNA model. CE conditions of running buffer and capillary length and inner diameter as well as UV and LIF detection were optimized. The distribution percentage of Sgc8c and ssDNA library against U251, Hela and PC3 was demonstrated, the relative peak area of their complex is 8.94%, 1.05% and 0.44% for Sgc8c and 9.03%, 1.04% and 0.12% for ssDNA library respectively. Under the chosen experimental conditions, binding ability comparison of three cell lines was U251>Hela>PC3, which was validated by laser confocol microscope. For each cell, distribution percentage of ssDNA library was compared with that of Sgc8c. Finally, whole-cell complex of U251-Sgc8c was confirmed by increase incubation time and fraction CE analysis.
Collapse
Affiliation(s)
- Beilei Lou
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Erning Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Beijing Centre for Physical and Chemical Analysis, Beijing 100089, China
| | - Xinying Zhao
- Beijing Centre for Physical and Chemical Analysis, Beijing 100089, China
| | - Feng Qu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Jieying Yan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
33
|
Hamula CLA, Peng H, Wang Z, Tyrrell GJ, Li XF, Le XC. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes. Methods 2015; 97:51-7. [PMID: 26678795 DOI: 10.1016/j.ymeth.2015.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pyogenes is a clinically important pathogen consisting of various serotypes determined by different M proteins expressed on the cell surface. The M type is therefore a useful marker to monitor the spread of invasive S. pyogenes in a population. Serotyping and nucleic acid amplification/sequencing methods for the identification of M types are laborious, inconsistent, and usually confined to reference laboratories. The primary objective of this work is to develop a technique that enables generation of aptamers binding to specific M-types of S. pyogenes. We describe here an in vitro technique that directly used live bacterial cells and the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) strategy. Live S. pyogenes cells were incubated with DNA libraries consisting of 40-nucleotides randomized sequences. Those sequences that bound to the cells were separated, amplified using polymerase chain reaction (PCR), purified using gel electrophoresis, and served as the input DNA pool for the next round of SELEX selection. A specially designed forward primer containing extended polyA20/5Sp9 facilitated gel electrophoresis purification of ssDNA after PCR amplification. A counter-selection step using non-target cells was introduced to improve selectivity. DNA libraries of different starting sequence diversity (10(16) and 10(14)) were compared. Aptamer pools from each round of selection were tested for their binding to the target and non-target cells using flow cytometry. Selected aptamer pools were then cloned and sequenced. Individual aptamer sequences were screened on the basis of their binding to the 10 M-types that were used as targets. Aptamer pools obtained from SELEX rounds 5-8 showed high affinity to the target S. pyogenes cells. Tests against non-target Streptococcus bovis, Streptococcus pneumoniae, and Enterococcus species demonstrated selectivity of these aptamers for binding to S. pyogenes. Several aptamer sequences were found to bind preferentially to the M11 M-type of S. pyogenes. Estimated binding dissociation constants (Kd) were in the low nanomolar range for the M11 specific sequences; for example, sequence E-CA20 had a Kd of 7±1 nM. These affinities are comparable to those of a monoclonal antibody. The improved bacterial cell-SELEX technique is successful in generating aptamers selective for S. pyogenes and some of its M-types. These aptamers are potentially useful for detecting S. pyogenes, achieving binding profiles of the various M-types, and developing new M-typing technologies for non-specialized laboratories or point-of-care testing.
Collapse
Affiliation(s)
- Camille L A Hamula
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2G3, Canada; Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York City, NY 10029, USA
| | - Hanyong Peng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Zhixin Wang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Gregory J Tyrrell
- The Provincial Laboratory for Public Health for Alberta, Walter Mackenzie Health Sciences Centre, Edmonton, Alberta T6G 2J2, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, 2B3.12 Walter Mackenzie Health Sciences Centre, Edmonton, Alberta T6G 2B7, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2G3, Canada.
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2G3, Canada.
| |
Collapse
|
34
|
Davydova A, Vorobjeva M, Pyshnyi D, Altman S, Vlassov V, Venyaminova A. Aptamers against pathogenic microorganisms. Crit Rev Microbiol 2015; 42:847-65. [PMID: 26258445 PMCID: PMC5022137 DOI: 10.3109/1040841x.2015.1070115] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An important current issue of modern molecular medicine and biotechnology is the search for new approaches to early diagnostic assays and adequate therapy of infectious diseases. One of the promising solutions to this problem might be a development of nucleic acid aptamers capable of interacting specifically with bacteria, protozoa, and viruses. Such aptamers can be used for the specific recognition of infectious agents as well as for blocking of their functions. The present review summarizes various modern SELEX techniques used in this field, and of several currently identified aptamers against viral particles and unicellular organisms, and their applications. The prospects of applying nucleic acid aptamers for the development of novel detection systems and antibacterial and antiviral drugs are discussed.
Collapse
Affiliation(s)
- Anna Davydova
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| | - Maria Vorobjeva
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| | - Dmitrii Pyshnyi
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| | - Sidney Altman
- b Department of Molecular, Cellular and Developmental Biology , Yale University , New Haven , CT , USA
| | - Valentin Vlassov
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| | - Alya Venyaminova
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| |
Collapse
|
35
|
Single-Stranded DNA Aptamers against Pathogens and Toxins: Identification and Biosensing Applications. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26199940 PMCID: PMC4493287 DOI: 10.1155/2015/419318] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular recognition elements (MREs) can be short sequences of single-stranded DNA, RNA, small peptides, or antibody fragments. They can bind to user-defined targets with high affinity and specificity. There has been an increasing interest in the identification and application of nucleic acid molecular recognition elements, commonly known as aptamers, since they were first described in 1990 by the Gold and Szostak laboratories. A large number of target specific nucleic acids MREs and their applications are currently in the literature. This review first describes the general methodologies used in identifying single-stranded DNA (ssDNA) aptamers. It then summarizes advancements in the identification and biosensing application of ssDNA aptamers specific for bacteria, viruses, their associated molecules, and selected chemical toxins. Lastly, an overview of the basic principles of ssDNA aptamer-based biosensors is discussed.
Collapse
|
36
|
Sisavath N, Got P, Charrière GM, Destoumieux-Garzon D, Cottet H. Taking Advantage of Electric Field Induced Bacterial Aggregation for the Study of Interactions between Bacteria and Macromolecules by Capillary Electrophoresis. Anal Chem 2015; 87:6761-8. [PMID: 26086209 DOI: 10.1021/acs.analchem.5b00934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The quantification of interaction stoichiometry and binding constant between bacteria (or other microorganism) and (macro)molecules remains a challenging issue for which only a few adapted methods are available. In this paper, a new methodology was developed for the determination of the interaction stoichiometry and binding constant between bacteria and (macro)molecules. The originality of this work is to take advantage of the bacterial aggregation phenomenon to directly quantify the free ligand concentration in equilibrated bacteria-ligand mixtures using frontal analysis continuous capillary electrophoresis. The described methodology does not require any sample preparation such as filtration step or centrifugation. It was applied to the study of interactions between Erwinia carotovora and different generations of dendrigraft poly-L-lysines leading to quantitative information (i.e., stoichiometry and binding site constant). High stoichiometries in the order of 10(6)-10(7) were determined between nanometric dendrimer-like ligands and the rod-shaped micrometric bacteria. The effect of the dendrimer generation on the binding constant and the stoichiometry is discussed. Stoichiometries were compared with those obtained by replacing the bacteria by polystyrene microbeads to demonstrate the internalization of the ligands inside the bacteria and the increase of the specific surface via the formation of vesicles.
Collapse
Affiliation(s)
- Nicolas Sisavath
- †Institut des Biomolécules Max Mousseron (IBMM, UMR 5247 CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier), Place Eugène Bataillon, CC 1706, 34095 Montpellier, France
| | | | - Guillaume M Charrière
- §Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR 5244), CNRS, Ifremer, Université de Perpignan Via Domitia, Université de Montpellier, Place Eugène Bataillon, CC 80, 34095 Montpellier, France
| | - Delphine Destoumieux-Garzon
- §Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR 5244), CNRS, Ifremer, Université de Perpignan Via Domitia, Université de Montpellier, Place Eugène Bataillon, CC 80, 34095 Montpellier, France
| | - Hervé Cottet
- †Institut des Biomolécules Max Mousseron (IBMM, UMR 5247 CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier), Place Eugène Bataillon, CC 1706, 34095 Montpellier, France
| |
Collapse
|
37
|
Retargeting pre-existing human antibodies to a bacterial pathogen with an alpha-Gal conjugated aptamer. J Mol Med (Berl) 2015; 93:619-31. [PMID: 25940316 DOI: 10.1007/s00109-015-1280-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 03/20/2015] [Accepted: 03/30/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED The ever-increasing threat of multi-drug resistant bacterial infections has spurred renewed interest in alternative approaches to classical antibiotic therapy. In contrast to other mammals, humans do not express the galactose-α-1,3-galactosyl-β-1,4-N-acetyl-glucosamine (α-Gal) epitope. As a result of exposure of humans to α-Gal in the environment, a large proportion of circulating antibodies are specific for the trisaccharide. In this study, we examine whether these anti-Gal antibodies can be recruited and redirected to exert anti-bacterial activity. We show that a specific DNA aptamer conjugated to an α-Gal epitope at its 5' end, herein termed an alphamer, can bind to group A Streptococcus (GAS) bacteria by recognition of a conserved region of the surface-anchored M protein. The anti-GAS alphamer was shown to recruit anti-Gal antibodies to the streptococcal surface in an α-Gal-specific manner, elicit uptake and killing of the bacteria by human phagocytes, and slow growth of invasive GAS in human whole blood. These studies provide a first in vitro proof of concept that alphamers have the potential to redirect pre-existing antibodies to bacteria in a specific manner and trigger an immediate antibacterial immune response. Further validation of this novel therapeutic approach of applying α-Gal technology in in vivo models of bacterial infection is warranted. KEY MESSAGES . α-Gal-tagged aptamers lead to GAS opsonization with anti-Gal antibodies. . α-Gal-tagged aptamers confer phagocytosis and killing of GAS cells by human phagocytes. . α-Gal-tagged aptamers reduces replication of GAS in human blood. . α-Gal-tagged aptamers may have the potential to be used as novel passive immunization drugs.
Collapse
|
38
|
Taghdisi SM, Danesh NM, Lavaee P, Ramezani M, Abnous K. An aptasensor for selective, sensitive and fast detection of lead(II) based on polyethyleneimine and gold nanoparticles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:1206-11. [PMID: 25989533 DOI: 10.1016/j.etap.2015.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/17/2015] [Accepted: 04/18/2015] [Indexed: 05/26/2023]
Abstract
Lead (Pb), as a major environmental contaminant, could be harmful to humans when inhaled or ingested. In this study, we developed a sensitive, selective and fast colorimetric aptasensor for Pb(+2) based on polyethylenimine (PEI) and gold nanoparticles (AuNPs). In the absence of Pb(+2), aptamer binds to PEI. So the well-dispersed AuNPs remain stable with a wine-red color. Upon the addition of Pb(+2), a conformational change happens and a G-quadruplex aptamer/Pb(+2) complex is formed, leading to the aggregation of AuNPs and a color change to blue. This sensor showed a high selectivity toward Pb(+2) with a limit of detection (LOD) as low as 702pM. Moreover, our fabricated sensor was successfully applied for Pb(+2) detection in rat serum and tap water.
Collapse
Affiliation(s)
- Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Noor Mohammad Danesh
- Research Institute of Sciences and New Technology, Mashhad, Iran; Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parirokh Lavaee
- Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Kong HY, Byun J. Screening and characterization of a novel RNA aptamer that specifically binds to human prostatic acid phosphatase and human prostate cancer cells. Mol Cells 2015; 38:171-9. [PMID: 25591398 PMCID: PMC4332034 DOI: 10.14348/molcells.2015.2272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 12/23/2022] Open
Abstract
Prostatic acid phosphatase (PAP) expression increases proportionally with prostate cancer progression, making it useful in prognosticating intermediate to high-risk prostate cancers. A novel ligand that can specifically bind to PAP would be very helpful for guiding prostate cancer therapy. RNA aptamers bind to target molecules with high specificity and have key advantages such as low immunogenicity and easy synthesis. Here, human PAP-specific aptamers were screened from a 2'-fluoropyrimidine (FY)-modified RNA library by SELEX. The candidate aptamer families were identified within six rounds followed by analysis of their sequences and PAP-specific binding. A gel shift assay was used to identify PAP binding aptamers and the 6N aptamer specifically bound to PAP with a Kd value of 118 nM. RT-PCR and fluorescence labeling analyses revealed that the 6N aptamer bound to PAP-positive mammalian cells, such as PC-3 and LNCaP. IMR-90 negative control cells did not bind the 6N aptamer. Systematic minimization analyses revealed that 50 nucleotide sequences and their two hairpin structures in the 6N 2'-FY RNA aptamer were equally important for PAP binding. Renewed interest in PAP combined with the versatility of RNA aptamers, including conjugation of anti-cancer drugs and nano-imaging probes, could open up a new route for early theragnosis of prostate cancer.
Collapse
Affiliation(s)
- Hoon Young Kong
- Department of Molecular Biology, Dankook University, Yongin 448-701, Korea
- Institute of Nanosensor and Biotechnology, Dankook University, Yongin 448-701, Korea
| | - Jonghoe Byun
- Department of Molecular Biology, Dankook University, Yongin 448-701, Korea
- Institute of Nanosensor and Biotechnology, Dankook University, Yongin 448-701, Korea
| |
Collapse
|
40
|
Taghdisi SM, Danesh NM, Lavaee P, Sarreshtehdar Emrani A, Ramezani M, Abnous K. Aptamer Biosensor for Selective and Rapid Determination of Insulin. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.956216] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Selection of peptidoglycan-specific aptamers for bacterial cells identification. Appl Biochem Biotechnol 2014; 174:2548-56. [PMID: 25185503 DOI: 10.1007/s12010-014-1206-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/25/2014] [Indexed: 01/01/2023]
Abstract
Peptidoglycan is a highly complex and essential macromolecule of bacterial outer cell wall; it is a heteropolymer made up of linear glycan strands cross-linked by peptides. Peptidoglycan has a particular composition which makes it a possible target for specific bacterial recognition. Aptamers are single-stranded DNA or RNA oligonucleotides that bind to target molecules with high affinity and specificity. Aptamers can be labeled with different radioisotopes and possess several properties that make them suitable for molecular imaging. The purpose of this study was to obtain aptamers for use as radiopharmaceutical in bacterial infection diagnosis. Two aptamers (Antibac1 and Antibac2) against peptidoglycan were selected through the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology. The dissociation constant (Kd) for Antibac1 was 0.415 + 0.047 μM and for Antibac2 was 1.261 + 0.280 μM. These aptamers labeled with (32)P showed high affinity for Staphylococcus aureus cells. The binding to S. aureus and Escherichia coli in vitro were significantly higher than for Candida albicans and human fibroblasts, demonstrating their specificity for bacterial cells. These results point Antibac1 and Antibac2 as promising tools for bacterial infections identification.
Collapse
|
42
|
Meng C, Zhao X, Qu F, Mei F, Gu L. Interaction evaluation of bacteria and protoplasts with single-stranded deoxyribonucleic acid library based on capillary electrophoresis. J Chromatogr A 2014; 1358:269-76. [DOI: 10.1016/j.chroma.2014.06.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/02/2014] [Accepted: 06/24/2014] [Indexed: 11/28/2022]
|
43
|
Williams RM, Crihfield CL, Gattu S, Holland LA, Sooter LJ. In vitro selection of a single-stranded DNA molecular recognition element against atrazine. Int J Mol Sci 2014; 15:14332-47. [PMID: 25196435 PMCID: PMC4159853 DOI: 10.3390/ijms150814332] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/11/2014] [Accepted: 08/08/2014] [Indexed: 01/11/2023] Open
Abstract
Widespread use of the chlorotriazine herbicide, atrazine, has led to serious environmental and human health consequences. Current methods of detecting atrazine contamination are neither rapid nor cost-effective. In this work, atrazine-specific single-stranded DNA (ssDNA) molecular recognition elements (MRE) were isolated. We utilized a stringent Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology that placed the greatest emphasis on what the MRE should not bind to. After twelve rounds of SELEX, an atrazine-specific MRE with high affinity was obtained. The equilibrium dissociation constant (Kd) of the ssDNA sequence is 0.62 ± 0.21 nM. It also has significant selectivity for atrazine over atrazine metabolites and other pesticides found in environmentally similar locations and concentrations. Furthermore, we have detected environmentally relevant atrazine concentrations in river water using this MRE. The strong affinity and selectivity of the selected atrazine-specific ssDNA validated the stringent SELEX methodology and identified a MRE that will be useful for rapid atrazine detection in environmental samples.
Collapse
Affiliation(s)
- Ryan M Williams
- Department of Pharmaceutical Sciences, West Virginia University, 1 Medical Center Drive, PO Box 9530, Morgantown, WV 26506, USA.
| | - Cassandra L Crihfield
- Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA.
| | - Srikanth Gattu
- Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA.
| | - Lisa A Holland
- Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA.
| | - Letha J Sooter
- Department of Pharmaceutical Sciences, West Virginia University, 1 Medical Center Drive, PO Box 9530, Morgantown, WV 26506, USA.
| |
Collapse
|
44
|
Savory N, Nzakizwanayo J, Abe K, Yoshida W, Ferri S, Dedi C, Jones BV, Ikebukuro K. Selection of DNA aptamers against uropathogenic Escherichia coli NSM59 by quantitative PCR controlled Cell-SELEX. J Microbiol Methods 2014; 104:94-100. [PMID: 25008464 DOI: 10.1016/j.mimet.2014.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 05/01/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
Abstract
In order to better control nosocomial infections, and facilitate the most prudent and effective use of antibiotics, improved strategies for the rapid detection and identification of problematic bacterial pathogens are required. DNA aptamers have much potential in the development of diagnostic assays and biosensors to address this important healthcare need, but further development of aptamers targeting common pathogens, and the strategies used to obtain specific aptamers are required. Here we demonstrate the application of a quantitative PCR (qPCR) controlled Cell-SELEX process, coupled with downstream secondary-conformation-based aptamer profiling. We used this approach to identify and select DNA aptamers targeted against uropathogenic Escherichia coli, for which specific aptamers are currently lacking, despite the prevalence of these infections. The use of qPCR to monitor the Cell-SELEX process permitted a minimal number of SELEX cycles to be employed, as well as the cycle-by-cycle optimisation of standard PCR amplification of recovered aptamer pools at each round. Identification of useful aptamer candidates was also facilitated by profiling of secondary conformations and selection based on putative aptamer secondary structure. One aptamer selected this way (designated EcA5-27), displaying a guanine-quadruplex sequence motif, was shown to have high affinity and specificity for target cells, and the potential to discriminate between distinct strains of E. coli, highlighting the possibility for development of aptamers selectively recognising pathogenic strains. Overall, the identified aptamers hold much potential for the development of rapid diagnostic assays for nosocomial urinary tract infections caused by E. coli.
Collapse
Affiliation(s)
- Nasa Savory
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Jonathan Nzakizwanayo
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, East Sussex, BN2 4GJ, United Kingdom.
| | - Koichi Abe
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Wataru Yoshida
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan.
| | - Stefano Ferri
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Cinzia Dedi
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, East Sussex, BN2 4GJ, United Kingdom.
| | - Brian V Jones
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, East Sussex, BN2 4GJ, United Kingdom; Queen Victoria Hospital NHS Foundation Trust, Holtye Road, East Grinstead, West Sussex, RD19 3DZ, United Kingdom.
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
45
|
Yuan J, Wu S, Duan N, Ma X, Xia Y, Chen J, Ding Z, Wang Z. A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus. Talanta 2014; 127:163-8. [PMID: 24913871 DOI: 10.1016/j.talanta.2014.04.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/29/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
Abstract
In this study, a gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus (S. aureus) using tyramine signal amplification (TSA) technology has been developed. First, the biotinylated aptamer specific for S. aureus was immobilized on the surface of the wells of the microtiter plate via biotin-avidin binding. Then, the target bacteria (S. aureus), biotinylated-aptamer-streptavidin-HRP conjugates, biotinylated tyramine, hydrogen peroxide and avidin-catalase were successively introduced into the wells of the microtiter plate. After that, the existing catalase consumed the hydrogen peroxide. Finally, the freshly prepared gold (III) chloride trihydrate was added, the color of the reaction production would be changed and the absorbance at 550 nm could be measured with a plate reader. Under optimized conditions, there was a linear relationship between the absorbance at 550 nm and the concentration of S. aureus over the range from 10 to 10(6) cfu mL(-1) (with an R² of 0.9947). The limit of the developed method was determined to be 9 cfu mL(-1).
Collapse
Affiliation(s)
- Jinglei Yuan
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhansheng Ding
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
46
|
Kong HY, Byun J. Nucleic Acid aptamers: new methods for selection, stabilization, and application in biomedical science. Biomol Ther (Seoul) 2014; 21:423-34. [PMID: 24404332 PMCID: PMC3879913 DOI: 10.4062/biomolther.2013.085] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/05/2013] [Accepted: 11/05/2013] [Indexed: 12/19/2022] Open
Abstract
The adoption of oligonucleotide aptamer is well on the rise, serving an ever increasing demand for versatility in biomedical field. Through the SELEX (Systematic Evolution of Ligands by EXponential enrichment), aptamer that can bind to specific target with high affinity and specificity can be obtained. Aptamers are single-stranded nucleic acid molecules that can fold into complex threedimensional structures, forming binding pockets and clefts for the specific recognition and tight binding of any given molecular target. Recently, aptamers have attracted much attention because they not only have all of the advantages of antibodies, but also have unique merits such as thermal stability, ease of synthesis, reversibility, and little immunogenicity. The advent of novel technologies is revolutionizing aptamer applications. Aptamers can be easily modified by various chemical reactions to introduce functional groups and/or nucleotide extensions. They can also be conjugated to therapeutic molecules such as drugs, drug containing carriers, toxins, or photosensitizers. Here, we discuss new SELEX strategies and stabilization methods as well as applications in drug delivery and molecular imaging.
Collapse
Affiliation(s)
- Hoon Young Kong
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, Yongin 448-701, Republic of Korea
| | - Jonghoe Byun
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, Yongin 448-701, Republic of Korea
| |
Collapse
|
47
|
Duan N, Wu S, Ma X, Xia Y, Wang Z. A universal fluorescent aptasensor based on AccuBlue dye for the detection of pathogenic bacteria. Anal Biochem 2014; 454:1-6. [PMID: 24650583 DOI: 10.1016/j.ab.2014.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/28/2014] [Accepted: 03/07/2014] [Indexed: 11/25/2022]
Abstract
We report a universal fluorescent aptasensor based on the AccuBlue dye, which is impermeant to cell membranes, for the detection of pathogenic bacteria. The sensor consists of AccuBlue, an aptamer strand, and its complementary strand (cDNA) that partially hybridizes to the aptamer strand. We have fabricated two models by changing the sequence of the reaction between the elements in the system. One is the "signal on" model in which the aptamer is first bound to the target, followed by the addition of cDNA and AccuBlue, at which time the cDNA hybridizes with the free unreacted aptamer and forms a double-stranded DNA (dsDNA) duplex. Such hybridization causes AccuBlue to insert into the dsDNA and exhibit significantly increased fluorescence intensity because of the specific intercalation of the AccuBlue into dsDNA rather than single-stranded DNA (ssDNA). The other model, "signal off," involves hybridization of the aptamer with cDNA first, resulting in high fluorescence intensity on the addition of AccuBlue. When the target is added, the aptamer binds the target, causing the cDNA to detach from the dsDNA duplex and resulting in low fluorescence as a result of the liberation of AccuBlue. Because this design is based purely on DNA hybridization, and AccuBlue is impermeant to cell membranes, it could potentially be adapted to a wide variety of analytes.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
48
|
|
49
|
Özalp VC, Bilecen K, Kavruk M, Öktem HA. Antimicrobial aptamers for detection and inhibition of microbial pathogen growth. Future Microbiol 2013; 8:387-401. [PMID: 23464374 DOI: 10.2217/fmb.12.149] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Discovery of alternative sources of antimicrobial agents are essential in the ongoing battle against microbial pathogens. Legislative and scientific challenges considerably hinder the discovery and use of new antimicrobial drugs, and new approaches are in urgent demand. On the other hand, rapid, specific and sensitive detection of airborne pathogens is becoming increasingly critical for public health. In this respect affinity oligonucleotides, aptamers, provide unique opportunities for the development of nanotechnological solutions for such medical applications. In recent years, aptamers specifically recognizing microbial cells and viruses showed great potential in a range of analytical and therapeutic applications. This article describes the significant advances in the development of aptamers targeting specific pathogens. Therapeutic application of aptamers as neutralizing agents demonstrates great potential as a future source of antimicrobial agent.
Collapse
Affiliation(s)
- Veli Cengiz Özalp
- Nanobiz Ltd, MetuTechnopolis, Galium block, 2nd Floor, No. 18, 06800 Ankara, Turkey
| | | | | | | |
Collapse
|
50
|
Aptasensor and genosensor methods for detection of microbes in real world samples. Methods 2013; 64:229-40. [PMID: 23872322 DOI: 10.1016/j.ymeth.2013.07.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 12/31/2022] Open
Abstract
The increasing concerns about food and environmental safety have prompted the desire to develop rapid, specific, robust and highly sensitive methods for the detection of microorganisms to ensure public health. Although traditional microbiological methods are available, they are labor intensive, unsuitable for on-site and high throughput analysis, and need well-trained personnel. To circumvent these drawbacks, many efforts have been devoted towards the development of biosensors, using nucleic acid as bio-recognition element. In this review, we will focus on recent significant advances made in two types of DNA-based biosensors, namely genosensors, and aptasensors. In genosensor approach, DNA or RNA target is detected through the hybridization reaction between DNA or RNA and ssDNA sensing element, while in aptasensor method, DNA or RNA aptamer, capable of binding to a target molecule with high affinity and specificity, plays the role of receptor. The goal of this article is to review the innovative methods that have been emerged in genosensor and aptasensor during recent years. Particular attention is given to recent advances and trends in selection of biorecognition element, DNA immobilization strategies and sensing formats.
Collapse
|