1
|
Blake MJ, Page EF, Smith ME, Calhoun TR. Miltefosine impacts small molecule transport in Gram-positive bacteria. RSC Chem Biol 2024; 5:981-988. [PMID: 39363965 PMCID: PMC11446237 DOI: 10.1039/d4cb00106k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/04/2024] [Indexed: 10/05/2024] Open
Abstract
Miltefosine (MLT) is an alkylphosphocholine with clinical success as an anticancer and antiparasitic drug. Although the mechanism of action of MLT is highly debated, the interaction of MLT with the membrane, specifically lipid rafts of eukaryotes, is well-documented. Recent reports suggest MLT impacts the functional membrane microdomains in bacteria - regions of the membrane structurally and functionally similar to lipid rafts. There have been conflicting reports, however, as to whether MLT impacts the overall fluidity of cellular plasma membranes. Here, we apply steady-state fluorescence techniques, generalized polarization of laurdan and anisotropy of diphenylhexatriene, to discern how MLT impacts the global ordering and lipid packing of Staphylococcus aureus membranes. Additionally, we investigate how the transport of a range of small molecules is impacted by MLT for S. aureus and Bacillus subtilis by employing time-resolved second harmonic scattering. Overall, we observe MLT does not have an influence on the overall ordering and packing of S. aureus membranes. Additionally, we show that the transport of small molecules across the membrane can be significantly altered by MLT - although this is not the case for all molecules studied. The results presented here illustrate the potential use of MLT as an adjuvant to assist in the delivery of drug molecules in bacteria.
Collapse
|
2
|
Li J, Chen S, Xu B, He Z, Yuan Q, Gan W. Temperature-Modulated Evolution of Surface Structures Induces Significant Enhancement of Two-Photon Fluorescent Emission from a Dye Molecule. J Phys Chem B 2024; 128:6400-6409. [PMID: 38914939 DOI: 10.1021/acs.jpcb.4c02471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Fluorescence is an essential property of molecules and materials that plays a pivotal role across various areas such as lighting, sensing, imaging, and other applications. For instance, temperature-sensitive fluorescence emission is widely utilized for chemo-/biosensing but usually decreases the intensity upon the increase in temperature. In this study, we observed a temperature-induced enhancement of up to ∼150 times in two-photon fluorescence (TPF) emission from a dye molecule, 4-(4-diethylaminostyry)-1-methylpyridinium iodide (D289), as it interacted with binary complex vesicles composed of two commonly applied surfactants: sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). By employing second harmonic generation (SHG) and TPF techniques, we clearly revealed the temperature-dependent kinetic behavior of D289 on the surface of the vesicles and utilized it to interpret the origin of the significant TPF enhancement. Additionally, we also demonstrated a similar heating-induced enhancement of the TPF emission from D289 on the membrane of phospholipid vesicles, indicating the potential application of TPF in temperature sensing in the biology systems. The embedding of D289 in the tightly packed alkane chains was identified as the key factor in enhancing the TPF emission from D289. This finding may provide valuable information for synthesizing fluorescence materials with a high optical yield.
Collapse
Affiliation(s)
- Jianhui Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Shujiao Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Baomei Xu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Zikai He
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| |
Collapse
|
3
|
Blake MJ, Castillo HB, Curtis AE, Calhoun TR. Facilitating flip-flop: Structural tuning of molecule-membrane interactions in living bacteria. Biophys J 2023; 122:1735-1747. [PMID: 37041744 PMCID: PMC10209030 DOI: 10.1016/j.bpj.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
The first barrier that a small molecule must overcome before trespassing into a living cell is the lipid bilayer surrounding the intracellular content. It is imperative, therefore, to understand how the structure of a small molecule influences its fate in this region. Through the use of second harmonic generation, we show how the differing degrees of ionic headgroups, conjugated system, and branched hydrocarbon tail disparities of a series of four styryl dye molecules influence the propensity to "flip-flop" or to be further organized in the outer leaflet by the membrane. We show here that initial adsorption experiments match previous studies on model systems; however, more complex dynamics are observed over time. Aside from probe molecule structure, these dynamics also vary between cell species and can deviate from trends reported based on model membranes. Specifically, we show here that the membrane composition is an important factor to consider for headgroup-mediated small-molecule dynamics. Overall, the findings presented here on how structural variability of small molecules impacts their initial adsorption and eventual destinations within membranes in the context of living cells could have practical applications in antibiotic and drug adjuvant design.
Collapse
Affiliation(s)
- Marea J Blake
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Hannah B Castillo
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Anna E Curtis
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Tessa R Calhoun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
4
|
Eremchev M, Roesel D, Poojari CS, Roux A, Hub JS, Roke S. Passive transport of Ca 2+ ions through lipid bilayers imaged by widefield second harmonic microscopy. Biophys J 2023; 122:624-631. [PMID: 36659849 PMCID: PMC9989880 DOI: 10.1016/j.bpj.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
In biology, release of Ca2+ ions in the cytosol is essential to trigger or control many cell functions. Calcium signaling acutely depends on lipid membrane permeability to Ca2+. For proper understanding of membrane permeability to Ca2+, both membrane hydration and the structure of the hydrophobic core must be taken into account. Here, we vary the hydrophobic core of bilayer membranes and observe different types of behavior in high-throughput wide-field second harmonic imaging. Ca2+ translocation is observed through mono-unsaturated (DOPC:DOPA) membranes, reduced upon the addition of cholesterol, and completely inhibited for branched (DPhPC:DPhPA) and poly-unsaturated (SLPC:SLPA) lipid membranes. We propose, using molecular dynamics simulations, that ion transport occurs through ion-induced transient pores, which requires nonequilibrium membrane restructuring. This results in different rates at different locations and suggests that the hydrophobic structure of lipids plays a much more sophisticated regulating role than previously thought.
Collapse
Affiliation(s)
- Maksim Eremchev
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David Roesel
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Chetan S Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Aurélien Roux
- Biochemistry Department, University of Geneva, Geneva, Switzerland; Swiss National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland; School of Chemistry and Biochemistry, University of Geneva, Geneva, Switzerland
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Institute of Materials Science and Engineering (IMX), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
5
|
Page EF, Blake MJ, Foley GA, Calhoun TR. Monitoring membranes: The exploration of biological bilayers with second harmonic generation. CHEMICAL PHYSICS REVIEWS 2022; 3:041307. [PMID: 36536669 PMCID: PMC9756348 DOI: 10.1063/5.0120888] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
Nature's seemingly controlled chaos in heterogeneous two-dimensional cell membranes stands in stark contrast to the precise, often homogeneous, environment in an experimentalist's flask or carefully designed material system. Yet cell membranes can play a direct role, or serve as inspiration, in all fields of biology, chemistry, physics, and engineering. Our understanding of these ubiquitous structures continues to evolve despite over a century of study largely driven by the application of new technologies. Here, we review the insight afforded by second harmonic generation (SHG), a nonlinear optical technique. From potential measurements to adsorption and diffusion on both model and living systems, SHG complements existing techniques while presenting a large exploratory space for new discoveries.
Collapse
Affiliation(s)
- Eleanor F. Page
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Marea J. Blake
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Grant A. Foley
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Tessa R. Calhoun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
6
|
Feng J, Neuzil J, Manz A, Iliescu C, Neuzil P. Microfluidic trends in drug screening and drug delivery. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
de Coene Y, Jooken S, Deschaume O, Van Steenbergen V, Vanden Berghe P, Van den Haute C, Baekelandt V, Callewaert G, Van Cleuvenbergen S, Verbiest T, Bartic C, Clays K. Label-Free Imaging of Membrane Potentials by Intramembrane Field Modulation, Assessed by Second Harmonic Generation Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200205. [PMID: 35355419 DOI: 10.1002/smll.202200205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Optical interrogation of cellular electrical activity has proven itself essential for understanding cellular function and communication in complex networks. Voltage-sensitive dyes are important tools for assessing excitability but these highly lipophilic sensors may affect cellular function. Label-free techniques offer a major advantage as they eliminate the need for these external probes. In this work, it is shown that endogenous second-harmonic generation (SHG) from live cells is highly sensitive to changes in transmembrane potential (TMP). Simultaneous electrophysiological control of a living human embryonic kidney (HEK293T) cell, through a whole-cell voltage-clamp reveals a linear relation between the SHG intensity and membrane voltage. The results suggest that due to the high ionic strengths and fast optical response of biofluids, membrane hydration is not the main contributor to the observed field sensitivity. A conceptual framework is further provided that indicates that the SHG voltage sensitivity reflects the electric field within the biological asymmetric lipid bilayer owing to a nonzero χeff(2) tensor. Changing the TMP without surface modifications such as electrolyte screening offers high optical sensitivity to membrane voltage (≈40% per 100 mV), indicating the power of SHG for label-free read-out. These results hold promise for the design of a non-invasive label-free read-out tool for electrogenic cells.
Collapse
Affiliation(s)
- Yovan de Coene
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Stijn Jooken
- Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Olivier Deschaume
- Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Valérie Van Steenbergen
- Laboratory for Enteric NeuroScience (LENS), TAGRID, Department of Chronic Diseases Metabolism and Ageing, Ku Leuven, ON I Herestraat 49, Leuven, 3000, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), TAGRID, Department of Chronic Diseases Metabolism and Ageing, Ku Leuven, ON I Herestraat 49, Leuven, 3000, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Ku Leuven, RK-Herestraat 49, Leuven, 3000, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Ku Leuven, RK-Herestraat 49, Leuven, 3000, Belgium
| | - Geert Callewaert
- Department of Cellular and Molecular Medicine, Ku Leuven, KULAK Kortrijk Campus, Etienne Sabbelaan 53, Kortrijk, 8500, Belgium
| | - Stijn Van Cleuvenbergen
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Thierry Verbiest
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Carmen Bartic
- Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Koen Clays
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| |
Collapse
|
8
|
Abstract
Biological membranes composed of a lipid bilayer and associated proteins work as a platform for highly selective and sensitive detection in nature. Substrate-supported lipid bilayers (SLBs) are a model system of the biological membrane that are mechanically stable, accessible to highly sensitive analytical techniques, and amenable to micro-fabrication, such as patterning. The surface of SLBs can effectively suppress the non-specific binding of proteins, and enhance selective detection by specific interactions. These features render SLBs highly attractive for the development of devices that utilize artificially mimicked cellular functions. Furthermore, SLBs can be combined with nanoscopic spaces, such as nano-channels and nano-pores, that can reduce the detection volume and suppress the non-specific background noise, enhancing the signal-to-background noise (S/B) ratio. SLBs therefore provide promising platforms for a wide range of biomedical and environmental analyses.
Collapse
Affiliation(s)
- Kenichi Morigaki
- Biosignal Research Center, Kobe University.,Graduate School of Agricultural Science, Kobe University
| |
Collapse
|
9
|
Tran RJ, Sly KL, Conboy JC. Revealing the Kinetic Advantage of a Competitive Small-Molecule Immunoassay by Direct Detection. Anal Chem 2020; 92:13163-13171. [PMID: 32878441 DOI: 10.1021/acs.analchem.0c02286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small-molecule detection in an immunoassay format generally employs competition or labeling. A novel direct-detection label-free primary immunoassay utilizing second harmonic generation (SHG) has been developed and the utility of the method has been demonstrated for several small-molecule narcotics. Specifically, the binding of morphine, methadone, and cocaine to antimorphine, antimethadone, and anticocaine antibodies was measured by SHG, allowing binding affinities and rates of dissociation to be obtained. The SHG primary immunoassay has provided the first kinetic measurements of small-molecule hapten interactions with a receptor antibody. The kinetics reveal for the first time that competitive immunoassays achieve their selectivity by taking advantage of the kinetics of association and dissociation of the labeled and unlabeled target and nontarget small-molecule to the capture antibody. In particular, the induced fit of the target small-molecule to their antibody pairs prolongs their residence time, while the nontarget small-molecule dissociate rapidly in comparison.
Collapse
Affiliation(s)
- Renee J Tran
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112, United States
| | - Krystal L Sly
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112, United States
| | - John C Conboy
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
10
|
Hu S, Zhao T, Li H, Cheng D, Sun Z. Effect of tetracaine on dynamic reorganization of lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183351. [PMID: 32416192 DOI: 10.1016/j.bbamem.2020.183351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/18/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022]
Abstract
To understand the intrinsic influence of a drug on lipid membranes is of critical importance in pharmacological science. Herein, we report fluorescence microscopy analysis of the interaction between the local anesthetic tetracaine (TTC) and planar supported lipid bilayers (SLBs), as model membranes. Our results show that TTC increases lipid chain mobility, destabilizes the SLBs and remarkably induces membrane disruption and solubilization. Upon TTC binding, a local curvature change in the bilayer was observed, which led to the subsequent formation of up to 20-μm-long flexible lipid tubules as well as the formation of micron-size holes. Quantitative analysis revealed that membrane solubilization process can be divided into two distinct different stages as a function of TTC concentration. In the first stage (<800 μM), the bilayer disruption profiles fit well to a Langmuir isotherm, while in the second stage (800 μM-25 mM), TTC solubilizes the membrane in a detergent-like manner. Notably, the onset of membrane solubilization occurred below the critical micelle concentration (cmc) of TTC, indicating a local accumulation of the drug in the membrane. Additionally, cholesterol increases the insertion of TTC into the membrane and thus promotes the solubilization effect of TTC on lipid bilayers. These findings may help to elucidate the possible mechanisms of TTC interaction with lipid membranes, the dose dependent toxicity attributed to local anesthetics, as well as provide valuable information for drug development and modification.
Collapse
Affiliation(s)
- Shipeng Hu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Tao Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Hewen Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Danling Cheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zhihua Sun
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
11
|
Wilhelm MJ, Dai HL. Molecule-Membrane Interactions in Biological Cells Studied with Second Harmonic Light Scattering. Chem Asian J 2019; 15:200-213. [PMID: 31721448 DOI: 10.1002/asia.201901406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/12/2019] [Indexed: 12/13/2022]
Abstract
The nonlinear optical phenomenon second harmonic light scattering (SHS) can be used for detecting molecules at the membrane surfaces of living biological cells. Over the last decade, SHS has been developed for quantitatively monitoring the adsorption and transport of small and medium size molecules (both neutral and ionic) across membranes in living cells. SHS can be operated with both time and spatial resolution and is even capable of isolating molecule-membrane interactions at specific membrane surfaces in multi-membrane cells, such as bacteria. In this review, we discuss select examples from our lab employing time-resolved SHS to study real-time molecular interactions at the plasma membranes of biological cells. We first demonstrate the utility of this method for determining the transport rates at each membrane/interface in a Gram-negative bacterial cell. Next, we show how SHS can be used to characterize the molecular mechanism of the century old Gram stain protocol for classifying bacteria. Additionally, we examine how membrane structures and molecular charge and polarity affect adsorption and transport, as well as how antimicrobial compounds alter bacteria membrane permeability. Finally, we discuss adaptation of SHS as an imaging modality to quantify molecular adsorption and transport in sub-cellular regions of individual living cells.
Collapse
Affiliation(s)
- Michael J Wilhelm
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| | - Hai-Lung Dai
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| |
Collapse
|
12
|
Bruzas I, Brinson BE, Gorunmez Z, Lum W, Ringe E, Sagle L. Surface-Enhanced Raman Spectroscopy of Fluid-Supported Lipid Bilayers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33442-33451. [PMID: 31411450 DOI: 10.1021/acsami.9b09988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Supported lipid bilayers are essential model systems for studying biological membranes and for membrane-based sensor development. Surface-enhanced Raman spectroscopy (SERS) stands to add considerably to our understanding of the dynamics and interactions of these systems through direct chemical information. Despite this potential, SERS of lipid bilayers is not routinely achieved. Here, we carried out the first measurements of a solid-supported lipid bilayer on a SERS-active substrate and characterized the bilayer using SERS, atomic force microscopy, surface plasmon resonance spectroscopy, ellipsometry, and fluorescence recovery after photobleaching (FRAP). The creation of a fluid, SERS-active supported lipid bilayer was accomplished through use of a novel silica-coated silver film-over-nanosphere substrate. These substrates offer a powerful new platform to couple common surface techniques that are challenging on the nanoscale, for example, ellipsometry and FRAP, with SERS for studying biological membranes and their dynamics.
Collapse
Affiliation(s)
| | - Bruce E Brinson
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | | | | | - Emilie Ringe
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
- Department of Materials Science and Metallurgy, Department of Earth Science , University of Cambridge , Cambridge CB2 3EQ , U.K
| | | |
Collapse
|
13
|
Okur HI, Tarun OB, Roke S. Chemistry of Lipid Membranes from Models to Living Systems: A Perspective of Hydration, Surface Potential, Curvature, Confinement and Heterogeneity. J Am Chem Soc 2019; 141:12168-12181. [DOI: 10.1021/jacs.9b02820] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Halil I. Okur
- Laboratory for Fundamental BioPhotonics
(LBP), Institute of Bioengineering (IBI) and Institute of Materials
Science (IMX), School of Engineering (STI) and Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Orly B. Tarun
- Laboratory for Fundamental BioPhotonics
(LBP), Institute of Bioengineering (IBI) and Institute of Materials
Science (IMX), School of Engineering (STI) and Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics
(LBP), Institute of Bioengineering (IBI) and Institute of Materials
Science (IMX), School of Engineering (STI) and Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
14
|
The interactions between the adsorbed molecules on the oil-water interface at various salt concentrations. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Landry MR, Rangel JL, Dao VP, MacKenzie MA, Gutierrez FL, Dowell KM, Calkins AL, Fuller AA, Stokes GY. Length and Charge of Water-Soluble Peptoids Impact Binding to Phospholipid Membranes. J Phys Chem B 2019; 123:5822-5831. [PMID: 31251622 DOI: 10.1021/acs.jpcb.9b04641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this study, we provide a quantitative description of the adsorption of water-soluble N-substituted glycine oligomers (peptoids) to supported lipid bilayers that mimic mammalian plasma membranes. We prepared a small array of systematically varied peptoid sequences ranging in length from 3 to 15 residues. Using the nonlinear optical method second harmonic generation (SHG), we directly monitored adsorption of aqueous solutions of 3- and 15-residue peptoids to phospholipid membranes of varying physical phase, cholesterol content, and head group charge in physiologically relevant pH buffer conditions without the use of extrinsic labels. Equilibrium binding constants and relative surface coverages of adsorbed peptoids were determined from fits to the Langmuir model. Three- and 15-residue peptoids did not interact with cholesterol-containing lipids or charged lipids in the same manner, suggesting that a peptoid's adsorption mechanism changes with sequence length. In a comparison of four three-residue peptoids, we observed a correlation between equilibrium binding constants and calculated log D7.4 values. Cationic charge modulated surface coverage. Principles governing how peptoid sequence and membrane composition alter peptoid-lipid interactions may be extended to predict physiological effects of peptoids used as therapeutics or as coatings in medical devices.
Collapse
Affiliation(s)
- Madeleine R Landry
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Jacenda L Rangel
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Vivian P Dao
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Morgan A MacKenzie
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Fabiola L Gutierrez
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Kalli M Dowell
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Anna L Calkins
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Amelia A Fuller
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Grace Y Stokes
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| |
Collapse
|
16
|
Ramadurai S, Sarangi NK, Maher S, MacConnell N, Bond AM, McDaid D, Flynn D, Keyes TE. Microcavity-Supported Lipid Bilayers; Evaluation of Drug-Lipid Membrane Interactions by Electrochemical Impedance and Fluorescence Correlation Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8095-8109. [PMID: 31120755 DOI: 10.1021/acs.langmuir.9b01028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Many drugs have intracellular or membrane-associated targets, thus understanding their interaction with the cell membrane is of value in drug development. Cell-free tools used to predict membrane interactions should replicate the molecular organization of the membrane. Microcavity array-supported lipid bilayer (MSLB) platforms are versatile biophysical models of the cell membrane that combine liposome-like membrane fluidity with stability and addressability. We used an MSLB herein to interrogate drug-membrane interactions across seven drugs from different classes, including nonsteroidal anti-inflammatories: ibuprofen (Ibu) and diclofenac (Dic); antibiotics: rifampicin (Rif), levofloxacin (Levo), and pefloxacin (Pef); and bisphosphonates: alendronate (Ale) and clodronate (Clo). Fluorescence lifetime correlation spectroscopy (FLCS) and electrochemical impedance spectroscopy (EIS) were used to evaluate the impact of drug on 1,2-dioleyl- sn-glycerophosphocholine and binary bilayers over physiologically relevant drug concentrations. Although FLCS data revealed Ibu, Levo, Pef, Ale, and Clo had no impact on lipid lateral mobility, EIS, which is more sensitive to membrane structural change, indicated modest but significant decreases to membrane resistivity consistent with adsorption but weak penetration of drugs at the membrane. Ale and Clo, evaluated at pH 5.25, did not impact the impedance of the membrane except at concentrations exceeding 4 mM. Conversely, Dic and Rif dramatically altered bilayer fluidity, suggesting their translocation through the bilayer, and EIS data showed that resistivity of the membrane decreased substantially with increasing drug concentration. Capacitance changes to the bilayer in most cases were insignificant. Using a Langmuir-Freundlich model to fit the EIS data, we propose Rsat as an empirical value that reflects permeation. Overall, the data indicate that Ibu, Levo, and Pef adsorb at the interface of the lipid membrane but Dic and Rif interact strongly, permeating the membrane core modifying the water/ion permeability of the bilayer structure. These observations are discussed in the context of previously reported data on drug permeability and log P.
Collapse
Affiliation(s)
- Sivaramakrishnan Ramadurai
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| | - Nirod Kumar Sarangi
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| | - Sean Maher
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| | - Nicola MacConnell
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| | - Alan M Bond
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | | | | | - Tia E Keyes
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| |
Collapse
|
17
|
Sharifian Gh M, Wilhelm MJ, Moore M, Dai HL. Spatially Resolved Membrane Transport in a Single Cell Imaged by Second Harmonic Light Scattering. Biochemistry 2019; 58:1841-1844. [PMID: 30912648 DOI: 10.1021/acs.biochem.9b00110] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrate that time-resolved second harmonic (SH) light scattering, when applied as an imaging modality, can be used to spatially resolve the adsorption and transport rates of molecules diffusing across the membrane in a living cell. As a representative example, we measure the passive transport of the amphiphilic ion, malachite green, across the plasma membrane in living human dermal fibroblast cells. Analysis of the time-resolved SH images reveals that membrane regions, which appear to be enduring higher stress, exhibit slower transport rates. It is proposed that this stress-transport relation may be a result of local enrichment of membrane rigidifiers as part of a response to maintain membrane integrity under strain.
Collapse
Affiliation(s)
- Mohammad Sharifian Gh
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Michael J Wilhelm
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Michael Moore
- Optical Science Center for Applied Research , Delaware State University , Dover , Delaware 19904 , United States
| | - Hai-Lung Dai
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
18
|
Verstraete C, Mouchet SR, Verbiest T, Kolaric B. Linear and nonlinear optical effects in biophotonic structures using classical and nonclassical light. JOURNAL OF BIOPHOTONICS 2019; 12:e201800262. [PMID: 30288959 DOI: 10.1002/jbio.201800262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
In this perspective article, we review the optical study of different biophotonic geometries and biological structures using classical light in linear and nonlinear regime, especially highlighting the link between these morphologies and modern biomedical research. Additionally, the importance of nonlinear optical study in biological research, beyond traditional cell imaging is also highlighted and described. Finally, we present a short introduction regarding nonclassical light and describe the new future perspective of quantum optical study in biology, revealing the link between quantum realm and biological research.
Collapse
Affiliation(s)
- Charlotte Verstraete
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Sébastien R Mouchet
- School of Physics, University of Exeter, Exeter, UK
- Department of Physics & Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium
| | - Thierry Verbiest
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Branko Kolaric
- Micro- and Nanophotonic Materials Group, University of Mons, Mons, Belgium
- Center for Photonics, Institute of Physics, University of Belgrade, Belgrade, Serbia
- Old World Labs, Virginia Beach, VA
| |
Collapse
|
19
|
Tarun OB, Hannesschläger C, Pohl P, Roke S. Label-free and charge-sensitive dynamic imaging of lipid membrane hydration on millisecond time scales. Proc Natl Acad Sci U S A 2018; 115:4081-4086. [PMID: 29610320 PMCID: PMC5910843 DOI: 10.1073/pnas.1719347115] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Biological membranes are highly dynamic and complex lipid bilayers, responsible for the fate of living cells. To achieve this function, the hydrating environment is crucial. However, membrane imaging typically neglects water, focusing on the insertion of probes, resonant responses of lipids, or the hydrophobic core. Owing to a recent improvement of second-harmonic (SH) imaging throughput by three orders of magnitude, we show here that we can use SH microscopy to follow membrane hydration of freestanding lipid bilayers on millisecond time scales. Instead of using the UV/VIS resonant response of specific membrane-inserted fluorophores to record static SH images over time scales of >1,000 s, we SH imaged symmetric and asymmetric lipid membranes, while varying the ionic strength and pH of the adjacent solutions. We show that the nonresonant SH response of water molecules aligned by charge-dipole interactions with charged lipids can be used as a label-free probe of membrane structure and dynamics. Lipid domain diffusion is imaged label-free by means of the hydration of charged domains. The orientational ordering of water is used to construct electrostatic membrane potential maps. The average membrane potential depends quadratically on an applied external bias, which is modeled by nonlinear optical theory. Spatiotemporal fluctuations on the order of 100-mV changes in the membrane potential are seen. These changes imply that membranes are very dynamic, not only in their structure but also in their membrane potential landscape. This may have important consequences for membrane function, mechanical stability, and protein/pore distributions.
Collapse
Affiliation(s)
- Orly B Tarun
- Laboratory for Fundamental BioPhotonics, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Institute of Materials Science, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland;
- Institute of Materials Science, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Pham VT, Nguyen TQ, Dao UPN, Nguyen TT. On the interaction between fluoxetine and lipid membranes: Effect of the lipid composition. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 191:50-61. [PMID: 28982068 DOI: 10.1016/j.saa.2017.09.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 09/16/2017] [Accepted: 09/17/2017] [Indexed: 05/27/2023]
Abstract
Molecular interaction between the antidepressant fluoxetine and lipid bilayers was investigated in order to provide insights into the drug's incorporation to lipid membranes. In particular, the effects of lipid's unsaturation degree and cholesterol content on the partitioning of fluoxetine into large unilamellar vesicles (LUVs) comprised of unsaturated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and saturated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were evaluated using second derivative spectrophotometry and Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). It was found that fluoxetine partitioned to a greater extent into the liquid-crystalline DOPC LUVs than into the solid-gel DPPC LUVs. The lipid physical state dependence of drug partitioning was verified by increasing the temperature in which the partition coefficient of fluoxetine significantly increased upon the change of the lipid phase from solid-gel to liquid-crystalline. The incorporation of 28mol% cholesterol into the LUVs exerted a significant influence on the drug partitioning into both DOPC and DPPC LUVs. The ATR-FTIR study revealed that fluoxetine perturbed the conformation of DOPC more strongly than that of DPPC due to the cis-double bonds in the lipid acyl chains. Fluoxetine possibly bound to the carbonyl moiety of the lipids through the hydrogen bonding formation while displaced some water molecules surrounding the PO2- regions of the lipid head groups. Cholesterol, however, could lessen the interaction between fluoxetine and the carbonyl groups of both DOPC and DPPC LUVs. These findings provided a better understanding of the role of lipid structure and cholesterol on the interaction between fluoxetine and lipid membranes, shedding more light into the drug's therapeutic action.
Collapse
Affiliation(s)
- Vy T Pham
- School of Biotechnology, International University, Vietnam National University in HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Trinh Q Nguyen
- School of Biotechnology, International University, Vietnam National University in HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Uyen P N Dao
- School of Biotechnology, International University, Vietnam National University in HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Trang T Nguyen
- School of Biotechnology, International University, Vietnam National University in HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
21
|
Licari G, Beckwith JS, Soleimanpour S, Matile S, Vauthey E. Detecting order and lateral pressure at biomimetic interfaces using a mechanosensitive second-harmonic-generation probe. Phys Chem Chem Phys 2018; 20:9328-9336. [DOI: 10.1039/c8cp00773j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A mechanosensitive harmonophore is used to probe the order and lateral pressure in phospholipid monolayers by surface-second harmonic generation.
Collapse
Affiliation(s)
- Giuseppe Licari
- Department of Physical Chemistry, University of Geneva
- CH-1211 Geneva 4
- Switzerland
| | - Joseph S. Beckwith
- Department of Physical Chemistry, University of Geneva
- CH-1211 Geneva 4
- Switzerland
| | - Saeideh Soleimanpour
- Department of Organic Chemistry, University of Geneva
- CH-1211 Geneva 4
- Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva
- CH-1211 Geneva 4
- Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva
- CH-1211 Geneva 4
- Switzerland
| |
Collapse
|
22
|
Fearon AD, Stokes GY. Thermodynamics of Indomethacin Adsorption to Phospholipid Membranes. J Phys Chem B 2017; 121:10508-10518. [PMID: 29064244 DOI: 10.1021/acs.jpcb.7b08359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Using second-harmonic generation, we directly monitored adsorption of indomethacin, a nonsteroidal anti-inflammatory drug, to supported lipid bilayers composed of phospholipids of varying phase, cholesterol content, and head group charge without the use of extrinsic labels at therapeutically relevant aqueous concentrations. Indomethacin adsorbed to gel-phase lipids with a high binding affinity, suggesting that like other arylacetic acid-containing drugs, it preferentially interacts with ordered lipid domains. We discovered that adsorption of indomethacin to gel-phase phospholipids was endothermic and entropically driven, whereas adsorption to fluid-phase phospholipids was exothermic and enthalpically driven. As temperature increased from 19 to 34 °C, binding affinities to gel-phase lipids increased by 7-fold but relative surface concentration decreased to one-fifth of the original value. We also compared our results to the entropies reported for indomethacin adsorbed to surfactant micelles, which are used in drug delivery systems, and assert that adsorbed water molecules in the phospholipid bilayer may be buried deeper into the acyl chains and less accessible for disruption. The thermodynamic studies reported here provide mechanistic insight into indomethacin interactions with mammalian plasma membranes in the gastrointestinal tract and inform studies of drug delivery, where indomethacin is commonly used as a prototypical, hydrophobic small-molecule drug.
Collapse
Affiliation(s)
- Amanda D Fearon
- Department of Chemistry and Biochemistry, Santa Clara University , 500 El Camino Real, Santa Clara, California 95053, United States
| | - Grace Y Stokes
- Department of Chemistry and Biochemistry, Santa Clara University , 500 El Camino Real, Santa Clara, California 95053, United States
| |
Collapse
|
23
|
Gobrogge CA, Walker RA. Quantifying Solute Partitioning in Phosphatidylcholine Membranes. Anal Chem 2017; 89:12587-12595. [DOI: 10.1021/acs.analchem.7b03964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christine A. Gobrogge
- Chemistry
and Biochemistry Department, Montana State University, Bozeman, Montana 59717, United States
| | - Robert A. Walker
- Chemistry
and Biochemistry Department, Montana State University, Bozeman, Montana 59717, United States
- Montana
Materials Science Program, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
24
|
Mazur F, Bally M, Städler B, Chandrawati R. Liposomes and lipid bilayers in biosensors. Adv Colloid Interface Sci 2017; 249:88-99. [PMID: 28602208 DOI: 10.1016/j.cis.2017.05.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
Biosensors for the rapid, specific, and sensitive detection of analytes play a vital role in healthcare, drug discovery, food safety, and environmental monitoring. Although a number of sensing concepts and devices have been developed, many longstanding challenges to obtain inexpensive, easy-to-use, and reliable sensor platforms remain largely unmet. Nanomaterials offer exciting possibilities for enhancing the assay sensitivity and for lowering the detection limits down to single-molecule resolution. In this review, we present an overview of liposomes and lipid bilayers in biosensing applications. Lipid assemblies in the form of spherical liposomes or two-dimensional planar membranes have been widely used in the design of biosensing assays; in particular, we highlight a number of recent promising developments of biosensors based on liposomes in suspension, liposome arrays, and lipid bilayers arrays. Assay sensitivity and specificity are discussed, advantages and drawbacks are reviewed, and possible further developments are outlined.
Collapse
|
25
|
Tran RJ, Sly KL, Conboy JC. Applications of Surface Second Harmonic Generation in Biological Sensing. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:387-414. [PMID: 28301745 DOI: 10.1146/annurev-anchem-071015-041453] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surface second harmonic generation (SHG) is a coherent, nonlinear optical technique that is well suited for investigations of biomolecular interactions at interfaces. SHG is surface specific due to the intrinsic symmetry constraints on the nonlinear process, providing a distinct analytical advantage over linear spectroscopic methods, such as fluorescence and UV-Visible absorbance spectroscopies. SHG has the ability to detect low concentrations of analytes, such as proteins, peptides, and small molecules, due to its high sensitivity, and the second harmonic response can be enhanced through the use of target molecules that are resonant with the incident (ω) and/or second harmonic (2ω) frequencies. This review describes the theoretical background of SHG, and then it discusses its sensitivity, limit of detection, and the implementation of the method. It also encompasses the applications of surface SHG directed at the study of protein-surface, small-molecule-surface, and nanoparticle-membrane interactions, as well as molecular chirality, imaging, and immunoassays. The versatility, high sensitivity, and surface specificity of SHG show great potential for developments in biosensors and bioassays.
Collapse
Affiliation(s)
- Renee J Tran
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112;
| | - Krystal L Sly
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112;
| | - John C Conboy
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112;
| |
Collapse
|
26
|
Gobrogge CA, Blanchard HS, Walker RA. Temperature-Dependent Partitioning of Coumarin 152 in Phosphatidylcholine Lipid Bilayers. J Phys Chem B 2017; 121:4061-4070. [DOI: 10.1021/acs.jpcb.6b10893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christine A. Gobrogge
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Heather S. Blanchard
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Robert A. Walker
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
27
|
Zhu Y, Moran-Mirabal J. Micropatterning of Phase-Segregated Supported Lipid Bilayers and Binary Lipid Phases through Polymer Stencil Lift-Off. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11021-11028. [PMID: 27700106 DOI: 10.1021/acs.langmuir.6b02346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Supported lipid bilayers (SLBs) provide an excellent model system for studying structural and functional characteristics of biomembranes. Patterning model membranes on solid supports has elicited much interest because lipid bilayer arrays at cellular or subcellular scales provide attractive platforms for reconstituting tissue-like conditions for cell culture, and for creating simplified physiological environments to study biological processes. Phase-segregated SLB patterns can be especially useful for such studies, as the selective functionalization of the lipid phases with different lipids, receptors, or proteins can be achieved to mimic the key features of plasma membrane. However, it remains challenging to pattern phase-segregated lipid bilayers and to spatially control the lipid phases at the micron scale. Current methods to achieve this involve multiple surface modification and patterning steps, elaborate techniques such as microfluidic, microcontact printing, or electrochemical control, among others. To overcome the complexity in producing phase-segregated patterns, we have developed simple and rapid strategies to pattern SLBs with phase separation utilizing the polymer stencil lift-off (PSLO) technique. PSLO is a powerful technique for SLB patterning, since it allows the faithful pattern transfer of micron-sized lipid domains onto solid surfaces under aqueous conditions, which eliminates the need for controlled humidity and reduces the risk of bilayer disruption through drying. By integrating postetching substrate cleaning and a blocking treatment, well-defined homogeneous and phase-segregated SLB patterns were achieved with lipid mobility that matches that of SLBs formed on clean SiO2 wafer substrates. A two-step incubation method was also developed for patterning binary lipid phases, which allowed precise control of their position and geometries. The created phase-segregated SLB patterns were used to study lipid phase behavior within confined areas, and quantitative analysis showed that smaller pattern sizes resulted in smaller gel phase domains, which also covered a smaller fraction of the total patterned SLB area. This was attributed to the decreased mobility of the bottom leaflet of the SLB, which lies in close proximity to the substrate, and the resulting hindered exchange of lipid molecules between the bottom and upper leaflets through the SLB boundary. By further integration with functional groups, the phase-segregated lipid bilayer patterns might find relevant application in tissue engineering, biophysical studies of biomolecular and cellular interactions, and biosensing platforms.
Collapse
Affiliation(s)
- Yujie Zhu
- Department of Chemistry and Chemical Biology, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S4L8, Canada
| | - Jose Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S4L8, Canada
| |
Collapse
|
28
|
Xu Q, Zhao T, Sun Z. Monitoring drug–lipid membrane interactions via a molecular rotor probe. Analyst 2016; 141:4676-84. [DOI: 10.1039/c6an00721j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A label-free sensing method based on membrane viscosity changes to study the interactions between small drug molecules and lipid bilayers.
Collapse
Affiliation(s)
- Qinqin Xu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Tao Zhao
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Zhihua Sun
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| |
Collapse
|
29
|
Gobrogge CA, Kong VA, Walker RA. Temperature Dependent Solvation and Partitioning of Coumarin 152 in Phospholipid Membranes. J Phys Chem B 2015; 120:1805-12. [DOI: 10.1021/acs.jpcb.5b09505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Christine A. Gobrogge
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Victoria A. Kong
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Robert A. Walker
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
30
|
Macias-Romero C, Didier MEP, Jourdain P, Marquet P, Magistretti P, Tarun OB, Zubkovs V, Radenovic A, Roke S. High throughput second harmonic imaging for label-free biological applications. OPTICS EXPRESS 2014; 22:31102-31112. [PMID: 25607059 DOI: 10.1364/oe.22.031102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Second harmonic generation (SHG) is inherently sensitive to the absence of spatial centrosymmetry, which can render it intrinsically sensitive to interfacial processes, chemical changes and electrochemical responses. Here, we seek to improve the imaging throughput of SHG microscopy by using a wide-field imaging scheme in combination with a medium-range repetition rate amplified near infrared femtosecond laser source and gated detection. The imaging throughput of this configuration is tested by measuring the optical image contrast for different image acquisition times of BaTiO₃ nanoparticles in two different wide-field setups and one commercial point-scanning configuration. We find that the second harmonic imaging throughput is improved by 2-3 orders of magnitude compared to point-scan imaging. Capitalizing on this result, we perform low fluence imaging of (parts of) living mammalian neurons in culture.
Collapse
|
31
|
Effect of tetracaine on DMPC and DMPC+cholesterol biomembrane models: Liposomes and monolayers. Colloids Surf B Biointerfaces 2014; 116:63-71. [DOI: 10.1016/j.colsurfb.2013.12.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 11/21/2022]
|
32
|
Stokes G, Conboy JC. Measuring selective estrogen receptor modulator (SERM)-membrane interactions with second harmonic generation. J Am Chem Soc 2014; 136:1409-17. [PMID: 24410282 PMCID: PMC4004268 DOI: 10.1021/ja409250y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Indexed: 12/29/2022]
Abstract
The interaction of selective estrogen receptor modulators (SERMs) with lipid membranes has been measured at clinically relevant serum concentrations using the label-free technique of second harmonic generation (SHG). The SERMs investigated in this study include raloxifene, tamoxifen, and the tamoxifen metabolites 4-hydroxytamoxifen, N-desmethyltamoxifen, and endoxifen. Equilibrium association constants (Ka) were measured for SERMs using varying lipid compositions to examine how lipid phase, packing density, and cholesterol content impact SERM-membrane interactions. Membrane-binding properties of tamoxifen and its metabolites were compared on the basis of hydroxyl group substitution and amine ionization to elucidate how the degree of drug ionization impacts membrane partitioning. SERM-membrane interactions were probed under multiple pH conditions, and drug adsorption was observed to vary with the concentration of soluble neutral species. The agreement between Ka values derived from SHG measurements of the interactions between SERMs and artificial cell membranes and independent observations of the SERMs efficacy from clinical studies suggests that quantifying membrane adsorption properties may be important for understanding SERM action in vivo.
Collapse
Affiliation(s)
- Grace
Y. Stokes
- Department
of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake
City, Utah 84112, United States
| | - John C. Conboy
- Department
of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
33
|
Okamura E, Takechi Y, Aki K. Uptake of Sevoflurane Limited by the Presence of Cholesterol in the Lipid Bilayer Membrane: A Multinuclear Nuclear Magnetic Resonance Study. J Oleo Sci 2014; 63:1149-57. [DOI: 10.5650/jos.ess14120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Huang D, Zhao T, Xu W, Yang T, Cremer PS. Sensing small molecule interactions with lipid membranes by local pH modulation. Anal Chem 2013; 85:10240-8. [PMID: 24152205 DOI: 10.1021/ac401955t] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we utilized a label-free sensing platform based on pH modulation to detect the interactions between tetracaine, a positively charged small molecule used as a local anesthetic, and planar supported lipid bilayers (SLBs). The SLBs were patterned inside a flow cell, allowing for various concentrations of tetracaine to be introduced over the surface in a buffer solution. Studies with membranes containing POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) yielded an equilibrium dissociation constant value of Kd = 180 ± 47 μm for this small molecule-membrane interaction. Adding cholesterol to the SLBs decreased the affinity between tetracaine and the bilayers, while this interaction tightened when POPE (1-hexadecanoyl-2-(9-Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine) was added. Studies were also conducted with three negatively charged membrane lipids, POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt)), POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (sodium salt)), and ganglioside GM1. All three measurements gave rise to a similar tightening of the apparent Kd value compared with pure POPC membranes. The lack of chemical specificity with the identity of the negatively charged lipid indicated that the tightening was largely electrostatic. Through a direct comparison with ITC measurements, it was found that the pH modulation sensor platform offers a facile, inexpensive, highly sensitive, and rapid method for the detection of interactions between putative drug candidates and lipid bilayers. As such, this technique may potentially be exploited as a screen for drug development and analysis.
Collapse
Affiliation(s)
- Da Huang
- Department of Chemistry and §Department of Biochemistry and Molecular Biology, Penn State University , University Park, PA 16802
| | | | | | | | | |
Collapse
|
35
|
Sly KL, Mok SW, Conboy JC. Second harmonic correlation spectroscopy: a method for determining surface binding kinetics and thermodynamics. Anal Chem 2013; 85:8429-35. [PMID: 23927733 DOI: 10.1021/ac4018742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
These studies describe the implementation of second harmonic correlation spectroscopy (SHCS) to measure the adsorption and desorption kinetics of molecular species associated with a surface. Specifically, the local fluctuations of the measured second harmonic (SH) signal were used to determine the binding kinetics and thermodynamics of (S)-(+)-1,1'-bi-2-napthol SBN intercalation into a 1,2-dioleoyl-sn-glycero-3-phosphocoline (DOPC) bilayer. In order to determine the adsorption and desorption rates, the SH signal was collected above saturation concentration at steady-state equilibrium as a function of time. The autocorrelated SH signal was then fit to a correlation model developed for molecules binding at a surface when there is no contribution from molecules in solution. The measured adsorption rate for SBN to DOPC was 2.7 ± 0.2 × 10(3) s(-1) M(-1) and the desorption rate was 9 ± 4 × 10(-4) s(-1). The kinetic rates as well as the calculated equilibrium binding constant, 3.0 ± 1.3 × 10(6) M(-1) obtained from SHCS were compared with those obtained from a conventional binding isotherm and found to be statistically consistent. The primary advantage of using SHCS is both the absorption and desorption rates were determined in the same experiment using only a single bulk concentration of SBN. The results of these studies demonstrate that SHCS can be used to provide accurate kinetic and thermodynamic binding data in a label-free manner in lieu of conventional isotherm studies, especially where time and analyte are scarce.
Collapse
Affiliation(s)
- Krystal L Sly
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
36
|
Azam MS, Gibbs-Davis JM. Monitoring DNA Hybridization and Thermal Dissociation at the Silica/Water Interface Using Resonantly Enhanced Second Harmonic Generation Spectroscopy. Anal Chem 2013; 85:8031-8. [DOI: 10.1021/ac401009u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Md. Shafiul Azam
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
37
|
Sly KL, Nguyen TT, Conboy JC. Lens-less surface second harmonic imaging. OPTICS EXPRESS 2012; 20:21953-21967. [PMID: 23037346 PMCID: PMC3601730 DOI: 10.1364/oe.20.021953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 06/01/2023]
Abstract
Lens-less surface second harmonic generation imaging (SSHGI) is used to image an SHG active molecule, (S)-(+)-1,1'-bi-2-naphthol (SBN), incorporated into a lipid bilayer patterned with the 1951 United States Air Force resolution test target. Data show the coherent plane-wave nature of SHG allows direct imaging without the aid of a lens system. Lens-less SSHGI readily resolves line-widths as small as 223 μm at an object-image distance of 7.6 cm and line-widths of 397 μm at distances as far as 30 cm. Lens-less SSHGI simplifies the detection method, raises photon collection efficiency, and expands the field-of-view. These advantages allow greater throughput and make lens-less SSHGI a potentially valuable detection method for biosensors and medical diagnostics.
Collapse
Affiliation(s)
- Krystal L. Sly
- Department of Chemistry, University of Utah, 315 South 1400 East, Rm. 2020, Salt Lake City, Ut. 84112,
USA
| | - Trang T. Nguyen
- School of Biotechnology, International University, Vietnam National University-HCMC, Quarter 6, Linh Trung Ward, Thu Duc Distict, HCMC,
Vietnam
| | - John C. Conboy
- Department of Chemistry, University of Utah, 315 South 1400 East, Rm. 2020, Salt Lake City, Ut. 84112,
USA
| |
Collapse
|